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Abstract— This work considers the design of a reference gov-
ernor to satisfy pointwise-in-time output and control constraints
in the setting of data-driven control of aerospace systems
with unknown input-output dynamics. This unknown dynamics
lumps together the combined effects of unknown internal (state
space) dynamics, disturbance forces and torques, and unknown
internal (mass/inertia) parameters. The unknown dynamics are
modeled by a control-affine ultra-local model (ULM) in discrete
time. The reference governor is an add-on scheme that enforces
the output and control constraints by modifying, when required,
a reference command to the system with unknown input-output
dynamics. The reference command is determined on the basis of
constraint admissible sets constructed in a data-driven setting
and exploiting our ULM. A Lyapunov analysis is carried out
to ensure that the output of the reference governor-based
control system converges to a desired output trajectory that
meets the constraints. Numerical simulation results for aircraft
longitudinal flight control are reported with this reference
governor-based data-driven control scheme, which demonstrate
the performance of the controller and the enforcement of the
constraints.

I. INTRODUCTION

Feedback control of autonomous systems with unknown
or uncertain dynamics as well as with state and control
constraints is a challenging research problem of current
interest. In recent years, there has been significant research
focused on handling both state and control constraints, which
are primarily model-based [1]-[3], [6], [11]-[16]. Examples
of state constraints in real-world applications include col-
lision avoidance and pointing direction constraints, while
magnitude and rate limitations on actuators are examples of
control constraints. The framework proposed here provides
an approach to satisfy pointwise-in-time state and control
constraints for a system with unknown dynamics.

Many methodologies have been proposed to deal with
constraint handling. One approach is to design the controller
based on the model predictive control (MPC) framework,
which is a well-established industry standard. The applica-
tions of MPC, which leverages the idea of receding horizon
optimal control, span several fields including but not limited
to, unmanned aerial vehicles [1], [2], spacecraft control [3],
[4] and automotive applications [5], [7]. Another existing
method to handle constraints involves the use of artificial
potential functions, which have minima at the desired target
and maxima in the set of constraints [6]. This approach
is computationally inexpensive, thus making it suitable for
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hardware applications. However, the feedback system may
settle in unwanted equilibria due to the existence of saddle
points or multiple critical points. A variety of ideas have been
proposed to resolve this issue [8], [9]. A related method is
that of using barrier functions. A barrier function of states of
a dynamical system is a function that increases indefinitely in
value when the state approaches the boundary of a desired
or feasible region from inside this region which is a sub-
level set of this function. A control barrier function is a
barrier function for a controlled dynamical system, such that
the system with control inputs satisfies the barrier function
condition [10]. These functions can be used to satisfy output,
state, or control input constraints [11], [12]. Control barrier
functions in the context of barrier certificates and control
Lyapunov functions are studied in [13], while their relations
to control Lyapunov functions are studied in [14]. The
framework of integral control barrier functions can be used to
simultaneously satisfy control input and state exclusion zone
constraints [15]. A modification of this approach, where the
barrier function was selected based on known initial states
and initial control inputs and did not increase to infinite
values for finite values of states and control inputs, was
proposed in [16].

An alternate and elegant way to handle constraints is the
use of reference governors [17]. A reference governor is
an add-on scheme that enforces pointwise-in-time state and
control constraints by modifying the reference command to
a closed-loop system. This is the approach used in this work.

The above-mentioned approaches have primarily been
used for systems with well-known dynamics models with
little or no uncertainties. However, there has been recent
growth and interest in applying data-driven control methods
to systems with uncertain or unknown dynamics. Model-
free control approach based on intelligent PID is proposed
in [18]. The idea is to replace the complex mathematical
model for a SISO system with an ultra-local model that
describes the unknown input-output dynamics of the system.
A generalization of the ultra-local model to MIMO nonlinear
systems was formulated in [19]. Recently, a data-enabled pre-
dictive control design for an unknown system was proposed
in [20] which computes a data-driven optimal control using
a receding horizon approach. This approach is analogous
to MPC for a linear time-invariant case. The application of
model-free control to a quadrotor is considered in [21]. The
integration of MPC with an ultra-local model is proposed
in [22]. An example of a learning-based reference governor
for constraint satisfaction is proposed in [23] and [24]. This
scheme modifies the governor parameters over time to ensure
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constraint satisfaction. In the former work, the constraints are
satisfied only after the learning phase of the model, while in
the latter work, constraints are satisfied during the learning
phase of the model as well.

