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ABSTRACT

In this research, we investigated the feasibility of using static analy-

sis for IoT applications with Frama-C. We looked at different kinds

of possible IoT vulnerabilities and how static analysis specifically

could be used to identify them. With certain Frama-C plugins such

as Eva, we were able to run static analysis on most IoT code without

modifying the code itself and catch errors that could potentially

be exploited in real-world applications that would have otherwise

been missed. Additionally, we created a simple IoT device, by uti-

lizing Raspberry Pi 4 hardware with a set of different SunFounder

sensors, and ran our created code for it through Frama-C to find

any errors. The static analysis done gave a significant amount of

potential vulnerabilities in our code, mostly consisting of integer

overflows. We learned how we could use static analysis tools, like

Frama-C, as a powerful way to find potential vulnerabilities with

minimal changes to code.

CCS CONCEPTS

• Software and its engineering→ Formal software verification;

• Computer systems organization → Embedded software; •

Security and privacy → Software security engineering.
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1 INTRODUCTION

This work was conducted in order to answer how we can use

static analysis to detect IoT application security issues. The ever

growing system of connected devices and services, known as the

Internet of Things (IoT), is being used in sensitive and security

critical domains all over the world. This makes it a prime target

for cyber attacks from bad actors, and IoT devices will continue to

be the center of these attacks as their importance in our everyday
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lives grows. Ferrara et al. states how “IoT attacks use a common IoT

device to intrude into the system, and exploit a larger network. The

nature of IoT ecosystems is larger than traditional network security,

with a wider attack surface from multiple interconnected devices

operating at many different physical locations and network layers.”

[4] There is a lot of interest to formally analyze IoT code as it is

being developed in order to prevent software vulnerabilities from

being introduced as zero-day vulnerabilities. While many static

analysis tools provide superficial syntactic analysis, we examined

an experimental tool that provides a deeper semantic analysis called

Frama-C.

C remains a popular language used for IoT applications due to

its efficiency. This also leads to many software vulnerabilities as C

code provides very few run-time checks. A notorious example is

the Heartbleed bug where an attacker was able to read someone

else’s data from a web server’s buffer. [6] While the C language

may be easier to exploit with its little run-time checks, this can be

mostly prevented with thorough formal static and dynamic analysis

of the software. In the OWASP Top 10 Security Vulnerabilities in

IoT software [4], 6 out of the 10 vulnerabilities can be covered at

least partially by static analysis.

Frama-C is a framework through which a collection of different

plugins for static and dynamic analysis can be run and collaborate

with each other. It is aimed at verifying programs written in C code

using this collective analysis. While these plugins operate with

different goals and parameters, they also work together by building

and sharing information to get a better picture of the software’s

vulnerabilities. In order to run and test Frama-C for this study

we used Raspberry Pi 4s running on a Raspbian operating system.

We chose this hardware for the extended purpose of acting as a

sample IoT device, since we could connect different sensors to the

Raspberry Pi’s GPIO board.

2 BACKGROUND AND RELATEDWORK

Frama-C is a C program analysis tool that provides many plugins,

such as Eva, which has the capability of abstract interpretation,

a static analysis technique that extracts information about poten-

tial executions of a program, computing an approximation of all

possible values a variable can take [1]. In Eva, this information is

then used to determine if run-time errors like division by zero, or

integer or buffer overflows could occur. These errors could lead to

potential exploits.

Blanchard et al. [2] presented a set of example C language code,

some taken from actual IoT software, some not. They then showed

how some main Frama-C plugins can be used to perform static anal-

ysis, starting with EVA (Evolved Value Analysis). They describe

EVA as a value analysis tool that uses abstract reasoning to ap-

proximate potential runtime errors or prove their absence, such as

invalid pointers, arithmetic overflows or division by zero. Listing
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Listing 1: Code with division by zero.

int f ( int a )
{

int x, y;
int sum , result;
if(a == 0) {

x = 0;
y = 0;

} else {
x = 5;
y = 5;

}
sum = x + y;
result = 10/sum; //sum can be 0
return result; //risk of division by 0

}

Listing 2: Frama-C mistakenly flags division by zero.

int f ( int a )
{

int x, y;
int sum , result;
if(a == 0) {

x = 0;
y = 5;

} else {
x = 5;
y = 0;

}
sum = x + y;
result = 10/sum; //sum cannot be 0
return result; //no div. by 0

}

1 shows an example where EVA detects an alarm of division by

zero. In order to run this we type the following command into the

terminal: frama-c -eva [name].c -main f. The -main f option
is to indicate to EVA that this specific function should be pointed

to the function f in this case.

