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Abstract—We give an O(y/n)-space single-pass 0.483-
approximation streaming algorithm for estimating the maximum
directed cut size (Max-DICUT) in a directed graph on n vertices.
This improves over an O(log n)-space 4/9 < 0.45 approximation
algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020),
which was known to be optimal for o(,/n)-space algorithms.
Max-DICUT is a special case of a constraint satisfaction problem
(CSP). In this broader context, we give the first CSP for which
algorithms with O(y/n) space can provably outperform o(/n)-
space algorithms.

The key technical contribution of our work is development
of the notions of a first-order snapshot of a (directed) graph
and of estimates of such snapshots. These snapshots can be
used to simulate certain (non-streaming) Max-DICUT algorithms,
including the ‘“‘oblivious” algorithms introduced by Feige and
Jozeph (Algorithmica, 2015), who showed that one such algorithm
achieves a (0.483-approximation.

Previous work of the authors (SODA 2023) studied the
restricted case of bounded-degree graphs, and observed that in
this setting, it is straightforward to estimate the snapshot with
/1 errors and this suffices to simulate oblivious algorithms. But
for unbounded-degree graphs, even defining an achievable and
sufficient notion of estimation is subtle. We describe a new notion
of snapshot estimation and prove its sufficiency using careful
smoothing techniques, and then develop an algorithm which
sketches such an estimate via a delicate process of intertwined
vertex- and edge-subsampling.

Prior to our work, the only streaming algorithms for any
CSP on general instances were based on generalizations of the
O(logn)-space algorithm for Max-DICUT, and can roughly be
characterized as based on “zeroth” order snapshots. Our work
thus opens the possibility of a new class of algorithms for
approximating CSPs by demonstrating that more sophisticated
snapshots can outperform cruder ones in the case of Max-DICUT.
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I. INTRODUCTION

We consider approximating the maximum directed cut value
of a directed graph by a streaming algorithm presented with a
stream of edges in an arbitrary (worst-case) order. Our main
result is a single-pass algorithm using O(y/n)-space that gives
a .483 approximation algorithm. Along the way we develop
the notions of snapshots of graphs and estimates of such
snapshots, which introduce new tools for approximating graph
theoretic quantities and more generally for approximating
Constraint Satisfaction Problems (CSPs). In what follows
we explain the background of the directed cut problem, the
significance of the result, and the techniques used to achieve
this result.

A. Background

We begin by defining the maximum directed cut
(Max-DICUT) problem in a directed graph G. (These defini-
tions will all be informal; see Section II for formal definitions.)
Given a graph G on n vertices, labeled 1,...,n, cut of G is a
binary string x € {0, 1}", assigning a bit to every vertex in G.
We say x cuts a directed edge (u,v) if 2, = 1 and z, = 0.
(Note the asymmetry between u and v.) The value valg(x) of
a cut x is the total fraction of edges it cuts, and the value valg
of G is the maximum value of any cut. A uniformly random
cut has value % in expectation, so every graph has value at
least 1.

We consider streaming algorithms for the problem of es-
timating the Max-DICUT value valg of a directed graph G,
given a stream o = (e1 = (u1,v1),...,€m = (Um,Vpy)) of
the graph’s edges in arbitrary order. We say an algorithm is
an a-approximation for the Max-DICUT problem if its output
v satisfies «-valg <o < valg (with high probability). We say
an algorithm is a space-s(n) streaming algorithm (where n is
the number of vertices in G) if it reads the stream of edges o
in sequential order and uses s(n) space.
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The Max-DICUT problem is one example of a so-called
constraint satisfaction problem (CSP). We omit a full defi-
nition as we do not require it, but these problems are basi-
cally defined by two things: (1) a “global” space of allowed
“assignments” to “variables” and (2) a collection of “local”
constraints, each of which specifies allowed values for a small
subset of variables. For Max-DICUT, variables are vertices,
assignments are cuts, and constraints are edges; we will
use these terms interchangeably. The “symmetric version” of
Max-DICUT is another CSP called maximum cut (Max-CUT),
in which a cut x cuts an edge (u,v) if z,, # x,; we mention it
here as it serves a useful point of comparison for Max-DICUT.

B. Recent work

Over the last decade, there has been extensive work on the
approximability of various CSPs in various streaming models
(11, [21, [3], [4], 5], [6], [71, [8], [9], [10], [11], [12], [13];
see also the surveys [14], [15].

Max-DICUT has emerged as the central benchmark for
algorithms among CSPs in the streaming setting. It was the
first problem shown to admit a non-trivial approximation in
sublinear (in n) space in the work of Guruswami, Velingker,
and Velusamy [3]. Subsequent work of Chou, Golovnev, and
Velusamy [7] gave an improved algorithm for Max-DICUT
along with a tight bound on the approximability — pinning the
approximability of Max-DICUT for o(y/n)-space streaming at
a
Theorem L.1 ([7]). For every € > 0, there is a streaming algo-
rithm (in fact, a linear sketching algorithm) which (4/9 — €)-
approximates the Max-DICUT value of a graph in O.(logn)

space. Conversely, every (4/9 + €)-approximation streaming
algorithm for Max-DICUT uses Q.(y/n) space.

Both the algorithms in [3] and [7] are what previous works
have called “bias-based” algorithms, or what we will call a
“zeroth-order snapshot” algorithms. Roughly, the bias of a
vertex captures the ratio of its in-degree to its out-degree, and
a zeroth-order snapshot computes a histogram of the bias of
vertices in the graph and uses this histogram (and no other
information) to approximate the Max-DICUT value of a graph.
Strikingly, the work of [7] shows that zeroth-order snapshot
based algorithms are optimal among o(+/n)-space streaming
algorithms.

Subsequent work of Chou, Golovnev, Sudan, and
Velusamy [8] showed that this result is part of a broader
landscape for o(y/n)-space streaming complexity of CSPs. In
particular, Chou, Golovnev, Sudan, and Velusamy [8] proved
a dichotomy theorem for all finite CSPs. The understanding of
Max-DICUT plays a central role in their results. In particular,
they generalize the zeroth-order snapshot based Max-DICUT
algorithm of [7] to all CSPs. Their lower bounds also gener-
alize the lower bounds from [7] with some notions (“padded
one-wise independent problems”) that are direct abstractions
of Max-DICUT and share tight lower bounds.

One might ask, given a particular CSP, if there are any
algorithms that outperform zeroth-order snapshot algorithms
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studied in [8]. For a wide class of CSPs, including Max-CUT,
the answer is “NO” — there are recent {}(n)-space lower
bounds ruling out all nontrivial approximations [6], [10].!?
Thus to make advances one has to restrict the problems con-
sidered, and in this work we focus on the simplest remaining
problem after Max-CUT, namely, Max-DICUT.

For Max-DICUT, till this work and a recent related work
by the authors [13] it was conceivable that there were no
improvements possible in o(n) space. But at the same time the
above mentioned lower bound from [7] did not extend to this
setting and it was unclear whether this was due to a limitation
of the lower bounds techniques or if better algorithms exist.

In a previous work [13], the authors gave some evidence
for the possibility that better algorithms for Max-DICUT do
indeed exist. To be precise, recall that the sketching algorithm
of [7] is a g ~ 0.444-approximation, which uses O(logn)
space and is optimal among o(y/n)-space streaming algorithms
(Theorem I.1). In [13] we proved that for Max-DICUT, the
algorithm of [7] can be beaten in certain restricted models
such as when the input stream is randomly (instead of adver-
sarially) ordered, or the graph has constant maximum-degree.
In particular:

Theorem L2 ([13]). For every d € N, there is a streaming
algorithm which 0.483-approximates the Max-DICUT value of
a graph with maximum degree d in Oq(y/n) space.

In doing so the work of [13] introduces the notion that we
call a “first-order snapshot” — where information about the
input graph is “compressed” to a histogram of edges based
on the biases of their two endpoints. (See Definition III.1
below for the definition of a snapshot. We refer here to “first-
order” snapshots since higher-order snapshots might maintain
a histogram of longer length paths or other subgraphs with
more than one edge.) For bounded-degree graphs, mapping
a graph to its snapshot is clearly a compression (since the
number of possible biases is finite), and this compressed
information can be estimated, under fairly natural notions of
estimation, by an O(y/n)-space streaming algorithm.

However, Theorem 1.2 does not answer the question of
whether the Max-DICUT algorithm of [7] can be beaten on
general graphs in o(n) space. Indeed, their algorithm breaks
down in a fundamental way on general graphs, so it could
be considered evidence only that more sophisticated lower
bound techniques are necessary to rule out such algorithms.
We further discuss why we believe that Theorem 1.2 was far
from a resolution to this question in Section I-D below.

C. Main result

Our main theorem gives an algorithm that uses slightly more
than /n space and outperforms the algorithm of [7]:

'Q(n) space is tight up to logarithmic factors because randomly sparsifying
down to O(n/e2) constraints gives (1 — )-approximations.

2The condition for inapproximability given in [10] for a predicate f :
Z’; — {0, 1} is termed “width”, and states that f’s support contains some
translate of the diagonal {(a,...,a):a € Zg} More broadly, the strongest
known hardness results for CSPs (e.g., also in [8]) seem to rely on “niceness”
properties of the support of f.
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Theorem I.3 (Main theorem). There is a streaming algorithm
which 0.483-approximates the Max-DICUT value of an arbi-
trary (multi)graph in O(\/n) space.

