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Abstract—We give an ˜O(
√
n)-space single-pass 0.483-

approximation streaming algorithm for estimating the maximum
directed cut size (Max-DICUT) in a directed graph on n vertices.
This improves over an O(log n)-space 4/9 < 0.45 approximation
algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020),
which was known to be optimal for o(

√
n)-space algorithms.

Max-DICUT is a special case of a constraint satisfaction problem
(CSP). In this broader context, we give the first CSP for which
algorithms with ˜O(

√
n) space can provably outperform o(

√
n)-

space algorithms.
The key technical contribution of our work is development

of the notions of a first-order snapshot of a (directed) graph
and of estimates of such snapshots. These snapshots can be
used to simulate certain (non-streaming) Max-DICUT algorithms,
including the “oblivious” algorithms introduced by Feige and
Jozeph (Algorithmica, 2015), who showed that one such algorithm
achieves a 0.483-approximation.

Previous work of the authors (SODA 2023) studied the
restricted case of bounded-degree graphs, and observed that in
this setting, it is straightforward to estimate the snapshot with
�1 errors and this suffices to simulate oblivious algorithms. But
for unbounded-degree graphs, even defining an achievable and
sufficient notion of estimation is subtle. We describe a new notion
of snapshot estimation and prove its sufficiency using careful
smoothing techniques, and then develop an algorithm which
sketches such an estimate via a delicate process of intertwined
vertex- and edge-subsampling.

Prior to our work, the only streaming algorithms for any
CSP on general instances were based on generalizations of the
O(log n)-space algorithm for Max-DICUT, and can roughly be
characterized as based on “zeroth” order snapshots. Our work
thus opens the possibility of a new class of algorithms for
approximating CSPs by demonstrating that more sophisticated
snapshots can outperform cruder ones in the case of Max-DICUT.

Index Terms—constraint satisfaction problem, approximation
algorithms, sublinear algorithms, streaming algorithms
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I. INTRODUCTION

We consider approximating the maximum directed cut value

of a directed graph by a streaming algorithm presented with a

stream of edges in an arbitrary (worst-case) order. Our main

result is a single-pass algorithm using Õ(
√
n)-space that gives

a .483 approximation algorithm. Along the way we develop

the notions of snapshots of graphs and estimates of such

snapshots, which introduce new tools for approximating graph

theoretic quantities and more generally for approximating

Constraint Satisfaction Problems (CSPs). In what follows

we explain the background of the directed cut problem, the

significance of the result, and the techniques used to achieve

this result.

A. Background

We begin by defining the maximum directed cut

(Max-DICUT) problem in a directed graph G. (These defini-

tions will all be informal; see Section II for formal definitions.)

Given a graph G on n vertices, labeled 1, . . . , n, cut of G is a

binary string x ∈ {0, 1}n, assigning a bit to every vertex in G.

We say x cuts a directed edge (u, v) if xu = 1 and xv = 0.

(Note the asymmetry between u and v.) The value valG(x) of

a cut x is the total fraction of edges it cuts, and the value valG
of G is the maximum value of any cut. A uniformly random

cut has value 1
4 in expectation, so every graph has value at

least 1
4 .

We consider streaming algorithms for the problem of es-

timating the Max-DICUT value valG of a directed graph G,

given a stream σ = (e1 = (u1, v1), . . . , em = (um, vm)) of

the graph’s edges in arbitrary order. We say an algorithm is

an α-approximation for the Max-DICUT problem if its output

v̂ satisfies α ·valG ≤ v̂ ≤ valG (with high probability). We say

an algorithm is a space-s(n) streaming algorithm (where n is

the number of vertices in G) if it reads the stream of edges σ
in sequential order and uses s(n) space.
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The Max-DICUT problem is one example of a so-called

constraint satisfaction problem (CSP). We omit a full defi-

nition as we do not require it, but these problems are basi-

cally defined by two things: (1) a “global” space of allowed

“assignments” to “variables” and (2) a collection of “local”

constraints, each of which specifies allowed values for a small

subset of variables. For Max-DICUT, variables are vertices,

assignments are cuts, and constraints are edges; we will

use these terms interchangeably. The “symmetric version” of

Max-DICUT is another CSP called maximum cut (Max-CUT),

in which a cut x cuts an edge (u, v) if xu �= xv; we mention it

here as it serves a useful point of comparison for Max-DICUT.

B. Recent work

Over the last decade, there has been extensive work on the

approximability of various CSPs in various streaming models

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13];

see also the surveys [14], [15].

Max-DICUT has emerged as the central benchmark for

algorithms among CSPs in the streaming setting. It was the

first problem shown to admit a non-trivial approximation in

sublinear (in n) space in the work of Guruswami, Velingker,

and Velusamy [3]. Subsequent work of Chou, Golovnev, and

Velusamy [7] gave an improved algorithm for Max-DICUT
along with a tight bound on the approximability — pinning the

approximability of Max-DICUT for o(
√
n)-space streaming at

4
9 .

Theorem I.1 ([7]). For every ε > 0, there is a streaming algo-
rithm (in fact, a linear sketching algorithm) which (4/9− ε)-
approximates the Max-DICUT value of a graph in Oε(log n)
space. Conversely, every (4/9 + ε)-approximation streaming
algorithm for Max-DICUT uses Ωε(

√
n) space.

Both the algorithms in [3] and [7] are what previous works

have called “bias-based” algorithms, or what we will call a

“zeroth-order snapshot” algorithms. Roughly, the bias of a

vertex captures the ratio of its in-degree to its out-degree, and

a zeroth-order snapshot computes a histogram of the bias of

vertices in the graph and uses this histogram (and no other

information) to approximate the Max-DICUT value of a graph.

Strikingly, the work of [7] shows that zeroth-order snapshot

based algorithms are optimal among o(
√
n)-space streaming

algorithms.

Subsequent work of Chou, Golovnev, Sudan, and

Velusamy [8] showed that this result is part of a broader

landscape for o(
√
n)-space streaming complexity of CSPs. In

particular, Chou, Golovnev, Sudan, and Velusamy [8] proved

a dichotomy theorem for all finite CSPs. The understanding of

Max-DICUT plays a central role in their results. In particular,

they generalize the zeroth-order snapshot based Max-DICUT
algorithm of [7] to all CSPs. Their lower bounds also gener-

alize the lower bounds from [7] with some notions (“padded

one-wise independent problems”) that are direct abstractions

of Max-DICUT and share tight lower bounds.

One might ask, given a particular CSP, if there are any

algorithms that outperform zeroth-order snapshot algorithms

studied in [8]. For a wide class of CSPs, including Max-CUT,

the answer is “NO” — there are recent Ω(n)-space lower

bounds ruling out all nontrivial approximations [6], [10].12

Thus to make advances one has to restrict the problems con-

sidered, and in this work we focus on the simplest remaining

problem after Max-CUT, namely, Max-DICUT.

For Max-DICUT, till this work and a recent related work

by the authors [13] it was conceivable that there were no

improvements possible in o(n) space. But at the same time the

above mentioned lower bound from [7] did not extend to this

setting and it was unclear whether this was due to a limitation

of the lower bounds techniques or if better algorithms exist.

In a previous work [13], the authors gave some evidence

for the possibility that better algorithms for Max-DICUT do

indeed exist. To be precise, recall that the sketching algorithm

of [7] is a 4
9 ≈ 0.444-approximation, which uses O(log n)

space and is optimal among o(
√
n)-space streaming algorithms

(Theorem I.1). In [13] we proved that for Max-DICUT, the

algorithm of [7] can be beaten in certain restricted models

such as when the input stream is randomly (instead of adver-

sarially) ordered, or the graph has constant maximum-degree.

In particular:

Theorem I.2 ([13]). For every d ∈ N, there is a streaming
algorithm which 0.483-approximates the Max-DICUT value of
a graph with maximum degree d in Õd(

√
n) space.

In doing so the work of [13] introduces the notion that we

call a “first-order snapshot” — where information about the

input graph is “compressed” to a histogram of edges based

on the biases of their two endpoints. (See Definition III.1

below for the definition of a snapshot. We refer here to “first-

order” snapshots since higher-order snapshots might maintain

a histogram of longer length paths or other subgraphs with

more than one edge.) For bounded-degree graphs, mapping

a graph to its snapshot is clearly a compression (since the

number of possible biases is finite), and this compressed

information can be estimated, under fairly natural notions of

estimation, by an Õ(
√
n)-space streaming algorithm.

However, Theorem I.2 does not answer the question of

whether the Max-DICUT algorithm of [7] can be beaten on

general graphs in o(n) space. Indeed, their algorithm breaks

down in a fundamental way on general graphs, so it could

be considered evidence only that more sophisticated lower

bound techniques are necessary to rule out such algorithms.

We further discuss why we believe that Theorem I.2 was far

from a resolution to this question in Section I-D below.

C. Main result

Our main theorem gives an algorithm that uses slightly more

than
√
n space and outperforms the algorithm of [7]:

1Ω(n) space is tight up to logarithmic factors because randomly sparsifying
down to O(n/ε2) constraints gives (1− ε)-approximations.

2The condition for inapproximability given in [10] for a predicate f :
Zk
q → {0, 1} is termed “width”, and states that f ’s support contains some

translate of the diagonal {(a, . . . , a) : a ∈ Zk
q}. More broadly, the strongest

known hardness results for CSPs (e.g., also in [8]) seem to rely on “niceness”
properties of the support of f .
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Theorem I.3 (Main theorem). There is a streaming algorithm
which 0.483-approximates the Max-DICUT value of an arbi-
trary (multi)graph in Õ(

√
n) space.

See Theorem IV.2 below for the fully detailed statement.

The fact that we achieve the same approximation factor

as [13] is not a coincidence. Both works obtain their final

algorithm by constructing a first-order snapshot of the input

graph, and then observing that this information suffices to

simulate the performance of “oblivious” algorithms on the

given input, and finally using a result of Feige and Jozeph [16]

that gives an oblivious algorithm to approximate Max-DICUT
to a factor of ≈ .483. (Roughly, oblivious algorithms randomly

and independently assign vertices to either the 0-side or the

1-side where the probability of choosing a side depends on

the bias of the vertex, and these probabilities are chosen to

optimize the expected number of edges crossing the cut —

a quantity that can be optimized using just the first-order

snapshot information.) While this chain of reasoning is similar,

every step becomes more complex in the unbounded-degree

setting. Indeed as we explain below, designing algorithms for

bounded-degree graphs is and has been substantially easier

than the general case.