The main contribution of this work is the design of
reference governors to enforce pointwise-in-time output and
control constraints for data-driven control systems with un-
known dynamics. This is carried out in the setting of an ultra-
local model (ULM), which models the unknown dynamics
as described in [19] and as depicted in Fig. 1. The robust
observer that estimates the unknown dynamics guarantees
finite-time stable convergence of observer errors. These
estimates compensate for the unknowns in the nonlinearly
stable tracking control law. A reference governor is then
used to modify a given reference output trajectory in order to
satisfy pointwise-in-time output and control constraints. The
tracking control scheme then ensures stable tracking of this
modified reference trajectory. We note that there is synergy
between the application of the reference governor and the use
of ULM, in that the reference governor slows down reference
changes and naturally makes ULM more accurate.

Yk
yi Command Vi ULM based €Y
Governor controller
Fe
Fig. 1. ULM-based reference governor schematic

The remainder of this paper is organized as follows.
Section II outlines preliminary concepts and assumptions on
the system model for the data-driven control approach. The
design of constraint admissible sets and reference governor
for data-driven control is developed in Section III. Section
[V reports numerical simulation results that demonstrate
satisfaction with the output and control constraints for this
data-driven approach. Finally, section V presents a summary
of the proposed work and planned future directions.

II. PROBLEM FORMULATION

In this section, we describe the concept of a “black box”
ultra-local model (ULM) that models the unknown input-
output dynamics. This ULM is used to design a finite-time
stable observer for unknown dynamics.

A. Ultra-local model for unknown systems

The ultra-local model representing a system with n inputs
and m outputs with unknown internal dynamics in discrete
time is given by:

Ykto = Fr + Grug, (D

where y, € R" is the output vector which denotes the
measured output variables, F;, € R™ represents the unknown
dynamics which lumps together effects of internal states and

parameters, external disturbance and torque, up € R™ is
the control input vector and G, € R™*™ is a control gain
matrix that is part of the controller design. Additionally, the
system is sampled in an increasing sequence of time instants
ty, where k € W = {0,1,2,...} and W denotes the index
set of whole numbers. The unknown dynamics modeled by
the ultra-local model (1) satisfies the following assumptions.
These assumptions ensure that a given output trajectory can
be tracked by the control inputs.

Assumption 1: The control gain matrix Gy, is a full-rank
matrix with the same number of inputs and outputs (m = n).

Assumption 2: The unknown dynamics Fj, and the control
gain matrix Gy, are Lipschitz continuous such that,

[Fr+1 = Frll < Lpll€er1 — &l »

1Gk+1 — Gkl < Lal|€kr1 — &kl »
where Lp, Lg are Lipschitz constants and &, =
(Yk» Ykt15 - - - » Yko—1, Zk> Uk, tx) Where zj is a vector of
unknown internal states and parameters. Here and in the
sequel, ||-|| denotes the 2-norm unless specified otherwise.

2)

B. First order model-free finite time stable observer

A discrete-time first-order observer for the unknown dy-
namics JFj, in (1) is given in [19] and used in this work.
Let ]:'k be the estimate of the unknown F}, which is based
on previously estimated values of JF; obtained from the
measured outputs y; for ¢ € {0,...,k — 1}. Define the
estimation error: .

el = Fp — F. (3)

Assumption 3: The unknown dynamics Fj and its esti-
mate f"k are bounded.
Now, we state the following results which are proved in [19].
Proposition 1: Consider the estimation error ekf as de-
fined in (3) and let v € |1,2] and A > 0 be the constants.
Let the first order finite difference of the unknown dynamics
Fk, given by
AFy = Fre1 — Fi 4

be bounded as defined in (2). Let the control influence matrix
Gi. be bounded as defined in (2). Let the nonlinear observer
be given by

ﬁk+1 = D(ef)ef + Fr,
() ef) " — A )
((eD)Tef) =1+ X
and Fj, = Yg1v — Gruy, from (1). Then the estimation error
ef converges to a bounded neighborhood of 0 € R" in finite
time, where bounds on this neighborhood can be determined
from bounds on AFy.

