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Abstract: The spread of fake news related to COVID-19 is an infodemic that leads to a public health
crisis. Therefore, detecting fake news is crucial for an effective management of the COVID-19
pandemic response. Studies have shown that machine learning models can detect COVID-19 fake
news based on the content of news articles. However, the use of biomedical information, which is
often featured in COVID-19 news, has not been explored in the development of these models. We
present a novel approach for predicting COVID-19 fake news by leveraging biomedical information
extraction (BioIE) in combination with machine learning models. We analyzed 1164 COVID-19 news
articles and used advanced BioIE algorithms to extract 158 novel features. These features were then
used to train 15 machine learning classifiers to predict COVID-19 fake news. Among the 15 classifiers,
the random forest model achieved the best performance with an area under the ROC curve (AUC)
of 0.882, which is 12.36% to 31.05% higher compared to models trained on traditional features.
Furthermore, incorporating BioIE-based features improved the performance of a state-of-the-art
multi-modality model (AUC 0.914 vs. 0.887). Our study suggests that incorporating biomedical
information into fake news detection models improves their performance, and thus could be a
valuable tool in the fight against the COVID-19 infodemic.

Keywords: COVID-19; fake news; public health infodemic; machine learning; biomedical information
extraction

1. Introduction
The emergence of the novel coronavirus (SARA-Cov-2) in December 2019 has led to

the first global pandemic in which technology and social media are being used on a massive
scale [1]. The impact of the coronavirus disease 2019 (COVID-19) pandemic depends on the
quality of the information to which people are exposed [2]. Unfortunately, fake news about
COVID-19 has traveled faster than the virus itself through various online platforms [3].
The misinformation from COVID-19 fake news can lead to negative consequences such as
vaccine hesitancy [4,5], hate crimes [6,7], and psychological disorders [8–10]. The World
Health Organization (WHO) has declared the spread of fake news about COVID-19 an
infodemic in public health [11,12].

Containing the spread of fake news is crucial to the management of the COVID-19
pandemic response [13–15]. COVID-19 fake news can be detected by human domain
experts, such as journalists or scientists [16,17]. However, detecting fake news by humans
becomes resource-extensive and impossible as a massive amount of information floods
the internet on a daily basis [1]. Alternatively, machine learning models can automatically
evaluate the credibility of COVID-19 news from online platforms and have consequently
attracted more and more attention [18,19]. Various supervised learning approaches such as
the random forest [20–24], logistic regression [20,22,24], neural network [16,20,23], K nearest
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neighbors [20,22], and support vector machine [20–22] were adopted to train prediction
models for detecting COVID-19 fake news.

The key to machine learning-based COVID-19 fake news predictions is to extract
machine-understandable features from the news articles [24,25]. Term Frequency–Inverse
Document Frequency (TF–IDF) and word embedding methods are commonly used for
feature extractions [16,20,22,26–31], but are often challenged by their interpretability [32,33].
Recent studies have shown that linguistic and sentiment features can be used to detect
COVID-19 fake news (Figure 1). For instance, the number of uppercase characters can be
used to identify the writing style of fake news [21,24], while text polarity and the count of
motion words can be used to analyze the sentiment expressed in news articles [24,34,35].
However, a limitation of these features is that fake news can potentially mimic true news
by parodying the writing style of real news articles and by adding fake information to
authentic news pieces or by modifying the information in an authentic news article [34,36].

 

Figure 1. Machine learning features for COVID-19 news detection and the contents of news articles
modeled by the features.

Information features, such as person and location names, can be used to capture
specific information reported in COVID-19 news (Figure 1). Information reported in the
news is less easily imitated than writing style and sentiment [37], and therefore has greater
potential for identifying COVID-19 fake news. Only a limited number of studies have
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incorporated information features in COVID-19 fake news prediction models [24,25,38].
Khan Suleman et al. constructed information features by extracting 18 types of predefined
entities, such as the name of organizations and locations [24,25]. Similar features have been
used by Gupta Ayush et al., to train machine learning algorithms [38].

Current information features have limitations in capturing biomedical information
such as drug treatments, disease symptoms, and medical procedures (Figure 1). Biomed-
ical information is a major component of COVID-19 news, with approximately half of
the misinformation about COVID-19 relating to biomedical topics [39–41]. For example,
former President Donald Trump and Brazilian President Jair Bolsonaro falsely claimed that
hydroxychloroquine is effective as a treatment for COVID-19 [15]. Given the importance of
biomedical information in COVID-19 news, incorporating such information into machine
learning models can provide novel insights and potentially improve the performance of
fake news prediction models. This motivates us to explore new methods or features for
modeling biomedical information in existing machine learning models.

Biomedical information extraction (BioIE) aims to automatically unlock structured
biomedical semantics (e.g., entities, relations, and events) out of unstructured text data [42].
BioIE has been successfully applied in drug discovery [43–45], identification of disease
mechanisms [46–48], and clinical decision support [49,50]. Up to now, several tools have
been developed for BioIE [51–55]. Those tools can extract thousands and hundreds of
biomedical semantics, which provide us with valuable information for COVID-19 fake news
detection. In order to overcome the limitation of the current information features-based
methods, we proposed a new method that combines BioIE-based feature extraction and
machine learning to predict COVID-19 fake news. Table 1 presents a comparison of features
used to train the models in different studies aimed at detecting fake COVID-19 news. The
table highlights the unique advantage of our study, which leverages the utilization of
biomedical information in news articles to build COVID-19 fake news detection models.