D. Beyond bounded-degree instances

Before turning to our setting with Õ(
√
n) space, we first

remark on the role of degree in the earlier works of [3],

[7], [8]. The algorithms in all these works work for general

degree graphs and use powerful norm estimation algorithms

as black boxes. If one were to consider the simpler case of

their problems in the bounded-degree setting, these algorithms

could have been implemented without reliance on these sub-

routines. Specifically, their algorithms only need an estimate

of the absolute value of “bias times the degree” for a random

vertex, and this could be estimated by simply picking a random

sample of the vertices and computing their bias and degree as

the stream passes by. For general CSPs (even on non-Boolean

domains) also such a process would suffice, and this would

not only simplify the algorithms significantly, it even would

achieve a space bound of O(log n) which is better than the

current bounds given in [8] for general CSPs.

Digging deeper into this analogy one can consider �p norm

estimation problems themselves. For this class of problems

also one can define a bounded-degree version of the problem

— where one is trying to compute the �p norm of a vector in

{−C, . . . , C}n in the turnstile update model. In this bounded-

degree setting, the �p norm can be trivially computed by

randomly sampling an OC(1)-sized subset of the coordinates

and maintaining their values. Thus �p norms can be estimated

in O(log n) space for every p in this bounded-degree setting,

whereas in the general case it is well-known that �p norm

estimation requires polynomial in n space for p > 2.

Thus, the bounded-degree setting can be vastly easier to

solve and results in this setting may best be viewed as a proof

of concept — though even this “proof of concept” may be

misleading, as exemplified by the �p norm estimation problem.

Turning to our specific goal — that of computing (first-

order) snapshots of a graph in Õ(
√
n) time — our prior work

[13] again manages to estimate this snapshot in the bounded-

degree setting by sampling Õ(
√
n) vertices and maintaining

the bias of the sampled vertices as well as the induced

subgraph on these vertices. We discuss why this is reasonable

in the bounded-degree setting in the following subsection. But

such a simple algorithm is definitely not going to work in

the general setting! In particular, computing a good estimate

of the snapshot is at least as hard as computing the �1 norm

of a vector in the turnstile model with unit updates. Indeed,

“snapshot” estimation seems to be a “higher-level” challenge

than simple norm estimation and roughly requires computing

some “two-wise” marginals of the graph updates, whereas

bias corresponded to “one-wise” marginals. Black-box use of

norm-estimation algorithms no longer seems to suffice to solve

these “two-wise” marginal problems, which seem to need new

algorithmic ideas. We feel this class of problems and the ideas

used here to deal with them may be of even broader interest

than the application to Max-DICUT.

E. Technical overview

Our goal is to approximate the Max-DICUT value of a graph

G by estimating its snapshot SnapG,t.

Setting aside the streaming model momentarily, the “gold

standard” way to estimate the snapshot would be to sample a

small set E of edges uniformly and independently at random,

measure the biases of the endpoints of every edge in E,

and use this to estimate the snapshot. Unfortunately, since

the stream is adversarially-ordered, there is no obvious way

to implement this procedure since by the time a “random”

edge appears in our stream, many of the edges incident to its

endpoints might have already appeared, and thus, we may not

know its endpoints’ biases.3

To get an algorithm for adversarially-ordered streams, we

could hope to somehow sample a set E of edges in a way

which maintains the property that for every edge in E,

we know the bias of its endpoints. While E may not be

a uniformly random set of edges, we could still hope for

an estimate of the snapshot if E is “sufficiently” random.

A natural approach proposed in [13] for doing this is the

following. We sample a uniform set S of vertices upfront, i.e.,

before the stream, by uniformly including every vertex with

some probability p independently. Then, during the stream, we

measure the bias of every vertex in S and store the induced
subgraph on S as E. Since S is sampled before the stream

begins, this approach has the advantage that even though

the graph is adversarially-ordered, we end up knowing the

biases of the endpoints of every edge in E. Here is where the√
n space dependency comes from: By a “birthday paradox”

argument4, since E is the induced subgraph on S, in order to

3As observed in [13], when the edges in the stream are randomly ordered
this simple setup does give an algorithm: One can simply set E to be the first
O(1) edges in the stream and then observe the biases of the endpoints over
the remainder of the stream.

4It suffices to consider only sparse graphs (see Lemma II.9).
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expect to even see any edges in E we will need |S| = Ω(
√
n).

But we are very far from done at this point, because there is

a crucial issue as compared to the gold standard case: The

edges which are included in E are no longer independent! In

particular, if two edges e and e′ share a common endpoint

(or two, in the case of a multigraph!), then conditioning on

e ∈ E increases the probability that e′ ∈ E. Here is where

the maximum-degree assumption in [13] comes in: If G has

maximum-degree D, e ∈ E is independent of all but ≤ 2D+1
events e′ ∈ E. It turns out that when D = O(1), this lets us

get enough control on the variance of which edges show up in

E to give a correct estimate. But for larger D, this approach

completely breaks down, and for good reason: In the extreme

example of a star graph (i.e., a graph where one vertex is

connected to all other vertices), we must store the center of the

star in S, or otherwise E will be empty! But if we place every
vertex in S we will use linear space — we want to store the

center with probability 1, but the other (low-degree) vertices

with probability only O(1/
√
n). Thus, in order to extend this

simple estimator to general graphs, we will very roughly want

to place vertices in S with probability which increases as a

function of their degree. Implementing this in the streaming

setting creates numerous challenges, and solving these is a

main focus of this paper.

1) Vertex-sampling in the general case: Our goal now is

to extend the vertex sampling approach described above to

general graphs. We remark that even in the general case, we

can assume WLOG that the number of edges in the graph is

Ω(
√
n) and O(n).5

As we mentioned in the previous subsection, we would

like to sample a set S of vertices, such that every vertex

is included independently with probability which increases

with the degree. This is the first step towards estimating the

snapshot, which will also require sampling edges between

these vertices; we focus on the former task for now, and

address the latter in the following subsection.

Instead of sampling one set S of vertices, we will aim for

a slightly more detailed goal, which is to sample a set Ua of

vertices of degree between da−1 and da, where 1 = d1 <
· · · < dk = O(n) is some partition of the possible degrees in

the graph. (For concreteness, we use da = 2a−1.) We envision

the graph as consisting of k layers; a vertex of degree between

da−1 and da is in layer a (and has “degree class” a, in analogy

to the bias classes).

Consider the task of sampling Ua, a uniform set of vertices

in a fixed layer a. Recall that in the previous subsection

(the bounded-degree case), we placed all vertices in S with

some fixed probability p independently. Now, we would like

to place layer-a vertices into Ua with some probability pa

5If the graph has O(
√
n) edges we can afford to store the entire graph

within our space bound. A standard sparsification argument (see Lemma II.9)
shows replacing G with a random subsample of O(n/ε2) edges changes the
Max-DICUT value by only ε.

independently.6 To fit within our space bound, we only require

|Ua| = O(
√
n); this turns out to imply that pa can grow as a

function of a. For instance, if da = Ω(
√
n) then there can only

be O(
√
n) vertices in layer a, so we can even afford pa = 1.

(Making pa this large in high layers is actually necessary for

good estimates, as shown by the “star” example.) But there is

a seeming paradox in this plan: When a vertex v first appears
in the stream, we would like to know its layer a, so that we
can toss an appropriately biased coin (i.e., Bernoulli-pa) to
determine whether it goes into Ua; but as this is the first

appearance of v, we know nothing about its degree besides
that it is at least 1!

One natural way to deal with this problem is to defer
deciding whether to a vertex has high degree until we see

many edges touching it. To do this, we take advantage of

subsampling edges as well as vertices. To layer a we also asso-

ciate an “edge-subsampling probability” qa and a “subsampled

graph” Ga which includes every edge in G independently with

probability qa. We choose qa = Cd−1
a for a large constant

C, meaning that vertices with degree da in G have degree

roughly C in Ga.7 This allows us to sample Ua in the streaming

setting: We sample Ga on the fly, and then we add to Ua

with probability pa each new vertex with Ga-degree roughly

between 0.49C and 1.01C.8 Note that Ga is too large to store

— in particular, G1 has m edges, and more generally Ga has

qam edges in expectation — so we will need to carefully

choose which edges to store when crafting our estimate in the

following subsection.

Now Ua will contain a random sample of layer-a vertices,

but — and this is crucial — it may also contain other randomly

sampled vertices, like those in layers a − 1 or a + 1. E.g.,

consider a vertex of degree da + 1, which is technically in

layer a + 1, but is also likely to have Ga-degree under qada;

indeed, one cannot differentiate between this vertex and a

layer-a vertex with high probability based on Ga-degree. To

put it another way, by the time we see the first incident edge

to a vertex in Ga, many of its incident edges in G may have

already passed by in the stream, meaning we cannot track
its “global” bias or degree exactly. This creates a substantial

technical issue in even defining the type of estimates we

are trying to achieve, which we have to resolve by certain

6There is a technical reason from switching S to U here to denote sets of
vertices: It is convenient to think of first sampling a set Sa before the stream
to include all vertices w.p. pa (even those not in layer a), and then Ua is the
intersection of Sa with the set of vertices in layer a, which are the vertices
we actually want to track.

7Actually, in order for adequate concentration of the degree in Ga, we will
need C = Ω(logn), but we ignore this for simplicity. Also, if da < C,
we set qa = 1, i.e., we need no edge-subsampling. This is equivalent to the
bounded-degree case we already analyzed.

8We are cheating slightly here: We do not know the degree of such a vertex
when it first appears, so we cannot decide whether it has degree falling in

this range. Instead, during the stream we can store a set ̂Ua containing each
vertex with positive Ga-degree w.p. pa. Then, after the stream, we set Ua to

be the set of vertices in ̂Ua with Ga-degree in the appropriate range. This
point will come up again when we want to store Ga-edges associated to these
vertices in the following subsection; we will have to store edges for every
vertex in Na and then use “cutoffs” to stop storing edges once we know they
cannot be in Ua. We ignore these details in this overview.
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“smoothing” arguments which we defer until the subsection

after the following (Section I-E3).