The above result proves the stability of the observer for
the unknown dynamics F. The following result proved in
[19], gives the robustness of this observer.

Proposition 2: Consider the observer design in (5) for the
unknown Fy, in the ultra-local model (1). Let the first order
difference AFy, from (4) be bounded according to

|AF| < B, (6)

where D(e]) =

854
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where BT € Rt is a known constant. Then the observer

error ekf converges to the neighbourhood given by
E:={ef eR" : a(ef)HefH < B}, (7)
for some finite k > N, N €¢ W, where
o(ef) =1+D(ef). (8)

Note that the above result gives ultimate bounds on the
estimation error of the unknown (or disturbance) dynamics
Fi, where the bounds depend on its rate of change AFy.

III. REFERENCE GOVERNOR

In this section, we enhance the model-free control ap-
proach based on ULM with a reference governor to enforce
constraints without delay (v = 1). The modified reference
command, which is subjected to a constraint admissible set,
is designed by this reference governor.

A. Nominal controller

Consider the ultra-local model defined in (1), with the
following nominal controller:

Gruy, = —Fp + Oyi, + Avy, &)

where v, := v(ty) is the modified reference command,
®, A € R™*™ are tuning matrices, ¢ is Schur (all eigen-
values are located in the interior of the unit disk) and
the estimate fk acts as a feed-forward cancellation term.
Substituting the nominal controller in the ultra-local model
(1) leads to the following closed-loop model:

F

Yr+1 = Pyr + Avy, — e, (10)

Output constraints, which may arise from state constraints,
are described by:

Yk €Y (1L

where Y C R" is a known constraint set. We make the
following assumption about this constraint set.

Assumption 4: The set Y is compact, convex, and sym-
metric about the origin, which is in its interior.

B. Constraint admissible set

The constraint admissible set O, is defined as a set of
all initial conditions such that the predicted response of (10)
corresponding to the initial state and constant command v
satisfies constraints defined in (11). More formally,

OOO = {(yan) : yk(@o»% {6']::}) S K V{ef} S 5}7 (12)

where i (Yo, v, €7 ) is the solution of system (1) given by
k
yrpr = Dy + Y (T Av + @), (13)
i=0

and £ and Y are defined in (7) and (11), respectively. Note
that our reference governor design will assume that the
observer error has converged to the set given in (7). To obtain
the constraint admissible set, the concept of the Pontryagin

855

difference is used here. For U and V C R" the Pontryagin
difference U ~ V is given by the set,

U~Vi={zeR":z+velU YveV} (14)
Consider,
Yo =Y,
Vi=Y ~E,
(15)

YViei =Y ~En~ -~ DFE

Then, from [25] we get,

O = {(yo,l/) eR™ x R : dly,

k
+Y e vey, i= Ok} (16)
i=0
Using (15) and (16), we can obtain the following recursions:

Yii1 = Yi ~ ®FE where Yy =Y, (17)
0o ={(yo,v) ER" xR" 1 yg € Y},
Ok+1 =0rN {(yo,V) cR" xR"™:
PFFlyy + ®FAv € Vi1 ). (18)

where k € Z%. Therefore, from (12), we obtain the con-
straint admissible set as

Oc = [ Ok

kez+

19)

To ensure finite-termination of the set sequence, typically a
strict feasibility constraint on v is added; see [26] for details.
This constraint has not been used in the present work; instead
Oy, was computed up to a sufficiently large index k and used
as an approximation to O.,. The design of the reference
governor is given in the following subsection.

C. Reference governor design

The reference governor considers the modified reference
input v as an optimization variable which is obtained at
each sampling instant k by solving an optimization problem.
It is obtained as the solution to the following minimization
problem:

* . 2
v =arg min ||v — 7]

% 1 R 20)
s.t. (yx, V) € O,

where R is a positive definite matrix, :E||§,/ = 2T Rz and

O is given in (12).

