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Abstract. Zero-knowledge middleboxes (ZKMBs) are a re-
cent paradigm in which clients get privacy while middleboxes
enforce policy: clients prove in zero knowledge that the plain-
text underlying their encrypted traffic complies with network
policies, such as DNS filtering. However, prior work had im-
practically poor performance and was limited in functionality.

This work presents Zombie, the first system built using the
ZKMB paradigm. Zombie introduces techniques that push
ZKMBs to the verge of practicality: preprocessing (to move
the bulk of proof generation to idle times between requests),
asynchrony (to remove proving and verifying costs from the
critical path), and batching (to amortize some of the veri-
fication work). Zombie’s choices, together with these tech-
niques, reduce client and middlebox overhead by ~ 3.5x,
lowering the critical path overhead for a DNS filtering appli-
cation on commodity hardware to less than 300ms or, in the
asynchronous configuration, to 0.

As an additional contribution that is likely of indepen-
dent interest, Zombie introduces a portfolio of techniques
to encode regular expressions in probabilistic (and zero-
knowledge) proofs. These techniques significantly improve
performance over a standard baseline, asymptotically and con-
cretely. Zombie builds on this portfolio to support policies
based on regular expressions, such as data loss prevention.

1 Introduction

A fundamental conflict frequently arises in network security:
administrators’ policy enforcement vs. users’ privacy. Orga-
nizations want, or in some cases need (by legal obligation),
to enforce network usage policies. Users want end-to-end
encrypted protocols like TLS to provide privacy against net-
work observers, including administrators. Traditionally, policy
enforcement requires a middlebox to scan traffic and block
policy-violating use. End-to-end encryption is in direct con-
flict with middleboxes, which can’t see plaintext and therefore
can’t assess policy compliance. This conflict has led some
administrators to take draconian steps, like inserting them-
selves as an all-seeing middleperson (MITM) proxying TLS
connections (“split TLS™), or even blocking the use of TLS.
Resolving this conflict has been a goal of the network secu-
rity research community for some time. Existing approaches
have fallen into two categories. First are protocols that use
novel cryptography to enable policy checks on encrypted
data, but require server support and/or changes to standard
protocols like TLS [63,79,98] (§7). Changing TLS is a huge
task though: it took ten years of extensive design effort to
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go from TLS 1.2 [30] to TLS 1.3 [90]. Deploying server-side
changes is also slow: five years after the standardization of
TLS 1.3, only 60% of HTTPS servers on the web support
it [60]. Furthermore, implementing TLS securely is notori-
ously complex and subtle [24], meaning that protocol changes
are risky. Second, by contrast, are middleboxes designed to
work with standard TLS-encrypted traffic but rely on trusted
hardware enclaves (TEEs) to enforce policy [31, 44]. Our
perspective is that, although it promises good performance,
trusted hardware has a wide attack surface (§7), as demon-
strated by many attacks [47,77,92,102,109-112].

Our goal is to support policy enforcement on standard TLS
1.3 traffic, inheriting its existing security guarantees and avoid-
ing any changes to existing TLS code bases. We eschew any
trusted hardware assumptions. We do, however, accept modi-
fications to clients, observing that modern browser vendors
can update the vast majority of users within months [114].

Zero-knowledge middleboxes. We build on top of the
recently-proposed ZKMB paradigm [49]. With ZKMBs,
clients prove in zero knowledge [43] to the middlebox that
the plaintext underlying their encrypted traffic is policy-
compliant. The middlebox verifies these proofs, allowing
only policy-compliant traffic to pass. Because the proof is
zero knowledge, the middlebox learns nothing about the un-
derlying plaintext, except that it is policy-compliant. ZKMBs
require no changes to existing encryption protocols and no
trusted hardware; they promise an elegant solution to the pol-
icy vs. privacy conflict. However, the initial ZKMB prototype
offered implausible performance for most network applica-
tions, adding several seconds of latency to traffic even under
optimistic assumptions and with a relatively simple policy.

The key question remains: Can ZKMBs perform well
enough, and express a wide-enough range of policies, for real-
world use? This paper gives a cautious affirmative answer,
with the design, implementation, and experimental evaluation
of a system called Zombie.

Contributions and results. Zombie applies three techniques
to reduce end-to-end delay (both client proving costs and mid-
dlebox verifying costs on the critical path). First, Zombie pre-
computes and pre-proves part of the encryption step in TLS,
moving it off the critical path to periods when the client is
idle (§3.1). This part includes legacy cryptographic primitives
like ChaCha20 encryption, which, for reasons we explain
later (§2, §3.1), are expensive to represent in proof frame-
works. Such a split is perhaps surprising: how could a client



precompute an encryption before the plaintext is known?

Zombie’s next two performance enhancements are condi-
tional on assumptions about client and middlebox behavior.
For these, our contribution is primarily analyzing and evaluat-
ing the techniques in this context, rather than the mechanics
of the techniques. One of these is optimistic approval (§3.2),
via asynchronous verification. We make the simple but conse-
quential observation that, in many applications, administrators
may be willing to allow client traffic to proceed as normal,
on the condition that clients supply valid proofs in short or-
der. A similar approach, near real-time verification, is already
taken by some real-world middleboxes [18,23,38]. The other
is batch proof verification by the middlebox, reducing the
overall verification burden by amortizing it across proofs for
multiple packets (§3.3).

Another set of contributions enables Zombie to handle poli-
cies based on regular expression matching, a crucial building
block in various middleboxes, including intrusion detection
systems (IDS), network traffic classification, and data loss
prevention (DLP). The core challenge derives from proba-
bilistic proofs themselves: using these frameworks requires
representing the target computation in arithmetic circuits or
constraints. Meanwhile, as with ChaCha20 mentioned earlier,
circuits and constraints are inefficient and inhospitable for
many computations (§2), including (at first glance) regular ex-
pressions. Zombie tackles this challenge with a collection of
techniques (§4), including a new encoding of substring match-
ing in arithmetic constraints, a new encoding of Boolean al-
gebra in arithmetic constraints, and a new finite automaton
formalism. Some of these techniques are likely to be of inde-
pendent interest for other applications of probabilistic proofs,
even beyond regular-expression matching.

We implement Zombie for TLS 1.3 with the ChaCha20
cipher (§5). The result of all this work is near-practicality for
some ZKMB uses (§6). In the precomputation regime, Zom-
bie adds less than 300 ms of delay to DNS queries, which may
be tolerable (§8). In the asynchronous regime, this number
drops to 0. Proofs are large (30KB) but never leave the local
network. Memory requirements for prover and verifier can
be substantial, but small packet sizes mitigate this issue. The
sticking point is middlebox resources: although throughput
improves almost 5x from batching, even this improvement
(380 255-byte packets/second in our experiments) is too low
to imagine proof verification on every packet. Similarly, Zom-
bie’s regular expression techniques reduce the overhead of
encoding real-world DLP policies in zero knowledge by over
an order of magnitude; however, the resulting overhead, 1—
2 ms processing delay per byte, is uncomfortably large for
networking applications.

Thus, although Zombie is designed to be extensible to any
read-based public policy, it is most practical for multi-packet
flows, with small packets, that represent a fraction of traffic,
for example enforcing a domain blocklist on a long-running
connection with a DNS server or enforcing a keyword or

regexp blocklist on search engine queries. Our work has other
limitations (§8). Most notably, our implementation requires
that policies be public, per-packet, read-only, and stateless,
though these restrictions are not fundamental.

2 Background

Zero-knowledge proofs. At a high level, a ZKP is a crypto-
graphic protocol between two parties: a prover and a verifier.
The protocol pertains to a computation S (we also call this
the “statement”), which we formulate as having two inputs X
and W, each a vector of variables, and producing an output Y.
We call X the public input and Y the output, respectively.

In this paper, we consider non-interactive ZKPs, which
work as follows. Both the verifier and the prover agree on a
computation S. To convince the verifier that a particular (X,Y)
pair known to both parties is valid, the prover sends the verifier
a proof w. Validity here is defined as the existence of a witness
W such that S(X; W) =Y for a particular (X,Y). Following
convention, we use a semicolon to separate public and private
variables in statements. The proof also convinces the verifier
that the prover knows this witness—this guarantee is called
knowledge soundness. Moreover, it hides the witness from the
verifier—this is the zero-knowledge guarantee. The notions
of soundness and zero-knowledge have precise cryptographic
definitions that we elide here; Zombie inherits these properties
directly from the underlying cryptographic tools.

In general, there is a deep cryptographic literature on ZKPs;
for a survey, we refer the reader to Thaler [103].

A concrete example. Consider using ZKPs to prove that an
encrypted packet does not contain a DNS query for a blocked
domain [49, §7]. The output Y is true/false, the input X is the
encrypted packet, and the witness W includes the decryption
key. The computation S asserts that the packet, after decrypt-
ing to plaintext using the decryption key and extracting the
domain name, does not contain a domain in the blocklist. Un-
der standard cryptographic assumptions, knowing X and Y,
without knowing W, is insufficient to verify the correctness
of (X,Y) with respect to S. A ZKP, by contrast, convinces a
verifier, who has no access to W, of the correctness of (X,Y).

