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ABSTRACT

In this research, we investigated the feasibility of using static analy-
sis for IoT applications with Frama-C. We looked at different kinds
of possible IoT vulnerabilities and how static analysis specifically
could be used to identify them. With certain Frama-C plugins such
as Eva, we were able to run static analysis on most IoT code without
modifying the code itself and catch errors that could potentially
be exploited in real-world applications that would have otherwise
been missed. Additionally, we created a simple IoT device, by uti-
lizing Raspberry Pi 4 hardware with a set of different SunFounder
sensors, and ran our created code for it through Frama-C to find
any errors. The static analysis done gave a significant amount of
potential vulnerabilities in our code, mostly consisting of integer
overflows. We learned how we could use static analysis tools, like
Frama-C, as a powerful way to find potential vulnerabilities with
minimal changes to code.
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1 INTRODUCTION

This work was conducted in order to answer how we can use
static analysis to detect IoT application security issues. The ever
growing system of connected devices and services, known as the
Internet of Things (IoT), is being used in sensitive and security
critical domains all over the world. This makes it a prime target
for cyber attacks from bad actors, and IoT devices will continue to
be the center of these attacks as their importance in our everyday
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lives grows. Ferrara et al. states how “IoT attacks use a common IoT
device to intrude into the system, and exploit a larger network. The
nature of IoT ecosystems is larger than traditional network security,
with a wider attack surface from multiple interconnected devices
operating at many different physical locations and network layers.”
[4] There is a lot of interest to formally analyze IoT code as it is
being developed in order to prevent software vulnerabilities from
being introduced as zero-day vulnerabilities. While many static
analysis tools provide superficial syntactic analysis, we examined
an experimental tool that provides a deeper semantic analysis called
Frama-C.

C remains a popular language used for IoT applications due to
its efficiency. This also leads to many software vulnerabilities as C
code provides very few run-time checks. A notorious example is
the Heartbleed bug where an attacker was able to read someone
else’s data from a web server’s buffer. [6] While the C language
may be easier to exploit with its little run-time checks, this can be
mostly prevented with thorough formal static and dynamic analysis
of the software. In the OWASP Top 10 Security Vulnerabilities in
10T software [4], 6 out of the 10 vulnerabilities can be covered at
least partially by static analysis.

Frama-C is a framework through which a collection of different
plugins for static and dynamic analysis can be run and collaborate
with each other. It is aimed at verifying programs written in C code
using this collective analysis. While these plugins operate with
different goals and parameters, they also work together by building
and sharing information to get a better picture of the software’s
vulnerabilities. In order to run and test Frama-C for this study
we used Raspberry Pi 4s running on a Raspbian operating system.
We chose this hardware for the extended purpose of acting as a
sample IoT device, since we could connect different sensors to the
Raspberry Pi’s GPIO board.

2 BACKGROUND AND RELATED WORK

Frama-C is a C program analysis tool that provides many plugins,
such as Eva, which has the capability of abstract interpretation,
a static analysis technique that extracts information about poten-
tial executions of a program, computing an approximation of all
possible values a variable can take [1]. In Eva, this information is
then used to determine if run-time errors like division by zero, or
integer or buffer overflows could occur. These errors could lead to
potential exploits.

Blanchard et al. [2] presented a set of example C language code,
some taken from actual IoT software, some not. They then showed
how some main Frama-C plugins can be used to perform static anal-
ysis, starting with EVA (Evolved Value Analysis). They describe
EVA as a value analysis tool that uses abstract reasoning to ap-
proximate potential runtime errors or prove their absence, such as
invalid pointers, arithmetic overflows or division by zero. Listing
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Listing 1: Code with division by zero.

int f ( int a )

{
int x, y;
int sum, result;
if(a == @) {
X = 0;
y = 0;
} else {
x = 5;
y = 5;
3
sum = x + y;
result = 10/sum; //sum can be 0
return result; //risk of division by 0
3

Listing 2: Frama-C mistakenly flags division by zero.

int f ( int a )

{
int x, y;
int sum, result;
if(a == 0) {
X = 0;
y = 5;
} else {
x = 5;
y = 0;
}
sum = X + y;
result = 10/sum; //sum cannot be 0
return result; //no div. by @
3

1 shows an example where EVA detects an alarm of division by
zero. In order to run this we type the following command into the
terminal: frama-c -eva [namel].c -main f.The -main f option
is to indicate to EVA that this specific function should be pointed
to the function f in this case.