See Theorem IV.2 below for the fully detailed statement.

The fact that we achieve the same approximation factor
as [13] is not a coincidence. Both works obtain their final
algorithm by constructing a first-order snapshot of the input
graph, and then observing that this information suffices to
simulate the performance of “oblivious” algorithms on the
given input, and finally using a result of Feige and Jozeph [16]
that gives an oblivious algorithm to approximate Max-DICUT
to a factor of ~ .483. (Roughly, oblivious algorithms randomly
and independently assign vertices to either the 0O-side or the
1-side where the probability of choosing a side depends on
the bias of the vertex, and these probabilities are chosen to
optimize the expected number of edges crossing the cut —
a quantity that can be optimized using just the first-order
snapshot information.) While this chain of reasoning is similar,
every step becomes more complex in the unbounded-degree
setting. Indeed as we explain below, designing algorithms for
bounded-degree graphs is and has been substantially easier
than the general case.

D. Beyond bounded-degree instances

Before turning to our setting with O(y/n) space, we first
remark on the role of degree in the earlier works of [3],
[71, [8]. The algorithms in all these works work for general
degree graphs and use powerful norm estimation algorithms
as black boxes. If one were to consider the simpler case of
their problems in the bounded-degree setting, these algorithms
could have been implemented without reliance on these sub-
routines. Specifically, their algorithms only need an estimate
of the absolute value of “bias times the degree” for a random
vertex, and this could be estimated by simply picking a random
sample of the vertices and computing their bias and degree as
the stream passes by. For general CSPs (even on non-Boolean
domains) also such a process would suffice, and this would
not only simplify the algorithms significantly, it even would
achieve a space bound of O(logn) which is better than the
current bounds given in [8] for general CSPs.

Digging deeper into this analogy one can consider £, norm
estimation problems themselves. For this class of problems
also one can define a bounded-degree version of the problem
— where one is trying to compute the ¢, norm of a vector in
{—=C,...,C}" in the turnstile update model. In this bounded-
degree setting, the ¢, norm can be trivially computed by
randomly sampling an O¢(1)-sized subset of the coordinates
and maintaining their values. Thus £, norms can be estimated
in O(logn) space for every p in this bounded-degree setting,
whereas in the general case it is well-known that £, norm
estimation requires polynomial in n space for p > 2.

Thus, the bounded-degree setting can be vastly easier to
solve and results in this setting may best be viewed as a proof
of concept — though even this “proof of concept” may be
misleading, as exemplified by the ¢, norm estimation problem.
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Turning to our specific goal — that of computing (first-
order) snapshots of a graph in O(y/n) time — our prior work
[13] again manages to estimate this snapshot in the bounded-
degree setting by sampling O(y/n) vertices and maintaining
the bias of the sampled vertices as well as the induced
subgraph on these vertices. We discuss why this is reasonable
in the bounded-degree setting in the following subsection. But
such a simple algorithm is definitely not going to work in
the general setting! In particular, computing a good estimate
of the snapshot is at least as hard as computing the ¢; norm
of a vector in the turnstile model with unit updates. Indeed,
“snapshot” estimation seems to be a “higher-level” challenge
than simple norm estimation and roughly requires computing
some “two-wise” marginals of the graph updates, whereas
bias corresponded to “one-wise” marginals. Black-box use of
norm-estimation algorithms no longer seems to suffice to solve
these “two-wise” marginal problems, which seem to need new
algorithmic ideas. We feel this class of problems and the ideas
used here to deal with them may be of even broader interest
than the application to Max-DICUT.

E. Technical overview

Our goal is to approximate the Max-DICUT value of a graph
G by estimating its snapshot Snapg ;.

Setting aside the streaming model momentarily, the “gold
standard” way to estimate the snapshot would be to sample a
small set & of edges uniformly and independently at random,
measure the biases of the endpoints of every edge in F,
and use this to estimate the snapshot. Unfortunately, since
the stream is adversarially-ordered, there is no obvious way
to implement this procedure since by the time a “random”
edge appears in our stream, many of the edges incident to its
endpoints might have already appeared, and thus, we may not
know its endpoints’ biases.

To get an algorithm for adversarially-ordered streams, we
could hope to somehow sample a set I of edges in a way
which maintains the property that for every edge in F,
we know the bias of its endpoints. While £ may not be
a uniformly random set of edges, we could still hope for
an estimate of the snapshot if E is “sufficiently” random.
A natural approach proposed in [13] for doing this is the
following. We sample a uniform set S of vertices upfront, i.e.,
before the stream, by uniformly including every vertex with
some probability p independently. Then, during the stream, we
measure the bias of every vertex in .S and store the induced
subgraph on S as E. Since S is sampled before the stream
begins, this approach has the advantage that even though
the graph is adversarially-ordered, we end up knowing the
biases of the endpoints of every edge in E. Here is where the
\/n space dependency comes from: By a “birthday paradox”
argument?, since F is the induced subgraph on S, in order to

3As observed in [13], when the edges in the stream are randomly ordered
this simple setup does give an algorithm: One can simply set £ to be the first
O(1) edges in the stream and then observe the biases of the endpoints over
the remainder of the stream.

“It suffices to consider only sparse graphs (see Lemma I1.9).

Authorized licensed use limited to: Harvard Library. Downloaded on January 05,2024 at 17:42:27 UTC from IEEE Xplore. Restrictions apply.



expect to even see any edges in F we will need |S| = Q(y/n).
But we are very far from done at this point, because there is
a crucial issue as compared to the gold standard case: The
edges which are included in E are no longer independent! In
particular, if two edges ¢ and ¢’ share a common endpoint
(or two, in the case of a multigraph!), then conditioning on
e € E increases the probability that ¢/ € E. Here is where
the maximum-degree assumption in [13] comes in: If G has
maximum-degree D, e € E' is independent of all but < 2D+1
events ¢/ € F. It turns out that when D = O(1), this lets us
get enough control on the variance of which edges show up in
FE to give a correct estimate. But for larger D, this approach
completely breaks down, and for good reason: In the extreme
example of a star graph (i.e., a graph where one vertex is
connected to all other vertices), we must store the center of the
star in S, or otherwise F will be empty! But if we place every
vertex in S we will use linear space — we want to store the
center with probability 1, but the other (low-degree) vertices
with probability only O(1/+/n). Thus, in order to extend this
simple estimator to general graphs, we will very roughly want
to place vertices in S with probability which increases as a
function of their degree. Implementing this in the streaming
setting creates numerous challenges, and solving these is a
main focus of this paper.

1) Vertex-sampling in the general case: Our goal now is
to extend the vertex sampling approach described above to
general graphs. We remark that even in the general case, we
can assume WLOG that the number of edges in the graph is
Q(y/n) and O(n).?

As we mentioned in the previous subsection, we would
like to sample a set S of vertices, such that every vertex
is included independently with probability which increases
with the degree. This is the first step towards estimating the
snapshot, which will also require sampling edges between
these vertices; we focus on the former task for now, and
address the latter in the following subsection.

Instead of sampling one set S of vertices, we will aim for
a slightly more detailed goal, which is to sample a set U, of
vertices of degree between d,_; and d,, where 1 = d; <
-+ < dj, = O(n) is some partition of the possible degrees in
the graph. (For concreteness, we use d, = 2°~1.) We envision
the graph as consisting of k layers; a vertex of degree between
dq—1 and d, is in layer a (and has “degree class” a, in analogy
to the bias classes).

Consider the task of sampling U,, a uniform set of vertices
in a fixed layer a. Recall that in the previous subsection
(the bounded-degree case), we placed all vertices in S with
some fixed probability p independently. Now, we would like
to place layer-a vertices into U, with some probability p,

SIf the graph has O(y/n) edges we can afford to store the entire graph
within our space bound. A standard sparsification argument (see Lemma I1.9)
shows replacing G with a random subsample of O(n/e?) edges changes the
Max-DICUT value by only e.
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independently.® To fit within our space bound, we only require
|Us| = O(y/n); this turns out to imply that p, can grow as a
function of a. For instance, if d, = (y/n) then there can only
be O(y/n) vertices in layer a, so we can even afford p, = 1.
(Making p, this large in high layers is actually necessary for
good estimates, as shown by the “star” example.) But there is
a seeming paradox in this plan: When a vertex v first appears
in the stream, we would like to know its layer a, so that we
can toss an appropriately biased coin (i.e., Bernoulli-p,) to
determine whether it goes into U,; but as this is the first
appearance of v, we know nothing about its degree besides
that it is at least 1!

One natural way to deal with this problem is to defer
deciding whether to a vertex has high degree until we see
many edges touching it. To do this, we take advantage of
subsampling edges as well as vertices. To layer a we also asso-
ciate an “‘edge-subsampling probability” ¢, and a “subsampled
graph” G, which includes every edge in G independently with
probability g,. We choose ¢, = Cd;* for a large constant
C, meaning that vertices with degree d, in G have degree
roughly C'in G,.” This allows us to sample U,, in the streaming
setting: We sample G, on the fly, and then we add to U,
with probability p, each new vertex with G,-degree roughly
between 0.49C' and 1.01C.% Note that G, is too large to store
— in particular, G; has m edges, and more generally G, has
qom edges in expectation — so we will need to carefully
choose which edges to store when crafting our estimate in the
following subsection.