D. Control constraints

We define the control constraints in the following form:

Jull < p, 2y

where p is the upper bound on control inputs. Multiplying
both sides of the above equation by the control gain matrix
Gy, results in

1Gkull <Gk (lllunll <Grl p- (22)
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The control constraint can be satisfied through an appropriate

design of the control gain matrix Gi. From (9), we define
Wi = —Fr + Dy + Avy. (23)

Then, using (9), (22), and (23) the following inequality is
obtained:

leoell =| @9+ Av = A <IGull, @4
which can be written as
1
Gkl > ;IIw;cII- (25)

This leads to the following condition for the control gain Gy:

1 N
160l = || @ws+ v~ A 26)
The control gain matrix Gy, is then designed as
Gr. == arg, 27)

where oy, is a tuning parameter and G is a positive diagonal
matrix. This tuning parameter can be designed as

Dyp + Ay — Fi

ap = ; (28)

(g’
where gi denotes as the smallest diagonal element in G.

E. Stability Analysis

The stability and robustness analysis of the disturbance
(unknown dynamics) observer and control law is presented in
[19]. Here we characterize the ultimate bound on the tracking
error for a constant v. Such a bound is useful in verifying
conditions for the convergence of the reference governor with
constrained inputs [26].

With the control law given in §I1I-A, we define the output
trajectory tracking error as

el = v —yg. (29)
Subtracting v from both sides of (10), we get
V—ka:V—CI)yk—AV—l—ekF. (30)

The gain matrices ®, and A are defined in §III-A and can
be designed such that

A=T1-0, €1y

where I is the n x n identity matrix. Using this design of
gain matrices we obtain

Vg1 =v—Oyp —v) —v+el. (32)

Finally, substituting (29) in the above equation leads to the

following error dynamics:

el = P + er. (33)
Theorem 1: Consider the closed-loop model for the un-

known system (10), the control law (9) and the observer law
(5). Let the estimation error in (3) be bounded according to

e{H < B fork> N, (34)

where bound B € RY and N € W are known. Then
the output trajectory tracking error e will converge to the
neighborhood given by

NY:={e] e R™ : p(|®|)|e}| < B}, (33)
for k> N’ > N where N,N' €¢ W, and
p(l@]) ==1—[@]. (36)

Proof: Consider the following discrete Lyapunov func-
tion for output tracking error,
1 T
VY= 5(6%) ey.
The first difference of the Lyapunov function is given by,

(37

T
Vi = Vil = (egqq +ep) (efyr —ep)-
Substituting the error dynamics (33) in above expression and
after some algebraic manipulations, we obtain
)T

(38)

(D) — (el e
wo(ef) (®el) + () . (39)

Using the bounds defined on ef given in (34), the first
difference of the Lyapunov function can be upper bounded
as follows:

Vi =V <|oel|® = |let|” + 2Bll®|l||ef|| + B
= (@[ [|ef||* —[lex]|” + 2Bl|@|||e + B,

ka+1 — Vi = (®ej,
T
)

and will be simplified as

)
Vk+1

2 2
=V <= @=l@l)exl” +2Bl@|l|ef] + B2
4
The right-hand side of the inequality (40) will be negative
for large initial transients in e}‘i, and can be expressed as a
quadratic inequality expression in ||eZ|| as follows,

(1 —l@®)|et|” - 2B)@|l||el]| - B> >0. @D

Then, the condition

B

lekll > =y (42)

for positive real roots of ||e} || ensures that VY, ; — V}¥ < 0.
This implies that the discrete Lyapunov function V! is mono-
tonically decreasing when the tracking error HezH is large
enough to satisfy the inequality condition (42) for some finite
k > N’, where N’ > N. Therefore, the output trajectory
tracking error ej will converge to the neighbourhood NV of
0 € R™ given by (35). [ |

It is worth noting that, in absence of a reference governor
we have ® = 0. From [19], this leads to convergence of eZ
to the bounded neighborhood of 0 € R™ in finite time, where

the bounds are the same as that of estimation error ej..

IV. NUMERICAL SIMULATION RESULTS

This section presents numerical simulation results of the
proposed reference governor design for the constrained
ULM-based control. The proposed scheme is applied to
control the pitch angle of an aircraft as a SISO system, for
which the dynamics is unknown to the controller.