Table 1. Comparison of features used for COVID-19 fake news detection in different studies.

Studies Data Sources Linguistics Sentiment NER Biomedical

Alenezi et al. [26] Twitter, WHO, CDC, etc. No No No No
Tashtoush et al. [16] WHO, UN, Google Fact Check, etc. No No No No
Bangyal et al. [22] Facebook, Instagram, etc. No No No No

Endo et al. [23] Brazilian Ministry of Health, Boatos.org, etc. Yes No No No
Al-Rakhami et al. [21] Twitter Yes No No No

Daley et al. [35] Politifact.com Yes Yes No No
Gupta et al. [38] Twitter Yes No Yes No
Iwendi et al. [25] Facebook, Twitter, The New York Times, etc. Yes Yes Yes No
Khan et al. [24] Facebook, Twitter, The New York Times, etc. Yes Yes Yes No

Our study Facebook, Twitter, The New York Times, etc. Yes Yes Yes Yes

Linguistics: linguistics features; Sentiment: sentiment features; NER: named entity recognition features; and
Biomedical: biomedical information extraction-based features.

We utilized the advanced BioIE algorithms to extract 158 BioIE-based features from
over 1000 COVID-19-related news articles. The BioIE-based features were selected for
the task of COVID-19 fake news detection due to their relevance and significance in
capturing the biomedical information that is commonly present in news articles related
to the pandemic. These features have been extracted to capture and represent the key
aspects of biomedical information, including disease symptoms, treatments, and medical
procedures. Our hypothesis was that incorporating these BioIE-based features into the
machine learning models would enhance the prediction accuracy of fake news detection by
providing additional knowledge to the models.

To verify our hypothesis, we trained machine learning classifiers to predict COVID-19
fake news using the BioIE-based features. Through rigorous evaluation processes, we
provide concrete evidence that incorporating biomedical information for COVID-19 fake
news prediction is a feasible and practical method with high performance. (1) BioIE-
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based features are applicable when other features are not presented. (2) Models trained
with BioIE-based features achieved higher performance than state-of-the-art information
features-based methods. (3) A novel information features-based model, by integrating
biomedical information, can achieve a higher performance than models that are trained
with linguistics and semantic features. (4) A BioIE-driven multi-modality machine learning
model outperformed a state-of-the-art multi-modality model. To the best of our knowledge,
this study represents the first study to incorporate BioIE with machine learning-based
COVID-19 fake news detections.

2. Materials and Methods
The schema for the experiment steps is shown in Figure 2. We curated a COVID-19

news dataset with known labels for true and fake news articles. We used various BioIE
tools to extract biomedical information from these articles, resulting in 158 novel BioIE-
based features. We then built and tested 15 supervised machine learning models based on
these features. Next, we compared the performance of the BioIE-based features with state-
of-the-art information features. We also combined the BioIE-based feature with existing
information features to evaluate if the performance can be significantly improved. A novel
information features-based model was built and compared with existing models using
linguistics and semantic features. Finally, we conducted a BioIE-driven multi-modality
machine learning model by integrating multiple types of features.

 

Figure 2. Flowcharts of the study.

2.1. Data
The dataset used in this work consists of 1164 COVID-19-related news articles collected

from various platforms such as Twitter, Facebook, The New York Times, Harvard Health
Publishing, WHO, etc. The dataset includes 586 true news articles and 578 fake news
articles [56]. Previous studies have used this dataset for feature extraction and training
machine learning models for detecting fake COVID-19 news [24,25]. Before building the
machine learning models, we preprocessed the text of the news articles by removing URLs,
punctuation marks, and empty columns. We then extracted features from the preprocessed
text to build the models.

2.2. Constructing Novel Features with Biomedical Information Extraction
The 158 novel BioIE-based features were constructed through the utilization of three

BioIE tools: scispaCy, MetaMap, and a spaCy customized model. These tools were applied
to identify and extract various types of biomedical named entities, including diseases,
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syndromes, drugs, and pathogens, from the news articles. The number of occurrences
of each unique type of biomedical named entity in the news article was then appended
as a feature. This process resulted in 158 unique BioIE-based features, which are listed
in Tables S1–S3 in the Supplementary Materials. Each news article was recorded with
its number of occurrences of each type of biomedical named entity as features for the
training process.

We first performed biomedical information extraction with two existing tools, which
are popular resources for recognizing biomedical named entities—scispaCy [55] and
MetaMap [52]. ScispaCy is a specialized natural language processing (NLP) library that
contains pre-trained deep learning models to process biomedical and clinical text [57].
MetaMap is a dictionary-based system for recognizing biomedical concepts from the
Unified Medical Language System (UMLS), which is a large biomedical thesaurus that
integrates nearly 200 vocabularies [58].