2) Sampling edges for the estimate: In the previous section,

we described a scheme based on vertex- and edge-subsampling

which samples uniform sets Ua of layer-a vertices (perhaps

along with “borderline” vertices in layer a+1 and a−1, which

we ignore for now). But our ultimate target is estimating the

snapshot, which counts edges between vertices of different

biases; in this sense, these sets of vertices are only means to

an end, and we need to also describe how we sample edges

between these sampled vertices and use them to estimate the

snapshot. Recall that in each layer we subsampled a graph

Ga, which was still too large to store; the edges we use to

produce the estimate will be a subset of Ga’s edges which we

can actually store.

Since our algorithm now breaks down vertices by their de-

grees as well as their biases, it turns out that the natural object

to aim to estimate is not the snapshot itself, but instead what

we will call the refined snapshot of G, denoted RSnapG,d,t
(see Definition III.3 below). This is a four-dimensional array

whose (a, b, i, j)-th entry contains the fraction of edges in

G that go from vertices in bias class i and degree class

a to vertices in bias class j and degree class b. Note that

the refined snapshot RSnapG,d,t is only more granular than

the snapshot SnapG,t which we actually want to estimate —

in particular, SnapG,t can be computed from RSnapG,d,t by

“projecting” the latter to its third and fourth coordinates. Note

also that the snapshot’s dimensions are constant, while the

refined snapshot’s dimensions are polylogarithmic (because

the number of layers is k = Θ(log n)). We will abbreviate

A = RSnapG,d,t for convenience and focus on estimating A
by inspecting edges between these sets Ua.

a) Estimating edges within each layer: There is a class of

entries (a, b, i, j) of A which are relatively simple to estimate:

The “degree diagonal” a = b, or in other words, entries which

correspond to edges within a single layer. For this, we can

just store the induced subgraph of Ga on Ua. Looking at these

induced subgraphs — modulo the issue of estimating the bias

and degree of sampled vertices — will be roughly equivalent

to the bounded-degree case, essentially because vertices in Ua

have small degree in Ga. However, this is only a small subset of

the entries of A which we need to estimate. Given a �= b ∈ [k],
how can we estimate the “cross edges” between layers a and

b?

b) Estimating cross edges: The difficulty with estimating

cross-edges, in comparison to the in-layer edges discussed

before, is that there can be wide discrepancies between the

degrees of the edges’ endpoints (both in the global graph and

in any particular layer). That is, for a < b ∈ [k], vertices in

degree class b are expected to have a high degree in layer

a (as they are expected to have db edges and we subsample

with probability Cd−1
a ) while the vertices in degree class a are

expected to have almost no edges in layer b. This makes the

concentration analysis more subtle than the bounded-degree

case, but we can still get by with two crucial observations:

1) When looking at the layer a, we can strengthen the

algorithm to remember all edges in Ga that are incident

on a vertex in Ua (and not just the induced subgraph on

Ua).

2) Secondly, as we mentioned in the previous subsection, as

the layer a increases, the maximum number of vertices

in G in layer a decreases. This means that we can afford

for the probability pa that any particular layer-a vertex

is stored in Ua to increase, and for instance when da =
Ω(

√
n) we can even afford pa = 1 as there are only

O(
√
n) such vertices.

We claim that, with the above modification, one can estimate

cross edges between layers a and b by looking at the graph Ga

and counting the number of edges in this graph that go from

vertices in Ua to vertices in Ub. To see why this works, we

consider a = 1 and two cases for b:

• When db = Ω(
√
n): In this case, by Item 2, Ub is

sufficiently large as to contain all the vertices in G with

degree class b. Given the fact that Ub has all these

vertices and we have Item 1, whether or not a cross

edge e = (u, v), where u has degree class a and v has

degree class b, is counted depends only on whether or

not u ∈ Ua and whether or not e ∈ Ga. The latter is

independent across all edges while the former has only

a small amount of dependence, as the vertices in degree

class a have low degree in Ga, and does not harm the

concentration inequalities too much.

• When db = o(
√
n): The argument above will not directly

work in this case, as now whether or not a cross edge is

counted also depends on whether or not v ∈ Ub. As the

vertices in degree class b have high degree in Ga, this

creates a lot of dependencies (depending on db/da) and

breaks the concentration bounds.

What saves us here is that in Items 1 and 2, we sample

all edges in Ga that are incident on Ua and also are

relatively likely to remember any particular vertex in Ub.

Thus, the number of cross edges between a and b that

are remembered in Ga is much larger than O(1) (which

was the number obtained in the bounded-degree case).

Having a larger number of cross edges also means we

can also afford to deviate by more without affecting the

multiplicative guarantee, and this larger deviation will

help us deal with the extra dependencies in this case.

3) The analysis via windowed averaging and smoothing:
Even with the modifications above, there is a major problem

that we still have to overcome. This problem arises because

we do not compute the degrees and biases of the vertices

in G exactly, and instead estimate them from the sampled

graphs Ga. These estimates will always be slightly off, and

this can wreak havoc in the analysis. As we mentioned above,

if for instance the degree of a vertex is at the “boundary”

of degree classes a and a + 1, it is impossible to determine

with high probability, which entries of the estimate for A will

the edges which touch this vertex contribute to — in some

subsamples, the vertex could “appear to be” in degree class
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a and in others it could be in a + 1. But morally, if the

partition is sufficiently fine, these mistakes should not matter

too much anyhow because it is possible to “slightly tweak” the

bias of vertices to put them into neighboring classes without

significantly changing the Max-DICUT value.

The approach we come up with to circumvent these issues,

which may be of independent interest, is the following: Instead

of trying to estimate entries of A individually, we group

them into “windows” and estimate the average of all the

entries in the window instead. For example, when trying to

estimate whether a vertex has degree class a, we instead take

a windowing parameter w and estimate over all degree classes

{a− w, . . . , a+ w}.9 Therefore, our algorithm targets a cer-

tain kind of “windowed” estimate as opposed to a simple �1-

estimate. In particular, we define a novel (and incomparable)

notion of estimating an array which we call pointwise smooth
estimation (Definition III.16). In this notion of estimation,

for an estimate Â of A, as δ gets arbitrarily small, we do

not require that each entry of Â approaches one fixed value;

instead, it must approach an interval (which gets arbitrarily

narrow as w gets arbitrarily large). Sufficiency of this kind

of estimate relies on exactly the kind of informal “tweaking”

(“smoothing”) analysis we mentioned before.

Informally, the intervals are defined as follows: Consider

the (a, b, i, j)-th entry of Â, and any edge e from bias class i′

and degree class a′ to bias class j′ and degree class b′. Then

we declare:

• “Inner” edges: If ‖(a, b, i, j)− (a′, b′, i′, j′)‖∞ ≤ w − 1,

then e must count in Â(a, b, i, j).
• “Outer” edges: If ‖(a, b, i, j)− (a′, b′, i′, j′)‖∞ ≥ w+1,

then e must not count in Â(a, b, i, j).
• “Borderline” edges: If ‖(a, b, i, j)−(a′, b′, i′, j′)‖∞ = w,

then e may or may not count in Â(a, b, i, j).

The key lemma in the analysis then states:

Lemma I.4 (Informal version of Lemmas III.11 and III.17).
If an approximation ratio α to Max-DICUT can be achieved
by looking at the snapshot of a graph G, and Â is a (w, δ)-
pointwise estimate of the refined snapshot A = RSnapG,d,t,
then Â can be used to achieve an (α − ε)-approximation to
Max-DICUT for ε = O(δ(k�)2 +wλ+1/w), where k, �, and
λ are the number of degree classes in d, the number of bias
classes in t, and the maximum width of any interval in t,
respectively.

The three terms in the error ε come from, respectively:

Switching from an entrywise (�∞) error guarantee for the

refined snapshot Â to a global (�1) error guarantee for the

snapshot; a surface area-to-volume ratio bounding errors from

the “borderline”; and the “smoothing” operation which tweaks

9One technical issue with this approach is we have to handle the “de-
generate” cases where, e.g. a < w so the set of allowed degree classes is
smaller than 2w + 1. We correspondingly have to weight the entries in the
matrix to equalize the contributions of different edges, and this introduces
some more potential errors in the algorithm as these “weighting factors” for
sampled edges can also be estimated incorrectly. We ignore these details in
this introduction.

Increasing the window size w

Fig. 1: A depiction of how larger windows reduce the “bor-

derline” effects (in two dimensions). As w becomes larger

and larger, a w × w rectangle (dark gray) dominates its

“boundary” (light gray) more and more. Geometrically, a

rectangle is two-dimensional while its boundary is “essentially

one-dimensional”. However, for estimating the Max-DICUT
value in a graph, smoothing over size-w windows for large

w introduces errors from the use of “continuity” results (i.e.,

Lemma III.11 below). The right choice of w strikes a balance

between these two forces.

X

A

B

C

D

Fig. 2: Consider estimating a (two-dimensional) matrix with

“off-by-one” errors, wherein the mass of each entry may shift

to one of 8 neighboring entries (red boxes). If we estimate an

average over a window of size w = 4 in taxicab distance

around an entry X (green rectangle): (i) “Outer” entries,

such as the one marked D, beyond distance w + 1 = 5
from the center (light gray) can never contribute. (ii) “Inner”

entries, such as the one marked A, within distance at most

w − 1 = 3 from the center (dark gray) always contribute.

(iii) “Borderline” entries, such as B or C, may or may not
contribute, depending on the specific error pattern.

the biases of vertices. Note that there is a significant interplay

of parameters here: To achieve any fixed ε = O(1), we’ll

have to set w = O(1/ε), λ = O(1/w) = O(1/ε2), and since

k = log n, we ultimately need δ = O(ε5/ log2 n).10 Comple-

mentarily, Lemma IV.3 is the key correctness statement, stating

that such a pointwise smoothed estimate is achieved by our

10Such a guarantee is believable because in the “gold-standard” case where
we sample independently the random edges and look at their biases (and
degrees), the deviations would be O(1/

√
n) by a Chernoff bound.
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algorithm. For simplicity, in the algorithm, we only handle a

fixed partition degree partition d (i.e., where da = 2da−1).