Now U, will contain a random sample of layer-a vertices,
but — and this is crucial — it may also contain other randomly
sampled vertices, like those in layers a — 1 or a + 1. E.g.,
consider a vertex of degree d, + 1, which is technically in
layer a + 1, but is also likely to have G,-degree under q,d,;
indeed, one cannot differentiate between this vertex and a
layer-a vertex with high probability based on G,-degree. To
put it another way, by the time we see the first incident edge
to a vertex in G,, many of its incident edges in G may have
already passed by in the stream, meaning we cannot track
its “global” bias or degree exactly. This creates a substantial
technical issue in even defining the type of estimates we
are trying to achieve, which we have to resolve by certain

OThere is a technical reason from switching S to U here to denote sets of
vertices: It is convenient to think of first sampling a set S, before the stream
to include all vertices w.p. p, (even those not in layer a), and then Uy, is the
intersection of S, with the set of vertices in layer a, which are the vertices
we actually want to track.

7Actually, in order for adequate concentration of the degree in G,, we will
need C' = Q(logn), but we ignore this for simplicity. Also, if d, < C,
we set ¢, = 1, i.e., we need no edge-subsampling. This is equivalent to the
bounded-degree case we already analyzed.

8We are cheating slightly here: We do not know the degree of such a vertex
when it first appears, so we cannot decide whether it has degree falling in
this range. Instead, during the stream we can store a set U, containing each
vertex with positive Qa—de)gree W.p. pa- Then, after the stream, we set Uy, to
be the set of vertices in U, with G,-degree in the appropriate range. This
point will come up again when we want to store G,-edges associated to these
vertices in the following subsection; we will have to store edges for every
vertex in N, and then use “cutoffs” to stop storing edges once we know they
cannot be in U,. We ignore these details in this overview.
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“smoothing” arguments which we defer until the subsection
after the following (Section I-E3).

2) Sampling edges for the estimate: In the previous section,
we described a scheme based on vertex- and edge-subsampling
which samples uniform sets U, of layer-a vertices (perhaps
along with “borderline” vertices in layer a+1 and a—1, which
we ignore for now). But our ultimate target is estimating the
snapshot, which counts edges between vertices of different
biases; in this sense, these sets of vertices are only means to
an end, and we need to also describe how we sample edges
between these sampled vertices and use them to estimate the
snapshot. Recall that in each layer we subsampled a graph
Ga, which was still too large to store; the edges we use to
produce the estimate will be a subset of G,’s edges which we
can actually store.

Since our algorithm now breaks down vertices by their de-
grees as well as their biases, it turns out that the natural object
to aim to estimate is not the snapshot itself, but instead what
we will call the refined snapshot of G, denoted RSnapg 4 ¢
(see Definition III.3 below). This is a four-dimensional array
whose (a, b, i, j)-th entry contains the fraction of edges in
G that go from vertices in bias class i and degree class
a to vertices in bias class j and degree class b. Note that
the refined snapshot RSnapg 4 is only more granular than
the snapshot Snapg ¢ which we actually want to estimate —
in particular, Snapg ; can be computed from RSnapg 4 by
“projecting” the latter to its third and fourth coordinates. Note
also that the snapshot’s dimensions are constant, while the
refined snapshot’s dimensions are polylogarithmic (because
the number of layers is & = ©(logn)). We will abbreviate
A = RSnapg 4 for convenience and focus on estimating A
by inspecting edges between these sets U,,.

a) Estimating edges within each layer: There is a class of
entries (a, b, 7, j) of A which are relatively simple to estimate:
The “degree diagonal” a = b, or in other words, entries which
correspond to edges within a single layer. For this, we can
just store the induced subgraph of G, on U,. Looking at these
induced subgraphs — modulo the issue of estimating the bias
and degree of sampled vertices — will be roughly equivalent
to the bounded-degree case, essentially because vertices in U,
have small degree in G,. However, this is only a small subset of
the entries of A which we need to estimate. Given a # b € [k],
how can we estimate the “cross edges” between layers a and
b?

b) Estimating cross edges: The difficulty with estimating
cross-edges, in comparison to the in-layer edges discussed
before, is that there can be wide discrepancies between the
degrees of the edges’ endpoints (both in the global graph and
in any particular layer). That is, for a < b € [k], vertices in
degree class b are expected to have a high degree in layer
a (as they are expected to have d;, edges and we subsample
with probability C'd; 1) while the vertices in degree class a are
expected to have almost no edges in layer b. This makes the
concentration analysis more subtle than the bounded-degree
case, but we can still get by with two crucial observations:
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1) When looking at the layer a, we can strengthen the
algorithm to remember all edges in G, that are incident
on a vertex in U, (and not just the induced subgraph on
Uy).

Secondly, as we mentioned in the previous subsection, as
the layer a increases, the maximum number of vertices
in G in layer a decreases. This means that we can afford
for the probability p, that any particular layer-a vertex
is stored in U, to increase, and for instance when d, =
Q(y/n) we can even afford p, = 1 as there are only
O(4/n) such vertices.

We claim that, with the above modification, one can estimate
cross edges between layers a and b by looking at the graph G,
and counting the number of edges in this graph that go from
vertices in U, to vertices in Up. To see why this works, we
consider ¢ = 1 and two cases for b:

e When d, = Q(y/n): In this case, by Item 2, U, is
sufficiently large as to contain all the vertices in G with
degree class b. Given the fact that U, has all these
vertices and we have Item 1, whether or not a cross
edge e = (u,v), where u has degree class a and v has
degree class b, is counted depends only on whether or
not u € U, and whether or not e € G,. The latter is
independent across all edges while the former has only
a small amount of dependence, as the vertices in degree
class a have low degree in G,, and does not harm the
concentration inequalities too much.

o When d;, = o(y/n): The argument above will not directly

work in this case, as now whether or not a cross edge is
counted also depends on whether or not v € U,. As the
vertices in degree class b have high degree in G,, this
creates a lot of dependencies (depending on dj,/d,) and
breaks the concentration bounds.
What saves us here is that in Items 1 and 2, we sample
all edges in G, that are incident on U, and also are
relatively likely to remember any particular vertex in Uy.
Thus, the number of cross edges between a and b that
are remembered in G, is much larger than O(1) (which
was the number obtained in the bounded-degree case).
Having a larger number of cross edges also means we
can also afford to deviate by more without affecting the
multiplicative guarantee, and this larger deviation will
help us deal with the extra dependencies in this case.

2)

3) The analysis via windowed averaging and smoothing:
Even with the modifications above, there is a major problem
that we still have to overcome. This problem arises because
we do not compute the degrees and biases of the vertices
in G exactly, and instead estimate them from the sampled
graphs G,. These estimates will always be slightly off, and
this can wreak havoc in the analysis. As we mentioned above,
if for instance the degree of a vertex is at the “boundary”
of degree classes a and a + 1, it is impossible to determine
with high probability, which entries of the estimate for A will
the edges which touch this vertex contribute to — in some
subsamples, the vertex could “appear to be” in degree class
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a and in others it could be in a + 1. But morally, if the
partition is sufficiently fine, these mistakes should not matter
too much anyhow because it is possible to “slightly tweak” the
bias of vertices to put them into neighboring classes without
significantly changing the Max-DICUT value.

The approach we come up with to circumvent these issues,
which may be of independent interest, is the following: Instead
of trying to estimate entries of A individually, we group
them into “windows” and estimate the average of all the
entries in the window instead. For example, when trying to
estimate whether a vertex has degree class a, we instead take
a windowing parameter w and estimate over all degree classes
{a —w,...,a+w}.’ Therefore, our algorithm targets a cer-
tain kind of “windowed” estimate as opposed to a simple ¢;-
estimate. In particular, we define a novel (and incomparable)
notion of estimating an array which we call pointwise smooth
estimation (Definition II1.16). In this notion of estimation,
for an estimate A of A, as & _gets arbitrarily small, we do
not require that each entry of A approaches one fixed value;
instead, it must approach an interval (which gets arbitrarily
narrow as w gets arbitrarily large). Sufficiency of this kind
of estimate relies on exactly the kind of informal “tweaking”
(“smoothing”) analysis we mentioned before.

Informally, the interval§ are defined as follows: Consider
the (a,b,1,j)-th entry of A, and any edge e from bias class 4’
and degree class a’ to bias class j' and degree class b’. Then
we declare:

o “Inner” edges: If ||(a,b,i,7) — (a/,0',4", ) ||c < w —1,

then e must count in A(a,b,1,j).

e “Outer” edges: If ||(a,b,4,7) — (', 0,7, 7" )||oc > w+1,

then e must not count in A\(a, b,i, 7).

« “Borderline” edges: If ||(a, b, i, ) —(a', 0,7, j')||c = w,

then e may or may not count in A(a,b,1,7).

The key lemma in the analysis then states:

Lemma I.4 (Informal version of Lemmas III.11 and III.17).
If an approximation ratio « to Max-DICUT can be achieved
by looking at the snapshot of a graph G, and A is a (w,d)-
pointwise estimate of the refined snapshot A = RSnapg 4+,
then A can be used to achieve an (o — €)-approximation to
Max-DICUT for € = O(5(k)? + wA + 1/w), where k, ¢, and
A are the number of degree classes in d, the number of bias
classes in t, and the maximum width of any interval in t,
respectively.