We used four scispaCy (version: 0.5.1) models (en_ner_craft_mb, en_ner_jnlpba_md,
en_ner_bc5cdr_md, and en_ner_bionlp13cg_md) pertained on four corpuses (CRAFT [59],
JNLPBA [60], BC5CDR [61], and BIONLP13CG [62]) to extract biomedical named entities. The
29 types of biomedical entities extracted from scispaCy are presented in Table S1. The number
of occurrences of each type of biomedical entity represents a machine learning feature.

Unlike scispaCy, MetaMap uses a dictionary-based approach and does not require
annotated data for training. We extracted 127 different types of biomedical entities in UMLS
using MetaMap (V 2016). The number of occurrences of each type of biomedical entity was
then recorded as a machine learning feature (Table S2).

We utilized spaCy version 3.4.0 to train a customized BioIE model on pre-tagged med-
ical text obtained from Wikipedia [63]. The model was trained using spaCy’s customized
named entity recognition, which employs convolutional neural networks to develop gen-
eral NLP tools for every step of the pipeline [64]. The starting point for our customized
NER model was a blank spaCy NER model. We trained the model on the pre-tagged data
by shuffling the training data, creating batches and training on them, and updating the
model based on the training results. The model underwent 1000 iterations of training with
a drop rate of 0.3 and a dynamic minibatch size, which was determined by combining the
training data with an initial size of 4, a maximum size of 64, and a growth factor of 1.2.
This customized model was able to extract an additional 3 features, each representing the
number of occurrences of a unique type of biomedical named entity (Table S3).

2.3. Training and Evaluation with Biomedical Information Extraction-Based Feature
The BioIE-based features with the dataset in Section 2.1 were used to build classifica-

tion models with machine learning algorithms. We trained 15 different machine learning
configurations to predict COVID-19 fake news. To ensure the robustness of our results,
we implemented regularization techniques and utilized ensemble learning algorithms to
address overfitting. In addition, we randomly split the dataset into a training set (75%) and
a testing set (25%) to maintain the independence and generalizability of our results. The
training set was used to build and train the machine learning models to detect COVID-19
fake news, while the testing set was used to evaluate their performance. The optimization
of the models’ hyperparameters was performed on the training set using the successive
halving method. The performance of the models was evaluated at each iteration of the
hyperparameter tuning process using the area under the receiver operating characteristic
curve (AUC) through a 5-fold cross-validation approach. Next, models with the best hyper-
parameter combinations were trained on the entire training set and applied to the testing
set. The performance of these models on the testing set was measured and compared
using the AUC. The accuracy, F1 score, recall, specificity, and precision were also reported.
Table 2 presents the 15 machine learning configurations used in this study, along with the
hyperparameters tuning range for each configuration.
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Table 2. Machine learning configurations and hyperparameters tuning range.

Models Hyperparameters Levels

Logistic regression
Inverse of regularization

strength and
norm of the penalty

0.1, 1.0, and 10.0
L1 and L2

AdaBoost
Maximum number of

estimators and
learning rate

50, 100, and 200
0.1, 0.5, and 1.0

Bagging Maximum number
of estimators 10, 50, and 100

Decision tree
Minimum samples to split and

minimum samples to be at
a leaf

2.0, 5.0, and 10.0
1.0, 2.0, and 4.0

SVC_rbf Regularization parameter 0.1, 1.0, 5.0, and 10
SVC_poly Regularization parameter 0.1, 1.0, 5.0, and 10

SVC_sigmoid Regularization parameter 0.1, 1.0, 5.0, and 10

kNN Number of neighbors and
weight function

3.0, 5.0, 7.0, and 9.0
Uniform and distance

Naïve bayes Additive smoothing
parameter 1.0, 5.0, and 10.0

Random forest Number of trees and
number of features

50, 100, and 200,
Sqrt and Log2

SGDClassifier_L1 Learning rate Constant, optimal, and
invscaling

SGDClassifier_L2 Learning rate Constant, optimal, and
invscaling

SGDClassifier_EN Learning rate Constant, optimal, and
invscaling

LinearSVC_L1 Regularization parameter 0.1, 1.0, 10.0, and 100.0
LinearSVC_L2 Regularization parameter 0.1, 1.0, 10.0, and 100.0

AdaBoost: adaptive boosting; Bagging: bootstrap aggregating; SVC_rbf or _poly or _sigmoid: support vector
machine with rbf kernel or polynomial kernel or sigmoid kernel; SGDClassifier_L1 or _L2 or _EN: stochastic
gradient descent with L1 or L2 or elastic net regularization; KNN: k-nearest neighbors; and LinearSVC_L1 or _L2:
support vector machine with linear kernel coupled with L1 or L2 regularization.

The analysis was conducted using Python 3.8.8. Machine learning classifiers, random
split, and evaluation metrics were conducted using Sci-kit Learn 0.24.1 [65]. We compared
the prediction power of BioIE-based features extracted from different tools and evaluated
the performance with the combination of those BioIE-based features. Random forest
showed the best performance in our dataset. Hence, the random forest algorithm was
utilized in the following analysis.

