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ABSTRACT

A Chor–Goldreich (CG) source is a sequence of random variables

- = -1 ◦ . . . ◦ -C , where each -8 ∼ {0, 1}3 and -8 has X3 min-

entropy conditioned on any �xing of -1 ◦ . . . ◦-8−1. The parameter

0 < X ≤ 1 is the entropy rate of the source. We typically think of

3 as constant and C as growing. We extend this notion in several

ways, de�ning almost CG sources. Most notably, we allow each -8
to only have conditional Shannon entropy X3 .

We achieve pseudorandomness results for almost CG sources

which were not known to hold even for standard CG sources, and

even for the weaker model of Santha–Vazirani sources: We con-

struct a deterministic condenser that on input - , outputs a distri-

bution which is close to having constant entropy gap, namely a

distribution / ∼ {0, 1}< for< ≈ X3C with min-entropy< −$ (1).

Therefore, we can simulate any randomized algorithm with small

failure probability using almost CG sources with no multiplicative

slowdown. This result extends to randomized protocols as well,

and any setting in which we cannot simply cycle over all seeds,

and a “one-shot” simulation is needed. Moreover, our construction

works in an online manner, since it is based on random walks on

expanders.

Our main technical contribution is a novel analysis of random

walks, which should be of independent interest. We analyze walks

with adversarially correlated steps, each step being entropy-de�cient,

on good enough lossless expanders. We prove that such walks (or

certain interleaved walks on two expanders), starting from a �xed

vertex and walking according to -1 ◦ . . . ◦ -C , accumulate most of

the entropy in - .

CCS CONCEPTS

• Theory of computation→ Pseudorandomness and deran-

domization; Random walks and Markov chains; Expander graphs

and randomness extractors; Complexity classes.

∗The full version of the paper is given in [24].
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1 INTRODUCTION

Randomness is an incredibly useful resource. The use of randomness

is sometimes provably essential (e.g., in cryptography or property

testing), and sometimes we conjecture it is not, prominently in

time-bounded randomized algorithms. Yet, it is often the case that

randomized algorithms outperform deterministic ones. However,

true randomness is scarce, and often wemay only be able to access a

weak, defective source of randomness. This motivates the problem

of simulating randomized algorithms that expect to receive true

randomness, using only weak sources of randomness.

The most natural way to use a weak random source is to convert

it into a high quality random source. An extractor does exactly this.

Speci�cally, a (deterministic) extractor for a class of sources X over

= bits is a function Ext : {0, 1}= → {0, 1}< such that for any - ∈ X

it holds that Ext(- ) is close, in total variation distance, to*< , the

uniform distribution on< bits. Deterministic extractors are only

possible for some restricted classes of sources.

For general sources X, randomness extraction is possible with

the addition of a short random seed . ∼ {0, 1}ℓ , independent of - .

It is not hard to see that simulation of randomized algorithms given

a weak randomness source can be done by cycling over all seeds;

see the well known [24, Lemma 2.10]. For a running time ) , that

simulation takes 2ℓ () + CExt) time, where CExt is the time it takes

to compute the extractor. Since typically CExt ≤ ) , we denote by 2ℓ

the simulation’s slowdown, and naturally we want to minimize it.

Generally, the distributions that we could hope to extract from are

modeled as an arbitrary probability distribution with some amount

of min-entropy [15, 45], also known as :-sources.1 Unfortunately,

1We say that - is a :-source if its min-entropy is at least : , i.e., if every sequence G

occurs in - with probability at most 2−: .
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we have a lower bound of ℓ ≥ log= +$ (1) on the seed length of ex-

tractors for arbitrary :-sources over = bits, so simulating BPP with

weak sources using extractors must incur at least Ω(=) slowdown.2

Previous research focused on two extremes: sources where de-

terministic extraction is possible, and hence there’s a negligible

slowdown, and simulations giving an Ω(=) slowdown. A basic nat-

ural question is to ask whether anything can be done in between

these extremes.

1. Are there natural weak sources where deterministic extrac-

tion is impossible, but where an > (=) or even constant slow-

down is possible?

It turns out that an a�rmative answer to this question can be

inferred from previous results, as we will discuss later. However, for

some applications, such as in one-shot scenarios like cryptography

and interactive proofs, one cannot cycle over all seeds. In other

applications, even a constant slowdown is undesirable. In such

settings, a deterministic transformation is essential. We therefore

ask what is feasible deterministically.

2. Are there natural weak sources where deterministic extrac-

tion is impossible, but nevertheless it is possible to deter-

ministically transform the source into a random variable

that is essentially as useful as uniform randomness in many

settings?

We answer this question in the a�rmative for Santha-Vazirani

(SV) and Chor-Goldreich (CG) sources, and generalizations of such

sources, which we call Shannon CG sources and almost CG sources,

by giving constructions of deterministic condensers with constant

entropy gap.

Additionally, in some situations one may not know the ultimate

length of a weak random source, or one may wish to extend the

length of a given transformed random variable while preserving

its useful properties. This leads us to ask:

3. Can the deterministic transformations from Question 2 be

computed in an online manner?