The caveat to this abstract reasoning is that it can also over-
approximate and give false alarms where a potential error is re-
ported when no error could take place, as seen in Listing 2. While
in this code division by zero is not possible, EVA will still report
a risk of division by zero because it computes a general domain
of x and y before computing the domain of sum. There are ways
to increase the precision of the EVA analysis by giving additional
options at the cost of a slower analysis, though we did not explore
these options in this study.

The next plugin covered was WP which is used to verify more
complex properties, using ACSL annotations to give precise specifi-
cations or requirements to the intended behavior of the analyzed
function. WP then takes the properties given in those ACSL anno-
tations and proves them using deductive verification. In Listing 3
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Listing 3: WP illustration. Annotations specify expected swap
behavior.

/*@
requires \valid(a) && \valid(b);
requires \separated(a,b);
assigns *a, *b;
ensures *a == \old(xb) && xb == \old(xa);

*/

void swap(int *a,

int tmp = *a ;

int *b){

*a = xb ; *b = tmp ;

int main(){
int x = 2;
int y = 4;
swap (&x, &y);

//@ assert x == 4

the intended behavior is that of a simple swap function. The main
function would like to take the values of x and y and switch them.
There are a few different ACSL annotations needed for WP.

The first is composed of a precondition and a postcondition. The
precondition is introduced by the requires keyword and is the
expected state of the system before calling the function. The post-
condition is the ensures keyword and is an expression of how the
state of the program is modified and the properties of the results.
Several of the same types of these expressions can also be written
right after one another if more than one is needed. The assigns
keyword specifies a particular class of postconditions which de-
fine what memory locations can be modified by the function. The
ensures clause indicates the expected execution of the function
values. The final keyword assert creates an assertion of a property
that must be checked at that specific part of the program. While
this assertion can prove that the program respects the specification
we want, it doesn’t mean that the program won’t still fail at run-
time. These specifications must be carefully written in order to be
proven correctly. For example, if the assigns clause is not given, the
function is assumed by WP to assign any memory location.

Lastly the plugin E-ACSL is used as runtime verification. This plu-
gin was designed to extend Frama-C to use some forms of dynamic
analysis on top of its existing static analysis. E-ACSL uses runtime
assertion checking to detect errors and their locations, especially
those that don’t create a failure of the code during execution. It
generates C code to check the assertions at runtime by executing
that code, as such the assertions are checked dynamically.

In Listing 4 we took the same problem looked at from EVA
(see Listing 1) and added an additional assertion that the sum can-
not equal zero. E-ACSL then takes this annotated code and con-
verts it into executable code. We run it through the command line
with frama-c -e-acsl [name].c -then-last -print -ocode
monitored_main.c. This creates a new C file with the assertion
inserted into the original main file. We then run e-acsl-gcc.sh
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Listing 4: Code for E-ACSL run-time execution.

int f(int a)
{
int x, y, sum, result;
if (a == 0) {
= 0;
= 0;
3
else {
x = 5;
y = 5;
3
sum = X + y;
//@ assert Eva: division_by_zero: sum != 0;
result = 10 / sum;
return result;
3
int main(void){
f(42);
f(e);
return 0;
3

Listing 5: E-ACSL output from executing Listing 4.

Assertion failed at line 10 in function f.
The failing predicate is:

sum !=0

Aborted (core dumped)

[name].c -c -0 monitored_main to invoke the C compiler. Fi-
nally, we could run sudo ./a.out to print out the result, which
shows the assertion fails (see Listing 5).

When the code from Listing 2 is used to replace function f, it
shows no output as both calls do not result in a division by zero.

3 EXPERIMENTS WITH FRAMA-C

In order to better understand how Frama-C works, we experimented
with multiple code examples from different Frama-C tutorial papers
[2, 3].

Listing 6 is an example of using the Frama-c WP plugin [2]. The
purpose of the code was to assign the loop to be decreased by any
number instead of one. The command we used to run this was:
frama-c -wp [name].c -rte. This is where the WP plugin comes
in to read the special comment and ensure the loop is decreased
by one at each iteration of any number beside one. Due to missing
code from Blanchard et al. [2], we were missing 2 goals from the
timeout. That is because the loop cannot be reset and quit.

Listing 7 is an example of using the Frama-C WP plugin on a
real example of Contiki source code [2]. Contiki is an open-source
operating system, and the purpose of the code was to practice
defining annotations for both separate functions and loops. The
command line used to run it was frama-c -wp [name].c -rte,
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Listing 6: WP annotations for specification of loop invariants
and variants.

