

Edited by Jennifer Sills

Editorial Expression of Concern

On 15 September, Science published the Research Article "Structural basis for strychnine activation of human bitter taste receptor TAS2R46" by Weixiu Xu et al. (1). The editors have been made aware that the examination of data provided after publication revealed potential discrepancies with fig. S10D. This figure was used to support a proposal of precoupling between TAS2R46 and the G protein gustducin. We are alerting readers to these concerns while the authors' institution investigates further.

H. Holden Thorp

Editor-in-Chief

REFERENCES AND NOTES

1. W. Xu et al., Science 377, 1298 (2022).

Published online 22 November 2022 10.1126/science.adf8367

Give long-term datasets World Heritage status

Throughout history, people motivated by ritual or curiosity have routinely recorded their observations of the world around

them. The resulting datasets document our changing planet and provide clear evidence of our role in altering the biosphere [e.g., (1-7)]. However, despite their importance, the future of many such datasets remains uncertain: one chance event or funding decision could lead to their termination. These datasets merit international recognition and support.

Some environmental datasets are so integral to our understanding of the world around us and our place in it that leaving their continuation to the vagaries of fate or government funding cycles is illogical and irresponsible. Instead, an international organization should designate universally valuable long-term environmental datasets as "World Heritage datasets," in a process similar to the one used by the United Nations Educational, Scientific, and Cultural Organization to designate World Heritage sites. Such a designation would acknowledge that highimpact, long-term datasets that document our changing environment are a part of our cultural heritage.

World Heritage datasets should be high impact, consistent, sustained, available, and accessible. The Keeling curve data on daily atmospheric CO₂ concentrations at Mauna Loa in Hawaii, for example, has documented the impact of fossil fuel combustion

on the atmosphere for 64 years (4, 5). The record of cherry blossom dates in Kyoto-recorded across the centuries by imperial courts, newspapers, and scientists (6)—strikingly illustrates the effects of climate change on the biosphere (1, 2). Data on the chemistry of precipitation and stream water at Hubbard Brook in New Hampshire (7), collected weekly since 1963, led to the discovery of acid rain and the passage of legislation to control it, and now documents the effectiveness of that legislation (3). Crucial long-term datasets like these are fragile and face threats ranging from shifts in funding priorities to volcanic eruptions (8).

An international organization such as the UN Environment Programme could develop the criteria and process through which World Heritage status can be awarded to environmental datasets. By establishing the value of long-term environmental records, World Heritage designation would help secure funds, ensure data longevity and accessibility, and encourage the creation of new datasets of significance for understanding global change.

Emma J. Rosi1*, Emily S. Bernhardt2, Christopher T. Solomon¹, Gene E. Likens^{1,3}, William H. McDowell⁴, Irena F. Creed⁵ ¹Cary Institute of Ecosystems Studies, Millbrook, NY 12545, USA. 2Department of Biology, Duke University, Durham, NC 27708, USA. 3 Institute of the Environment, University of Connecticut,

Storrs, CT 06269, USA. ⁴Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA. ⁵Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C1A4, Canada.

*Corresponding author. Email: rosie@caryinstitute.org

REFERENCES AND NOTES

- 1. Y. Aono, K. Kazui, Int. J. Climatol, 28, 905 (2008).
- N. Christidis, Y. Aono, P. A. Stott, Environ. Res. Lett. 17, 054051 (2022).
- 3. G. E. Likens, Front. Ecol. Environ. 8, e1 (2010).
- 4. C. D. Keeling, *Tellus* **12**, 200 (1960).
- 5. The Keeling Curve (University of San Diego, 2022); https://keelingcurve.ucsd.edu.
- Kyoto Cherry Blossom Full Flower Dates (Datagraver, 2022); https://www.datagraver.com/case/ kyoto-cherry-blossom-full-flower-dates.
- 7. Ecosystem Data Visualization (2022); hbwater.org.
- E. Shao, "Mauna Loa eruption threatens a famous climate record," New York Times (2022).

10.1126/science.adg0508

Support for climate policy researchers

In the past 2 years, the European Union and the United States announced plans to spend \$573 and \$391 billion, respectively, through 2030 on climate actions (1) and passed landmark legislation such as the US Inflation Reduction Act (2). Although unprecedented in size and scope, these combined investments of \$964 billion pale in comparison to the more than \$4 trillion in global clean energy investment needed annually by 2030 to stay on track for net zero greenhouse gas emissions by 2050 (3). To maximize the impact of this public money, efficient policies informed by independent, objective analysis will be needed. Yet scientists who commit to policy-relevant research face unique challenges that must be addressed.

Beyond infrastructure, meeting climate goals requires investing in researchers, many of whom will likely spend their entire careers analyzing clean energy technology and policy rollouts (4), assessing their impacts on society, and advising on needed course corrections. This community must include early-career scholars who are essential to tackling the protracted, multi-decadal challenges posed by climate change. Academia can be the wellspring for this research community, but institutions must recognize the barriers they impose on interdisciplinary, applied, policy-focused research.

Policy-relevant energy research combines a broad knowledge base, spanning engineering, social science, and physical science (5, 6). Such research faces well-documented challenges in finding

funding, collaborators, and knowledgeable peer reviewers and editors (7, 8). It also takes time, effort, and skill to disseminate research findings to policymakers and journalists. Effectiveness usually requires deep engagement with communities and policy circles, which can introduce new risks, such as backlash from colleagues, students, and legislators.