Zero-knowledge proof pipelines. Most generic ZKP
schemes decompose into a front-end and a back-end. The
front-end takes S, a high-level specification of a program, for
example in C code or a domain-specific language (DSL). The
front-end compiles this program into an intermediate repre-
sentation, often called a circuit (see below). This circuit acts
as a blueprint for provers to show that a program produces
specific outputs, given specific inputs.

The back-end then enables the prover to take the circuit
representation of the program, along with X, Y, and W, and
output a proof 7. The verifier also has access to a circuit
representation of the program and uses the back-end, X, and
Y to verify a proof T, outputting a true/false value.



RI1CS instances. Most modern ZKP front-ends compile
programs to a generalization of arithmetic circuits called
rank-one constraint systems (R1CS). An R1CS instance is a
collection of algebraic constraints. The instance is parameter-
ized by a finite field I, a number of constraints m, a number
of variables n, and three m x n matrices A,B,C. An input-
output pair (X,Y) satisfies the R1CS instance if there exists
a W such that for the vector z = (X,Y,1,W), AzoBz =Cz,
where the operation o is entry-wise multiplication. Notice
that an R1CS instance consists of m constraints in n variables,
where each constraint i € {1,...,m} restricts any satisfying
z=(21,...,2x) as follows:

(Ai1zi+...+Ainzn) - (Binzi + -+ Binzn)
= (Ci.lzl +--- +Ci,nzn)~

Following convention, we sometimes refer to an R1CS repre-
sentation as a set of constraints or loosely as a circuit.

Efficiently expressing a computation as a circuit is chal-
lenging. First, the primary efficiency metric of a circuit rep-
resentation is the number of constraints, as the back-end’s
costs—specifically, the prover’s costs—scale linearly or super-
linearly in this quantity. Second, circuits are frequently ver-
bose, as they are algebraic constructs, not hardware circuits
or a general-purpose processor.

Among other limitations, circuits do not support loop-
ing, conditionality, order comparisons, bitwise operations, or
random-access memory. Compiling a high-level computation
to a circuit requires the front-end to unroll all loops to their
maximum iteration count, inline all function calls, represent
all branches of conditionals explicitly, and then arithmetize
each statement (translating it into constraints), often introduc-
ing additional variables [16,17,85,94,96, 115, 124].

As a simple example, consider this line of C code:

y = (x=0);
where the mathematical variable x (representing the program
variable x) is in X and y (likewise representing y) is in Y. To
compile this to constraints, one introduces a variable W in W
and writes the following, called EQUALS-ZERO [96, Appx DJ:

y-x=0
W-x=1-y

The constraints can be satisfied if and only if y is 1 when x is
0 and y is 0 otherwise, thus enforcing the desired computation.
These constraints can be expressed in the form of an R1CS
instance as the following A, B, and C matrices:

=
S O =

w  x y 1 W x y 1 W
0
1
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S = =

Spartan ZKP. As its back-end, Zombie uses Spartan [93],
specifically the SpartanNIZK variant (which we refer to as
just Spartan for simplicity). By contrast, prior work [49] used
Groth16 [48]. Spartan is a non-interactive ZKP protocol that
strikes an attractive balance among prover time (lower than in
Groth16), verifier time (higher than Groth16 but sufficient for
our purposes, §6), and proof size (again, higher than Groth16
but sufficient). Like many ZKP protocols, Spartan has a setup
phase to generate parameters that are used in the proof proto-
col; in Spartan, (unlike Groth16), this phase does not require
trusting any party, only a source of public randomness. Con-
sequently, provers (clients) can use the generated parameters
across different verifiers (networks).

3 Zombie’s protocol

We start with the existing ZKMB paradigm [49], though our
notation differs from the original. A middlebox begins with
encryption protocol E (such as TLS 1.3), content type F, and
policy P, with the goal of enforcing P on traffic of type F that
is sent via E. The middlebox—or a third-party—defines the
following subcomputations, which are composed into state-
ments (§2) that the client proves and the middlebox verifies:

(1) A channel-opening subcomputation Sg takes as input
a packet and the information required to re-derive a
session key. This subcomputation outputs the decrypted
packet, in the sense of delivering that decrypted packet
to the next composed subcomputation; for clarity, we
note that the decrypted packet itself is never available to
the middlebox, which has no access to the values of the
circuit wires used in the client’s proof. We follow the
amortized ZKMB model, which, for TLS 1.3, reuses the
expensive work of this phase over multiple per-packet
proofs. Specifically, Sg is split into Sg; (derive-and-
commit) and Sg > (decrypt).

(2) A parse-and-extract subcomputation S takes as input
the decrypted packet and outputs (in the sense above) a
snippet of policy-relevant data from the packet.

(3) A policy-check subcomputation Sp takes as input the
snippet of policy-relevant data and outputs whether or
not the policy is satisfied (for example if a domain being
queried is part of a blocklist or not).

Figure 1 depicts the high-level protocol. The middlebox
sends Sp to each client when it joins the network [49]. (We
discuss other deployment possibilities in Section 8.) When a
client wants to communicate with a particular server, it first
negotiates the shared key K using a handshake protocol, the
transcript of which is public but the generation of which in-
volves secrets shared between the client and the server. Sg ;
re-derives this session key K by taking the handshake tran-
script as public input and the client’s secrets as witness, and
then hashes the session key to produce /g. The client sends
to the middlebox hg and the proof ng of Sg ;. This proof
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Figure 1: The ZKMB paradigm with amortized key setup [49] di-
vided into 3 phases. The policy setup step occurs once when the
client connects to the middlebox; the middlebox sends the policy Sp
to the client. The key setup step occurs once per session; it involves
a handshake between the client and the server, a commitment hg
to a session key K, and a proof of this commitment 7g. Finally, in
per-packet enforcement, the client sends the middlebox ciphertext
C; and a proof m; of the policy-compliance of the plaintext corre-
sponding to C; and to the key commitment; 7; is with reference to
the composition of the Sk 2, Sr, and Sp subcomputations.

convinces the middlebox that /g is indeed the commitment
to some key that is consistent with the handshake.

Then, for each packet, Sk » takes the ciphertext C and the
key commitment /g as public inputs, and the session key K
as witness. After ensuring that K hashes to ik, Sg, outputs
(again, in the sense above) the decrypted packet. Finally, the
client needs to convince the middlebox that C is valid with
respect to hg and the composition of Sg 2, Sr, and Sp. It does
so with a proof ;. When the middlebox receives (C, hg,;),
it verifies ;, and only then forwards C.

Zombie’s enhancements. Zombie introduces three changes
to the ZKMB paradigm. Precomputation (§3.1) allows Zom-
bie to generate and verify the most expensive part of the
proof during idle times, before the ciphertext is known to
the client, reducing proving times in the critical latency path.
Asynchronous verification (§3.2) relaxes the requirement that
proofs about traffic are verified before each packet leaves
the network. This moves the main ZKP-related costs out of
the critical path entirely, greatly reducing delay but changing
Zombie’s security model. Batching (§3.3) lets Zombie mid-
dleboxes reuse the results of expensive computations when
verifying a batch of proofs created by the client. Figure 2
comprehensively classifies when these techniques should be
used and combined.

3.1 Precomputation

Precomputation in Zombie changes both the statement being
proved and the protocol flow (adding an extra message). At a
high level, precomputation splits the per-packet computation
Sk (decrypt) into two subcomputations Sg 2, (pad-commit)
and Sg 2y (decrypt-from-pad), the first of which can be com-
puted before the plaintext is known. As noted in the intro-
duction, it may be surprising that it is possible to prove Sg 2,
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Figure 2: Appropriate combinations of protocol enhancements. The
goal is to minimize client latency while respecting security. Unsafe
traffic means that some non-compliant traffic is allowed to exit the
network. To summarize the logic: (1) If unsafe traffic is allowed,
then asynchronous mode is appropriate; (2) If clients have idle time,
precomputation is appropriate; (3) If {(a) unsafe traffic is allowed,
or (b) neither the client nor the middlebox has idle time, or (c) the
client workload is bursty and the client has idle time} then batching
is appropriate.
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before any plaintext is known, but when using stream ciphers
the keystream can be generated (and proved) independently
of the plaintext. We explain how this works for TLS 1.3 below.
The technique may be more broadly relevant; it is orthogonal
(and complementary) to the split between Sg ; and Sg».

We will simplify by omitting some operations. Let K be
the session key output by the handshake. TLS 1.3 encrypts
session data using a stream cipher, which can be thought of
as a pseudorandom one-time pad. This pad is derived via a
function PadGen that takes K, a packet number SN, and a
length L., and outputs an L,,4-byte pseudorandom padgy.
For an L,,4-byte message M, its ciphertext is padgy ® M.

We make two key observations. First, the inputs to PadGen
are independent of the message, so padgy can be computed
by the client before M is known. Second, computing PadGen
is the most expensive part of the channel-opening subcompu-
tation Sg. This is because PadGen involves the legacy stream
cipher ChaCha20, which is difficult to represent in the con-
straint formalism used for ZKPs (§2). In our evaluation of a
DNS filtering application [49] (§6), we find that PadGen ac-
counts for nearly two-thirds of the total constraint size (§6.3).