The three terms in the error e come from, respectively:
Switching from an entrywise ({) error guarantee for the
refined snapshot A to a global (¢1) error guarantee for the
snapshot; a surface area-to-volume ratio bounding errors from
the “borderline”; and the “smoothing” operation which tweaks

9One technical issue with this approach is we have to handle the “de-
generate” cases where, e.g. a < w so the set of allowed degree classes is
smaller than 2w + 1. We correspondingly have to weight the entries in the
matrix to equalize the contributions of different edges, and this introduces
some more potential errors in the algorithm as these “weighting factors” for
sampled edges can also be estimated incorrectly. We ignore these details in
this introduction.
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Increasing the window size w
N
L4

]

Fig. 1: A depiction of how larger windows reduce the “bor-
derline” effects (in two dimensions). As w becomes larger
and larger, a w x w rectangle (dark gray) dominates its
“boundary” (light gray) more and more. Geometrically, a
rectangle is two-dimensional while its boundary is “essentially
one-dimensional”. However, for estimating the Max-DICUT
value in a graph, smoothing over size-w windows for large
w introduces errors from the use of “continuity” results (i.e.,
Lemma III.11 below). The right choice of w strikes a balance
between these two forces.

Fig. 2: Consider estimating a (two-dimensional) matrix with
“off-by-one” errors, wherein the mass of each entry may shift
to one of 8 neighboring entries (red boxes). If we estimate an
average over a window of size w = 4 in taxicab distance
around an entry X (green rectangle): (i) “Outer” entries,
such as the one marked D, beyond distance w + 1 5
from the center (light gray) can never contribute. (ii) “Inner”
entries, such as the one marked A, within distance at most
w — 1 = 3 from the center (dark gray) always contribute.
(iii) “Borderline” entries, such as B or C, may or may not
contribute, depending on the specific error pattern.

the biases of vertices. Note that there is a significant interplay
of parameters here: To achieve any fixed € O(1), we'll
have to set w = O(1/¢), A = O(1/w) = O(1/€?), and since
k = logn, we ultimately need § = O(e®/log®n)."® Comple-
mentarily, Lemma IV.3 is the key correctness statement, stating
that such a pointwise smoothed estimate is achieved by our

10Such a guarantee is believable because in the “gold-standard” case where
we sample independently the random edges and look at their biases (and
degrees), the deviations would be O(1/+/n) by a Chernoff bound.
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algorithm. For simplicity, in the algorithm, we only handle a
fixed partition degree partition d (i.e., where d, = 2d,_1).
To make A arbitrarily small, we use the fact that a bias
partition can be subdivided arbitrarily while maintaining the
approximation ratio of what can be deduced from the snapshot.

F. Future directions

Via the trivial reduction from Max-CUT, it is known that
for all € > 0, streaming algorithms which (3§ + €)-approximate
Max-DICUT require Q.(n) space (cf. [10]). There are a num-
ber of interesting alternatives for what could happen between
w(y/n) and o(n) space. Three main scenarios are:

Scenario 1. “Algorithms beating Theorem 1.3”: There are
(1 — €)-approximations in O(y/n) space.

Scenario 2. “First-order snapshots give optimal sublinear-
space algorithms™: Beating 0.483 requires §2(n) space.!!

Scenario 3. “Approximation vs. space tradeoff”: Beating
0.483 can be achieved in o(n) space, but (3 — e)-
approximations for ¢ > 0 require arbitrarily close to 2(n)
space for arbitrarily small e.

We are particularly interested in the possibility that for
Max-DICUT, one can beat the first-order snapshot algorithms
we consider here by estimating instead ‘“higher-order snap-
shots”, where by a t-order snapshot we mean a histogram of
bias patterns among subgraphs with ¢ edges. These seem to
correspond to n'~1/(+1D_gpace algorithms in the bounded-
degree case; is it possible to build on the techniques in
this paper to estimate ¢-order snapshots within this space
bound? Conversely, could there be matching “dichotomy”
lower bounds — e.g., for Max-DICUT, could first-order
snapshot algorithms be optimal in o(n?/?) space? Finally,
we mention that Singer [17] gives oblivious algorithms for
Max-kAND beating the o(y/n)-space approximation ratios
calculated in [11]; could our snapshot estimation techniques
be extended to work for these problems, or even for all finite
CSPs?

Outline of the paper

In the publication version of this paper, we omit many
technical proofs, which are left to the full version available
on arxXiv [18]. In Section II we introduce some notation
and review some background material. The main technical
content of the paper is from Section III onwards, which
can be divided into two independent steps. In the first step,
we roughly reduce achieving an approximation factor of
0.483 on a graph G to a problem which we call “pointwise
smoothed estimation” of a graph. The basic definitions and
statements here are in Section III; we define “continuous
snapshot algorithms” (Definition III.18), one of which achieves
a 0.483-approximation, and show how they can be simulated
given “pointwise smoothed estimates” (Definition III.16); as
mentioned above, the reduction itself is divided between
Lemmas III.11 and III.17. (The proofs of these lemmas can

" Actually, 0.483 is not exactly the best we can do; rather, we are
interested in the best ratio achievable by “continuous snapshot algorithms”
(see Definition III.18 below).
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be found in the full version [18].) In the second step, we
show how such a “pointwise smoothed estimate” can be
achieved via a streaming algorithm which implements the
“edge-and-vertex-subsampling” paradigm outlined above. We
present the algorithm in Section IV; the key correctness
lemma, Lemma IV.3, which states that (under certain niceness
conditions) we achieve a pointwise smoothed estimate, is
proven in the full version [18].

II. PRELIMINARIES AND NOTATION

[/] denotes the set of natural numbers {1,...,¢}. We use
standard asymptotic notation O(-), o(-), etc., with the conven-
tion that subscripts (e.g., f(z,y) = O,(g(z))) denote arbitrary
dependence in the implicit constant.

A. Matrices and arrays

For ¢ € N, we let M‘ def R denote the space of real £ x ¢
matrices, MQO C M the space of matrices with nonnegative
entries, andil\/JI[A C M’ matrices with nonnegative entries
summing to 1. For 4, j € [¢], M (i, j) denotes the (7, j)-th entry
of M. Given two matrices M, N € M’, we let |[M — N|;
and ||M — N||o denote their entrywise 1- and oo-norms,
respectively, i.e.,

4
def .. -
IM =Ny = > |M(i,5) = N(i, j)|
i.j=1
and def
IM = Nlloo = max [M(i,j) — N(i, j)|.
i,j€]

For k,¢ € N, we define analogues of this notation for four-
dimensional arrays: A*¢ def RhxkxxC denotes k x k x £ x £
arrays, A% nonnegative arrays, and A]XZ nonnegative arrays
summing to 1; we also define 1- and co-norms for arrays. We
typically use the letters A and B for four-dimensional arrays,
and M and N for (two-dimensional) matrices.

B. (Directed) graphs, degrees, biases, and (directed) cuts

In this paper, we consider directed graphs without self-
loops.!? It will be convenient to use two related defini-
tions, “weighted graphs” and “multigraphs”, corresponding
to nonnegative real and nonnegative integer edge weights,
respectively. In particular, multigraphs will be convenient to
encode input to our streaming algorithm, while the more
general notion of weighted graphs will be convenient in the
analysis.

A weighted graph on a vertex-set V = V(G) is defined by
an adjacency matrix AdjMatg € M‘;gv with zeros on the
diagonal. We let mg = »_, .y AdjMatg(u,v) denote the
total weight in a weighted graph G.

Given a vertex v € V in a weighted graph G, we define its
out- and in-degrees

def .
deg-outg (v) = Z AdjMatg (v, u)
ueV
12We avoid self-loops because, from the perspective of Max-DICUT (which

we are about to define), a self-loop edge is never satisfied by any assignment
and is therefore uninteresting from an algorithmic perspective.
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and

deg-ing (v Z AdjMatg (u, v),

ueV
and its (fotal) degree

degg(v) def deg-outg(v) + deg-ing(v).
If degg(v) = 0, we say v is isolated; otherwise, we define v’s
bias
biasg (1) def deg-outg (v) — deg-ing(v)
degg(v)
Finally, for a “cut” x € {0, l}V we define its value in G

,izxv

u,veV

€ [-1,1].

valg(x ) - AdjMatg (u, v),

and the overall Max-DICUT value of G as the maximum value
of any cut:

max valg(x).

def
Valg(X) - xe€{0,1}V

A multigraph is a weighted graph where the entries of the
adjacency matrix are all integers; equivalently, the graph is
specified by a multiset of edges F(G) C {(u,v) : u # v €
V(G)}, and entries of the matrix equal multiplicies of each
edge. Our streaming algorithms will be presented a multigraph
with its edges enumerated in arbitrary (adversarial) order, with
the goal of achieving an approximation to the Max-DICUT
value of a graph.'3

C. Concentration

We write exp(x) e . We shall need a number of
concentration inequalities which operate in different parameter
regimes of interest. We list several well-known inequalities as
well as some convenient corollaries.

Lemma IL.1 (Chernoff upper bound). Let Xi,...,X, be
independent {0,1}-valued random variables, and let X =
i, Xi. Then for all § > 0,

Pr[X > (1+ 0)E[X]] < exp(—6°E[X]/(2 + 5)).

Lemma IL.2 (Chernoff lower bound). Let Xi,...,X, be
independent {0,1}-valued random variables, and let X =
St Xi. Then for all 0 < § <1,

8)E[X]] < exp(~4°E[X]/2).