2.4. Training and Evaluation through a Combination of State-of-the-Art Information Features and
Biomedical Information Extraction-Based Features

The main goal of this part is to investigate if incorporating biomedical information
can improve information features-based COVID-19 fake news detection. Only a limited
number of studies have extracted information features for detecting COVID-19 fake news.
The 18 named entity recognition (NER) features (Table S4) adopted by Khan Suleman
et al. [24,25] were used as state-of-the-art information features. Those NER features capture
information in the news articles, such as locations and person names. Its limitation is that
none of them preserve biomedical information. The performance of a random forest model
trained with NER features is used as the baseline of information features-based COVID-19
fake news detection.

We extracted the 18 NER features with spaCy 3.4.0 Python tool kit. The NER features
were validated with the same random split, hyperparameter tuning process, and evaluation
method, as in Section 2.2. We compared the prediction power of state-of-the-art NER
features and novel BioIE-based features. The performance of the combination of NER and
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BioIE-based features was also evaluated. A novel information features-based machine
learning model was developed by combining NER and BioIE-based features.

2.5. A Novel Biomedical Information Extraction-Driven Multi-Modality Machine Learning Model
Previous studies have not compared the performance of the information features

and other types of features. In this part, the novel information features-based model in
Section 2.3 was compared with the machine learning configurations trained with linguistics
and sentiment features. The combination of linguistics and sentiment features was also
compared with BioIE-based features and NER features separately. We used the state-
of-the-art linguistics and sentiment features from the previous studies [24,25]. We did
not include the source of the news as a feature because our study focuses on detecting
COVID-19 fake news based solely on news content. We extracted 15 linguistics features
(Table S5) and 5 sentiment features (Table S6) from the news articles. The same random
split, hyperparameter tuning process and evaluation method in Section 2.2 were applied in
this section.

The information features (BioIE-based and NER features) were then combined with
linguistics and sentiment features to build a novel multi-modality machine learning model
for COVID-19 fake news detection. The novel model was compared with a state-of-the-art
multi-modality model recently developed by Khan Suleman et al. [24]. Khan Suleman
et al. trained a multi-modality random forest model by combining linguistics, sentiments,
and NER features [24]. We trained the multi-modality random forest model by further
incorporating BioIE-based features. We hypothesized that integrating BioIE-based features
could further improve the performance of machine learning configurations when all other
types of features were presented. Both our model and the state-of-the-art model were
trained on the training set and evaluated on the testing set. The same hyperparameter
tuning process in Section 2.2 was applied in this section.

3. Results
3.1. Biomedical Information Extraction Is Useful for COVID-19 Fake News Detection

We first built and validated the COVID-19 fake news prediction models from biomed-
ical information in this section. Our dataset includes a total number of 1164 COVID-19-
related news. The 1164 news articles were divided into 586 true and 578 fake groups
according to their label in the dataset (details in Section 2.1). First, the BioIE-based features
were built using the biomedical semantics types in scispaCy, MetaMap, and the customized
spaCy model, separately and combined (details in Section 2.2). Next, the list of news was
randomly split into a mutually exclusive training set (75%) and a testing set (25%) with
stratification from the labels. The training set was utilized for building machine learn-
ing configurations, while the testing dataset was used for evaluating the configurations’
performances. The results of hyperparameter tuning are shown in Table 3.

The area under the ROC curves for the fifteen classifiers on the testing set is presented
in Table 4. The accuracy, F1 score, recall, specificity, and precision of each machine learning
classifier are presented in Tables S7–S11. Overall, the random forest model performed
the best on all types of BioIE-based features. The random forest model on BioIE-based
features extracted by all the BioIE tools achieved the highest performance (AUC = 0.882).
We also observed that most of the machine configurations trained with BioIE-based features
achieved an AUC higher than 0.700. The results suggested that our novel BioIE-based
features have a prediction power for COVID-19 fake news detection.



Big Data Cogn. Comput. 2023, 7, 46 8 of 18

Table 3. Optimal hyperparameter combinations for BioIE-based features.

Models Hyperparameters ScispaCy MetaMap Custom Combine 1 Combine 2 Combine 3 All

Logistic
regression

Inverse of
regularization

strength and norm of
the penalty

10
L2

0.1
L2

0.1
L2

0.1
L2

1
L2

0.1
L2

0.1
L2

AdaBoost
Maximum number of

estimators and
learning rate

200
1.0

100
1.0

50
0.1

200
0.5

100
1.0

50
1.0

50
1.0

Bagging Maximum number of
estimators 100 50 10 100 100 100 100

Decision tree

Minimum samples to
split and

minimum samples to
be at a leaf

10
4

10
4

2
2

10
2

10
4

5
4

10
4

SVC_rbf Regularization
parameter 5 5 5 1 1 5 1

SVC_poly Regularization
parameter 5 1 10 1 10 1 1

SVC_sigmoid Regularization
parameter 0.1 0.1 1 0.1 0.1 0.1 0.1

kNN Number of neighbors
and weight function

9
distance

9
distance

5
uniform

9
distance

9
distance

9
distance

7
distance

Naïve bayes Additive smoothing
parameter 10.0 1.0 10.0 1.0 10.0 1.0 1.0

Random forest Number of trees and
number of features

100
Log2

200
Log2

100
Sqrt

200
Log2

200
Log2

200
Sqrt

200
Sqrt

SGDClassifier_L1 Learning rate constant optimal invscaling optimal optimal optimal optimal
SGDClassifier_L2 Learning rate constant optimal invscaling constant constant optimal optimal
SGDClassifier_EN Learning rate optimal invscaling invscaling optimal invscaling constant optimal