The caveat to this abstract reasoning is that it can also over-

approximate and give false alarms where a potential error is re-

ported when no error could take place, as seen in Listing 2. While

in this code division by zero is not possible, EVA will still report

a risk of division by zero because it computes a general domain

of x and y before computing the domain of sum. There are ways

to increase the precision of the EVA analysis by giving additional

options at the cost of a slower analysis, though we did not explore

these options in this study.

The next plugin covered was WP which is used to verify more

complex properties, using ACSL annotations to give precise specifi-

cations or requirements to the intended behavior of the analyzed

function. WP then takes the properties given in those ACSL anno-

tations and proves them using deductive verification. In Listing 3

Listing 3:WP illustration. Annotations specify expected swap

behavior.

/*@
requires \valid(a) && \valid(b);
requires \separated(a,b);
assigns *a, *b;
ensures *a == \old(*b) && *b == \old(*a);

*/
void swap(int *a, int *b){

int tmp = *a ; *a = *b ; *b = tmp ;
}

int main (){
int x = 2;
int y = 4;
swap(&x, &y);
//@ assert x == 4 && y == 2 ;

}

the intended behavior is that of a simple swap function. The main

function would like to take the values of x and y and switch them.

There are a few different ACSL annotations needed for WP.

The first is composed of a precondition and a postcondition. The

precondition is introduced by the requires keyword and is the

expected state of the system before calling the function. The post-

condition is the ensures keyword and is an expression of how the

state of the program is modified and the properties of the results.

Several of the same types of these expressions can also be written

right after one another if more than one is needed. The assigns

keyword specifies a particular class of postconditions which de-

fine what memory locations can be modified by the function. The

ensures clause indicates the expected execution of the function

values. The final keyword assert creates an assertion of a property

that must be checked at that specific part of the program. While

this assertion can prove that the program respects the specification

we want, it doesn’t mean that the program won’t still fail at run-

time. These specifications must be carefully written in order to be

proven correctly. For example, if the assigns clause is not given, the

function is assumed by WP to assign any memory location.

Lastly the plugin E-ACSL is used as runtime verification. This plu-

gin was designed to extend Frama-C to use some forms of dynamic

analysis on top of its existing static analysis. E-ACSL uses runtime

assertion checking to detect errors and their locations, especially

those that don’t create a failure of the code during execution. It

generates C code to check the assertions at runtime by executing

that code, as such the assertions are checked dynamically.

In Listing 4 we took the same problem looked at from EVA

(see Listing 1) and added an additional assertion that the sum can-

not equal zero. E-ACSL then takes this annotated code and con-

verts it into executable code. We run it through the command line

with frama-c -e-acsl [name].c -then-last -print -ocode
monitored_main.c. This creates a new C file with the assertion

inserted into the original main file. We then run e-acsl-gcc.sh
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Listing 4: Code for E-ACSL run-time execution.

int f(int a)
{

int x, y, sum , result;
if (a == 0) {

x = 0;
y = 0;

}
else {

x = 5;
y = 5;

}
sum = x + y;
//@ assert Eva: division_by_zero: sum != 0;
result = 10 / sum;
return result;

}

int main(void){
f(42);
f(0);
return 0;

}

Listing 5: E-ACSL output from executing Listing 4.

Assertion failed at line 10 in function f.

The failing predicate is:

sum !=0

Aborted (core dumped)

[name].c -c -O monitored_main to invoke the C compiler. Fi-

nally, we could run sudo ./a.out to print out the result, which

shows the assertion fails (see Listing 5).

When the code from Listing 2 is used to replace function f, it
shows no output as both calls do not result in a division by zero.

3 EXPERIMENTS WITH FRAMA-C

In order to better understand how Frama-Cworks, we experimented

with multiple code examples from different Frama-C tutorial papers

[2, 3].

Listing 6 is an example of using the Frama-c WP plugin [2]. The

purpose of the code was to assign the loop to be decreased by any

number instead of one. The command we used to run this was:

frama-c -wp [name].c -rte. This is where the WP plugin comes

in to read the special comment and ensure the loop is decreased

by one at each iteration of any number beside one. Due to missing

code from Blanchard et al. [2], we were missing 2 goals from the

timeout. That is because the loop cannot be reset and quit.

Listing 7 is an example of using the Frama-C WP plugin on a

real example of Contiki source code [2]. Contiki is an open-source

operating system, and the purpose of the code was to practice

defining annotations for both separate functions and loops. The

command line used to run it was frama-c -wp [name].c -rte,

Listing 6:WP annotations for specification of loop invariants

and variants.