To make λ arbitrarily small, we use the fact that a bias

partition can be subdivided arbitrarily while maintaining the

approximation ratio of what can be deduced from the snapshot.

F. Future directions

Via the trivial reduction from Max-CUT, it is known that

for all ε > 0, streaming algorithms which ( 12 +ε)-approximate

Max-DICUT require Ωε(n) space (cf. [10]). There are a num-

ber of interesting alternatives for what could happen between

ω(
√
n) and o(n) space. Three main scenarios are:

Scenario 1. “Algorithms beating Theorem I.3”: There are

( 12 − ε)-approximations in Õ(
√
n) space.

Scenario 2. “First-order snapshots give optimal sublinear-

space algorithms”: Beating 0.483 requires Ω(n) space.11

Scenario 3. “Approximation vs. space tradeoff”: Beating

0.483 can be achieved in o(n) space, but (12 − ε)-
approximations for ε > 0 require arbitrarily close to Ω(n)
space for arbitrarily small ε.

We are particularly interested in the possibility that for

Max-DICUT, one can beat the first-order snapshot algorithms

we consider here by estimating instead “higher-order snap-

shots”, where by a t-order snapshot we mean a histogram of

bias patterns among subgraphs with t edges. These seem to

correspond to n1−1/(t+1)-space algorithms in the bounded-

degree case; is it possible to build on the techniques in

this paper to estimate t-order snapshots within this space

bound? Conversely, could there be matching “dichotomy”

lower bounds — e.g., for Max-DICUT, could first-order

snapshot algorithms be optimal in o(n2/3) space? Finally,

we mention that Singer [17] gives oblivious algorithms for

Max-kAND beating the o(
√
n)-space approximation ratios

calculated in [11]; could our snapshot estimation techniques

be extended to work for these problems, or even for all finite

CSPs?

Outline of the paper

In the publication version of this paper, we omit many

technical proofs, which are left to the full version available

on arXiv [18]. In Section II we introduce some notation

and review some background material. The main technical

content of the paper is from Section III onwards, which

can be divided into two independent steps. In the first step,

we roughly reduce achieving an approximation factor of

0.483 on a graph G to a problem which we call “pointwise

smoothed estimation” of a graph. The basic definitions and

statements here are in Section III; we define “continuous

snapshot algorithms” (Definition III.18), one of which achieves

a 0.483-approximation, and show how they can be simulated

given “pointwise smoothed estimates” (Definition III.16); as

mentioned above, the reduction itself is divided between

Lemmas III.11 and III.17. (The proofs of these lemmas can

11Actually, 0.483 is not exactly the best we can do; rather, we are
interested in the best ratio achievable by “continuous snapshot algorithms”
(see Definition III.18 below).

be found in the full version [18].) In the second step, we

show how such a “pointwise smoothed estimate” can be

achieved via a streaming algorithm which implements the

“edge-and-vertex-subsampling” paradigm outlined above. We

present the algorithm in Section IV; the key correctness

lemma, Lemma IV.3, which states that (under certain niceness

conditions) we achieve a pointwise smoothed estimate, is

proven in the full version [18].

II. PRELIMINARIES AND NOTATION

[�] denotes the set of natural numbers {1, . . . , �}. We use

standard asymptotic notation O(·), o(·), etc., with the conven-

tion that subscripts (e.g., f(x, y) = Oy(g(x))) denote arbitrary

dependence in the implicit constant.

A. Matrices and arrays

For � ∈ N, we let M� def
= R

�×� denote the space of real �×�
matrices, M�

≥0 ⊆ M
� the space of matrices with nonnegative

entries, and M
�
Δ ⊆ M

� matrices with nonnegative entries

summing to 1. For i, j ∈ [�], M(i, j) denotes the (i, j)-th entry

of M . Given two matrices M,N ∈ M
�, we let ‖M − N‖1

and ‖M − N‖∞ denote their entrywise 1- and ∞-norms,

respectively, i.e.,

‖M −N‖1 def
=

�∑
i,j=1

|M(i, j)−N(i, j)|

and

‖M −N‖∞ def
= max

i,j∈[�]
|M(i, j)−N(i, j)|.

For k, � ∈ N, we define analogues of this notation for four-

dimensional arrays: Ak,� def
= R

k×k×�×� denotes k × k × �× �
arrays, A

k,�
≥0 nonnegative arrays, and A

k,�
Δ nonnegative arrays

summing to 1; we also define 1- and ∞-norms for arrays. We

typically use the letters A and B for four-dimensional arrays,

and M and N for (two-dimensional) matrices.

B. (Directed) graphs, degrees, biases, and (directed) cuts
In this paper, we consider directed graphs without self-

loops.12 It will be convenient to use two related defini-

tions, “weighted graphs” and “multigraphs”, corresponding

to nonnegative real and nonnegative integer edge weights,

respectively. In particular, multigraphs will be convenient to

encode input to our streaming algorithm, while the more

general notion of weighted graphs will be convenient in the

analysis.
A weighted graph on a vertex-set V = V (G) is defined by

an adjacency matrix AdjMatG ∈ M
V×V
≥0 with zeros on the

diagonal. We let mG =
∑

u,v∈V AdjMatG(u, v) denote the

total weight in a weighted graph G.
Given a vertex v ∈ V in a weighted graph G, we define its

out- and in-degrees

deg-outG(v)
def
=

∑
u∈V

AdjMatG(v, u)

12We avoid self-loops because, from the perspective of Max-DICUT (which
we are about to define), a self-loop edge is never satisfied by any assignment
and is therefore uninteresting from an algorithmic perspective.
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and

deg-inG(v)
def
=

∑
u∈V

AdjMatG(u, v),

and its (total) degree

degG(v)
def
= deg-outG(v) + deg-inG(v).

If degG(v) = 0, we say v is isolated; otherwise, we define v’s

bias

biasG(v)
def
=

deg-outG(v)− deg-inG(v)
degG(v)

∈ [−1, 1].

Finally, for a “cut” x ∈ {0, 1}V , we define its value in G

valG(x)
def
=

1

mG

∑
u,v∈V

xv(1− xu) · AdjMatG(u, v),

and the overall Max-DICUT value of G as the maximum value

of any cut:

valG(x)
def
= max

x∈{0,1}V
valG(x).

A multigraph is a weighted graph where the entries of the

adjacency matrix are all integers; equivalently, the graph is

specified by a multiset of edges E(G) ⊆ {(u, v) : u �= v ∈
V (G)}, and entries of the matrix equal multiplicies of each

edge. Our streaming algorithms will be presented a multigraph

with its edges enumerated in arbitrary (adversarial) order, with

the goal of achieving an approximation to the Max-DICUT
value of a graph.13

C. Concentration

We write exp(x) = e−x. We shall need a number of

concentration inequalities which operate in different parameter

regimes of interest. We list several well-known inequalities as

well as some convenient corollaries.

Lemma II.1 (Chernoff upper bound). Let X1, . . . , Xn be
independent {0, 1}-valued random variables, and let X =∑n

i=1 Xi. Then for all δ > 0,

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/(2 + δ)).

Lemma II.2 (Chernoff lower bound). Let X1, . . . , Xn be
independent {0, 1}-valued random variables, and let X =∑n

i=1 Xi. Then for all 0 ≤ δ ≤ 1,

Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2E[X]/2).

Corollary II.3 (Two-sided Chernoff bound). Let X1, . . . , Xn

be independent {0, 1}-valued random variables, and let X =∑n
i=1 Xi. Then for all 0 ≤ δ ≤ 1,

Pr[|X − E[X]| ≥ δE[X]] ≤ 2 exp(−δ2E[X]/3).

13As is standard in the streaming and sketching literature, we will have to
assume that the length of the stream m ≤ poly(n). Also, one could consider
a more general input model, where we get an arbitrary sequence of edges
and (nonnegative real) weights, where the edges are possibly repeated, and
the maximum and minimum weights are wmax ≤ poly(n) and wmin ≥
1/ poly(n) respectively. In this model, we can only handle unit weights,
but this is essentially without loss of generality because one can multiply by
roughly wmax/(wminε) and then “round” every weight to the nearest integer
while preserving the Max-DICUT value up to O(ε).

Corollary II.4 (Chernoff upper bound, high deviation form).
Let X1, . . . , Xn be independent {0, 1}-valued random vari-
ables, and let X =

∑n
i=1 Xi. Then for all η ≥ 3E[X],

Pr[X ≥ η] ≤ exp(−η/8).

Lemma II.5 (Weighted Chernoff bound [19, cf. Theorem

3.3]). Let X1, . . . , Xn be independent {0, 1}-valued random
variables. Let 0 < ν1, . . . , νn be weights, and let X =∑n

i=1 νiXi. Let λ0 = maxi{νi} and λ2 =
∑n

i=1 ν
2
i E[Xi].

Then for all δ > 0,

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]2/2λ2)

and

Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2E[X]2/(2λ2 + λ0δE[X]).

Corollary II.6 (Two-sided weighted Chernoff bound, low

weights). Let X1, . . . , Xn be independent {0, 1}-valued ran-
dom variables. Let 0 < ν1, . . . , νn ≤ 1 be weights, and let
X =

∑n
i=1 νiXi. Then for all δ > 0,

Pr[|X − E[X]| ≥ δE[X]] ≤ 2 exp(−δ2E[X]/3).

Proof. Follows from the previous lemma since λ2 ≤∑n
i=1 νiE[Xi] = E[X] and λ0 ≤ 1.

Lemma II.7 (Chebyshev bound). Let X1, . . . , Xn be random
variables, and let X =

∑n
i=1 Xi. Then for all η > 0,

Pr[|X − E[X]| ≥ η] ≤ Var[X]

η2
.

Corollary II.8 (Chebyshev with limited independence). Let
X1, . . . , Xn be random variables such that 0 ≤ X1, . . . , Xn ≤
1, and let X =

∑n
i=1 Xi. Further, suppose that each Xi is

independent (pairwise) of all but D variables {Xj}j∈[n]. Then
for all η > 0,

Pr[|X − E[X]| ≥ η] ≤ D · E[X]

η2
.