Zombie uses these observations to move PadGen into the
subcomputation Sg, (pad-commit in Figure 3). This in-
volves running PadGen and then hashing its output to produce
hpadsy - Also, K is hashed to ensure that it corresponds to the
hash hg provided as a public input. The client computes the



pad-commit(hg,SN, Lyqq: K):
padsy < PadGen(K,SN, L)

hpadgy, < H(padsy)
Return (hg = H(K)) ? hpadgy © L

decrypt-from-pad(C, hpaag, , SN ; pad):

M <+ paddC
Return (hpadqy, = H(pad)) ? M: L

Figure 3: Pseudocode for the statements Sg », (pad-commit) and
SE.2p (decrypt-from-pad) used in Zombie’s precomputation.

proof 1z 2, for this subcomputation and sends it, along with
the pad hash /hpaqg, ., to the middlebox. The middlebox ver-
ifies this proof and stores the hash with the corresponding
sequence number.

In the second part of the protocol, run once the Zom-
bie client receives the plaintext M, the client encrypts M
with padgy for sequence number SN to get the ciphertext
C. Then, it generates the proof for the statement Sg 2, (see
decrypt-from-pad in Figure 3). This statement takes a pad
pad as the witness, which is purportedly padsy; ensures that
this witness hashes to the stored hash /paqg, ; and passes the
decrypted M = pad & C to the Sy subcomputation.

Roughly, the security of Zombie’s precomputation follows
from the zero-knowledge and soundness properties of the
proof protocol, and the hiding and binding properties of the
hash function H. Specifically, neither the hash Apaqg, nor
g2, reveal padgy—thus, the middlebox cannot learn any-
thing about the client’s traffic. The collision-resistance of H
and the soundness of the proof system prevent the client from
lying about padgy, or the key used to derive it—thus, the
client cannot equivocate about the sent message M.

3.2 Optimistic approval via asynchronous verification

While precomputation can greatly reduce the per-packet delay
incurred by proof generation (down to under 300 ms, §6.1),
some applications (for example, web browsing) require even
less delay. This section describes how Zombie can perform
the ZKP-related parts of its protocol asynchronously, that
is, without blocking the flow of normal traffic. Client traf-
fic passes optimistically while the middlebox detects policy
violations retroactively.

In more detail, after the client encrypts its packet, it imme-
diately sends the ciphertext C. The middlebox forwards this
packet to the server and sets a timer. Then the client generates
7 and sends it to the middlebox. If the timer has not expired
and 7 is valid, the middlebox does nothing. If the proof is
invalid, or the timer fires, the middlebox takes some action,
for example, blocking the client (§8).

Asynchronous verification requires the middlebox to keep
track of unverified ciphertexts until the client sends the corre-
sponding proofs. Done naively, this could require high mem-

ory usage at the middlebox. This memory usage can be re-
duced by storing a hash of the ciphertexts instead of the ci-
phertexts themselves. The client would re-send the ciphertext
along with the proof, and the middlebox would use the hash to
validate the ciphertext. This increases bandwidth usage, since
a single ciphertext must traverse the client-middlebox link
twice. Since bandwidth usage was not the bottleneck in any
of our experiments, we did not implement this optimization.

Security. The middlebox cannot prevent non-compliant
packets from leaving the network, nor can it prevent clients
from receiving responses to such packets. Zombie will only
eventually learn if this has occurred. We claim, though, that
this relaxed security is sufficient for many applications. For
DNS filtering, the policy goal is to prevent users from brows-
ing blocked sites. Even if the user learns the IP address of a
blocked site by sending a non-compliant DNS query, as long
as the middlebox can detect this reasonably quickly, further
browsing can be blocked. As another example, if Zombie is
used to stop users from uploading sensitive data to external
sites, it may be sufficient to detect and shut down uploads in
time to prevent too much sensitive data from being uploaded,
even if (say) the beginning of a file is successfully uploaded.
Other context-specific policies may be appropriate, for exam-
ple a middlebox might optimistically send packets to servers
but hold the response packets pending proof verification.

3.3 Batching in Zombie

The final protocol improvement Zombie makes is batch proof
generation and verification. Concretely, given ciphertexts
Ci,...,Cp, Zombie can generate one proof T that verifies only
if all b underlying plaintexts are policy-compliant. This single
proof is much more efficient for the middlebox to verify than
b separate ones. The batch size does not need to be fixed by
the middlebox; it can be dynamically chosen by clients based
on their current workloads. Figure 2 depicts the conditions
under which batching is useful. The combination of batching
and asynchronous verification is potent: clients can gather
larger batches because they can wait longer to send proofs.
Batching is also complementary to precomputation: the client
can batch together multiple 7tz », proofs.

At a high level, batching works by modifying Zombie’s
underlying ZKP protocol, Spartan [93], to allow for paral-
lel runs of proof generation to share randomness. Sharing
randomness to batch proofs is a known technique, and has
been used in other modern proof systems [95, 113]; how-
ever, its application to Spartan in this work is novel. We use
“SpartanBatch” to refer to our variant of Spartan that supports
batching. Appendix A gives details and security analysis.

4 Regular expressions in Zombie

This section describes how Zombie supports middlebox func-
tionality based on regular expressions, which we sometimes
call regexps. Regexps feature in real-world policies for data



loss prevention (DLP) [71], intrusion detection (IDS) [22,39],
and traffic classification [119, 120]. For example, a DLP sys-
tem might use a regexp to specify that all outgoing packets
containing a social security number should be blocked.

The high-level picture is as follows. Zombie begins with
a policy P that uses regexps. This policy (§3) is a restriction
on the plaintext payloads (which this section calls simply
payloads) allowed to pass through the middlebox, and is ex-
pressed as a computation Sp that takes the payload as input
and returns 1 or 0 depending on whether the payload adheres
to the policy. The policy can be as simple as whether any
substring of the payload matches the given regular expression.
Or it could include more sophisticated combinations, for ex-
ample, whether two regexps match within close proximity, or
whether there are more than four matches to a given regexp.

Zombie produces both a constraint representation of the
computation Sp and a prover recipe for executing this compu-
tation and satisfying those constraints. The constraints Cp are
constructed to be satisfiable if and only if the prover correctly
reports whether the payload adheres to P.

As we have described (§1-§2), constraints are an inefficient
way to represent general-purpose computations. The same
holds for regular expressions: one cannot simply take Sp to be
a regexp library parameterized by a specific regexp, because
that would involve compiling, say, C code that uses program
constructs that are prohibitive when expressed in constraints.

For this reason, we depart from prior work on regular ex-
pressions [119, 120], which aims to make matching fast. In
our context, matching is the step where the prover executes
its recipe to identify a satisfying assignment, and this step
is swamped by the costs of proving. Instead, we focus on
the driver of those costs: number of constraints (§2). Specifi-
cally, our metric of interest is constraints per character in the
payload, which we want to be small.

The rest of this section describes how Zombie lowers this
metric versus a naive approach. Zombie introduces a series
of techniques that achieve substantial improvements in both
constants and asymptotics (§6).

4.1 Setup and framework

A given policy P comprises one or more regexps, Boolean
combinations of them, and proximity checks. So Sp has one
or more subcomputations, which we denote Sg, referring to a
specified regular expression R.

The input to one such S is the payload T (of length Lt);
typically, Ly is in the thousands (the number of bytes in a
plaintext network packet). The output of a given Sg is an
array of Ly Boolean variables; slot ¢ is True if there is a
match to R ending at position ¢ and False otherwise; notice
that Sg thus captures not only whether the given R matches
any substring(s) of T but also the (ending) position of the
match(es).

Sp processes the output array produced by Sg, or multiple
such arrays if there are multiple regexps. Section 4.7 describes

that process in detail; until then, we focus on a given Sg.

Zombie encodes Sg in constraints via several translation
phases: R —+ FA — IR — (g, where (} is the constraint rep-
resentation of Sg, FA is a finite automaton, and /R is an in-
termediate representation that has Boolean logic (AND, OR,
NOT), augmented with equality and inequality tests (==, !=,
<=, etc.).

Sections 4.2—4.6 describe the main ideas in this translation:
a new string matching primitive (§4.2), Zombie’s translation
from NFAs to constraints (§4.3), a new arithmetization of
Boolean logic to substantially lower the cost of encoding
Boolean OR (at the expense of Boolean NOT) (§4.4), tech-
niques for rewriting the regular expression to admit a more
efficient translation (§4.5), a new FA formalism that memo-
izes the results of character class matching (§4.6), and finally
exploiting structure in character classes (§4.6).

4.2 Efficient string matching in constraints

Suppose R represents a fixed string, say a{k} (a repeated
k times), so Sg must determine for each ¢ € {0,...,Ly — 1}
whether the pattern appears in the payload, ending at position
£. If so, a Boolean ™ is 1 and otherwise 0. For illustration,
we skip FA, so the translations are R — IR — Cg. The IR is:

b0 = (T[f)==a) A (T[¢ — 1]==a) A--- A (T[¢ — k+1]==a).