#include <stdio.h>
#include <stdlib.h>

/*@
requires 0 <= len;
requires \valid(a + (0 .. len -1));
assigns a[0 .. len -1];
ensures \forall integer i;

0 <= i < len ==> a[i] == 0;
*/
void reset_array(int* a, int len){

/*@
loop invariant 0 <= i <= len ;
loop invariant \forall integer j;

0 <= j < i ==> a[j] == 0;
loop assigns i, a[0 .. len -1];
loop variant len - i ;

*/
for(int i = 0 ; i < len ; ++i){

a[i] = 0 ;
}

int i = 42;
/*@

loop invariant 0 <= i <= 42;
loop assigns i;
loop variant i;

*/
while(i > 0){

i = i - ((rand ()%i)+1) ;
}

}

which should cause the WP plugin to read the special comment

and set up conditions for the functions and loops. After running, it

should not return a NULL value. However, due to the complexity

of the code and a timeout, at least 5 goals were missed. The prob-

lem may have come from the annotation of the loops, as the loop

invariant needed to involve the loop index i. This resulted in an

infinite loop, which required changing the annotations and gaining

a better understanding of the loop’s condition.

We ran into multiple issues working with the Frama-C E-ACSL

plugin. Unlike the Eva and WP plugins, which are static analy-

sis tools, the E-ACSL plugin is more of a dynamic analysis tool.

This means the code, along with Frama-C annotations, must be

compiled into an executable file using a standard C compiler. How-

ever, we had additional difficulties getting the dynamic analysis

to work on our Raspberry Pi architecture. To run the plugin, we

had to change the Frama-C E-ACSL files because the Raspberry

Pi CPU architecture does not recognize the m32 or m64 options,

which are for Intel processors, while the Raspberry Pi uses an ARM

processor. To find the files, we first had to go to Frama-C’s instal-

lation folder, like /home/pi/.opam/4.14.1/bin, then find the file

438



MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Tran et al.

Listing 7: Example illustrating loop invariants on real code.

struct memb {
unsigned short size;
unsigned short num;
char *count;
void *mem;

};

/*@
requires \valid(m)
ensures \exists integer i;

0 <= i < (*m).count ==>
\old ((*m). count[i] == 0) ==>
\return != NULL

*/

void *
memb_alloc(struct memb *m)
{

int i;
/*@

loop invariant loc >= 0
loop invariant 0 <= i <= m->num
loop invariant

(\ exists integer j;
0 <= j < m->num ==>
m->count[j] == 0) ==>

(\ forall integer k;
0 <= k < j ==>
m->count[k] == 1)

loop variant m->num - i
*/
for(i = 0; i < (*m).num; ++i) {

if(m->count[i] == 0) {
m->count[i] = 1 ;
int loc = i * m->size ;
return (void *)

((char *)m->mem + loc);
}

}

return NULL;
}

named e-acsl-gcc.sh and look for the line of code GCCMACHDEP.
We changed it to GCCMACHDEP="". After that, we are able to run

E-ACSL successfully.

We also ran additional examples from Blanchard et al. [2, 3] and

found no additional issues with Eva, WP, or E-ACSL.

4 METHODOLOGY

For our testing of Frama-C we choose two separate things to run

on for analysis.

I. Frama-C on existing IoT code. We chose the Sunfounder IoT

sensor kit project because it included a variety of pre-built sensor

modules and multiple example programs to test with Frama-C. This

gave us an easy sample base to run on that also showed possible

real-world applications these programs might be used for in the

form of different sensors.

II. Frama-C on our own IoT code. We designed a simple IoT

device using a few of the different SunFounder sensors together to

demonstrate Eva static analysis (see Figure 1). We chose to use a

combination of the Ultrasonic sensor, RGB LED light, and Passive

Buzzer. First by wiring the Ultrasonic sensor the exact same as in

the Sunfounder examples, then wiring the RGB LED to the next

open GPIO pins 27, 22, and 23. Finally wiring the Buzzer to GPIO 24.

The device we designed is a proximity detector that sets off an alarm

when detecting something within 40 centimeters by changing a

LED color from green to red and generating a noise frequency on

the Buzzer. We created the code using the existing IoT code as a

starting base and developing it further to fit the needs we desired

for our device. The code is available from our GitHub repository

[5].

5 EVALUATION

5.1 Frama-C on existing IoT code

To better test Frama-C with more real-world like examples, we

chose to run it against a set of simple programs created for the

SunFounder sensor kit [7]. While starting on this, we noticed that

some of the test sensors would run with the C code examples,

while others only worked using the Python examples. Noticing this

we narrowed down the issue to C’s wiringPi library, as only the

output sensors wouldn’t work, and all the input sensors worked

properly. After updating this library we were subsequently able to

get every sensor working properly with the C language for testing

with Frama-C.