In particular, if the variables are pairwise independent, then

Pr[|X − E[X]| ≥ η] ≤ E[X]

η2
.

Proof. Follows using Var[X] =
∑n

i,j=1 E[XiXj ] −
E[Xi]E[Xj ], the limited independence assumption, and the

fact that for all i, j ∈ [n], E[XiXj ] ≤ E[Xi] (using 0 ≤
Xi, Xj ≤ 1).

D. Sparsification for Max-DICUT

The following lemma is a standard statement about sparsi-

fication for the Max-DICUT problem, which essentially lets

us reduce to considering graphs with linearly many edges. We

include the proof in the appendix to the full version [18] for

completeness.

Lemma II.9 (Linear sparsification preserves Max-DICUT
values). There exists a universal constant Cspar > 0 such that
the following holds. For every εspar ∈ (0, 1) and n,m ∈ N,
suppose Csparn/(ε

2
sparm) ≤ pspar ≤ 1. Then for every
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(multi)graph G on n vertices with m edges, if we let Gspar be
the random multigraph resulting from throwing away every
edge of G independently with probability 1 − pspar, then
with probability 99/100 over the choice of Gspar, we have
|valG−valGspar

| ≤ εspar and |mGspar
−psparm| ≤ εsparpsparm.

E. k-wise independent hash families

The following definition of a k-wise independent hash fam-

ily will play a role in the algorithm we present in Section IV

below.

Definition II.10. A family of hash functions H = {h :
[n] → [m]} is k-wise independent if it satisfies the following
properties:

• For every x ∈ [n] and a ∈ [m], and h ∼ H(n,m)
uniformly, Pr[h(x) = a] = 1

m , and
• For every distinct x1, . . . , xk ∈ [n], and h ∼ H(n,m)

uniformly, h(x1), . . . , h(xk) are independent random
variables.

Lemma II.11 ([20], see e.g. [13, §2.6]). For every k, n,m =
2� ∈ N, there exists a family of k-wise independent hash
functions Hk = {h : [n] → [m]} such that a uniformly random
hash function can be sampled with Ok(log n+ logm) bits of
randomness.

III. REDUCING Max-DICUT APPROXIMATION TO

SNAPSHOT ESTIMATION

In this section, we develop some machinery to reduce

the Max-DICUT approximation problem for a graph G to

a problem of estimating a “pointwise snapshot estimate” of

G in the sense of Definition III.16 below. To begin, we

formally define snapshots (Definition III.1 below). Then, we

define various useful notions of smoothing matrices and arrays.

Eventually, the statements of the key reduction lemmas are

Lemmas III.11 and III.17. We also discuss how the measuring

the snapshot implies approximation algorithms with factor at

least 0.483 (Lemma III.19 below).

A. Snapshots

Let T� ⊆ R
�+1 denote the space of vectors t = (t0, . . . , t�)

such that t0 < · · · < t�. We call such a vector a threshold
vector of length �. Given a threshold vector t ∈ T

�, for any

x ∈ [t0, t�], we define x’s index indt(x) (w.r.t. t) as the unique

i ∈ [�] such that ti−1 ≤ x < ti (and if x = t� then indt(x) =
�).

Let T�
±1 ⊆ T

� denote the subset of threshold vectors with

t0 = −1 and t� = 1. We think of such vectors as defining

partitions of biases in graphs. For shorthand, given a weighted

graph G and a (nonisolated) vertex v, we write b-indtG(v)
def
=

indt(biasG(v)) ∈ [�] for the index representing the “bias class”

containing v, and given a pair of nonisolated vertices u, v, we

write b-indtG(u, v)
def
= (indt(biasG(u)), indt(biasG(v))) ∈ [�]2

for their pair of bias classes. We say t is λ-wide if for every

i ∈ [�], λ/2 ≤ ti − ti−1 ≤ λ. The width of the partition turns

out to factor into the error bound in Lemma III.11 below. (One

should think of λ ≈ 1/�.)

Definition III.1 (Snapshot (“snapshot” in [13])). Given a
weighted graph G and threshold vector t ∈ T

�
±1, we define

the snapshot SnapG,t ∈ M
�
Δ by

SnapG,t(i, j)
def
=

1

mG

n∑
u,v=1

AdjMatG(u, v) b-indtG(u,v)=(i,j).
14

In other words, the matrix SnapG,t counts the weight

fraction of edges in the graph between each pair of bias

classes. Note that this is a normalized matrix, i.e., its entries

sum to 1, unlike the adjacency matrix AdjMatG .

Next, we introduce a new version of a snapshot of a graph

G which also takes into account the degrees of the vertices,

which we call the refined snapshot. Suppose we also have a

threshold vector d ∈ T
k which partitions vertex degrees in

G, in the following sense: all nonisolated vertices in G have

degree between d0 and dk. We define similar notations: For

nonisolated v, we write d-inddG(v)
def
= indd(degG(v)) for the

“degree class” of v. (For notational convenience, if degG(v) =
0 we will write d-inddG(v) = −∞.) For nonisolated u, v, we

define:

db-indd,tG (u, v) = (d-inddG(u), d-inddG(v), b-indtG(u), b-indtG(v)).
(III.2)

This lets us define:

Definition III.3 (Refined snapshot). Given a weighted graph
G and threshold vectors t ∈ T

�
±1, d = (d0, . . . , dk), such that

every nonisolated vertex v ∈ V (G) has d0 ≤ degG(v) ≤ dk,
we define the refined snapshot RSnapG,d,t ∈ A

k,�
Δ by

RSnapG,d,t(a, b, i, j)

def
=

1

mG

n∑
u,v=1

AdjMatG(u, v) db-indd,t
G (u,v)=(a,b,i,j). (III.4)

This array is only more informative than the snapshot; in

particular, the snapshot can be recovered via a “projection”:

Definition III.5 (Projecting arrays into matrices). Given an
array A ∈ A

k,�, we define a matrix Proj(A) ∈ M
� by

projecting onto the third and fourth coordinates, i.e.,

(Proj(A))(i, j) =

k∑
a,b=1

A(a, b, i, j).

Fact III.6. Let d = (d0, . . . , dk) ∈ T
k be a degree

partition and let G be a weighted graph such that all
nonisolated vertices have degree between d0 and dk. Then
Proj(RSnapG,d,t) = SnapG,t.

B. Defining windows

To present our formalism for the smoothing analysis, we

begin with defining some notations for “windows” around

entries in (1-dimensional) vectors, (2-dimensional) matrices,

14Note that b-indtG(u, v) is not defined if v or u is isolated. But in either
case, AdjMatG(u, v) vanishes, so we adopt the convention of discarding these
terms.
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and (4-dimensional) arrays. These will correspond to indices

to [�], [�]2, and [k]2×[�]2, respectively, where k, � ∈ N. In each

case, windows will correspond to a ball of a certain radius in

the ∞-norm.
More concretely, we make the following definitions:

Definition III.7 (Windows). Suppose w < � ∈ N. For i ∈ [�],
let

Winw,�(i)
def
= {i′ ∈ [�] : |i′ − i| ≤ w}

denote the 1-dimensional window around i. For i, j ∈ [�], let

Winw,�(i, j)
def
= Winw,�(i)×Winw,�(j)

= {(i′, j′) ∈ [�]2 : max{|i′ − i|, |j′ − j|} ≤ w}
denote the 2-dimensional window around (i, j). Given also
k > w ∈ N, for a, b ∈ [k] and i, j ∈ [�], let

Winw,k,�(a, b, i, j)
def
= Winw,k(a, b)×Winw,�(i, j)

= {(a′, b′, i′, j′) ∈ [k]2 × [�]2 : max{|a− a′|, |b− b′|,
|i− i′|, |j − j′|} ≤ w}

denote the 4-dimensional window around (a, b, i, j).

C. Smoothed estimates (of matrices)
We now define what it means to smooth a matrix M ∈ M

�

over windows of size w.

Definition III.8 (Smoothing matrices). Let � ∈ N and M ∈
M

�. For w < � ∈ N, we define a smoothed matrix M∼w ∈ M
�

by

M∼w(i, j) =
∑

(i′,j′)∈Winw,�(i,j)

ν∼w,�(i′, j′) ·M(i′, j′),

where ν∼w,�(i′, j′) def
= 1/|Winw,�(i′, j′)| is a normalization

factor.
Note that the normalization factors ν∼w,�(i′, j′) do not

depend on the matrix M . Informally, their importance is as

follows. Suppose � is even and � > 2w. Consider the entries

M(1, 1) and M(�/2, �/2). The former will contribute to ≈ w2

entries in M∼w — in particular, the indices {1, . . . , w+1}×
{1, . . . , w + 1} — while the latter will contribute to ≈ 4w2

entries — in particular, {�/2− (w+1), . . . , �/2+ (w+1)}×
{�/2− (w+ 1), . . . , �/2 + (w+ 1)}. We will be interested in

smoothing snapshots, i.e., M = SnapG,t, and we would like

for the resulting matrices to “resemble” snapshots, at least in

the sense of still having entries summing to 1. In particular,

the choice of normalization factors ensures that the following

holds:

Proposition III.9 (Smoothing preserves entry sum). For every
M ∈ M

�,
∑�

i,j=1 M
∼w(i, j) =

∑�
i,j=1 M(i, j). In particular,

if M ∈ M
�
Δ then M∼w ∈ M

�
Δ.

The proof is by a simple double-counting argument, and it

is included in the full version of this paper [18].

Definition III.10 (Smoothed estimates). Let M, M̂ ∈ M
� be

matrices, w ∈ N, and ε > 0. M̂ is a (w, ε)-smoothed estimate

of M if ‖M̂ −M∼w‖1 ≤ ε.

For us, the sufficiency of this notion of smoothed estimation

is given by the following lemma, which roughly states that

anything which can be deduced about valG from SnapG,t can

also be deduced from a (w, ε)-smoothed estimate of SnapG,t
up to an additive factor O(λw+ ε). A proof of this lemma is

left to the full version [18] of this paper.