To encode this in RICS constraints (§2), one expresses A
using field multiplication and == using EQUALS-ZERO (§2,
see also [96, Appx D]):

b, := EQUALS-ZERO(T[¢ — k + 1] —a)

b)) = b\") | EQUALS-ZERO(T[¢ —k+2] —a)

b\ = b EQUALS-ZERO(T[¢ — 1] — a)
b® := b\") . EQUALS-ZERO(T'[(] — a) 1

Notice that b() equals 1 iff there is a match, and 0 otherwise.

Of course, expression (1) is not literal constraints. To

) _ 0

produce those, one expands lines of the form b; R

EQUALS-ZERO(T'[¢ —i] — a), as follows:

bzw :bz@l “M;
M;-(T[t—i]—a) =0,

Z,-~(T[€—i]—a):1—Mi

The variable M; represents the outcome of
EQUALS-ZERO(T'[¢ — i] — a), and Z; is non-deterministically
supplied. Altogether, Sg for this pattern requires roughly 3 - k
constraints per character position, so 3-k- Lz in all.

As a more efficient alternative, Zombie introduces a prim-
itive: STRING-MATCH. STRING-MATCH exploits the observa-
tion that, in constraints, the indivisible unit (akin to a bit on a



CPU) is a finite field element, which holds many bits, and thus
conceptually “has room” for packing the information about
whether many characters matched. Letting A be the alphabet,
|A| be its size (256 for ASCII), and Sy, S, be two strings:

STRING-MATCH(S;[0]...Si[k— 1], $2[0]...S2[k — 1])

k—1
£ EQUALS-ZERO ( |A]"- (S1[d] —Sz[i])> :
i=0
Zombie replaces expression @))] with

STRING-MATCH(T [{—k+1]...T[{],a....a), which (as-
suming loose limits on k; see below) is 2 constraints per input
character, down from 3 - k. To see why, note that the argument
to EQUALS-ZERO is a weighted sum of the variables T'[i] plus
a constant term, with the weights and constant term known
at compile time. Plugging that argument into EQUALS-ZERO
keeps the constraints in R1ICS format (§2).

The loose limits are determined by the size of the alphabet
and the size of the field that the constraints are expressed
over. Assuming a field of size ¢, the maximum length of a
pattern that can be compiled into a single STRING-MATCH is
|log|5|(¢) . For our application, we consider the alphabet of

ASCII characters (JA| = 2%) and a 255-bit prime field (the
base field of curve25519 [11]); thus, patterns of at most 31
characters can be compiled into a single STRING-MATCH.

If these loose limits do not hold, the pattern compiles into
several STRING-MATCHs, connected by AND (A).

4.3 From regular expressions to constraints

Real-world systems [25, 58, 67] translate regular expressions
to executable code in two steps. First, they produce a non-
deterministic finite automaton (NFA), via Thompson’s al-
gorithm [104]. Second, they determinize the NFA to get a
DFA [101, Ch. 1]. This step represents the DFA’s state tran-
sition function as a table: an entry for every state and ev-
ery character. This representation makes execution very fast.
However, in our context, the entire exponentially-sized table
would turn into constraints, exploding proving costs.

Thus, Zombie stops after the Thompson step. Because of
its packing technique, Zombie produces FAs that have string
transitions instead of the usual character transitions. As an
example, consider the regular expression: aa(b|cc). Here is
the NFA (€ refers to the empty string; s and a are the start and
accepting states):

start

Zombie’s IR representation of this FA uses functions, one
for the final state and each intermediate state that has non-
epsilon incoming transitions. Each function encodes, for each

character position ¢, whether the FA could be in the given
state at character position £.

fo(¢) := STRING-MATCH(T'[¢ — 1]T[¢], aa)

f2(0) == fo(£ = 1) AN(T'[€]==b)

fa(€) := fo(¢ —2) ASTRING-MATCH(T[¢ — 1]T[(], cc)
Ja(l) := f2(O)V fa(0) ()

Translating a function f(-) to constraints means that each
evaluation f(0),...,f(Lr — 1) is separately translated and
possibly assigned to a constraint variable. For example,
S2(0) V f4(¢) translates to fo[(] + falt] — f2[(] - fa[€], where
f2[€] is a constraint variable that represents f>(¢). Notice that
the translation of V requires a constraint, because of the mul-
tiplication. Also, each AND (A) translates to a constraint that
multiplies (-) its terms. So, expression (2) is 9 constraints for
each position ¢ (2 for ==, 2 for each of two STRING-MATCH,
and 1 for each of the three multiplications). Notice from the
definition of STRING-MATCH earlier that the cost is relatively
insensitive to the length of the substrings. For example, if
the pattern were a{k} (b{k}|c{k}) (a k-length run of a fol-
lowed by a k-length run of b or c), then the number of con-
straints is unchanged (assuming the aforementioned loose
limits on k).

4.4 A new arithmetization of Boolean logic

Traditionally, when arithmetized—that is, translated to
constraints—Boolean logic maps True to 1 and False to O.
Letting p,q,r be Boolean variables [8, 85,94-97]:

r:=p/Aq customarily translates to: r=p-q
r:=pVgq customarily translates to: r=p+q—p-q
q:=-p customarily translates to: g=1-—p

Above, multiplication (-) and addition (4, —) are over the
underlying finite field I (§2).

Zombie introduces an alternate arithmetization: False still
maps to 0 but any non-zero value in the underlying finite field
functions as True:

r:=p/Aq now translates to: r=p-q, as above

r:=pVgq now translates to:
flow; see below)

now translates to: q = EQUALS-ZERO(p)

q:="p

For example, in (2), f,(¢) translates to f>[¢] + f4[¢], shed-
ding the term f>[¢] - fa[¢]. This concretely goes from 9 to 8
constraints.The source of the savings is that f,(¢) no longer
needs a constraint itself: any other constraint that uses f,(¢)
can substitute in the sum f>[¢] 4 f4[¢]. Notice that any such
substitution retains R1CS format (§2), whether the substitu-
tion happens in the “A”-part of the constraint, the “B”-part,
the “C”-part, or combinations thereof. That is, f>[¢] and fa[¢]

r = p+ ¢ (assuming no over-



are components of the z vector from Section 2, and their in-
clusion in a constraint simply adds 1 to the corresponding
coefficients. More generally, arithmetizations that are linear
combinations (that is, no degree-2 terms, meaning no multi-
plications of two or more variables) cost no constraints. We
will use this fact over and over again.

Consequently, OR has become mostly free: addition of
degree-1 terms, being a linear combination, doesn’t require
constraints. We say mostly because, for this to work, p+¢g
must not overflow, that is, wrap around the finite field mod-
ulus and become 0 when at least one of the summands is
non-zero. Our implementation of Zombie (§5) handles this
issue at compile time. The compiler tracks the maximum
possible value of variables and, if overflow is possible, in-
serts constraints to reduce a summand to a 0-1 term before
it has the chance to overflow. The specific constraints are
NOT-EQUALS-ZERO [96, Appx D], which maps 0 to 0 and
non-zero values to 1.

By contrast, NOT (—) has gone from free (because it
was a linear combination) to requiring two constraints, for
EQUALS-ZERO (see §2). Finally, AND (A) costs one constraint
in both arithmetizations. The overall trade, then, is to make
NOTs more expensive in exchange for free ORs.

This trade not only is a dramatic improvement but also
carries broader significance. In our context, the 9-to-8 sav-
ings in the earlier example is a restricted case; in fact, this
arithmetization has a quadratic-to-linear improvement. To
see why, consider a state that has s — 1 inbound paths, one
for each of the other states in an s-state FA. For example:
Ja(0) = fi(O)V f2(£) V-V fs—1(£). In the traditional arith-
metization, each disjunct requires a constraint with a field
multiplication, each of which costs one constraint; the total for
fa(£) in this example is s constraints. In the worst case, then,
O(s) states can each require O(s) constraints, for a total of
O(s?) constraints for each £ € {1,...Lr}. In Zombie, by con-
trast, f, would be translated into f1[¢] + f2[€] + - - -+ fs—1[{].
This costs O constraints because it is a linear combination.

Qualitatively, this arithmetization means that Zombie gains
enormously from devising IR representations that use mainly
OR, with AND entering only when necessary. Beyond Zombie,
this point applies to the constraint translation of any problem
naturally expressed with many conjunctions and disjunctions,
such as 3-SAT.

4.5 Preprocessing regular expressions

Another technique in Zombie is rewriting regular expressions
at compile time to favor longer substring matches. Doing so
exploits packing (§4.2) to reduce the number of ANDs and
the number of states in the IR. For example, Zombie rewrites
aa(blcc) as (aablaacc), yielding the following IR, which
should be compared to (2):

fo(£) := STRING-MATCH(T'[¢ — 2|T[¢ — 1]T[¢], aab)
f1(0) := STRING-MATCH(T[¢ — 3] T[¢ — 2|T[¢ — 1]T[¢],aacc)

fa(&) = fo(O)V f1(€) ©)

Whereas we saw in the previous section that the formulation
in (2) costs 8 constraints for each character position ¢, the one
in (3) costs 4 constraints (two for each STRING-MATCH).