LinearSVC_L1 Regularization
parameter 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LinearSVC_L2 Regularization
parameter 1.0 1.0 1.0 1.0 1.0 1.0 1.0

ScispaCy: features extracted by scispaCy; MetaMap: features extracted by MetaMap; Custom: features extracted
by the spaCy customized model; Combine 1: features extracted by scispaCy and MetaMap; Combine 2: features
extracted by scispaCy and the spaCy customized model; Combine3: features extracted by MetaMap and the
spaCy customized model; and All: features extracted by scispaCy, MetaMap, and the spaCy customized model.

Table 4. The area under the ROC curves on the testing set.

ScispaCy MetaMap Custom Combine 1 Combine 2 Combine 3 All

Logistic regression 0.712 0.824 0.629 0.821 0.722 0.825 0.826
AdaBoost 0.713 0.823 0.621 0.839 0.752 0.813 0.847
Bagging 0.736 0.863 0.645 0.853 0.764 0.852 0.849

Decision tree 0.658 0.722 0.646 0.703 0.637 0.730 0.747
SVC_rbf 0.741 0.844 0.669 0.836 0.740 0.844 0.844

SVC_poly 0.716 0.776 0.568 0.781 0.748 0.777 0.789
SVC_sigmoid 0.698 0.774 0.560 0.783 0.709 0.777 0.786

kNN 0.709 0.824 0.659 0.815 0.744 0.829 0.830
Naïve bayes 0.667 0.673 0.618 0.677 0.672 0.673 0.676

Random forest 0.738 0.879 0.668 0.877 0.775 0.882 0.882
SGDClassifier_L1 0.598 0.723 0.526 0.705 0.679 0.710 0.699
SGDClassifier_L2 0.598 0.723 0.526 0.745 0.643 0.710 0.699
SGDClassifier_EN 0.663 0.760 0.526 0.705 0.723 0.724 0.699

LinearSVC_L1 0.667 0.743 0.602 0.743 0.658 0.746 0.746
LinearSVC_L2 0.663 0.743 0.595 0.736 0.658 0.746 0.739

Random forest showed the best performance in our dataset. Hence, the random
forest was utilized in the following analysis. To compare the performance of different
types of BioIE-based features, we present the accuracy, AUC, F1 scores, recall, specificity,
and precision of the random forest model in each type of BioIE-based features in Table 5.
Through such a validation method, the features extracted by scispaCy achieved an accuracy
of 66.7%, an AUC of 0.738, an F1 score of 0.681, a recall of 0.647, a specificity of 0.642, and a
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precision of 0.693. The BioIE-based features extracted by the customized model, although
only containing three features, also yielded a solid performance (accuracy 62.8%, AUC
0.668, F1 score 0.649, recall 0.647, specificity 0.617, and precision 0.639). Features extracted
by MetaMap (accuracy 79.5%, AUC 0.879, F1 score 794, recall 0.760, specificity 0.762, and
precision 0.832) showed a higher prediction power compared to features extracted by
scispaCy or the customized model.

Table 5. Performance of random forest models trained with biomedical information extraction-
based features.

ScispaCy MetaMap Custom Combine 1 Combine 2 Combine 3 All

Acc 0.667 0.795 0.628 0.778 0.698 0.781 0.799
AUC (ROC) 0.738 0.879 0.668 0.877 0.775 0.882 0.882

F1 0.681 0.794 0.649 0.778 0.695 0.784 0.801
Recall 0.647 0.76 0.647 0.747 0.660 0.760 0.780

Specificity 0.642 0.762 0.617 0.747 0.667 0.755 0.774
Precision 0.693 0.832 0.639 0.812 0.733 0.809 0.829

ScispaCy: features extracted by scispaCy; Meta: features extracted by MetaMap; Custom: features extracted by
the spaCy customized model; Combine 1: features extracted by scispaCy and MetaMap; Combine 2: features
extracted by scispaCy and the spaCy customized model; Combine 3: features extracted by MetaMap and the
spaCy customized model; and All: features extracted by scispaCy, MetaMap, and the spaCy customized model.

MetaMap is able to identify and extract a wider variety of biomedical entities from the
text compared to scispaCy and the customized model (127 vs. 29 vs. 3). We compared the
median of the number of biomedical entities recognized by these three tools. Compared
to scispaCy and the customized model, MetaMap was able to identify a larger number of
biomedical entities, as suggested by Figure 3. Therefore, a potential reason for MetaMap
features achieving the highest performance is that MetaMap was able to identify more
comprehensive biomedical information from the news articles.

 
Figure 3. Median number of biomedical entities recognized by three biomedical information extrac-
tion tools.