Lemma III.11 (Smoothed estimate of snapshot suffices).
There exists a universal constant Csmooth > 0 such that the
following holds. Let w < � ∈ N. Let t ∈ T

� be λ-wide. Let
G be any weighted graph with snapshot M := SnapG,t. Then
there exists a weighted graph H with snapshot N := SnapH,t

such that |valG − valH| ≤ Csmoothλw, and ‖N −M∼w‖1 ≤
Csmoothλw.

D. Smoothed pointwise estimates (of arrays)

Unfortunately, we will not be able to directly estimate

entries of the smoothed snapshot Snap∼w
G,t using our sampling-

based algorithm. Roughly, this is because there may be huge

discrepancy between degrees of vertices (indeed, from O(1)
to Ω(n)), and the subsampling parameters will depend on

the degree. So, we reduce to the problem of estimating more

refined quantities: smoothed versions of the array RSnapG,d,t.

Our hope is that, if the degree partition is fine enough, these

quantities can actually be estimated.

Definition III.12 (Smoothing arrays). Let k, � ∈ N and A ∈
A

k,�. For w < k, � ∈ N, we define a smoothed array A∼w ∈
A

k,� by

A∼w(a, b, i, j)
def
=∑

(a′,b′,i′,j′)∈Winw,k,�(a,b,i,j)

ν∼w,k,�(a′, b′, i′, j′)·A(a′, b′, i′, j′),

where ν∼w,k,�(a′, b′, i′, j′) def
= 1/|Winw,k,�(a′, b′, i′, j′)| is a

normalization factor.

Let A ∈ A
k,�
≥0 be an array with nonnegative entries. For the

final step in our reduction, we define a certain notion of a

“pointwise smoothed estimate” for an array (Definition III.16

below), and give a statement (Lemma III.17 below) which

roughly says that such an estimate implies a smoothed estimate

for the snapshot in the sense of Definition III.10 above. Such a

“pointwise” estimate will be what we actually aim to achieve

in the algorithm, with A = RSnapG,d,t.

The notion of “pointwise estimate” relies on the definition

of two additional arrays A−w, A+w ∈ A
k,�
≥0 which satisfy the

inequality A−w ≤ A∼w ≤ A+w entrywise and account for

“off-by-one” errors when estimating A∼w. We first describe

these arrays informally as the actual definitions may appear

quite technical. Consider an “estimation” function ξ : [k]2 ×
[�]2 → [k]2 × [�]2 for the graph G, which takes as input the

index (a, b, i, j) of an entry in the array A, and outputs a tuple

ξ(a, b, i, j) which is promised to differ from (a, b, i, j) by at

most 1 in each entry. (This will correspond to issues with

“borderline” vertices when A = RSnapG,d,t, as described in
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Section I-E above.) Now suppose we tried to estimate the entry

A∼w(a, b, i, j) using the expression∑
ξ(a′,b′,i′,j′)∈Winw,k,�(a,b,i,j)

ν∼w,k,�(a′, b′, i′, j′)·A(a′, b′, i′, j′).

The quantities A−w(a, b, i, j) and A+w(a, b, i, j) are lower-

and upper-bounds for this expression, respectively, based on

the “worst possible” function ξ.

To be more precise, we define the arrays A−w, A+w ∈ A
k,�
≥0

as follows:

Definition III.13 (Upper- and lower-bound normalization

factors). Let w < k, � ∈ N. Then for a′, b′ ∈ [k], i′, j′ ∈ [�],
we define

ν−w,k,�(a′, b′, i′, j′)
def
= min

(a′′,b′′,i′′,j′′)∈Win1,k,�(a′,b′,i′,j′)
ν∼w,k,�(a′′, b′′, i′′, j′′),

and

ν+w,k,�(a′, b′, i′, j′)
def
= max

(a′′,b′′,i′′,j′′)∈Win1,k,�(a′,b′,i′,j′)
ν∼w,k,�(a′′, b′′, i′′, j′′).

Definition III.14 (Upper- and lower-bound arrays). Let w <
k, � ∈ N and A ∈ A

k,�. We define two arrays A−w, A+w ∈
A

k,�
≥0 by defining, for all a, b ∈ [k] and i, j ∈ [�]:

A−w(a, b, i, j)
def
=∑

(a′,b′,i′,j′)∈Winw−1,k,�(a,b,i,j)

ν−w,k,�(a′, b′, i′, j′)A(a′, b′, i′, j′),

and

A+w(a, b, i, j)
def
=∑

(a′,b′,i′,j′)∈Winw+1,k,�(a,b,i,j)

ν+w,k,�(a′, b′, i′, j′)A(a′, b′, i′, j′).

Note that by definition ν−w,k,�(a′, b′, i′, j′) ≤
ν∼w,k,�(a′, b′, i′, j′) ≤ ν+w,k,�(a′, b′, i′, j′) (since

(a′, b′, i′, j′) ∈ Win1,k,�(a′, b′, i′, j′)). Hence, (since

A has nonnegative entries) we have A−w(a, b, i, j) ≤
A∼w(a, b, i, j) ≤ A+w(a, b, i, j), since they sum over

windows around (a, b, i, j) of sizes w − 1, w, and w + 1,

respectively, using increasing normalization factors. We also

have the following simple lem:

Lemma III.15. Let w < k, � ∈ N and A ∈ A
k,�
Δ . For all

a, b ∈ [k] and i, j ∈ [�], we have

A−w(a, b, i, j) ≤ A+w(a, b, i, j) ≤ 1.

Proof. For the first inequality, see above. For the

second, note from Definitions III.12 and III.13 that

ν+w,k,�(a′, b′, i′, j′) ≤ 1 implying A+w(a, b, i, j) ≤∑
(a′,b′,i′,j′)∈Winw+1,k,�(a,b,i,j) A(a

′, b′, i′, j′) ≤ 1.

Now given the definitions of these upper- and lower-bound

arrays A+w and A−w, we are prepared to define our notion

of pointwise estimation:

Definition III.16 (Pointwise smoothed estimates). Let A, Â ∈
A

k,� be arrays, w ∈ N, and δ > 0. Â is a (w, δ)-pointwise

smoothed estimate of A if for every a, b ∈ [k], i, j ∈ [�],

A−w(a, b, i, j)− δ ≤ Â(a, b, i, j) ≤ A+w(a, b, i, j) + δ.

Such an estimate (where A is the refined snapshot of a

graph) is precisely what is achieved by our algorithm; see

Lemma IV.3 below. Correspondingly, we can state our key

lemma reducing smoothed estimation of a matrix (in our

application, the snapshot) to pointwise smoothed estimation

of an array (in our application, the refined snapshot) which

projects to that matrix in the sense of Definition III.5:

Lemma III.17 (Pointwise smoothed estimate of array =⇒
smoothed estimate of matrix). There exists a universal con-
stant Cwin > 0 such that the following holds. Let A, Â ∈ A

k,�

be arrays, w ∈ N, and δ > 0. Suppose Â is a (w, δ)-
pointwise smoothed estimate of A. Then for M := Proj(A)

and M̂ := Proj(Â), M̂ is a (w, ε)-smoothed estimate of M ,
for ε := δ(k�)2 + Cwin/w.

A proof of this lemma is in the full version of this paper

[18]. We remark that there is a new factor of (k�)2 in the error

term corresponding to the product of dimensions of the array;

this is because we are switching from an �∞-type guarantee to

an �1-type guarantee. Recall also that in our application (where

A is the refined snapshot), we will have k = Θ(log n); this

means we need δ to be shrinking as a function of n to apply

the lemma, but this turns out to be achievable.

E. Snapshot algorithms

The final piece of the puzzle is actually identifying how

snapshots let us reason about the Max-DICUT value of a

graph. We make the following definition for algorithms which

do exactly this:

Definition III.18 (Continuous snapshot algorithms). A con-

tinuous snapshot algorithm is defined by a threshold vector
t ∈ T

� and a function A : M� → [0, 1] such that:
1) Correctness: For every weighted graph G, A(SnapG,t) ≤

valG .
2) Continuity: |A(M)−A(N)| ≤ ‖M −N‖1.
We say A is an α-approximation if for every weighted graph

G, α valG ≤ A(SnapG,t).
Our aim will be to implement any such algorithm as a

streaming algorithm via the snapshot estimation machinery we

described above. In particular, Feige and Jozeph [16] showed

that one such algorithm achieves a 0.483-approximation:

Lemma III.19 (Implied by Feige and Jozeph [16]). There
exists a constant αFJ ∈ (0.4835, 0.4899), �FJ ∈ N, a vector
of bias thresholds tFJ ∈ T

�FJ
±1 , and a vector of probabilities

rFJ = (r1, . . . , r�) ∈ [0, 1]�FJ such that the function A(M) :=∑�FJ

i,j=1 ri(1− rj)M(i, j) is a continuous snapshot algorithm
achieving a αFJ-approximation.

Though we will not need this fact, we remark that the

estimate for valG given in the lemma corresponds to a
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simple randomized assignment for G, namely the so-called

“oblivious” assignment which assigns each nonisolated vertex

v ∈ V (G) to 1 with probability ri and 0 otherwise, where

i = b-indtG(v) is its bias class.

One final notion we will need regarding snapshot algorithms

is the following. Suppose we have a (continuous) snapshot

algorithm Aorig with a threshold vector torig, and we want

to reduce the width of torig, i.e., the size of the largest

interval, yielding a new (continuous) snapshot algorithm with

a smaller-width threshold vector. (We will want to do this

in order to apply Lemma III.11.) Consider greedily packing

intervals of width ≤ λ within each interval in t in some

canonical way; the resulting partition, which we denote by

RefinePart(torig), has �′ ≤ � + 1/λ intervals. There is

a natural corresponding snapshot algorithm, which given an

�′×�′ snapshot collapses it to the corresponding �×� snapshot

and runs A, and remains an α-approximation. We denote this

algorithm by RefineAlgλ(torig,Aorig).

IV. THE ALGORITHM

In this section, we present an algorithm that approximates

the Max-DICUT value of an arbitrary multigraph, thereby

proving Theorem I.3 (in its full version Theorem IV.2 below).

The algorithm itself has to deal with a number of technical

issues, so we begin by outlining the algorithm and giving a

number of pointers which hopefully make it easier to digest.