4.6 Character classes and a new FA formalism

A common and convenient feature of regular expressions is
character classes, for example, [0-9] or [A-Za-z], which
respectively match any digit and any ASCII alphabet charac-
ter. Naively treating a character class as a union (using the |
operator) would be expensive. Although real-world regexp
frameworks have special optimizations for character classes,
these would not contribute to efficient constraint representa-
tions, for the reasons discussed at the beginning of this section.
Instead, Zombie applies several of its own optimizations.

First, Zombie deduplicates so that the costs associated with
matching to a class are paid once, even if there are multiple
instances of the class in the regular expression. To do so,
Zombie constructs a new kind of FA, one that uses “sub-FAs”
to write to separate tapes (FAs are not typically modeled
as writing to a tape) and then reads the tapes in the “main’
FA. The sub-FAs are each supposed to produce an array of
Booleans. As an example, consider the regexp [0-9]a[0-9].
Zombie produces the following IR:

>

10[¢] := MATCH-CLASS(T'[¢], [0-9])
fa(€) := STRING-MATCH(1o[¢ — 2]T[¢ — 1]1o[(], 17alr)

1 is 1 in the finite field and is used to encode the Boolean
result of MATCH-CLASS. Think of #y as memoizing the sites
of matches found by a sub-FA; notice how the values in ¢y are
reused in f,(-).

Outside of the present context, the requirement for an ad-
ditional tape would seemingly require more memory for the
prover. In our context (constraints), each extra tape saves
memory, by reducing the number of variables necessary to
represent a match to the character class.

Besides deduplication, another benefit of Zombie’s FA for-
malism is that it enables longer substring matches. The idea
is similar to the example in Section 4.5. Here, the packing
technique (§4.2), this time applied to the results of other tapes,
lets f, consist of a single STRING-MATCH. Conversely, can
we use deduplication on that earlier example? No, because
the union components were different lengths.

As another optimization, Zombie exploits structure in the
character class. For example, Zombie encodes [A-Za-z] with
only 25 constraints (fewer than the 52 characters in the class!):

MATCH-CLASS(T'[(],[A-Za-2]) =
(T[] >= A)A(T[f] <= z)A---
The elided terms check that T'[¢] is not one of the few ASCII
characters between Z and a. This approach relies on the IR

primitives <= and >=, which translate to log, |A| + 1 con-
straints [96], which is 9 if A is the 8-bit ASCII characters.



Zombie’s compiler tries to optimize the encoding of a class;
for example, treating the class [0-9] as a range with <= and
>= operators is not worthwhile. Larger classes see greater
benefit from being treated as a range.

4.7 Applying regexp-based policies in ZK
In this section, we move from considering a single Sg to a
higher-level policy P, expressed as Sp.

One-shot expressions. Consider a basic case: P is simply
whether there is a match to some R somewhere in the pay-
load. Recall that Sy is already encoded as constraints for
Sa(1) V-V fa(Ly—1)). Assuming no overflow (so the ORs
are free; §4.4), the overhead of Sp beyond Sy is two con-
straints, stemming from NOT-EQUALS-ZERO (§4.4). Zombie’s
compiler handles possible overflow as described earlier (§4.4).

Proximity. In network security, simple regexp searches can
have too many false positives. Thus, the policy P is sometimes
concerned with context: individually two patterns are not
sensitive, but close together they are. For example, a DLP
policy might disallow a pattern matching a driver’s license
number within 100 characters of strings like “driving license,”
“driver’s license,” “DL,” etc. (§6.3).

Perhaps surprisingly, Zombie can handle such policies with
very little overhead beyond the cost of matching the individual
regexps. Consider a computation Sp that returns 1 if there
are respective matches to two regular expressions R and R;
within d characters of each other. Notice that, for correctness,
all possible combinations of occurrences of the two patterns
have to result in Sp returning 1. To capture these possibilities,
Sp performs two steps. First, it takes the f, array of Ry, call it
f+» and produces a new array fr“i , which for each position ¢
holds a Boolean indicating whether there is a match within d
characters of ¢. Concretely,

-1
fl="Y fmle+k.
k=1—

d

Because each f,dl [¢] is a linear combination of existing vari-
ables, there is no cost in constraints to produce it (§4.4). Sec-
ond, Sp checks whether the entrywise product of f,dl and the
fa array of Ry, call it f;,, has any non-zero entries. This check
requires L7 4 2 constraints: one for each product, and two for
a NOT-EQUALS-ZERO applied to the sum of these products.

Thus, in total, the requirement for proximity costs an
amortized 1 constraint per character in the payload. In
contrast, naively encoding proximity as a single regexp,
(R1(-{0,d})R2) | (R2(.{0,d})R1), would introduce an extra
O(Lt -logd) constraints.

5 Implementation

Our implementation of Zombie has two main components: a
client and a middlebox. We currently support two classes of

applications. The firstis DNS filtering [49] (see also §2), as ap-
plied to the DNS-over-TLS and DNS-over-HTTPS protocols.
The second is arbitrary policies involving regular expressions,
for example DLP policies for files sent by clients via HTTPS,
applied to text files (as opposed to formats such as PDF).

5.1 ZKP implementation

Circuits. The circuits used for Zombie’s ZKPs are speci-
fied in the ZoKrates domain-specific language (DSL) [34]
and compiled to R1CS using CirC [84], a ZKP compiler
framework. The circuits comprise 1832 handwritten lines
of ZoKrates code and 630 lines automatically generated by
our own regexp compiler (which is a standalone component
that could be integrated with other projects). The handwritten
code was optimized and features a large improvement in the
encoding of Sg (§3).

The regexp compiler takes as input (a) a list of regexps
and (b) a list of proximity restrictions between pairs of reg-
exps. Using built-in knowledge of the constraint-level costs
of ZoKrates’ semantics, the compiler applies the techniques
in Section 4. The compiler is 5425 lines of C++, 463 lines of
yacc, and 50 lines of 1ex code on top of the BNFC library [1].

ZKP improvements. In implementing Zombie, we made
several improvements to CirC and the existing Spartan im-
plementation. First, we created an adapter that integrates
CirC with Spartan. We have also configured Spartan to use
curve25519 [11] as its underlying cryptographic group, a
standard choice believed to offer ~128 bits of security.

Our CirC improvements make witness generation more
efficient; in early experiments, witness generation was slower
than proof generation. We modified internal CirC data struc-
tures to prevent unnecessary memory copying, which greatly
improves performance.

We improved the Spartan prover and verifier to take full
advantage of parallelism, resulting in better performance for
generating multiple proofs even in the non-batch setting.

5.2 Client implementation

The client implementation comprises 1976 lines of Python.
When performing DNS filtering, the Zombie client acts as a
local DNS proxy. It accepts UDP DNS requests then sends
them to a recursive DNS resolver (we use Google’s 8.8.8.8
resolver [46]) over TLS (DoT [53]) or HTTPS (DoH [52]).
The web browser is configured to point to the local proxy for
DNS resolution. The client performs the channel-opening (§3)
with the Zombie middlebox on startup to set up a session.
It uses this session for as long as the recursive resolver will
allow (up to five minutes in our testing). It generates and sends
proofs, and forwards traffic to the middlebox; we ensure this
via routing tables.

Precomputation. In our implementation, the client has a
child process for precomputation (§3.1) that has lower prior-
ity than the main proxy process, constantly generating pad-
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Figure 4: Per-Packet critical and non-critical overheads (relative to a no-policy baseline) for enforcing a blocklist on DNS requests over TLS in
zero-knowledge with ZKMB [49] and with Zombie-Standard, Zombie-Precomputation, and Zombie-Asynchronous configurations.

commit proofs when the proxy is idle. When generating these
proofs (Tg.2,) (§3.1), the client has two parameters to balance.
First is the length of the pad, L., which, for each proof,
must match or exceed the size of each packet to be encrypted.
Choosing a larger Ly, will result in more proving work, but
will allow the client to send larger packets. The second pa-
rameter, m, is the number of pad-commit proofs to batch to
amortize prover and verifier work. A higher m is less likely
to be exhausted by a burst of traffic, but it risks performing
excess precomputation that might not be used. In our imple-
mentation, for DNS-over-TLS we set L,,q = 255 (the size of
DNS request payloads) and m = 16.

5.3 Middlebox implementation

The middlebox is implemented in 1595 lines of Rust. The
middlebox configures IP packet filter rules using iptables.
When packets arrive at the middlebox, they are put on a queue
implemented via libnetfilter_queue in Linux. The mid-
dlebox dequeues packets and performs the following steps.
First, it determines whether they are policy-relevant. If so, the
middlebox increments the TLS sequence number; it needs
to have an accurate count of the sequence number to verify
proofs. Then, it buffers the received packet for verification.
When the middlebox receives the proof from the client, it
links the proof to the packet by sequence number, verifies the
proof, and forwards it.

6 Evaluation

We evaluate Zombie with these questions:

(1) What are the overheads added by different configura-
tions of Zombie?

(2) How does batching improve middlebox throughput?

(3) What are the costs of different components of Zombie?

(4) How effective are Zombie’s regexp techniques?