We next tested the combination of the different types of BioIE-based features using the
random forest model. The results of this section are also presented in Table 5. Incorporating
features from the customized model can slightly improve the performance of scispaCy
features (accuracy 69.8% vs. 66.7%, AUC 0.775 vs. 0.738, F1 score 0.695 vs. 0.681, recall 0.660
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vs. 0.647, specificity 0.667 vs. 0.642, precision 0.733 vs. 0.693). The combination of features
from scispaCy and MetaMap performed better than the combination of features scispaCy
and the customized model (accuracy 77.8% vs. 69.8%, AUC 0.857 vs. 0.775, F1 score 0.778
vs. 0.695, recall 0.747 vs. 0.660, specificity 0.747 vs. 0.667, precision 0.812 vs. 0.733). In
addition, features extracted by MetaMap can add an additional prediction power when the
features extracted by scispaCy and the customized model are presented (accuracy 79.9% vs.
69.8%, AUC 0.882 vs. 0.775, F1 score 0.801 vs. 0.695, recall 0.780 vs. 0.660, specificity 0.774
vs. 0.667, precision 0.829 vs. 0.733).

Both scispaCy and the customized model extract biomedical information by deep
learning-based algorithms. While MetaMap utilizes dictionary-based algorithms for
BioIE. Therefore, the fact that MetaMap features can add perdition powers on scis-
paCy and customized features is expected. Our results showed that the BioIE-based
features extracted with different models could complement each other and improve the
prediction performance.

Interestingly, we found that the features extracted by scispaCy and customized models
did not improve the prediction performance when the features extracted by MetaMap
were presented. In machine learning model building, some features may not contribute
significantly to the prediction accuracy and can even have a negative impact on the perfor-
mance of the model when other features are presented. By selecting a subset of features,
it is possible to remove these unimportant features and improve the performance of the
model [66,67]. We hypothesized that the features from scispaCy and the customized model
would not contribute significantly when combined with features from MetaMap. To verify
our hypothesis, we further tested the importance of the features in the random forest model
using the mean decrease in impurity [68]. Figure 4 presents the top three important features
for each of the BioIE tool. Compared to features extracted by scispaCy or the customized
models, the features extracted by MetaMap are more informative. This finding explains
the fact that using all the features did not outperform the features extracted by MetaMap.
Additionally, this suggests that the dictionary-based algorithms used by MetaMap may be
more effective at extracting the relevant information from news articles.

 

Figure 4. Top 3 important features for 3 biomedical information extraction tools.
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3.2. Biomedical Information Extraction Improved the Information Features-Based COVID-19 Fake
News Detection

In this section, we investigated whether BioIE-based features can improve the state-of-
the-art information features-based prediction models. To set up the baseline of information
features-based COVID-19 fake news detection, we trained machine learning configurations
with 18 NER features employed by Khan Suleman et al. [24,25] (details in Section 2.3).
We compared the performance of BioIE-based features and NER features as well as their
combination in the test dataset. The random forest model was utilized in this part as it
showed the best performance in Section 3.1 and in the study by Khan Suleman et al. [24,25].
The optimal hyperparameter combinations for random forest models trained on NER and
BioIE-based features are presented in Table 6.

Table 6. Optimal hyperparameter combinations for random forest models trained on information
features.

Number of Trees Number of Features

NER (baseline) Log2 200
All Sqrt 200

NER + ScispaCy Sqrt 200
NER + MetaMap Sqrt 200
NER + Custom log2 200

NER + Combine 1 log2 200
NER + Combine 2 Sqrt 200
NER + Combine 3 log2 200

NER + All Sqrt 200
NER: Named entity recognition features; ScispaCy: features extracted by scispaCy; MetaMap: features extracted
by MetaMap; Custom: features extracted by the spaCy customized model; Combine 1: features extracted by
scispaCy and MetaMap; Combine 2: features extracted by scispaCy and the spaCy customized model; Combine
3: features extracted by MetaMap and the spaCy customized model; and All: features extracted by scispaCy,
MetaMap, and the spaCy customized model.

The prediction results are shown in Table 7. The accuracy, AUC, F1 score, recall,
specificity, and precision in the NER features prediction in the testing set are 70.1%, 0.745,
0.709, 0.700, 0.683, and 0.719, respectively. Compared to the NER features, BioIE-based
features extracted by the three BioIE tools achieved higher performances (13.98% higher
in accuracy, 16.98% higher in AUC, and 12.98% higher in F1 score, 11.43% higher in recall,
13.32% higher in specificity, and 15.30% higher in precision). The results demonstrate that
BioIE-based features have a stronger prediction power as compared to those state-of-the-art
information features. These results also suggested that biomedical information can better
describe the news information as compared to general named entities such as person and
location names.

Table 7. Performance of NER and BioIE-based prediction.