A. Overview

a) Informal recap: At the highest level, we want to be

able to sample random edges in a multigraph G and estimate

the biases of their endpoints. In particular, we fix some global

partition t ∈ T
�
±1 of the interval [−1,+1] of possible biases

into � “bias classes”. We want to estimate the snapshot SnapG,t
of the input graph G, which is a matrix whose entries count the

number of edges between each pair of bias classes. This can

be used to simulate a “continuous snapshot algorithm” applied

to G (Definition III.18), and one such algorithm achieves a

0.483-approximation (Lemma III.19).

To do this, we fix some global partition d0 ≤ · · · ≤ dk
of degrees in G dividing the graph’s vertices into “layers”,

where layer a is the vertices of degree between da−1 and

da, and aim to estimate the “refined snapshot” RSnapG,d,t
(Definition III.3), which counts the number of edges whose

endpoints are in particular bias classes and layers. Towards

this, we hope to obtain representative samples U1, . . . , Uk of

vertices, Ua containing vertices in layer (roughly) a, such that

(1) we (roughly) know the bias classes of every sampled vertex

and (2) we also have representative samples of edges between

the layers.

More precisely, when we say “roughly” we mean “up to w±
1” allowing us to apply the “smoothing” techniques developed

in Section III. Concretely, this means that we target producing

a “pointwise smoothed estimate” of the refined snapshot in the

sense of Definition III.16; the claim that we can achieve this

is Lemma IV.3 below.

b) Outline of the algorithm: The outline of our scheme

is as follows. For each “layer” a ∈ {1, . . . , k}, we fix some

probabilities qa, pa ∈ [0, 1]. We subsample the edges of G with

probability qa and then subsample positive-degree vertices in

Ga with probability pa to get a subset of vertices, which we

denoted vStoreda in the algorithm. We hope to store the

Ga-neighborhoods of these vertices to get a subset of edges

denoted eStoreda. Ideally, we can use eStoreda to estimate

the degrees and biases of vertices in vStoreda, and further,

if we see an edge stored in eStoreda between vertices in

vStoreda and vStoredb, we can count it in the appropriate

entry of the refined snapshot. However, note that eStoreda
cannot necessarily store all neighbors for every vertex in

vStoreda; in particular, while our edge subsampling ensures

that vStoreda is unlikely to contain vertices of G-degree much

less than da, it may still contain vertices of G-degree much

greater than da, in which case we can not hope to store all

its neighbors.

We write the algorithm in a particularly “well-factored”

form called a “sketching algorithm”; while we omit the full

definition of such an algorithm, we remark that it essentially

means that the algorithm behaves “independently” on each

edge arriving in the stream. In particular, we can construct

a “sketch” corresponding to each individual edge e, which

consists of a pair (vStoreda, eStoreda) for each layer a,

where vStoreda contains either endpoint with probability pa
independently and eStoreda with probability qa. Then, we

can “compose” the sketches for the entire stream together

by taking the unions of the sets in these sketches, up to

appropriate cutoffs.

It is useful to recall that the subsampling probabilities

qa (for edges) and pa (for vertices) decrease and increase,

respectively, as a function of the layer number a.

c) Some pointers: It is very helpful to remember that

there are two distinct sources of randomness in the algorithm:

We “sparsify” the graph by subsampling edges, and then

subsample which vertices we actually store. In the analysis we

will first analyze this edge-subsampling, and then conditioned

on certain “good outcomes” for the edge-subsampling we will

analyze the vertex-subsampling. Correspondingly, it is useful

to keep in mind the graph Ga consisting of all the edges

sampled in layer a (each is sampled w.p. qa) and the set Na of

positive-degree vertices in Ga. (However, the actual streaming

algorithm is not necessarily be able to store these sets as

they can grow too large; it only stores subsets eStoreda and

vStoreda, respectively.)

When we actually see an edge e = (u, v) in Ga, how do

we know what to do with it (i.e., which entry of the matrix

should it contribute to)? Note that E[degGa
(v)] = qadegG(v).

Thus, we can hope to use q−1
a degGa

(v) (which we call v’s

“apparent degree”) as an estimate for degG(v). Roughly, this

should work out if degG(v) is decently large; for instance, we

can use the Chernoff bound to show that w.h.p. degG(v)/2 ≤
q−1
a degGa

(v) ≤ 2degG(v), so the apparent degree moves by

at most 1 interval relative to the actual degree. The same sort

of analysis is necessary to analyze the bias of a vertex and
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ultimately prove that we get a so-called “pointwise smoothed

estimate”.

Finally, one remaining technical issue stems from the fact

that when we want to subsample a set of nonisolated ver-

tices in the subsampled graph Ga, but we do not know the

nonisolated vertices ahead of time. In particular, each time

we see a new nonisolated vertex we want to toss a p-biased

coin — but if we decide not to store a vertex, we need to

“remember” this decision if we happen to see it again. This

would be manageable if the algorithm had random access to

the results of n biased coin flips, but this model would be

somewhat nonstandard. Instead, as in [13], we observe that

when proving concentration it is sufficient to have four-wise

independence in the vertex-subsampling procedure, and thus,

we decide whether to store a vertex by plugging it into a

previously sampled four-wise independent hash function (see

Lemma II.11).

B. Describing the algorithm

The goal of this section is to prove Theorem I.3. We begin

by presenting an algorithm (Algorithm 1 below) for estimating

the Max-DICUT value of a stream of edges corresponding to a

graph G given an estimate for the number of edges in G. This

algorithm first produces the sketch for the stream containing

the sampled vertices and edges (via a “sketch” subroutine,

Algorithm 2, and a “compose” subroutine, Algorithm 3), and

then feeds this sketch into another subroutine, Algorithm 4,

which estimates degrees and biases among the sampled ver-

tices and counts sampled edges, creates an estimate for the

refined snapshot of the graph, and uses this to approximate

the graph’s Max-DICUT value. The key correctness lemma,

Lemma IV.3 below, states that this estimate for the refined

snapshot is a “pointwise smoothed estimate”, allowing us to

apply the machinery from Section III.

We begin with several tables containing definitions of pa-

rameters to be used in the algorithms.

Notation Value Description
w ∈ N 1/ε Size of windows for smooth-

ing
λ > 0 ε/w Maximum width of intervals

in the refinement t of torig
(see next line)

t ∈ T� RefinePartλ(torig) Refinement of torig into �
intervals of width at most λ

� ∈ N ≤ �orig + 1/λ Number of intervals in t
A RefineAlgλ(torig,Aorig) Corresponding refinement of

Aorig

TABLE I: Global parameters determined by ε alone.

Notation Value Description
mmin ∈ N

√
n Minimum number of edges

handled

mmax ∈ N Csparn/(ε)2 where Cspar

is as in Lemma II.9
Maximum number of edges
handled (see Lemma II.9)

k∗ ∈ N 6 log logn Number of degree intervals
before we begin subsam-
pling edges

D ∈ N 2k
∗+w+2 W.h.p. bound on max-

degree of “counted
vertices” in subsampled
graphs (parameter for
space bound), note that
D = Oε(log

6 n)

eCutoff log7 n Maximum number of stored
neighbors per vertex

TABLE II: Global parameters determined by ε and n.

Notation Value Description
k ∈ N log(2m̂) Number of degree intervals

(we will have m̂ ≤ mmax

and thus, k = Oε(logn))

ρ > 0 1000
√
D · (k�)3/ε Factor controlling

space usage, note that
ρ = Oε(log

6 n) (assuming
m̂ ≤ mmax)

p0 > 0 ρ/
√
m̂ Factor in vertex-

subsampling probability

vCutoff 10ρ
√
2m̂ Maximum number of

stored vertices per layer,
note that vCutoff =
Oε(

√
n log6 n) (assuming

m̂ ≤ mmax)

TABLE III: Global parameters determined by ε, n, and m̂.

Algorithm 1 Our algorithm.

Input: A multigraph G and an estimate m̂ for the number of

edges.

1: For all a ∈ [k], sample a hash function πa : [n] → [1/pa]
from H4(n, 1/pa) (see Lemma II.11).

2: Initialize an empty sketch

(m, ((vStoreda, eStoreda)a∈[k]).
3: for each edge (u, v) in the stream do
4: Use Algorithm 3 to combine the current sketch with

the sketch of (u, v) according to Algorithm 2, and store

the result in the current sketch.

5: end for
6: Run Algorithm 4 on the final sketch to obtain the output.

Notation Value Description
da ∈ N 2a Degree partition. We also define d =

(d0, . . . , dk) where d0 = 1.

qa ∈ [0, 1] min{2k∗−a, 1} Edge-sampling probability

pa ∈ [0, 1] min{p0q−1
a , 1} Vertex-sampling probability

TABLE IV: “Per-layer” parameters defined for all a ∈ [k] and

determined by ε, n, and m̂.
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Algorithm 2 Sketch for an input edge.

Input: An edge (u, v), an estimate m̂ of the total number of

edges, and hash functions {πa : [n] → [1/pa]}.

7: Set m ← 1.

8: for a = 1, . . . , k do
9: Toss a biased coin which is 1 with probability qa, and

let z denote its output.

10: if z = 1 then
11: vStoreda = {v′ | v′ ∈ {u, v} ∧ πa(v

′) = 1}.

12: If vStoreda �= ∅, set eStoreda ← {(u, v)}.

Otherwise, set eStoreda ← ∅.

13: else
14: vStoreda, eStoreda ← ∅.

15: end if
16: end for
17: Output the sketch

(
m, (eStoreda, vStoreda)a∈[k]

)
.

Algorithm 3 Combining two sketches.

Input: Two sketches (m(1), (eStored
(1)
a , vStored

(1)
a )a∈[k])

and (m(2), (eStored
(2)
a , vStored

(2)
a )a∈[k]).

18: Set m ← m(1) +m(2).

19: for a = 1, . . . , k do
20: Set vStoreda ← ⊥ if either vStored

(1)
a or

vStored
(2)
a is ⊥, or if |vStored(1)a ∪ vStored

(2)
a | >

vCutoff. Otherwise, set vStoreda ← vStored
(1)
a ∪

vStored
(2)
a .