Method, applications, and baselines. Our experiments mea-
sure client, server, and overall end-to-end delay introduced by
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Zombie, and we compare these overheads against those intro-
duced by the original ZKMB work [49]. We evaluate Zombie
for DNS filtering and DLP policies applied to traffic over
TLS 1.3. The DNS filtering benchmarks use a representative
adult-content domain blocklist from prior work [49, §8.2] [69]
(with 2 million domains). The DLP benchmarks use policies
from Microsoft DLP Purview [71].

Our experiments that require networking run on Cloud-
Lab [33] while those that do not are run on Amazon Web
Services (AWS). On CloudLab, we use c6525-25g instances.
Each has a 16-core 3GHz AMD 7302P CPU, with 128GB
RAM, SSDs, and two Mellanox 25Gb/s NICs. On AWS, we
use an instance with a 16-core 2.90GHz Intel 8375C CPU
with 128 GB RAM and SSDs. This instance has similar com-
putation resources to that of CloudLab c6525-25g.

6.1 Computational overhead and delay, no batching

We measure the overhead introduced by Zombie with respect
to a no-policy setup, in which the middlebox forwards the traf-
fic without enforcing any policy. We also compare this over-
head to ZKMB [49], via conservative estimates of ZKMB’s
performance extrapolated from microbenchmarks on the same
hardware; this is labeled “ZKMB (est.)”.

We run three configurations of Zombie, with the following
settings of precomputation and synchrony:

(1) Zombie-Standard: No precomputation, no asynchrony.

(2) Zombie-Precomputation: Precomputation, no asyn-
chrony.

(3) Zombie-Asynchronous: No precomputation, asynchrony.

We do not evaluate precomputation combined with asyn-
chrony here; asynchrony moves all overheads to the non-
critical path, so precomputation does not affect latency in this
case. Batching can be applied to all of the above; we evaluate
it separately (§6.2). We run this experiment on CloudLab and
report the average of 20 255-byte DNS requests.

Figure 4 depicts the results. Zombie-Standard incurs ap-
proximately 3 x lower latency than ZKMB. A major differ-
ence in client and middlebox work comes from the transition



from the Groth16 [48] proof system to Spartan [93] (§2). We
see additional gains from the enhancements detailed in Sec-
tion 5. The average additional latency is about 400 ms for
Zombie-Standard: approximately 350 ms for proof generation
and 50 ms for verification.

With precomputation, the average latency is lower, about
250 ms. While much worse than the average latency for a
DNS request, which is about 20 ms [86], it may still be toler-
able (§8). With optimistic approval via asynchronous verifica-
tion, Zombie introduces no additional latency. Of course, asyn-
chronous mode requires (in addition to assumptions about
policy enforcement; §3.2) additional storage requirements
for the middlebox, for buffering packets. We return to these
storage requirements when evaluating batching, as the effects
on storage are more pronounced there.

Observe that Zombie-Standard and Zombie-Asynchronous
introduce the same total per-packet overhead. This is ex-
pected: they involve proving and verifying the exact same
statements. Surprisingly, Zombie-Precomputation requires
slightly less overall per-packet overhead despite the need to
produce and verify more proofs than Zombie-Standard. This
decreased overhead is because the work to generate multiple
pad-commit proofs is parallelized in our implementation.

Turning to the communication overhead of sending proofs:
in the synchronous setting with precomputation, each online
proof is approximately 30 KB. As we will argue (§8), the
overall increase in required bandwidth is expected to be small.

6.2 Effect of batching

We investigate the effect of batching (§3.3) on the throughput
(number of (proof, packet) pairs processed per second) and the
storage requirements of the middlebox. We do not separately
evaluate batch proof size; a batch of proofs is the same size
as the sum of the non-batched proofs.

We run the DNS benchmark in a new Zombie-Async-Batch
configuration. We model each client as a Poisson process,
whose parameter is scaled by the batch size. For example, if
the batch size is 8, then we set the average interarrival time
to be 8 x longer than when the batch size is 1, and when an
arrival event happens, the client sends 8 packets. For each
batch size, as offered load increases, throughput does not col-
lapse, but instead it approaches a maximum. We interpret this
maximum throughput as the middlebox’s empirical capacity
for that particular batch size.

We measure this quantity under four batch sizes; for each
size, we average three experiments. We also create a model to
predict maximum throughput: we measure the time to verify
a single Zombie DNS proof on one thread on CloudLab, and
individually measure the execution time of the fixed cost code
block and the marginal cost code block, obtaining 121 ms per
batch and 38 ms per proof, respectively.

Figure 5 compares the empirical measurements and the
model; the divergence is around 5%. This discrepancy owes
to lower-order middlebox costs related to packet forwarding,
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Figure 5: Middlebox throughput vs batch size.

listening, and proof parsing. The maximum throughput we
observe is 380 packets per second, at a batch size of 64. Al-
though larger batches would further increase throughput, the
possible improvement levels off (even in theory); besides,
larger batches are impractical.

Batching brings additional storage requirements (to accu-
mulate ciphertexts). However, storage capacity is not a limit-
ing factor here, owing to the small size of DNS requests and
the throughput of 380 packets per second. Even if we assume
that the middlebox is exactly at capacity, never falls behind,
always has a proof to check (even if it might be waiting on
other proofs), and has a generous window of 60 seconds for
proofs to arrive after the first corresponding ciphertext in the
batch, then the middlebox would still need to store less than
6 MB of ciphertexts at any given time. This is well within the
capacity of even the smallest of middleboxes [83].

6.3 Circuit benchmarks

To pinpoint the costs of individual components, we run the
prover and verifier in isolation on AWS, taking the average of
5 executions, for various circuits. Figure 6 shows the results.

DNS-related circuits. The first five rows are related to the
DNS blocklist policy. The first and second rows serve to com-
pare Zombie and ZKMB, using the same circuit as the one for
the Zombie-Standard and Zombie-Asynchronous benchmarks
in Figure 4. We see a significant reduction in the number of
constraints in Zombie, which owes to the optimizations men-
tioned in Section 5; thus, the performance gain in Figure 4
for Zombie results not only from the Spartan back-end but
also our optimizations. The total number of constraints for the
third row is less than one-third of the number of constraints
in the second row, indicating that the dominant cost in our
implementation of Zombie-Standard is Sg». The sum of the
constraints in the fourth and fifth rows (measuring offline
and online cost with precomputation) is slightly larger than
the number of constraints in the second row; this is expected
because there is extra work to commit to padsy (Figure 3).

Regexp circuits. The last four rows of Figure 6 include
costs for a DLP benchmark. This benchmark combines five
Microsoft Purview policies for detecting sensitive information
in the US locale: bank account number [72], driver’s license



Benchmark: Circuit description and size

Sk Sr Sp Payload Size Constraints  Prover Time  Verifier Time Memory  Proof Size

E2 DNS Blocklist 255B 176000 1200 ms 2 ms - 128 B
E.2 DNS Blocklist 255B 128702 365.4 ms 39.8 ms 531.8 MB 30.2 KB
DNS Blocklist 255B 40295 191.2 ms 29.8 ms 212.3 MB 21.3 KB

E.2a 255B 86568 278.0 ms 36.4 ms 377.2 MB 30.2 KB
E.2b DNS Blocklist 255B 48562 221.4 ms 31.2 ms 258.5 MB 21.3 KB
E2 HTTP  Microsoft DLP 100 B 64438 207.0 ms 29.0 ms 225.7 MB 21.3 KB
E2 HTTP  Microsoft DLP 2000 B 1186241 6363.8 ms 319.6 ms 10114.6 MB 49.1 KB
HTTP  Microsoft DLP 100 B 20080 112.2 ms 23.2 ms 89.2 MB 20.5 KB

HTTP  Microsoft DLP 2000 B 490966 4909.0 ms 245.4 ms 8402.9 MB 48.0 KB

Figure 6: Costs of various circuits in Zombie. The first row shows estimated overheads for the prior work, ZKMB [49], using the Groth16 [48]
back-end (§2). Memory is a single column because the prover and verifier have the same memory requirements with the Spartan back-end.
Blank cells indicate that a subcomputation of that type is not included in that row’s benchmarked circuit.

number [73], taxpayer number (ITIN) [74], social security
number [75], and passport number [76]. These policies use
substring matches, regular expressions, and proximity checks.
A message must pass all five to pass; for brevity, we refer to
the overall policy simply as “Microsoft DLP”. We encode this
policy using Zombie’s regexp pipeline (§4-§5) and bench-
mark it on HTTP POST messages of varying sizes.

Per byte, the cost of this policy is 25-50% more expensive
than the DNS blocklist benchmark. This can be seen by com-
paring the DNS blocklist (no Sg») and HTTP Microsoft DLP
(no Sg) rows, and dividing the metrics by the payload size.
The result is approximately 200-245 constraints per byte for
DLP and 160 constraints per byte for the blocklist.

Packet size brings a complication. However, this is not
because of latency, which scales linearly with packet size, so
overall latency is driven by total bytes (in a policy-relevant
flow), rather than the distribution of bytes over packets. The
main issue with packet size is in memory consumption, which
scales linearly with circuit size, and reaches into the GB in
our experiments (Figure 6). The mitigant is that the memory
cost is paid once per circuit, and circuits are reusable, creating
benefit from small packets. Concretely, using a circuit for
a 100-byte packet 20 times is much better for middlebox
memory than using a circuit for a 2000-byte packet once.