Corollary ILI.3 (Two-sided Chernoff bound). Let X1,..., X,
be independent {0, 1}-valued random variables, and let X =
iy Xi. Then for all 0 < § <1,

Pr[|X — E[X]| > SE[X]] < 2exp(—6

Pr[X < (1—

“E[X]/3).

13As is standard in the streaming and sketching literature, we will have to
assume that the length of the stream m < poly(n). Also, one could consider
a more general input model, where we get an arbitrary sequence of edges
and (nonnegative real) weights, where the edges are possibly repeated, and
the maximum and minimum weights are wmax < poly(n) and wpyi, >
1/ poly(n) respectively. In this model, we can only handle unit weights,
but this is essentially without loss of generality because one can multiply by
roughly Wmax/(wmin€) and then “round” every weight to the nearest integer
while preserving the Max-DICUT value up to O(e).

862

Corollary II.4 (Chernoff upper bound, high deviation form).
Let X1,...,X, be independent {0,1}-valued random vari-
ables, and let X =Y | X,. Then for all n > 3E[X],

Pr[X > n] < exp(-n/8).

Lemma ILS5S (Weighted Chernoff bound [19, cf. Theorem
3.31). Let Xi,..., X, be independent {0, 1}-valued random
variables. Let 0 < wv1,...,v, be weights, and let X =
Yo viX Let Ay = maxl{yz} and Xy = >0, Z]E[X}
Then for all § > 0,

Pr[X > (14 §)E[X]] < exp(—6*E[X]?/2)2)
and
Pr[X < (1 - §)E[X]] < exp(—6*E[X]?/(2A2 + AodE[X]).

Corollary I1.6 (Two-sided weighted Chernoff bound, low
weights). Let X1,...,X,, be independent {0, 1}-valued ran-
dom variables. Let 0 < vq,...,v, < 1 be weights, and let
X =", v;X;. Then for all § > 0,

Pr[|X — E[X]| > 0E[X]] < 2exp(—dE[X]/3).

Proof. Follows from the previous lemma since A,
Z;‘L:l I/L]E[Xz} = E[X] and AO < 1.

Lemma IL.7 (Chebyshev bound). Let X1,...,X,, be random
variables, and let X =" | X;. Then for all n > 0,
Var[ X }

02
Corollary IL.8 (Chebyshev with limited independence). Let
X1,..., X, berandom variables such that 0 < X4,..., X, <
1, and let X = 2?21 X;. Further, suppose that each X; is
independent (pairwise) of all but D variables {X;}jcn). Then
for all n >0,

<
O

Pr(|X — E[X]| > 7] <

D - E[X]
U
In particular, if the variables are pairwise independent, then
E[X]
n”
Proof. Follows using Var[X] >or =1 E[X: X))
E[X;]E[X,], the limited independence assumption, and the

fact that for all 4,5 € [n], E[X;X;] < E[X;] (using 0 <
X, X; <.

Pr(|X —E[X]| > ] <

Pr(|X —E[X]| > 7] <

O
D. Sparsification for Max-DICUT

The following lemma is a standard statement about sparsi-
fication for the Max-DICUT problem, which essentially lets
us reduce to considering graphs with linearly many edges. We
include the proof in the appendix to the full version [18] for
completeness.

Lemma IL9 (Linear sparsification preserves Max-DICUT
values). There exists a universal constant Cgpay > 0 such that
the following holds. For every €spay € (0,1) and n,m € N,
suppose Csparn/ (efparm) < pspar < 1. Then for every
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(multi)graph G on n vertices with m edges, if we let Gspar be
the random multigraph resulting from throwing away every
edge of G independently with probability 1 — pgpar, then
with probability 99/100 over the choice of Gspar, we have
Valg —valg,,..| < €xpar and [1g.,... ~ Dapari] < €spasepu

E. k-wise independent hash families

The following definition of a k-wise independent hash fam-
ily will play a role in the algorithm we present in Section IV
below.

Definition IL.10. A family of hash functions H {h
[n] — [m]} is k-wise independent if it satisfies the following
properties:

o For every x € [n] and a € [m], and h ~ H(n,m)
uniformly, Pr[h(z) = a] = L, and

e For every distinct x1,...,xp € [n], and h ~ H(n,m)
uniformly, h(xy),...,h(xy) are independent random
variables.

Lemma II.11 ([20], see e.g. [13, §2.6]). For every k,n,m =
2t € N, there exists a family of k-wise independent hash
Sunctions Hy, = {h : [n] — [m]} such that a uniformly random
hash function can be sampled with Oy (logn + logm) bits of
randomness.

III. REDUCING Max-DICUT APPROXIMATION TO
SNAPSHOT ESTIMATION

In this section, we develop some machinery to reduce
the Max-DICUT approximation problem for a graph G to
a problem of estimating a “pointwise snapshot estimate” of
G in the sense of Definition III.16 below. To begin, we
formally define snapshots (Definition III.1 below). Then, we
define various useful notions of smoothing matrices and arrays.
Eventually, the statements of the key reduction lemmas are
Lemmas III.11 and III.17. We also discuss how the measuring
the snapshot implies approximation algorithms with factor at
least 0.483 (Lemma III.19 below).

A. Snapshots

Let TY C R denote the space of vectors t = (i, ..., 1)
such that ty < --- < ty,. We call such a vector a threshold
vector of length 0. Given a threshold vector t € T, for any
x € [to, tg], we define z’s index ind®(x) (w.rt. t) as the unique
i € [¢] such that t;_; < x < t; (and if = = t; then ind*(z) =
0).
Let T%; C T* denote the subset of threshold vectors with
to —1 and ¢, = 1. We think of such vectors as defining

partitions of biases in graphs. For shorthand, given a weighted
def

graph G and a (nonisolated) vertex v, we write b—indtg(v)
ind®(biasg(v)) € [¢] for the index representing the “bias class”
containing v, and given a pair of nonisolated vertices u, v, we
write b-ind®, (u,v) % (ind®(biasg (w)), ind® (biasg (v))) € [¢]2
for their pair of bias classes. We say t is A-wide if for every
i€l), \/2 <t;—t;—1 <A The width of the partition turns
out to factor into the error bound in Lemma III.11 below. (One
should think of A ~ 1//.)
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Definition III.1 (Snapshot (“snapshot” in [13])). Given a
weighted graph G and threshold vector t € Til, we define
the snapshot Snapg ¢ € M4 by

Coadet 1 ,
Snapg (7, 7) = o Z AdJMatg(u7U)]lb»indtg(uw):(i7j).l4

u,v=1

In other words, the matrix Snapg’t counts the weight
fraction of edges in the graph between each pair of bias
classes. Note that this is a normalized matrix, i.e., its entries
sum to 1, unlike the adjacency matrix AdjMatg.

Next, we introduce a new version of a snapshot of a graph
G which also takes into account the degrees of the vertices,
which we call the refined snapshot. Suppose we also have a
threshold vector d € T* which partitions vertex degrees in
G, in the following sense: all nonisolated vertices in G have
degree between dy and dj. We define similar notations: For
nonisolated v, we write d-indg(v) & indd(degg(v)) for the
“degree class” of v. (For notational convenience, if degg(v) =
0 we will write d-indg(v) = —o00.) For nonisolated u, v, we
define:

db—indg’t(u7 v) = (d—indg(u),d—indg(v), b-indg (u), b-indg (v)).
(I.2)
This lets us define:
Definition II1.3 (Refined snapshot). Given a weighted graph
G and threshold vectors t € T, d = (dy, . . .,dy), such that
every nonisolated vertex v € V(G) has dy < degg(v) < dy,
we define the refined snapshot RSnapg 4 ¢ € A’Xe by

RSnapg,dvt(a, b,i,7)

1 n
— AdjMat (u, v)1
o Z iMatg (u, v)

def

(IIL4)

- db-indg’t(u,v):(a,bj,j)'
w,v=1

This array is only more informative than the snapshot; in
particular, the snapshot can be recovered via a “projection”:

Definition IIL5 (Projecting arrays into matrices). Given an

array A € AM' we define a matrix Proj(A) € M’ by
projecting onto the third and fourth coordinates, i.e.,

k
(Proj(A4) (i, j) = D Ala,b,4, ).
a,b=1
Fact IIL.6. Ler d (do,...,dy) € T* be a degree
partition and let G be a weighted graph such that all
nonisolated vertices have degree between doy and dy. Then
Proj(RSnapg 4 ¢) = Snapg -

B. Defining windows

To present our formalism for the smoothing analysis, we
begin with defining some notations for “windows” around
entries in (1-dimensional) vectors, (2-dimensional) matrices,

4Note that b-ind% (u,v) is not defined if v or u is isolated. But in either
case, AdjMatg (u, Jjj vanishes, so we adopt the convention of discarding these
terms.
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and (4-dimensional) arrays. These will correspond to indices
to [€], [¢]2, and [k]? x [¢]2, respectively, where k, ¢ € N. In each
case, windows will correspond to a ball of a certain radius in
the co-norm.

More concretely, we make the following definitions:
Definition IIL.7 (Windows). Suppose w < ¢ € N. For i € [{],
let

Win ! (i) € (i e [0« i —i| < w}

denote the 1-dimensional window around i. For i,j € [{], let

(i,5) < Win"(i) x Win"“(;)

={(i’,5") € [0 : max{|i' —il,|;" = j|} < w}

denote the 2-dimensional window around (i,7). Given also
k>weN, fora,be [k] and i,j € [{], let

Win®+*

def

Win“**(a,b,i,7) = Win“"F(a,b) x Win"*(i, j)
= {(a/7blai,7.j/) € [k]Z X [E]Q : max{|a - a/|7 |b - bl|7
i —d'|,|j = J'I} < w}

denote the 4-dimensional window around (a,b, i, 7).