21: If vStoreda = ⊥, then set eStoreda ← ⊥. Else,

set eStoreda ← eStored
(1)
a ∪ eStored

(2)
a (multi-

set union). Iteratively remove all edges (u, v) from

eStoreda for which we have for all v′ ∈ {u, v} that

either v′ /∈ vStoreda or degeStoreda(v
′) > eCutoff.

22: end for
23: Output the sketch

(
m, ((eStoreda, vStoreda))a∈[k]

)
.

Algorithm 4 Computing the output from a sketch.

Input: A sketch
(
m, (eStoredk, vStoredk)a∈[k]

)
.

24: If ∃a ∈ [k] : eStoreda = ⊥, then return ⊥.

25: For all a ∈ [k] and v ∈ vStoreda, define:

dEsta(v) = min{q−1
a · degeStoreda(v), dk}

and

bEsta(v) = biaseStoreda(v).

26: For all a ∈ [k] and i ∈ [�], define:

vEsta,i =
{
v ∈ vStoreda | degeStoreda(v) < eCutoff

∧ indd(dEsta(v)) ∈ Winw,k(a) ∧ indt(bEsta(v)) ∈ Winw,�(i)
}
.

27: For all a, b ∈ [k] and i, j ∈ [�], define:

AEsta,b,i,j =
∑

(u,v)∈eEsta,b,i,j

νEstw,k,�
a,b (u, v),

where:

eEsta,b,i,j = eStoredmin{a,b} ∩ (vEsta,i × vEstb,j),

and

νEstw,k,l
a,b (u, v) = ν∼w,k,�

(
indd(dEsta(u)), ind

d(dEstb(v)),

indt(bEsta(u)), ind
t(bEstb(v))

)
.

28: Define the array Â ∈ A
k,�
≥0 as:

Â(a, b, i, j) =
AEsta,b,i,j

mqmin{a,b}papb
. (IV.1)

29: Define M̂ ← Proj(Â) ∈ M
� and output v̂ ← A(M̂)− ε

4 .

C. Analyzing the algorithm

In this subsection, we prove our main result (Theorem I.3)

which asserts that we can achieve a Õ(
√
n)-space 0.483-

approximation algorithm. The essence of this algorithm is

Algorithm 1; unfortunately we cannot quite use the latter

directly, because it requires an estimate for the number of

edges in G which we do not have a priori, but this can be

fixed with some standard tricks.

In fact, we prove the following more detailed theorem:

Theorem IV.2. For every fixed continuous snapshot algorithm
(torig,Aorig) achieving a ratio of α, the following holds. Let
ε > 0. There is a sketching algorithm which, given the edges
(in adversarial order) of a multigraph G on n vertices and
m edges, uses 2O(1/ε) · √n · logO(1)(n+m) space and, with
probability at least 9/10, outputs a value v̂ satisfying (α −
ε)valG ≤ v̂ ≤ valG .

For correctness of the algorithm, we will need the following

lemma, whose proof we defer to later:

Lemma IV.3. Let ε > 0, n,m, m̂ ∈ N, and G be a multigraph
on n vertices and mmin ≤ m ≤ mmax edges and such that
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m/2 ≤ m̂ ≤ 2m. Let A = RSnapG,d,t and Â be as computed
by Eq. (IV.1) in the call to Algorithm 4 in Algorithm 1.
Letting w, k, � be defined as in Tables I and III, we have with
probability at least 99/100 that Â is a (w, ε/(k�))2-pointwise
smoothed estimate of A.

Returning to the main claim:

Proof. We assume for simplicity that we know an a priori
bound m < nC . The algorithm we use will run the following

sketches in parallel:

• A sketch to count the number of edges m in the input

graph.

• A “buffer” sketch to store up to mmin edges from the

input graph (and ⊥ if there are more).

• For t ∈ {
log1.9 mmin, . . . , log1.9(n

C)
}

, set m̂(t) ←
1.9t, m̂spar(t) ← min(mmax, m̂(t)), and pspar(t) ←
m̂spar(t)/m̂(t). Obtain a graph stream Ĝ(t) by including

each edge of Ĝ with probability pspar(t) independently

and run Algorithm 1 with Ĝ(t) and m̂spar(t) to get an

output.

After the stream, if m ≤ mmin we solve the instance (which

we have stored) exactly. Otherwise, we choose the unique

t such that m̂(t) ≤ m < 1.9 · m̂(t) and return the output

corresponding to this t.

The proof of the theorem now proceeds in several steps.

a) Space bound: In the buffer we store at most mmin

edges, which takes Õ(mmin) = Õ(
√
n) space. Then, we invoke

Algorithm 1 on O(C log n) values of t, so it suffices to show

the bound separately for each value of t. For any such t, note

that each sketch created by Algorithm 2 for a single edge is at

most k = O(log n) copies of the edge and its endpoints, and

therefore this sketch has size O(log2 n). We now bound the

size of the sketch obtained by combining the sketches using

Algorithm 3. which means that it suffices to bound the size of

the pairs (eStored1, vStored1), . . . , (eStoredk, vStoredk).
For this note that the number a of such pairs is O(log n) and

thus, it suffices to bound the size of each pair. For any such

pair a, the number of vertices in vStoreda is at most vCutoff

(due to Algorithm 3) and the number of edges is at most

vCutoff ·eCutoff (due to Algorithm 3). Finally, we observe

that eCutoff = logO(1) n and, since m̂spar(t) ≤ mmax, we

have vCutoff = 2O(1/ε) · √n · logO(1) n.

b) Reducing to “correct” m̂: If m ≤ mmin we solve

the instance exactly. Otherwise, we return the output for t
satisfying m̂(t) ≤ m < 1.9 · m̂(t). For this t, we have:

m̂spar(t) ≤ m · pspar(t) ≤ 1.9 · m̂spar(t).

Using this and Lemma II.9 with εspar = ε (note that the con-

ditions of Lemma II.9 are satisfied as either pspar(t) = 1 and

the lemma is trivial or pspar(t) = mmax/m̂(t) ≥ Csparn
(ε)2m ), we

have with probability at least 99/100 that
∣∣∣valG − val

̂G(t)
∣∣∣ ≤ ε

and the number of edges in Ĝ(t) is between m̂spar(t)/2 and

2m̂spar(t).

c) Applying the reduction: Define Ĝ := Ĝ(t). By

Lemma IV.3, Â is a (w, ε/(k�)2)-pointwise smoothed estimate

of A = RSnap
̂G,d,t with probability 99/100. Conditioning on

this event, we can then apply Lemma III.17 to conclude that M̂
is a (w, ε + Cwin/w)-smoothed estimate of M := RSnap

̂G,t,

i.e., ‖M̂ −M∼w‖1 ≤ ε+ Cwin/w.

By Lemma III.11, there exists a weighted graph H with

snapshot N := SnapH,t such that ‖N−M∼w‖1 ≤ Csmoothλw
and |val

̂G − valH| ≤ Csmoothλw. By the triangle inequality,

‖N − M̂‖1 ≤ Csmoothλw+Cwin/w+ ε and |valG − valH| ≤
Csmoothλw + ε.

Finally, we assumed αvalH ≤ A(N) ≤ valH. By continuity

of the snapshot algorithm O, we have |A(M̂) − A(N)| ≤
Csmoothλw + Cwin/w + ε. Re-parametrizing ε finishes the

proof.

Theorem I.3 follows from Theorem IV.2 by instantiating

the latter with the specific continuous snapshot algorithm in

Lemma III.19.

REFERENCES

[1] D. Kogan and R. Krauthgamer, “Sketching cuts in graphs and hyper-
graphs,” in Proceedings of the 6th Annual Conference on Innovations
in Theoretical Computer Science (ITCS 2015, Rehovot, Israel, January
11-13, 2015). Association for Computing Machinery, 2015, pp. 367–
376.

[2] M. Kapralov, S. Khanna, and M. Sudan, “Approximating matching
size from random streams,” in Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2014, Portland, OR,
USA, January 5-7, 2014). USA: Society for Industrial and Applied
Mathematics, Jan. 2014, pp. 734–751.

[3] V. Guruswami, A. Velingker, and S. Velusamy, “Streaming Complexity
of Approximating Max 2CSP and Max Acyclic Subgraph,” in Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX 2017, Berkeley, CA, USA, August 16-18,
2017), ser. LIPIcs, K. Jansen, J. D. P. Rolim, D. Williamson, and S. S.
Vempala, Eds., vol. 81. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, Aug. 2017, pp. 8:1–8:19.

[4] M. Kapralov, S. Khanna, M. Sudan, and A. Velingker, “(1 + ω(1))-
approximation to MAX-CUT requires linear space,” in Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2017, Barcelona, Spain, January 16-19, 2017). Society for Industrial
and Applied Mathematics, Jan. 2017, pp. 1703–1722.

[5] V. Guruswami and R. Tao, “Streaming Hardness of Unique Games,”
in Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX 2019, Cambridge, MA, USA,
September 20-22, 2019), ser. LIPIcs, D. Achlioptas and L. A. Végh,
Eds., vol. 145. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
Sep. 2019, pp. 5:1–5:12.

[6] M. Kapralov and D. Krachun, “An optimal space lower bound for
approximating MAX-CUT,” in Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019). Association for Computing Machinery,
Jun. 2019, pp. 277–288.

[7] C.-N. Chou, A. Golovnev, and S. Velusamy, “Optimal Streaming Ap-
proximations for all Boolean Max-2CSPs and Max-kSAT,” in 2020
IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS 2020, Virtual, November 16-19, 2020). IEEE Computer Society,
Nov. 2020, pp. 330–341.

[8] C.-N. Chou, A. Golovnev, M. Sudan, and S. Velusamy, “Approximability
of all finite CSPs with linear sketches,” in Proceedings of the 62nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS
2021, Denver, CO, USA, February 7-10, 2022). IEEE Computer Society,
2021.

869

Authorized licensed use limited to: Harvard Library. Downloaded on January 05,2024 at 17:42:27 UTC from IEEE Xplore.  Restrictions apply. 



[9] N. Singer, M. Sudan, and S. Velusamy, “Streaming approximation
resistance of every ordering CSP,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX
2021, August 16-18, 2021), ser. LIPIcs, M. Wootters and L. Sanità,
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