Acc. AUC F1 Recall Spec. Precision

NER (baseline) 0.701 0.754 0.709 0.700 0.683 0.719
All 0.799 0.882 0.801 0.780 0.774 0.829

NER + ScispaCy 0.781 0.830 0.765 0.727 0.732 0.807
NER + MetaMap 0.833 0.890 0.815 0.780 0.781 0.854
NER + Custom 0.743 0.807 0.753 0.753 0.732 0.753

NER + Combine 1 0.823 0.906 0.826 0.807 0.800 0.846
NER + Combine 2 0.760 0.838 0.767 0.747 0.740 0.789
NER + Combine 3 0.792 0.890 0.789 0.747 0.753 0.836

NER + All 0.819 0.899 0.814 0.787 0.784 0.843

We next built a novel information-based machine learning model by combining BioIE-
based and NER features. Table 7 suggests that the combination of BioIE-based features
from all three tools and NER features achieved the best performance (accuracy = 81.9%,
AUC = 0.899, F1 score = 0.814, recall = 0.787, specificity = 0.784, and recall = 0.843) among
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all the tested descriptors groups. This novel information features-based model improved
the baseline (NER features) prediction power substantially (16.83% increase in accuracy,
19.23% increase in AUC, and 14.81% increase in F1 score, 12.42% increase in recall, 14.79%
increase in specificity, and 17.25% increase in precision). Those results demonstrate that
using biomedical information extraction techniques can provide more information and
insights for machine learning-based COVID-19 news detection.

3.3. Information-Based Models Incorporating Biomedical Information Have a Higher Power in
Identifying COVID-19 Fake News Than Linguistics-Based and Sentiment-Based Models

The predictive power of information features and other types of features have not been
compared in previous studies. In this section, we investigated whether the model trained
with information features can achieve a higher performance compared to those trained
with linguistics and sentiment features. Table 8 presents the optimal hyperparameter
combinations for random forest models trained on information, linguistics, and sentiment
features. The novel information features-based model in Section 3.2 was compared with
the random forest models trained with linguistics and sentiment features on the testing set
(details in Section 2.3). The performances of the linguistics and sentiment features were
also compared with BioIE-based features and NER features separately.

Table 8. Optimal hyperparameter combinations for random forest models trained on different types
of features.

Number of Trees Number of Features

Linguistics Log2 200
Sentiment Sqrt 200

Linguistics + Sentiment Sqrt 200
NER Log2 200
BioIE Sqrt 200

BioIE + NER Sqrt 200
NER: named entity recognition features; BioIE: features extracted by scispaCy, MetaMap, and the spaCy cus-
tomized model.

Table 9 compares information feature-based models with the model trained with lin-
guistics and sentiment features. Our results show that using BioIE-based features extracted
by all three BioIE tools achieves a better performance compared to using linguistics or sen-
timent features alone. Specifically, the AUC of BioIE-based features-based prediction was
12.36% and 31.05% higher as compared to that of linguistics or sentiment features-based
predictions. Improvements in accuracy, F1 score, recall, specificity, and precision were
also observed. The NER features, on the other hand, did not outperform the linguistics
features. This suggests that the BioIE algorithms are more effective at extracting the relevant
information from the text for the task of COVID-19 news detection.

Table 9. Comparison of information features-based models with the model trained with linguistics
and sentiment features.

Acc. AUC F1 Recall Spec. Precision

Linguistics 0.674 0.785 0.667 0.627 0.641 0.712
Sentiment 0.628 0.673 0.649 0.660 0.617 0.639

Linguistics +
Sentiment 0.753 0.834 0.751 0.713 0.719 0.793

NER 0.701 0.754 0.709 0.700 0.683 0.719
BioIE 0.799 0.882 0.801 0.780 0.774 0.829

BioIE + NER 0.819 0.899 0.814 0.787 0.784 0.843
NER: named entity recognition features; BioIE: features extracted by scispaCy, MetaMap, and the spaCy cus-
tomized model.

The novel information features-based model introduced in Section 3.2 (BioIE + NER
in Table 9) showed a higher predictive power. Specifically, the novel information features-
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based model outperformed models trained with linguistics features (accuracy 81.9% vs.
67.4%, AUC 0.899 vs. 0.785, F1 score 0.814 vs. 0.667, recall 0.787 vs. 0.627, specificity
0.784 vs. 0.641, precision 0.843 vs. 0.712), sentiment features (accuracy 81.9% vs. 62.8%,
AUC 0.899 vs. 0.673, F1 score 0.814 vs. 0.649, recall 0.787 vs. 0.660, specificity 0.784 vs.
0.617, precision 0.843 vs. 0.639), and the combination of linguistics and sentiment features
(accuracy 81.9% vs. 75.3%, AUC 0.899 vs. 0.0.834, F1 score 0.814 vs. 0.751, recall 0.787 vs.
0.713, specificity 0.784 vs. 0.719, precision 0.843 vs. 0.793).

The results in this section indicate that information-based models outperform the
linguistics-based and sentiment-based models when incorporating biomedical information.
The information reported in the news is less imitable compared to the news’ linguistics
style and sentiment [34,36,37,69]. Therefore, models trained with information features have
an increased ability to identify COVID-19 fake news. Our study shows that addressing
the limitation of current information features to preserve biomedical information allows
information-based models to achieve a better performance in detecting fake COVID-19
news than linguistics-based and sentiment-based models. These findings highlight the
importance of preserving biomedical information for effective fake news detection in the
context of COVID-19.