Academic institutions can support policy-relevant researchers by providing consistency and incentives. Ensuring that funding for early-career researchers is stable should be a priority. With dependable funding, scholars can focus on activities that maximize their research's impact and advance their careers. Broadening career incentives to reflect the nature of policy-relevant research—e.g., by adding (but not mandating) policy outreach metrics alongside the usual success criteria for tenure and promotion cases—would further remove barriers.

Institutions can also facilitate connections for scientists working in these fields. Policy-focused workshops (9) would enhance networking and allow scholars to interact with government officials and senior researchers, fostering ideation, sharpening research questions, and providing new opportunities for collaboration. Media engagement training would better prepare them to communicate their findings. Fact-based public discourse is more important than ever, but researchers often lack the network, skills, and resources to engage effectively with journalists.

These reforms aren't without implementation challenges. Academia will need a fresh debate about how (or whether) to measure and grade policy engagement and impact and how to overcome skepticism about policy-relevant research in more traditional departments. But the gravity of the climate crisis merits a rethink. Now is the time to reevaluate academia's role.

Ryan Hanna^{1*}, Eugenie Dugoua², Alejandro Nuñez-Jimenez³, Destenie Nock^{4,5}, Stephanie Arcusa⁶, Sergio Castellanos⁷, Michael R. Davidson^{8,9}, Morgan R. Edwards^{10,11}, Clara Galeazzi¹², Xue Gao¹³, Michelle Graff¹⁴, Kathleen M. Kennedy¹⁵, Eleftheria Kontou¹⁶, Priyank Lathwal¹⁷, Mirko Musa¹⁸, Eric O'Rear¹⁹, S. Sivaranjani²⁰, Jingjing Zhang²¹, Qianru Zhu²²

¹Center for Energy Research, University of California San Diego, La Jolla, CA 92093, USA. ²London School of Economics, London, UK. ³ETH Zurich, Zurich, Switzerland. ⁴Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ⁵Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ⁶Center for Negative Carbon Emissions, Arizona State University, Tempe, AZ 85287, USA. ⁷Department of Civil, Architectural, and Environmental Engineering,

University of Texas at Austin, Austin, TX 78712, USA. 8School of Global Policy and Strategy, University of California San Diego, La Jolla, CA 92093, USA. 9Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA. 10La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI 53715, USA. 11 Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI 53715, USA. ¹²Centre for Energy, Environment, and Natural Resource Governance, University of Cambridge, Cambridge, UK. 13 Department of Political Science, University of Miami, Coral Gables, FL 33146, USA. 14Maxine Goodman Levin School of Urban Affairs, Cleveland State University, Cleveland, OH 44115, USA. 15Center for Global Sustainability, School of Public Policy, University of Maryland College Park, College Park, MD 20742, USA. 16 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ¹⁷Energy and Extractives Global Practice, World Bank Group, Washington, DC 20433, USA. 18 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. 19Rhodium Group, New York, NY 10019, USA. ²⁰School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA. 21 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ²²Energy Systems and Climate Analysis, Electric Power Research Institute, Palo Alto, CA 94304, USA, *Corresponding author. Email: rehanna@ucsd.edu

The views expressed in the article are those of the authors and do not necessarily reflect the official views of the organizations for whom they work.

REFERENCES AND NOTES

- "Climate mainstreaming," European Commission (2021); https://ec.europa.eu/info/strategy/eubudget/performance-and-reporting/mainstreaming/ climate-mainstreaming_en.
- "CBO scores IRA with \$238 billion of deficit reduction," Committee for a Responsible Federal Budget (2022); https://www.crfb.org/blogs/ cbo-scores-ira-238-billion-deficit-reduction.
- 3. International Energy Agency, "Net Zero by 2050: A road map for the global energy system" (2021).
- 4. R. Hanna, D. G. Victor, Nat. Energ. 6, 568 (2021).
- 5. F.W. Geels, B.K. Sovacool, T. Schwanen, S. Sorrell, Science 357, 1242 (2017).
- 6. B. K. Sovacool et al., Energ. Res. Soc. Sci. **70**, 101617 (2020).
- 7. C. J. Hein et al., WIREs Clim. Change. 9, e530 (2018).
- 8. E. Leahey, Eur. Rev. 26, S55 (2018).
- 2022 Climate-Tech Policy "Boot Camp" for Early Career Researchers, Information Technology and Innovation Foundation (2022); https://itif.org/ events/2022/06/05/2022-climate-tech-policy-bootcamp-for-early-career-researchers/.

10.1126/science.adf8956

ERRATA

Erratum for the Report "Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding," by C. A. Gould *et al.*, *Science* **378**, eadf5804 (2022). Published online 11 November 2022; 10.1126/science.adf5804

Erratum for the Research Article "Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome," by P. R. Bhatt *et al.*, *Science* **378**, eadf3953 (2022). Published online 21 October 2022; 10.1126/science.adf3953

Give long-term datasets World Heritage status

Emma J. Rosi, Emily S. Bernhardt, Christopher T. Solomon, Gene E. Likens, William H. McDowell, and Irena F. Creed

Science 378 (6625), . DOI: 10.1126/science.adg0508

View the article online

https://www.science.org/doi/10.1126/science.adg0508 Permissions

https://www.science.org/help/reprints-and-permissions

Use of this article is subject to the Terms of service