856
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A. Aircraft model

The dynamics model for the aircraft flying at constant
velocity and altitude is given by [27]:

Q —0.313 56.7 0| |« 0.232
q| =1-0.0139 —0.426 0| |¢| + |0.0203| & (43)
0 0 56.7 0f |0 0

y==0 (44)

where « is the angle of attack, ¢ is the pitch rate and 6
is the pitch angle. This model, assumed unknown to the
tracking control law, is used to generate an initial reference
(or desired) output trajectory for tracking.

For this SISO system, the input is the elevator deflection
angle § and the output is the pitch angle 6. The pitch angle
output is subjected to the constraint |§] < 5° and the control
input is subjected to the constraint |6 < 0.1°.

We apply the nominal controller designed in (9), which
leads to the closed-loop form of ULM as described in (10).
The output trajectories are illustrated in Fig. 2. It shows that
the nominal output trajectory violates the output constraint,
whereas the actual output trajectory tracks the modified
reference trajectory while satisfying the output constraint.

o1
—0
v
— — —-0; Constraint

Output (Pitch Angle [deg])

0 10 20 30 40 50 60

Fig. 2. Desired, modified, and actual output trajectories

Simulation results for the control input are shown in Fig.
3. Note that the control input constraints are satisfied and
the inputs stay within the required limits. Fig. 4 illustrates
the error in the estimation of the unknown dynamics F for
the ultra-local model according to the observer design from
section II-B.

B. Effect of initial selections of Fand G

Here, we study the effects of initial selections for the
estimate of the unknown model, ]:'0, and the control gain
matrix, Gg, on the control input and the output trajectories.

The plots in Fig 5 illustrate the control inputs obtained
for different initial selections for the ULM. This figure shows
that a decrease in the value of G leads to higher transients in
the control input and an increase in the value of Fo generally
causes high initial transients in the control input. It also
shows that the control constraints are always satisfied.

0.05

-0.05

uy, (0 [deg])

Fig. 3.

0 10 20 30 40 50 60

Fig. 4. Model estimation error e”

The output trajectories in Fig 6 illustrate the effect of
different initial values, primarily for Fo. As is shown in this
figure, higher values of Fo tend to delay the convergence of
output trajectories y; to the modified reference vy.

Fo=0.01, Gy = 0.02 Fo=0.08, Gy =0.15
Fo = 0.05, Go = 0.08 — — — -uy, constraint

T {T ””””””””” {

0.05

ﬂﬂﬂllllﬂhlll&ﬂﬂll‘

Mﬂllllﬂﬂllllﬂhll‘
UL

| A
G

HlWiIlWllWillW“

. (6 [deg])

Fig. 5. Control input for different initial conditions
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Fo=0.01, Gy = 0.02 Fo=0.08, Gy =0.15
61 Fo=0.05, Gy = 0.08 — — — - constraint
@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
=4 ]
2
2 2 ]
<
=
=S 0 .
& |
5 -2 1
[oN
=
-
O 4t .
0 10 20 30 40 50 60
t(s)

Fig. 6. Output trajectory for different initial conditions

V. CONCLUSION

This work considers the design of a reference governor to
enforce pointwise-in-time output and control constraints for a
system with unknown input-output dynamics modeled by an
ULM. At each time instant, a modified command is generated
that minimizes the constrained cost function. This command
is determined on the basis of a constraint admissible set
that is designed to enforce output constraints. The control
gain matrix is designed to satisfy the control constraints. A
Lyapunov stability analysis shows the convergence of the
tracking error and the observer error to bounded neighbor-
hoods of zero error. A numerical simulation is performed
for an aircraft pitch control system, subjected to output and
control constraints. The simulation results demonstrate the
tracking of a reference output trajectory while satisfying the
output and control constraints. In the current framework,
the output constraint satisfaction for the output trajectory is
conservative. This issue will be considered in future work. In
addition, the effect of initial selections of the estimate of the
unknown model and the control gain matrix on the control
input and output response is also illustrated through a numer-
ical simulation study. Future research will explorer the design
of reference governors for systems with uncertainty (“gray
box” models), monotonically non-increasing set bounds for
the observer error, and systems with delay.
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