Regexp circuit techniques. Figure 7 depicts the results of
each of our regexp techniques in more detail. We show the
decrease in per-byte overheads from incrementally applying
the optimizations discussed in Section 4. We use the Microsoft
DLP policy for these benchmarks and exclusively consider
the Sp subcomputation.

For this policy, our optimizations reduce the per-byte over-
head by almost an order of magnitude, from over 20 ms per
byte to under 2 ms per byte. The most substantive improve-
ments come from STRING-MATCH (§4.2) and from creating
multiple tapes (§4.6).

To contextualize these costs, we compare them to the per-
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Techniques # Constraints  Prover time  Verifier time
Baseline 1566 /B 19000 ms 1400 ms

+ STRING-MATCH 996 /B 11000 ms 860 ms

+ Alt Arithmetization 901/B 10000 ms 760 ms

+ Regexp Preprocessing 873 /B 9800 ms 740 ms

+ Additional Tapes 288/B 2300 ms 160 ms

+ Optimized Classes 242 /B 1705 ms 38 ms

Italicized entries indicate estimates.

Figure 7: Effect of techniques, in the order they are introduced in
Section 4, on the Microsoft DLP policy (1 KB payload). The final
line is the result of running CirC on the zok file produced from all
optimizations. The times in the other lines are estimates from the
compiler with all prior optimizations enabled and all subsequent
optimizations still disabled.

byte overhead of decryption, approximated by fixing a pay-
load size, subtracting the costs for a given row without Sg
from the corresponding cost with Sg» (or by looking at the
Sk24 row), and dividing by the payload size. The result is 348
constraints per byte, which should be compared to the 242
constraints per byte at the bottom of Figure 7 (down from
1566, at the top of the figure). That is, after the techniques in
Section 4, the dominant cost is no longer regular expression
handling but rather representing decryption in the circuit.

7 Related work

Systems built using probabilistic proofs. Probabilistic
proofs are a foundational concept in complexity theory with a
deep and rich literature [6,7,9,42,43]; for a survey, we recom-
mend Goldreich [41]. The last decade has seen rapidly grow-
ing interest from the applied cryptography community, with a
particular emphasis on zero-knowledge proofs. For a survey,
we recommend Walfish and Blumberg [117] or Thaler [103].

Zombie is part of a growing line of work applying proba-



bilistic proofs to solve practical problems, such as privacy-
preserving payments [28, 91] private smart contracts [15,
19, 57], proofs of solvency [4, 27], verifiable delay func-
tions [14,55], proofs of software vulnerability [26] and cryp-
tographic transparency logs [21, 107, 108]. Of particular rele-
vance to our work are DECO [123] and Reclaim [100], which
employ probabilistic proofs about TLS plaintext. However,
both systems aim to prove statements about a TLS session
(e.g. “My bank account balance is greater than $X”’) to an out-
of-band third party, rather than an in-band middlebox. This
makes the proof more challenging, as the verifier needs to
be convinced that the claimed ciphertext really came from a
session with the claimed server. To solve this, DECO relies
on multiparty computation between the client and a third-
party notary. However, these applications do not face tight
latency constraints, as ZKMBs do, enabling much different
performance tradeoffs.

Regular expressions in zero knowledge. Zombie intro-
duces a portfolio of techniques for encoding regular expres-
sions in probabilistic proofs. Previous to Zombie, the ap-
proach taken [3] was direct translation of a DFA, with ex-
ponential costs. We are aware of only two other works, both
concurrent with Zombie, that improve on the exponential base-
line; like Zombie, both target network security applications.

Exciting work by Luo et al. [68] transforms a regular ex-
pression to a Thompson NFA [104], like Zombie does (§4.3).
Unlike Zombie, Luo et al. transform the NFA to a Boolean cir-
cuit and then use MPC-in-the-head [29, 54]. In addition to the
setting where the client knows the policy, Luo et al. also con-
sider the setting where the middlebox wants to keep the policy
private but still apply it to the client’s traffic. This part of their
application thus has a significantly different performance pro-
file than ours (an extra logarithmic term is introduced in the
size of the regexp, and extra overheads are incurred to pre-
serve the privacy of the policy itself.) Additionally, because
most of our optimizations rely on constraints over large finite
fields while theirs are tailored Boolean circuits, the respective
techniques do not seem to be applicable to each other. While
a detailed comparison has yet to be done, Zombie appears to
have an order of magnitude lower communication cost (proof
size) and computation (prover time) in the public policy case.

The other concurrent work, zkreg [89], compiles a large
collection of regular expressions (mostly string matches) into
an Aho-Corasick automaton [2], encodes this automaton as an
arithmetic circuit, and then uses a custom Commit-and-Prove
scheme [20] to prove membership and non-membership in
zero knowledge on extremely large dictionaries of strings. For
example, they consider proofs involving an automaton with
19 million states and over 300 million transitions. To handle
an automaton this large, they represent it as a multiset of
transitions and handle transition checking partially using set
membership. This incurs a significantly higher computational
overhead than our transition checking, but it scales far better
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for large automata (for which it is explicitly designed). Future
work is to investigate ways of combining relevant techniques
in zkreg with Zombie to efficiently support larger policies.

Middlebox architectures. Many proposed middlebox ar-
chitectures aim to enforce policies on encrypted traffic. For
helpful surveys, we refer the reader to Sherry [99] and Naylor
et al. [78]. Work prior to ZKMB [49] largely falls into two
broad categories:

Trusted hardware. ETTM [31] first proposed shifting pol-
icy enforcement logic from middleboxes to network users
(end hosts) themselves. This requires trusted hardware to as-
sert that a virtual machine run by the end host is faithfully
checking that the plaintext is policy-compliant. Endbox [44]
refined this vision using the then-emerging trusted execution
environment (TEE) abstraction, specifically using Intel’s SGX
implementation. An obvious limitation is that all users must
have a TEE to take advantage of this approach.

mbTLS [78] proposes relying on a TEE at the middlebox
itself, acting as a middleperson (MITM) between a TLS ses-
sion established with the client machine and one with the
server (which can also be extended to multiple hops). This
undermines the typical end-to-end nature of TLS, but if the
TEE remains secure users can trust that their plaintext will
only be used by the TEE for policy checks. Another approach
is to shift policy enforcement from a local middlebox to a
TEE run on a cloud server [51,87,105]. Other works, too, rely
on trusted hardware [32,45,50,59,118].

We wish to avoid trusted hardware, given the cavalcade of
exploits demonstrated against real-world TEE implementa-
tions [36,47,77,80,92,102, 109-112], using information like
power consumption or electromagnetic emanations to extract
secrets from an enclave non-invasively. One might note that
zero-knowledge prover implementations can also be subject to
side-channel attacks [40, 106]. However, there is a subtle but
essential difference: TEE-based middleboxes inherently re-
quire running code with access to secrets in an enclave that is
placed under the direct control of an adversary, for example a
policy-enforcing enclave hosted by a client machine (where a
TEE break undermines integrity) or an enclave with access to
decryption keys hosted by the middlebox (where a TEE break
undermines privacy). Either setup makes side-channel attacks
considerably easier to mount, versus the ZKMB paradigm,
in which the relevant adversary (for example, the network
administrator) is remote from the party executing the relevant
algorithm (for example, the ZK prover).

TLS modifications. Several proposals to reconcile
widespread TLS adoption with network policy enforcement
envision modifying TLS to make it “middlebox-aware,” with
middleboxes gaining the ability to read and/or modify some
(but not necessarily all) of the plaintext data sent in a TLS
connection and users typically getting some visibility into
the process [10, 12,64,65,78,79, 121]. An example is “multi-
context TLS” or mcTLS [79], with different middleboxes on



the network path receiving context-specific keys based on the
permissions the client and server are willing to grant. In the
case of DNS filtering, a middlebox might require read-only ac-
cess to the request body of a DNS query. While this approach
enables finer-grained tradeoffs than disabling encryption com-
pletely, it is still a blunt instrument that sacrifices user privacy
considerably; in the DNS example users fully give up privacy
of their query history. It also requires server-side changes.

Blindbox [98] proposed modifying TLS to support policy
enforcement by middleboxes. Specifically, Blindbox supple-
ments the standard, semantically-secure symmetric encryp-
tion used in TLS with searchable encryption. This second
ciphertext, along with techniques from circuit garbling and
oblivious transfer, allows middleboxes to obliviously execute
policy checks on ciphertext, specifically tailored to searching
for keywords in text. A rich line of follow-up work extends
this basic model [35,56,61-64,66,81, 82,88, 122].

All of these works use some variant of functional encryp-
tion, which allows middleboxes to compute a limited function
of the underlying plaintext, with different proposals tailored
to different functionality. These works all face the challenging
requirement of changing TLS servers, as well as relying on
servers to check consistency of the TLS plaintext and that of
the supplemental functional encryption (without this check,
clients might send policy-violating traffic over TLS but ap-
pend a functional encryption of benign traffic to satisfy the
middlebox). A key goal in our work is not to require changes
to, or participation of, existing TLS servers (§1).