#include <stdio.h>
#include <stdlib.h>

/%@
requires 0 <= len;
requires \valid(a + (0 len-1));
assigns alo len-17;
ensures \forall integer 1i;
0 <= i < len ==> al[i] == 0;
*/
void reset_array(int* a, int len){
/%@
loop invariant 0 <= i <= len ;
loop invariant \forall integer j;
0 <= j < i ==> alj] == o0;
loop assigns i, al[® len-17;
loop variant len - i ;
*/
for(int i = @ ; i1 < len ; ++i){
alil = 0 ;
}
int 1 = 42;
/%@
loop invariant 0 <= i <= 42;
loop assigns 1i;
loop variant i;
*/
while(i > 0){
i =1 - ((rand(Q)%i)+1) ;
}
}

which should cause the WP plugin to read the special comment
and set up conditions for the functions and loops. After running, it
should not return a NULL value. However, due to the complexity
of the code and a timeout, at least 5 goals were missed. The prob-
lem may have come from the annotation of the loops, as the loop
invariant needed to involve the loop index i. This resulted in an
infinite loop, which required changing the annotations and gaining
a better understanding of the loop’s condition.

We ran into multiple issues working with the Frama-C E-ACSL
plugin. Unlike the Eva and WP plugins, which are static analy-
sis tools, the E-ACSL plugin is more of a dynamic analysis tool.
This means the code, along with Frama-C annotations, must be
compiled into an executable file using a standard C compiler. How-
ever, we had additional difficulties getting the dynamic analysis
to work on our Raspberry Pi architecture. To run the plugin, we
had to change the Frama-C E-ACSL files because the Raspberry
Pi CPU architecture does not recognize the m32 or mé64 options,
which are for Intel processors, while the Raspberry Pi uses an ARM
processor. To find the files, we first had to go to Frama-C’s instal-
lation folder, like /home/pi/.opam/4.14.1/bin, then find the file
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Listing 7: Example illustrating loop invariants on real code.

struct memb {
unsigned short size;
unsigned short num;
char *count;
void *mem;

3
/*@
requires \valid(m)
ensures \exists integer 1i;
0 <= i < (*m).count ==>
\old((*m).count[i] == @) ==>
\return != NULL
*/
void =*
memb_alloc(struct memb *m)
{
int i;
/*@
loop invariant loc >= 0
loop invariant 0 <= i <= m->num
loop invariant
(\exists integer j;
0 <= j < m->num ==>
m->count[j] == @) ==>
(\forall integer k;
0 <= k < j ==>
m->count[k] == 1)
loop variant m->num - i
*/
for(i = 0; i < (*m).num; ++i) {
if(m->count[i] == @) {
m->count[i] = 1 ;
int loc = i * m->size ;
return (void %)
((char *)m->mem + loc);
}
}
return NULL;
3

named e-acsl-gcc. sh and look for the line of code GCCMACHDEP.

We changed it to GCCMACHDEP="". After that, we are able to run
E-ACSL successfully.

We also ran additional examples from Blanchard et al. [2, 3] and
found no additional issues with Eva, WP, or E-ACSL.

4 METHODOLOGY

For our testing of Frama-C we choose two separate things to run
on for analysis.

I. Frama-C on existing IoT code. We chose the Sunfounder IoT
sensor kit project because it included a variety of pre-built sensor
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modules and multiple example programs to test with Frama-C. This
gave us an easy sample base to run on that also showed possible
real-world applications these programs might be used for in the
form of different sensors.

II. Frama-C on our own IoT code. We designed a simple IoT
device using a few of the different SunFounder sensors together to
demonstrate Eva static analysis (see Figure 1). We chose to use a
combination of the Ultrasonic sensor, RGB LED light, and Passive
Buzzer. First by wiring the Ultrasonic sensor the exact same as in
the Sunfounder examples, then wiring the RGB LED to the next
open GPIO pins 27, 22, and 23. Finally wiring the Buzzer to GPIO 24.
The device we designed is a proximity detector that sets off an alarm
when detecting something within 40 centimeters by changing a
LED color from green to red and generating a noise frequency on
the Buzzer. We created the code using the existing IoT code as a
starting base and developing it further to fit the needs we desired
for our device. The code is available from our GitHub repository

[5].

5 EVALUATION

5.1 Frama-C on existing IoT code

To better test Frama-C with more real-world like examples, we
chose to run it against a set of simple programs created for the
SunFounder sensor kit [7]. While starting on this, we noticed that
some of the test sensors would run with the C code examples,
while others only worked using the Python examples. Noticing this
we narrowed down the issue to C’s wiringPi library, as only the
output sensors wouldn’t work, and all the input sensors worked
properly. After updating this library we were subsequently able to
get every sensor working properly with the C language for testing
with Frama-C.