C. Smoothed estimates (of matrices)

We now define what it means to smooth a matrix M € M?¢
over windows of size w.

Definition IIL.8 (Smoothing matrices). Let { € N and M €
M. For w < ¢ € N, we define a smoothed matrix M~" & M*
by

M™(i, j) = v 5 M ),
(i,37) EWin® £ (i, )

where v~ (i’ §') & 1/|Win® (i’ §')| is a normalization

factor:

Note that the normalization factors v~"*(i’,j') do not
depend on the matrix M. Informally, their importance is as
follows. Suppose £ is even and ¢ > 2w. Consider the entries
M(1,1) and M (£/2,£/2). The former will contribute to ~ w?
entries in M~ — in particular, the indices {1,...,w+ 1} x
{1,...,w + 1} — while the latter will contribute to ~ 4w?
entries — in particular, {¢/2 — (w+1),...,0/24+ (w+1)} x
{/2—=(w+1),...,£/2+ (w+1)}. We will be interested in
smoothing snapshots, i.e., M = Snapg ;, and we would like
for the resulting matrices to “resemble” snapshots, at least in
the sense of still having entries summing to 1. In particular,
the choice of normalization factors ensures that the following
holds:

Proposition II1.9 (Smoothing preserves entry sum). For every
M € M, Zf,j:l M~ (i,7) = Zf,j=1 M3, §). In particular,
if M € MY then M~" € MA.

The proof is by a simple double-counting argument, and it
is included in the full version of this paper [18].

Definition IIL.10 (Smoothed estimates). Let M, M € M be
matrices, w € N, and € > 0. M is a (w, €)-smoothed estimate
of M if | M — M~"||; < .
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For us, the sufficiency of this notion of smoothed estimation
is given by the following lemma, which roughly states that
anything which can be deduced about valg from Snapg ; can
also be deduced from a (w, €)-smoothed estimate of Snapg
up to an additive factor O(Aw + €). A proof of this lemma is
left to the full version [18] of this paper.

Lemma III.11 (Smoothed estimate of snapshot suffices).
There exists a universal constant Cgpootn, > 0 such that the
following holds. Let w < { € N. Let t € T* be \-wide. Let
G be any weighted graph with snapshot M := Snapg . Then
there exists a weighted graph H with snapshot N := Snapy, 4
such that |valg — valy| < CsmootnAw, and |[N — M~"||; <
Csmooth)‘w~

D. Smoothed pointwise estimates (of arrays)

Unfortunately, we will not be able to directly estimate
entries of the smoothed snapshot Snapg'y using our sampling-
based algorithm. Roughly, this is because there may be huge
discrepancy between degrees of vertices (indeed, from O(1)
to ©(n)), and the subsampling parameters will depend on
the degree. So, we reduce to the problem of estimating more
refined quantities: smoothed versions of the array RSnapg 4 ¢-
Our hope is that, if the degree partition is fine enough, these
quantities can actually be estimated.

Definition III.12 (Smoothing arrays). Let k,{ € N and A €
ARt For w < k,0 € N, we define a smoothed array A~ €
Akt by

A~ (a,b,i, j)

D

(/070,57 ) EWin™> £ (a,b,i,5)

VN“”k’g(a/7 b/, i/,jl)'A(al7 b/7 i/’j/)y

o def - wok R
where v~k (o Vi) = 1/|W|nw’k’z(a’7b’,z’,j’)\ is a
normalization factor.

Let A € A’;”g be an array with nonnegative entries. For the
final step in our reduction, we define a certain notion of a
“pointwise smoothed estimate” for an array (Definition III.16
below), and give a statement (Lemma III.17 below) which
roughly says that such an estimate implies a smoothed estimate
for the snapshot in the sense of Definition III.10 above. Such a
“pointwise” estimate will be what we actually aim to achieve
in the algorithm, with A = RSnapg 4 ;.

The notion of “pointwise estimate” relies on the definition
of two additional arrays A=, AT% ¢ A’;’g which satisfy the
inequality A=% < A~ < ATY entrywise and account for
“off-by-one” errors when estimating A~". We first describe
these arrays informally as the actual definitions may appear
quite technical. Consider an “estimation” function & : [k]? x
[€)> — [k]? x [€]? for the graph G, which takes as input the
index (a, b, 1, j) of an entry in the array A, and outputs a tuple
&(a,b,i,j) which is promised to differ from (a,b,,7) by at
most 1 in each entry. (This will correspond to issues with
“borderline” vertices when A = RSnapg 4 ¢, as described in
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Section I-E above.) Now suppose we tried to estimate the entry
A~"(a,b,i,7) using the expression

Z y~u7’k’é(al7b/,il,jl)'A(alvb/7Z./7j/)'

&(a’,b,i/,5" ) EWin®-* (a,b,i,5)

The quantities A~ (a,b,i,j) and A% (a,b,i,5) are lower-
and upper-bounds for this expression, respectively, based on
the “worst possible” function &.

To be more precise, we define the arrays A=Y, AT € Ai’g
as follows: -

Definition III.13 (Upper- and lower-bound normalization
factors). Let w < k,¢ € N. Then for a/,b' € [k],i, 7 € [{],
we define

l/_w’k’[(a/, b/, ’i/, J/)

def

~w kb 11 1
l/ (a 7b 71' 7] )7

min
(a”,b”,i”#j”)EWinlvk-r[(a’,b’,z",j')

and
U+w,k,€(a/7 b/, i/, J/)

def
= max

~ 1" /-1 -
= v “”k’e(a o7 5.
((l”,b”,i”,j”)eWinl’k'K(a/J)/,i/,jl)

Definition I11.14 (Upper- and lower-bound arrays). Let w <
k.t € Nand A € A"t We define two arrays A=, AT" ¢
A% by defining, for all a,b € [k] and i,j € [{]:

A (a,b,i,5)

>

(a/,b' it ) EWin® =1 k4 (a,b,i,5)

V_w’k’z(a/, b/, i/,j/)A(alv b/7 7;/7]-/)7

and

AT (abi,f)

+w, kb 1oyt AN AT
v (a’ 0,3, j)) A’ b3, 5").
(a’,b',i’ 5" ) EWin® kL (a b.i,5)

Note that by definition v="kE(a/, 1 i, ") <
VN“”k=e(a’, b/, i/,j/) < I/+w’k’((a', b/, i/7j') (since
(a/,0,i,7)) € Win"** ' b i,j')). Hence, (since
A has nonnegative entries) we have A~%(a,b,i,7) <

A~%(a,b,i,5) < AT%(a,b,i,j), since they sum over
windows around (a,b,,j) of sizes w — 1, w, and w + 1,
respectively, using increasing normalization factors. We also
have the following simple lem:

Lemma IIL15. Let w < k,0 € N and A € AR*. For all
a,be (k] and i,j € [{], we have

A™"(a,b,i,5) < AT (a,bi,j) < L.

Proof. For the first inequality, see above. For the
second, note from Definitions III.12 and III.13 that
pTokLle! v i’ ") < 1 implying AT(a,b,i,j) <
Z(a’,b’,i’,j’)eWin“’*lv’cv‘(a,b,i,j) Ad' i, ') < L. [

Now given the definitions of these upper- and lower-bound
arrays AT and A=Y, we are prepared to define our notion
of pointwise estimation:
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Definition IIL.16 (Pointwise smoothed estimates). Let A, Ac
A% be arrays, w € N, and § > 0. A is a (w,5)-pointwise
smoothed estimate of A if for every a,b € [k],4,j € [¢],

Aiw(aab7i:j) =y < A\(aﬂbaivj) < A+w(a7bviv.j) + 0.

Such an estimate (where A is the refined snapshot of a
graph) is precisely what is achieved by our algorithm; see
Lemma IV.3 below. Correspondingly, we can state our key
lemma reducing smoothed estimation of a matrix (in our
application, the snapshot) to pointwise smoothed estimation
of an array (in our application, the refined snapshot) which
projects to that matrix in the sense of Definition III.5:

Lemma III.17 (Pointwise smoothed estimate of array —
smoothed estimate of matrix). There exists a universal con-
stant Cin, > 0 such that the following holds. Let A A€ AL
be arrays, w € N, and 6 > 0. Suppose A is a (w,d)-
pointwise smoothed estimate of A. Then for M := Proj(A)
and M = Proj(//l\), M is a (w, €)-smoothed estimate of M,
for ¢ := 6(k€)? + Cyin /w.

A proof of this lemma is in the full version of this paper
[18]. We remark that there is a new factor of (k¢)? in the error
term corresponding to the product of dimensions of the array;
this is because we are switching from an /., -type guarantee to
an /;-type guarantee. Recall also that in our application (where
A is the refined snapshot), we will have & = ©(logn); this
means we need § to be shrinking as a function of n to apply
the lemma, but this turns out to be achievable.