8 Discussion

Zombie is 3x cheaper than its progenitor ZKMB [49], with
an overhead of 406 ms for enforcing a blocklist on DNS re-
quests over TLS (§6.1). Assuming client idle time, this drops
to 256 ms, via precomputation. This number may be tolerable
for DNS filtering; by comparison, traditionally satellite Inter-
net connections have added at least 600 ms of latency [13]
(though, to be fair, modern low-earth-orbit satellite Internet
service offer significantly lower latency, as low as 25 ms [70]).
Regardless, under optimistic approval, there is zero online
overhead (§6.1). Zombie is thus plausibly practical for clients.
Also, our regular expression techniques allow for new poli-
cies in the ZKMB paradigm, reducing the cost of enforcing
complex policies to the point where the dominant cost is
decryption (§6.3).

Although the communication overhead of 30 KB per
proof (§6.1) is 120x larger than 255-byte DNS requests, the
proof size is small when compared to the average website size
of 2-3 MB [5]. Furthermore, these proofs are transmitted only
from client to middlebox, which are typically on the same
local network. Moreover, Zombie is best geared to settings
where most packets do not need proofs (see below), so the
overall increase in bandwidth is expected to be small. Mem-
ory requirements at prover and verifier are an issue but are
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mitigated by small packets (§6.3).

The real snag is the middlebox’s resource requirements,
independent of configuration. Despite batching, which can
experimentally increase throughput by almost 5x, the mid-
dlebox still requires at least 38 ms per packet on a single
thread (§6.2), which is too high for most applications.

Consequently, Zombie is not truly practical outside of a few
specific use cases: policy-relevant traffic must be a small frac-
tion of all traffic, with small packets, and ideally occurs over
multi-packet flows, to amortize channel opening (§3). Two
promising examples are enforcing policy over DNS requests
and over search engine queries.

Apart from performance, a number of concerns remain for
real-world deployment. Zombie only supports public, state-
less, read-only policies. Although confidential policies with
zero-knowledge middleboxes are possible in principle [49],
they require extra round-trips, and composing them with
batching and asynchrony is an open challenge. Supporting
stateful and write-based policies in the ZKMB framework is
also conceptually possible, but we leave this to future work.

To deploy and update Zombie, clients need to learn the
setup, such as the proving algorithm and the subcomputa-
tions (§3), when they first connect to the network. This ma-
terial can be supplied or stored in browsers or as a required
download to use the network.

To avoid barring honest clients from the network, the mid-
dlebox needs to handle dropped packets and proofs gracefully.
One option is for the middlebox to send an acknowledgment
when it receives a proof. If the client does not receive a timely
acknowledgment, it will know to resend the proof. Another
concern is soundness under load: the middlebox cannot sim-
ply skip verification, say if it runs out of storage (§6.2). Instead
it must drop proofs and packets, and expect clients to resend.
In the asynchronous setting, the middlebox can go so far as
to request batch proofs from specific clients when it has freed
up space for them.

Finally, the middlebox needs a way to identify, and deal
with, clients who violate policy. This concern is not specific
to the ZKMB paradigm, and is left to network administrators.

Ultimately, despite the sometimes equivocal performance
results, Zombie has taken a substantial step forward in demon-
strating the possible practicality of the ZKMB paradigm.
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A Details of SpartanBatch

A.1 Spartan protocol details

This section provides a sketch of the Spartan algorithm, fo-
cusing on the parts relevant to our extension of it to support
batching.

For an RICS instance C with matrices (A, B,C) and public
input X, public output Y, and witness W, Spartan works by
transforming the validity check for (X,Y) into a polynomial
that equals zero at every point if (and only if) (X,Y) satisfies
the constraints C. This polynomial is large, and some of its
coefficients are elements of W, so the verifier cannot do this
check itself; instead, the prover and verifier engage in a sub-
protocol that lets the verifier check whether the polynomial is
zero efficiently, by evaluating it at a random point. The details
of this process are unimportant for us, save for one: in the
last step of the subprotocol, the verifier must evaluate spe-
cial polynomial encodings (a multilinear extension) A, B,C
of each R1CS matrices A, B,C at a random point. These eval-
uations are the most expensive part of the protocol for the
verifier; in fact, they are asymptotically as expensive as re-
running the entire computation. The random point that the
polynomial encodings are to be evaluated on is of the form
(ry,ry) Where ry, 1y, € F1°2" and each element of the r, and r
is a random value provided by the verifier in some step of the
protocol.

In the non-interactive version of Spartan, these are chosen
by hashing prefixes of the proof as the prover generates it (that
is, via the Fiat-Shamir transform [37]). We observe that, since
these expensive evaluations: A(ry, ry), B(ry,ry), and C(ry, ry),
depend only on the R1CS statement and not the input (in our
setting, the ciphertext), they can be done just once for a batch
of proofs as long as each of their respective subprotocols
“coordinate”, that is, use the same ry, 7, values. We ensure this
by having the prover hash the prefixes of each proof in the
batch together, instead of separately. (Some hashing steps in
Spartan generate randomness that is not part of r, or ry; we
do not batch generate randomness for these steps.) We call
the resulting protocol SpartanBatch.

Below, we show SpartanBatch retains the security guaran-
tees of Spartan; in particular, we show that a malicious client
has about the same (very low) probability of proving a false
statement with SpartanBatch as it does with Spartan. Our
analysis is based on analogous results for AND-composition
in X-protocols and related results [95, 113].

A.2 SpartanBatch and its security proof

We can define (interactive) SpartanBatch from (interactive)
Spartan below. Applying the standard Fiat-Shamir heuristic
results in the non-interactive version described above. (Inter-
active) SpartanBatch is b parallel instances of (interactive)
Spartan with the verifier following two different methods
depending on the step involved:

* Coordinated steps are those where the verifier provides
a random value that is an element of r, or r, (which
are each in F'°8"), and thus part of the evaluation point
(ry,ry) for the polynomials A,B,C in the final step of
Spartan’s verification algorithm. In these steps, the Spar-
tanBatch Verifier provides a single random value that is
taken to be the response to all b parallel instances.

» All other steps are uncoordinated. Here, the verifier
provides a b-tuple of independent responses, one for
each parallel proof.

The analysis below is based on that of similar techniques
applied in other proof systems [95, 113].

Theorem 1 SpartanBatch is a succinct non-interactive argu-
ment of knowledge for the language L”, where b is the batch
size.

Proof:

We analyze the interactive version of SpartanBatch, noting
that all the properties proven below are retained when using
the standard Fiat-Shamir heuristic to obtain non-interactivity.

Completeness: The verifier for SpartanBatch can be seen as
performing the checks of b separate Spartan verifiers. Com-
pleteness is thus immediate from the completeness of Spartan.

Soundness: Using an argument similar to standard AND-
composition analysis in X-protocols, we show that the sound-
ness error of SpartanBatch is ar most the soundness error (€)
of Spartan. The proof proceeds by contradiction. Assume that
there exists a false instance x* ¢ £ and a SpartanBatch prover
Pp that produces a convincing proof of a batch of statements
X* = {x*,x,,...,xp} with probability > 1 — & (we place the
false instance in the first position without loss of generality).
We use Pp to construct a Spartan prover P that convinces a
Spartan verifier V of the same false statement x* with the
same probability.

In this reduction, P doubles as the SpartanBatch verifier when
interacting with Pg: that is, (P,V') run an instance of Spartan
on input x* while (Pg, P) run an instance of SpartanBatch on
input X *. The reduction proceeds as follows:

* When Pp provides a tuple of values, P forwards the value
corresponding to the false instance (here, the first one)
toV.

* When V sends randomness r, P forwards the following
to Pp based on the step:
— In coordinated steps: P forwards r.

— In uncoordinated steps: P sample randomness
ry,...,rp and forwards (r,ry,...,7p).



Thus, if Pp passes the SpartanBatch verification checks, P
must pass the Spartan verification checks. This is a contradic-
tion as Pp was assumed to pass with probability > 1 —&.

Zero-knowledge: Like Spartan, SpartanBatch being a public-
coin interactive protocol allows us to leverage existing com-
pilers to satisfy zero-knowledge [116].

Knowledge soundness: We prove the stronger notion of
witness-extended emulation. As this property is satisfied by
Spartan, we have an emulator E that interacts with any Spar-
tan prover P as an oracle and is allowed to rewind P to any
step and resume with new verifier randomness. Using E, we
construct Ef? that runs on input X = {x,...,x} interacting
with a SpartanBatch prover Py as follows:

Forie0...b:
e Ep runs emulator E on input x;.

¢ When E sends randomness r to its oracle, Eg sends the
following values to its oracle Pp based on the step:

— In coordinated steps, Ep forwards value r.

— In uncoordinated steps, Ep forwards a b-tuple with
value r in position i and freshly sampled random-
ness in all other positions.

* When Pg responds with a tuple of values, Ep forwards
the value at position i to E as a response to E’s oracle

query.

e When E rewinds its prover P to a step, Ep rewinds Pp
(and thus rewinding all parallel instances in the batch)
to that step, as well.

This way, Ep accurately simulates the required oracle for
E and thus has it extract witness w; for all inputs x; in the
batch. As Ep sequentially runs E on b inputs, Ep also runs in
expected polynomial time when b is a constant.
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