When starting to run Frama-C on these example programs, we

also learned that Frama-C’s preprocessing will include the headers

of its own standard library, instead of those installed in the user’s

machine. This avoids issues with non-portable, compiler-specific

features. Which means if a header is included which is not available

in Frama-C’s library, such as our wiringPi library, preprocessing

will fail by default. We could get around this problem by copying

the entire wiringPi library into the same directories of the programs

we were testing, and also had to use this method for a few other

necessary libraries when needed. Listing 8 shows a working EVA

summary output for one of the SunFounder sensor programs. We

were able to analyze all the functions of this program to a 97%

coverage with zero changes to the code. In doing so we found 8

possible integer overflows.

When we ran Frama-C Eva on the Sunfounder IoT sensor kit

codebase, we discovered a variety of warnings (see Figure 2). For

example, we received many Eva analyzer warnings, which indicate

that there are errors that could potentially cause problems. Also,

we noticed the Eva analyzer warnings were the highest counts.

Another example is that we received integer overflow warnings,

which means that the code is trying to store a value inside a holder

with a maximum capacity.
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Figure 1: Schematic of our IoT application.

Listing 8: Sample Frama-C EVA output.

[eva:summary] ====== ANALYSIS SUMMARY ======

--------------------------------------------------------------------

3 functions analyzed (out of 3): 100% coverage.

In these functions , 35 statements reached (out of 36): 97% coverage.

--------------------------------------------------------------------

Some errors and warnings have been raised during the analysis:

by the Eva analyzer: 0 errors 0 warnings

by the Frama -C kernel: 0 errors 6 warnings

--------------------------------------------------------------------

8 alarms generated by the analysis:

8 integer overflows

--------------------------------------------------------------------

Evaluation of the logical properties reached by the analysis:

Assertions 0 valid 0 unknown 0 invalid 0 total

Preconditions 2 valid 0 unknown 0 invalid 2 total

100% of the logical properties reached have been proven.

--------------------------------------------------------------------

Figure 2: Eva warnings and alarms from Sunfounder IoT

codebase.
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Listing 9: Frama-C EVA output for our IoT application.

[eva:summary] ====== ANALYSIS SUMMARY ======

--------------------------------------------------------------------

5 functions analyzed (out of 5): 100% coverage.

In these functions , 56 statements reached (out of 57): 98% coverage.

--------------------------------------------------------------------

Some errors and warnings have been raised during the analysis:

by the Eva analyzer: 0 errors 0 warnings

by the Frama -C kernel: 0 errors 6 warnings

--------------------------------------------------------------------

18 alarms generated by the analysis:

16 integer overflows

2 illegal conversions from floating -point to integer

--------------------------------------------------------------------

Evaluation of the logical properties reached by the analysis:

Assertions 0 valid 0 unknown 0 invalid 0 total

Preconditions 3 valid 0 unknown 0 invalid 3 total

100% of the logical properties reached have been proven.

--------------------------------------------------------------------

5.2 Frama-C on our own IoT code

We also ran Frama-C Eva on our own IoT code. At first, the result

was either integer overflows or illegal conversions from floating-

point to integer warnings. Then, we added an extra line to convert

distance to integer before our statement, and added Evas recom-

mended assertions. We managed to remove some of the float-to-int

warnings, and have mostly only integer overflow warnings. Our

Eva’s static analysis summary is shown in Listing 9. So far, using

Eva allowed us to identify all the possibility of issues and exploits

by giving us warnings on the code.

6 CONCLUSION AND FUTUREWORK

Frama-C has mostly been used in lab environments, but we have

shown that it may be feasible to run it on real IoT device software

tools for static analysis. We were able to run Frama-C with minimal

changes to existing code, and identified multiple different potential

vulnerabilities that may otherwise have been missed.

We uncovered a few different issues, such as integer overflow,

that are often overlooked by programmers. By using Frama-C to

find these issues without needing to execute a lot of tests, we can

prevent software vulnerabilities before they are introduced as zero-

day exploits.

In future work, we would like to explore other Frama-C plugins

such as WP and E-ACSL. For WP, it requires more annotations to

the code, and intimate knowledge of where and how to write them

inside the program. Meanwhile, the E-ACSL is more of a dynamic

analysis tool, which makes the steps to use it more complicated

and requires more research.

To conclude, with the expanding use of IoT devices around the

world, andwith it, the increase of security concerns, there have been

more attacks than ever on IoT applications. However, many people

and the community have come together to work on increasing

security protection for IoT applications. For example, there is Frama-

C as a statistical analysis tool to identify potential exploits. Which

was the result of an open-source collaborative effort. We have

explored the potential of using Frama-C on possible real-world IoT

devices for an extra level of vulnerability mitigation and found it

to be a promising way to analyze IoT software.
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