E. Snapshot algorithms

The final piece of the puzzle is actually identifying how
snapshots let us reason about the Max-DICUT value of a
graph. We make the following definition for algorithms which
do exactly this:

Definition III.18 (Continuous snapshot algorithms). A con-
tinuous snapshot algorithm is defined by a threshold vector
t € T and a function A : M’ — [0, 1] such that:

1) Correctness: For every weighted graph G, A(Snapg ;) <

Va|g.
2) Continuity: |[A(M) — A(N)| < ||[M — N|1.

We say A is an c-approximation if for every weighted graph
g, avalg < A(Snapg ;).

Our aim will be to implement any such algorithm as a
streaming algorithm via the snapshot estimation machinery we
described above. In particular, Feige and Jozeph [16] showed
that one such algorithm achieves a 0.483-approximation:

Lemma II1.19 (Implied by Feige and Jozeph [16]). There
exists a constant apy € (0.4835,0.4899), lr; € N, a vector
of bias thresholds tpy € ngf , and a vector of probabilities
rpy = (11,...,7¢) € [0,1]°9 such that the function A(M) :=

il ri(L—=r;)M(i, j) is a continuous snapshot algorithm
achieving a arj-approximation.

Though we will not need this fact, we remark that the
estimate for valg given in the lemma corresponds to a
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simple randomized assignment for G, namely the so-called
“oblivious” assignment which assigns each nonisolated vertex
v € V(G) to 1 with probability ; and 0 otherwise, where
i = b-indf;(v) is its bias class.

One final notion we will need regarding snapshot algorithms
is the following. Suppose we have a (continuous) snapshot
algorithm A,.;, with a threshold vector tor;,, and we want
to reduce the width of torig, i.e., the size of the largest
interval, yielding a new (continuous) snapshot algorithm with
a smaller-width threshold vector. (We will want to do this
in order to apply Lemma III.11.) Consider greedily packing
intervals of width < A\ within each interval in t in some
canonical way; the resulting partition, which we denote by
RefinePart(torig), has ¢ < ¢ 4 1/X intervals. There is
a natural corresponding snapshot algorithm, which given an
£ x ¢" snapshot collapses it to the corresponding ¢ x ¢ snapshot
and runs A, and remains an a-approximation. We denote this
algorithm by RefineAlg, (torig, Aorig)-

IV. THE ALGORITHM

In this section, we present an algorithm that approximates
the Max-DICUT value of an arbitrary multigraph, thereby
proving Theorem 1.3 (in its full version Theorem IV.2 below).
The algorithm itself has to deal with a number of technical
issues, so we begin by outlining the algorithm and giving a
number of pointers which hopefully make it easier to digest.

A. Overview

a) Informal recap: At the highest level, we want to be
able to sample random edges in a multigraph G and estimate
the biases of their endpoints. In particular, we fix some global
partition t € T, of the interval [—1,+1] of possible biases
into £ “bias classes”. We want to estimate the snapshot Snapg ¢
of the input graph G, which is a matrix whose entries count the
number of edges between each pair of bias classes. This can
be used to simulate a “continuous snapshot algorithm” applied
to G (Definition III.18), and one such algorithm achieves a
0.483-approximation (Lemma III.19).

To do this, we fix some global partition dy < --- < dj
of degrees in G dividing the graph’s vertices into “layers”,
where layer a is the vertices of degree between d,_; and
dg, and aim to estimate the “refined snapshot” RSnapg’d’t
(Definition II1.3), which counts the number of edges whose
endpoints are in particular bias classes and layers. Towards
this, we hope to obtain representative samples Uy, ..., Uy of
vertices, U, containing vertices in layer (roughly) a, such that
(1) we (roughly) know the bias classes of every sampled vertex
and (2) we also have representative samples of edges between
the layers.

More precisely, when we say “roughly” we mean “up to w=+
1” allowing us to apply the “smoothing” techniques developed
in Section III. Concretely, this means that we target producing
a “pointwise smoothed estimate” of the refined snapshot in the
sense of Definition II1.16; the claim that we can achieve this
is Lemma IV.3 below.
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b) Outline of the algorithm: The outline of our scheme
is as follows. For each “layer” a € {1,...,k}, we fix some
probabilities ¢, p, € [0, 1]. We subsample the edges of G with
probability ¢, and then subsample positive-degree vertices in
G, with probability p, to get a subset of vertices, which we
denoted vStored, in the algorithm. We hope to store the
G,-neighborhoods of these vertices to get a subset of edges
denoted eStored,. Ideally, we can use eStored, to estimate
the degrees and biases of vertices in vStored,, and further,
if we see an edge stored in eStored, between vertices in
vStored, and vStored;,, we can count it in the appropriate
entry of the refined snapshot. However, note that eStored,
cannot necessarily store all neighbors for every vertex in
vStored,; in particular, while our edge subsampling ensures
that vStored, is unlikely to contain vertices of G-degree much
less than d,, it may still contain vertices of G-degree much
greater than d,, in which case we can not hope to store all
its neighbors.

We write the algorithm in a particularly “well-factored”
form called a “sketching algorithm”; while we omit the full
definition of such an algorithm, we remark that it essentially
means that the algorithm behaves “independently” on each
edge arriving in the stream. In particular, we can construct
a “sketch” corresponding to each individual edge e, which
consists of a pair (vStored,, eStored,) for each layer a,
where vStored, contains either endpoint with probability p,
independently and eStored, with probability g,. Then, we
can “compose” the sketches for the entire stream together
by taking the unions of the sets in these sketches, up to
appropriate cutoffs.

It is useful to recall that the subsampling probabilities
g, (for edges) and p, (for vertices) decrease and increase,
respectively, as a function of the layer number a.

c) Some pointers: It is very helpful to remember that
there are two distinct sources of randomness in the algorithm:
We “sparsify” the graph by subsampling edges, and then
subsample which vertices we actually store. In the analysis we
will first analyze this edge-subsampling, and then conditioned
on certain “good outcomes” for the edge-subsampling we will
analyze the vertex-subsampling. Correspondingly, it is useful
to keep in mind the graph G, consisting of all the edges
sampled in layer a (each is sampled w.p. ¢,) and the set AV, of
positive-degree vertices in G,. (However, the actual streaming
algorithm is not necessarily be able to store these sets as
they can grow too large; it only stores subsets eStored, and
vStored,, respectively.)

When we actually see an edge ¢ = (u,v) in G,, how do
we know what to do with it (i.e., which entry of the matrix
should it contribute to)? Note that E[degg (v)] = qadegg(v).
Thus, we can hope to use q;ldegga (v) (which we call v’s
“apparent degree”) as an estimate for deg. (v). Roughly, this
should work out if degg(v) is decently large; for instance, we
can use the Chernoff bound to show that w.h.p. degg(v)/2 <
q, 'degg, (v) < 2degg(v), so the apparent degree moves by
at most 1 interval relative to the actual degree. The same sort
of analysis is necessary to analyze the bias of a vertex and
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ultimately prove that we get a so-called “pointwise smoothed
estimate”.

Finally, one remaining technical issue stems from the fact
that when we want to subsample a set of nonisolated ver-
tices in the subsampled graph G,, but we do not know the
nonisolated vertices ahead of time. In particular, each time
we see a new nonisolated vertex we want to toss a p-biased
coin — but if we decide not to store a vertex, we need to
“remember” this decision if we happen to see it again. This
would be manageable if the algorithm had random access to
the results of n biased coin flips, but this model would be
somewhat nonstandard. Instead, as in [13], we observe that
when proving concentration it is sufficient to have four-wise
independence in the vertex-subsampling procedure, and thus,
we decide whether to store a vertex by plugging it into a
previously sampled four-wise independent hash function (see
Lemma II.11).

B. Describing the algorithm

The goal of this section is to prove Theorem 1.3. We begin
by presenting an algorithm (Algorithm 1 below) for estimating
the Max-DICUT value of a stream of edges corresponding to a
graph G given an estimate for the number of edges in G. This
algorithm first produces the sketch for the stream containing
the sampled vertices and edges (via a “sketch” subroutine,
Algorithm 2, and a “compose” subroutine, Algorithm 3), and
then feeds this sketch into another subroutine, Algorithm 4,
which estimates degrees and biases among the sampled ver-
tices and counts sampled edges, creates an estimate for the
refined snapshot of the graph, and uses this to approximate
the graph’s Max-DICUT value. The key correctness lemma,
Lemma IV.3 below, states that this estimate for the refined
snapshot is a “pointwise smoothed estimate”, allowing us to
apply the machinery from Section III.

We begin with several tables containing definitions of pa-
rameters to be used in the algorithms.

Notation | Value
Mpin € N \/ﬁ

| Description |

Minimum number of edges
handled

Maximum number of edges
handled (see Lemma I1.9)
Number of degree intervals
before we begin subsam-
pling edges

W.h.p. bound on max-
degree of “counted
vertices” in  subsampled
graphs  (parameter  for
space bound), note that
D = O, (log® n)
Maximum number of stored
neighbors per vertex

Muax € N | Csparn/(€)? where Cspar
is as in Lemma I1.9

6loglogn

k* e N

DeN k" fuwt2

eCutoff log" n

TABLE II: Global parameters determined by e and n.

Notation [ Value
keN log(2m)

Description |

Number of degree intervals
(we will have m < mMpax
and thus, k = O (logn))
Factor controlling
space usage, note that
p = Oc(log®n) (assuming
,,/ﬁ S mmax)

p>0 1000V D - (k£)3 /e

p/Vm
10pV2m

Factor in vertex-
subsampling probability

po >0

Maximum  number  of
stored vertices per layer,
note that vCutoff =
Oc(y/nlogbn) (assuming
m < Mnax)

vCutoff

TABLE III: Global parameters determined by ¢, n, and .