3.4. A Novel Biomedical Information-Driven Multi-Modality Model Outperforms a
State-of-the-Art Multi-Modality Model

The goal of this section was to build a novel multi-modality prediction model for
COVID-19 fake news detection by combining BioIE-based features with the existing features
(linguistics, sentiment, and NER features; details in Section 2.3). After comparing the
different combinations of BioIE-based features, we used the BioIE-based features extracted
by MetaMap in this section.

We compared the novel multi-modality model with a state-of-the-art multi-modality
model developed by Khan Suleman et al. [24]. In their study, Khan Suleman et al., de-
veloped a multi-modality model by training random forest using the combination of
linguistics, sentiment, and NER features [24]. Table 10 presents the optimal hyperparameter
combinations for the novel biomedical information-driven multi-modality model and the
state-of-the-art multi-modality model. Figure 5 illustrates the ROC curves of our model
and the state-of-the-art model for classifying COVID-19 fake news vs. true news in the
testing data. Our model achieved a higher AUC of 0.914 compared with the 0.887 obtained
by the state-of-the-art model.

Table 10. Optimal hyperparameter combinations for the novel biomedical information-driven multi-
modality model and the state-of-the-art multi-modality model.

Number of Trees Number of Features

BioIE-driven model Sqrt 200
State-of-the-art model Sqrt 200

Compared to the state-of-the-art model, our new model has the advantage of modeling
biomedical information from news articles. The results indicate that machine learning
models have learned complementary features for detecting fake COVID-19 news based on
the BioIE-based features and existing features. This suggests that biomedical information
can provide additional knowledge for machine learning-based COVID-19 detection models
beyond the linguistic style, sentiment, and non-biomedical named entities.
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Figure 5. ROC curves for the validation test results for the BioIE-based multi-modality model and
the state-of-the-art multi-modality model.

4. Discussion
The need for computational models to aid human fact-checkers is crucial, not only

for the current COVID-19 pandemic but also for future unexpected infodemics. In this
study, we developed a novel approach to identify COVID-19 fake news from biomedical
information. We extended the scope of usage of biomedical information extraction (BioIE)
to machine learning-based COVID-19 fake news detection. By using existing BioIE tools,
we constructed novel machine learning features and provided a comprehensive evaluation
of their performance in comparison to existing features in the context of machine learning-
based COVID-19 fake news detection. Our results showed that the use of BioIE-based
features alone was effective in detecting fake news. Additionally, we found that the combi-
nation of BioIE-based features and existing features further improved the performance of
the COVID-19 fake news detection models. Our results demonstrate that using biomedical
information extraction techniques to mine additional information from COVID-19 news
articles can provide additional knowledge and insights for COVID-19 fake news prediction
models. These findings suggest that biomedical information can be a valuable source for
detecting COVID-19 fake news. Our study provides a comprehensive evaluation of the
impact of incorporating biomedical information into machine learning models and lays the
foundation for the future computational COVID-19 fake news detection models.

Our work has several limitations that could be improved in future studies. First, our
machine learning-based prediction model can be improved by incorporating additional
biomedical information. Currently, we only extracted biomedical entities from the news
articles. Biomedical relationships, such as drug–disease treatment associations [70], disease
phenotypes [71,72], and drug–side effect relationships [44,73], may provide more accurate
information for fake news prediction models. For example, a biomedical relationship
with “Hydroxychloroquine treats COVID-19” is more informative than biomedical entities
“Hydroxychloroquine” and “COVID-19” on their own. Currently, named entity recognition
(NER) features are the only existing information features used for COVID-19 fake news
prediction models. Thus, we used biomedical entities to represent BioIE-based features in
order to fairly compare them with NER features. Extracting biomedical relationships for
building machine learning features is one of our next steps.

Second, biomedical information extraction itself remains a challenging task. Currently,
scispaCy and MetaMap are the most commonly used BioIE tools. Studies suggest that the
precision of scispaCy and MetaMap in biomedical named entity recognition is around 70%
and 85% [52,55]. Therefore, the biomedical information extracted from the new articles may
not be fully accurate. In this study, our goal is to demonstrate the potential contributions of
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biomedical information extraction for COVID-19 fake news detection, rather than to build
a perfect prediction model. In the future, we plan to develop new methods to enhance
the accuracy of biomedical information extraction from news articles. We believe that
improved BioIE models could enhance the performance of our prediction method.

In addition, the news dataset used to train the model only consists of text. Fake
news can also be spread through other types of content, such as audio clips, images, and
videos [74]. Currently, there are no available COVID-19 fake news datasets that include
these types of content. A feature goal of this study is to generate new datasets that include a
wider range of news content types, and to develop computational models that can identify
COVID-19 fake news from these datasets. This will enable us to more effectively identify
fake news that is spread through non-textual content.

Last but not least, our novel approach was developed based on the news collected
in the English language. Therefore, the model is currently only applied to English text.
However, the spread of COVID-19 fake news is a global issue, so it is important to de-
velop machine learning models that can work in multiple languages. Recently, compu-
tational approaches have been developed that can deal with fake news in multiple lan-
guages [23,75–77], but multilingual biomedical information extraction remains a challenge.
MetaMap and scispaCy can be applied only to English text [52,78]. We anticipate that
our model can be expanded to non-English news with effectively multilingual biomedical
information extraction methods.
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