When starting to run Frama-C on these example programs, we
also learned that Frama-C’s preprocessing will include the headers
of its own standard library, instead of those installed in the user’s
machine. This avoids issues with non-portable, compiler-specific
features. Which means if a header is included which is not available
in Frama-C’s library, such as our wiringP1i library, preprocessing
will fail by default. We could get around this problem by copying
the entire wiringPi library into the same directories of the programs
we were testing, and also had to use this method for a few other
necessary libraries when needed. Listing 8 shows a working EVA
summary output for one of the SunFounder sensor programs. We
were able to analyze all the functions of this program to a 97%
coverage with zero changes to the code. In doing so we found 8
possible integer overflows.

When we ran Frama-C Eva on the Sunfounder IoT sensor kit
codebase, we discovered a variety of warnings (see Figure 2). For
example, we received many Eva analyzer warnings, which indicate
that there are errors that could potentially cause problems. Also,
we noticed the Eva analyzer warnings were the highest counts.
Another example is that we received integer overflow warnings,
which means that the code is trying to store a value inside a holder
with a maximum capacity.
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Figure 1: Schematic of our IoT application.

Listing 8: Sample Frama-C EVA output.
[eva:summary] == = ANALYSIS SUMMARY ==

3 functions analyzed (out of 3)
In these functions, 35 statements reached

100% coverage.

Some errors and warnings have been raised during the analysis:

by the Eva analyzer: @ errors @ warnings
by the Frama-C kernel: @ errors 6 warnings

8 alarms generated by the analysis:
8 integer overflows

Evaluation of the logical properties reached by the analysis:
Assertions 0 valid @ unknown 0 invalid
Preconditions 2 valid 0 unknown 0 invalid

100% of the logical properties reached have been proven.

0 total
2 total

(out of 36): 97% coverage.
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Frama-C Eva Vulnerability Detections
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Figure 2: Eva warnings and alarms from Sunfounder IoT
codebase.
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Listing 9: Frama-C EVA output for our IoT application.

[eva:summary] ====== ANALYSIS SUMMARY ======

5 functions analyzed (out of 5)
In these functions, 56 statements reached

100% coverage.

(out of 57): 98%

Some errors and warnings have been raised
by the Eva analyzer: @ errors ]
by the Frama-C kernel:

during the analysis:
warnings

@ errors 6 warnings

18 alarms generated by the analysis:
16 integer overflows
2 illegal conversions from floating-point to integer

Evaluation of the logical properties reached by the analysis:
Assertions 0 valid @ unknown 0 invalid 0 total
Preconditions 3 valid 0 unknown 0 invalid 3 total

100% of the logical properties reached have been proven.

5.2 Frama-C on our own IoT code

We also ran Frama-C Eva on our own IoT code. At first, the result
was either integer overflows or illegal conversions from floating-
point to integer warnings. Then, we added an extra line to convert
distance to integer before our statement, and added Evas recom-
mended assertions. We managed to remove some of the float-to-int
warnings, and have mostly only integer overflow warnings. Our
Eva’s static analysis summary is shown in Listing 9. So far, using
Eva allowed us to identify all the possibility of issues and exploits
by giving us warnings on the code.

6 CONCLUSION AND FUTURE WORK

Frama-C has mostly been used in lab environments, but we have
shown that it may be feasible to run it on real IoT device software
tools for static analysis. We were able to run Frama-C with minimal
changes to existing code, and identified multiple different potential
vulnerabilities that may otherwise have been missed.

We uncovered a few different issues, such as integer overflow,
that are often overlooked by programmers. By using Frama-C to
find these issues without needing to execute a lot of tests, we can
prevent software vulnerabilities before they are introduced as zero-
day exploits.

coverage.
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In future work, we would like to explore other Frama-C plugins
such as WP and E-ACSL. For WP, it requires more annotations to
the code, and intimate knowledge of where and how to write them
inside the program. Meanwhile, the E-ACSL is more of a dynamic
analysis tool, which makes the steps to use it more complicated
and requires more research.

To conclude, with the expanding use of IoT devices around the
world, and with it, the increase of security concerns, there have been
more attacks than ever on IoT applications. However, many people
and the community have come together to work on increasing
security protection for IoT applications. For example, there is Frama-
C as a statistical analysis tool to identify potential exploits. Which
was the result of an open-source collaborative effort. We have
explored the potential of using Frama-C on possible real-world IoT
devices for an extra level of vulnerability mitigation and found it
to be a promising way to analyze IoT software.
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