Algorithm 1 Our algorithm.

Input: A multigraph G and an estimate m for the number of
edges.

1: For all a € [k], sample a hash function 7, : [n] — [1/pg]
from H4(n,1/p,) (see Lemma IL.11).
2: Initialize an empty sketch

(m, ((vStored,, eStored,)acs])-

3. for each edge (u,v) in the stream do

4: Use Algorithm 3 to combine the current sketch with
the sketch of (u,v) according to Algorithm 2, and store

[ Notation | Value [ Description | the result in the current sketch.

w €N 1/e Size of windows for smooth- 5: end for

ing 6: Run Algorithm 4 on the final sketch to obtain the output.
A>0 e/w Maximum width of intervals

in the refinement t of torig

(see next line)
t e Tt RefinePart ) (torig) Refinement of torig into £ § _

intervals of width at most A [ Notation | Value [ Description |
e N < lorig + 1/A Number of intervals in t dqe €N 29 Degree partition. We also define d =
A RefineAlg, (torig, Aorig) | Corresponding refinement of (do, - ..,dy) where dy = 1.

Aorig qa € [0,1] rnin{Qk**"7 1} | Edge-sampling probability

pa € [0,1] | min{pogs 1,1} | Vertex-sampling probability

TABLE I: Global parameters determined by e alone.

TABLE IV: “Per-layer” parameters defined for all a € [k] and
determined by ¢, n, and m.
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Algorithm 2 Sketch for an input edge.

Input: An edge (u,v), an estimate m of the total number of
edges, and hash functions {7, : [n] = [1/pa]}.
7: Set m « 1.
g: fora=1,...,k do
9: Toss a biased coin which is 1 with probability ¢,, and
let z denote its output.
10: if z =1 then

11 vStored, = {v' | v € {u,v} A7, (v') = 1}.

12: If vStored, # (), set eStored, + {(u,v)}.
Otherwise, set eStored, + 0.

13: else

14: vStored,, eStored, < 0.

15: end if

16: end for

17: Output the sketch (m, (eStoreda,vStoreda)ae[k]).

Algorithm 3 Combining two sketches.

Input: Two sketches (m(l),(eStored((ll),vStoredél))ae[k])

and (m®), (eStoredéQ), vStoredg))ae[k]).

18: Set m < m(Y) 4 m(2),

19: fora=1,...,k do

20: Set vStored, <+ L if either vStored(al) or
vStored,(f) is L, or if |vStored§Ll) U vStored((LQ)L >
vCutoff. Otherwise, set vStored, < vStored((L1 U
vStored((f).

21: If vStored, = L, then set eStored, < L. Else,
set eStored, <+ eStoredgl) U eStoredEf) (multi-
set union). Iteratively remove all edges (u,v) from
eStored, for which we have for all v/ € {u, v} that
either v" ¢ vStored, or deg.s;qreq, (V') > eCutoff.

22: end for
23: Output the sketch (m, ((eStored,, vStoreda))ae[k]).

Algorithm 4 Computing the output from a sketch.

Input: A sketch (m, (eStoredk,vStoredk)ae[k]>.

24: If Ja € [k] : eStored, = L, then return L.
25: For all a € [k] and v € vStored,, define:

dESta(v) = min{qa_l : degeStoredﬂ (U)7 dk}

and
bEst,(v) = biasestored, (V)-

26: For all a € [k] and i € [¢], define:
vEst,,; = {v € vStored, | deg.gioreq, (v) < eCutoff
Aind?(dEst, (v)) € Win“**(a) A ind® (bEst, (v)) € Win"”’l(i)} .
27: For all a,b € [k] and i, j € [¢], define:
Z IJEstZ’bk"/“/(u7 v),

(u,v)€EeEsty b4, 5

AESta,b'i‘j =

where:
eEstqp,i,; = eStoredminfa,p) N (VEst,,; x vEsty j),
and

VEstZl"bk"l(u7 v) =yt (indd(dEsta('u,))., ind?(dEst,(v)),
ind®(bEst,(u)), ind®(bEsty(v))).

28: Define the array A € A’;g as:
~ AEstq pi,j
Ala,b,ij) = ——=0—,
MGmin{a,b}PaPb

29: Define M < Proj(A) € M¢ and output o < A(M)

V.1

_ £
i

C. Analyzing the algorithm

In this subsection, we prove our main result (Theorem 1.3)
which asserts that we can achieve a O(y/n)-space 0.483-
approximation algorithm. The essence of this algorithm is
Algorithm 1; unfortunately we cannot quite use the latter
directly, because it requires an estimate for the number of
edges in G which we do not have a priori, but this can be
fixed with some standard tricks.

In fact, we prove the following more detailed theorem:

Theorem IV.2. For every fixed continuous snapshot algorithm
(torig, Aorig) achieving a ratio of o, the following holds. Let
€ > 0. There is a sketching algorithm which, given the edges
(in adversarial order) of a multigraph G on n vertices and
m edges, uses 209 . \/n - 10g® MV (n 4 m) space and, with
probability at least 9/10, outputs a value v satisfying (v —
e)valg < v < valg.

For correctness of the algorithm, we will need the following
lemma, whose proof we defer to later:

Lemma IV.3. Ler e > 0, n,m, m € N, and G be a multigraph
on n vertices and Mmyin < m < Myay edges and such that
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m/2 < m < 2m. Let A = RSnapg 4 and A be as computed
by Eq. (IV.1) in the call to Algorithm 4 in Algorithm 1.
Letting w, k, { be defined as in Tables I and Ill, we have with
probability at least 99/100 that A is a (w,¢/(kt))?-pointwise
smoothed estimate of A.

Returning to the main claim:

Proof. We assume for simplicity that we know an a priori
bound m < n®. The algorithm we use will run the following
sketches in parallel:

o A sketch to count the number of edges m in the input
graph.

o A “buffer” sketch to store up to my;, edges from the
input graph (and _L if there are more).

o For t € {log| gmnin,...,log, o(n%)}, set m(t) <«
1.9, Mgpar(t)  min(mpax, m(t)), and pspar(t) <
Mspar (t)/M(t). Obtain a graph stream G (t) by including
each edge of G with probability pgpar(t) independently
and run Algorithm 1 with é(t) and Mgpar(t) to get an
output.

After the stream, if m < my;, we solve the instance (which
we have stored) exactly. Otherwise, we choose the unique
t such that m(t) < m < 1.9 - m(¢) and return the output
corresponding to this ¢.

The proof of the theorem now proceeds in several steps.

a) Space bound: In the buffer we store at most Mmnpin
edges, which takes O (muin) = O(y/n) space. Then, we invoke
Algorithm 1 on O(C'logn) values of ¢, so it suffices to show
the bound separately for each value of ¢. For any such ¢, note
that each sketch created by Algorithm 2 for a single edge is at
most k = O(logn) copies of the edge and its endpoints, and
therefore this sketch has size O(log” n). We now bound the
size of the sketch obtained by combining the sketches using
Algorithm 3. which means that it suffices to bound the size of
the pairs (eStored;, vStored;), ..., (eStoredy, vStoredy).
For this note that the number a of such pairs is O(logn) and
thus, it suffices to bound the size of each pair. For any such
pair a, the number of vertices in vStored, is at most vCutoff
(due to Algorithm 3) and the number of edges is at most
vCutoff -eCutoff (due to Algorithm 3). Finally, we observe
that eCutoff = logo(l) n and, since Mgpar(t) < Myax, We
have vCutoff = 201/ . /i - 1og®M n.

b) Reducing to “correct” m: If m < myi, we solve
the instance exactly. Otherwise, we return the output for ¢
satisfying m(t) < m < 1.9 - m(t). For this ¢, we have:

Mspar(t) < M- Pspar(t) < 1.9 - Mgpar(t).

Using this and Lemma I1.9 with €gpa, = € (note that the con-
ditions of Lemma I1.9 are satisfied as either pspa,(t) = 1 and

the lemma is trivial or pspay(t) = Mupax/M(t) > ?3’;;: ), we

have with probability at least 99/100 that ‘valg — va|§( t)‘ <e

and the number of edges in G(t) is between Mgy (t)/2 and
2Mispar ().
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c) Applying the reduction: Define G gA(t) By
Lemma IV.3, A is a (w, ¢/(k£)?)-pointwise smoothed estimate
of A= RSnapg 4 with probability 99 /100. Conditioning on
this event, we can then apply Lemma II1.17 to conclude that M
is a (w, € + Cyin/w)-smoothed estimate of M := RSnapg ;.
ie., |M — M™~"[|; < €+ Cyin/w.

By Lemma III.11, there exists a weighted graph H with
snapshot N := Snapy, ¢ such that [N —M~"||; < Csmooth Aw
and |va|§ —valy| < CynoothAw. By the triangle inequality,
[N = M||; < Camootn AW + Cigin/w + € and |valg — valy| <
CYsmooth)\/w + €.

Finally, we assumed avaly < A(N) < valq/.t\. By continuity
of the snapshot algorithm O, we have [A(M) — A(N)| <
Camooth AW + Cyin/w + €. Re-parametrizing e finishes the
proof. O

Theorem 1.3 follows from Theorem IV.2 by instantiating
the latter with the specific continuous snapshot algorithm in
Lemma III.19.
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