This online extraction question is of interest in cryptography [18,

19]. We also answer this question in the a�rmative for our gener-

alized notions of CG sources.

Our algorithms take a very natural approach: perform a random

walk using the source as a sequence of instructions. For arbitrary

sources with entropy rate 1/2, a random walk may not mix at all:

each random step may be followed by an adversarial step that

reverses the random step. This raises the question:

4. Do random walks mix well in some sense for any natural

weak sources with entropy rate below 1/2?

We show that indeed it is possible to get good mixing properties for

random walks using SV sources and their generalizations. That is, for

an adversarial random walk on a su�ciently high quality expander,

it su�ces that each step has a small amount of fresh entropy for the

walk to mix quite well. We give an overview of our analysis, which

2Note that the slowdown is (at least) linear in =, and the number of random coins is
< < =. The di�erence between = and< naturally depends on the entropy : that the
source has. For the precise lower bounds on the parameters of extractors for arbitrary
:-sources, see [34]. In terms of explicit results, for : = Ω (=) , a simulation with linear
slowdown follows from [46], and for arbitrary :-s we can get a polynomial slowdown
(e.g., from [29, 32]).

is readily applicable even beyond the scope of pseudorandomness,

in section 6.

2 SANTHA–VAZIRANI SOURCES AND

CHOR–GOLDREICH SOURCES

Santha–Vazirani (SV) sources [39] are sequences of random bits in

which the conditional distribution of each bit given the previous

ones can be partially controlled by an adversary. Namely, - =

-1 ◦ . . . ◦ -C , each -8 ∼ {0, 1}, is a X-SV source if for any 8 and any

pre�x 0 ∈ {0, 1}8−1 and1 ∈ {0, 1}, it holds that Pr[-8 = 1 |- [1,8−1] =

0] ≤ 1 − X/2.3 Chor and Goldreich [15] generalized the SV model

by considering each -8 ∼ {0, 1}3 and assuming that no sequence

of 3 bits has too high a probability of being output. Formally, - is a

X-CG source if for any 8 and any pre�x 0 ∈ {0, 1}3 (8−1) , it holds that

�∞ (-8 |- [1,8−1] = 0) ≥ X3 , where�∞ denotes the min-entropy. We

typically think of 3 being constant and C growing.4

Santha and Vazirani showed that there is no deterministic ex-

tractor for SV sources that’s better than outputting the �rst bit5

[39] (see also [38]). Chor and Goldreich showed an even stronger

result for CG sources.

Theorem 2.1 ([15]). The class of X-CG sources does not admit

deterministic extraction.

We �rst observe that a constant-length seed su�ces to extract

from CG sources (and thus SV sources). The proof is actually given

in [33, Lemma 10], although there is no theorem statement to this ef-

fect (because the focus in [33] was on general min-entropy sources).

Theorem 2.2 (follows from [33]). For any constants 0 < Y, X ≤

1, there exists an Y-error extractor for X-CG sources, with seed length

ℓ = $ (1).

This was improved to CG sources with subconstant X in [41,

Lemma 5.3], but again there is no theorem statement. Since we

believe many are not aware of this result, for completeness, we

include a proof in [24, Appendix A.2] that puts it in a more general

framework.

By the previously mentioned connection, Theorem 2.2 gives a

simulation using CG sources with constant slowdown.6 However,

there are scenarios where even constant seed is undesirable. This

work shows that there is a way to deterministically transform such

generalized CG sources, in an onlinemanner, into a random variable

that is essentially as useful as a nearly uniform random variable in

many scenarios. In a bit more detail, surprisingly, we show that

one can simulate low-error randomized algorithms, and in general

biased distinguishers, in a “one-shot” manner. In particular, we have

the following theorem.

3We denote - [1,8−1] = -1 ◦ . . . ◦ -8−1 . Note that the -8 -s are not assumed to be

independent.
4This is in contrast with “block-sources”, which is the term often used when C is very
small and 3 is large.
5We note that some variations of SV sources do admit better deterministic extraction.
See [6].
6We give a brief overview of the construction of Theorem 2.2. Given -1 ◦ . . . ◦-C ,
we use a constant-sized seed . to extract, in a “strong” sense (say, using universal
hashing) a uniform /1 from - [1,0] where 0 = $ (1) . Then, we use /1 as a seed to

extract from - [0+1,1 ] to get /2 , where [0 + 1, 1 ] is roughly twice as long as [1, 0].

Continuing this way for B = $ (log C ) times, we use /B as a seed to extract from a
su�x of - of length Ω (3C ) . The output of the �nal extraction is the output of the
extractor.

2
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Theorem 2.3 (informal; follows from Theorem 3.2). There

exists a deterministic, e�cient, function Cond such that the following

holds. Given a X-CG source - = -1 ◦ . . . ◦-C , each -8 ∼ {0, 1}3=$ (1) ,

for any randomized algorithm � and any inputF such that �(F,~)

errs with probability $X,3 (Y
2) (over a uniform ~ ∼ * ), it holds that

�(F,Cond(G)) errs with probability Y (over G ∼ - ).

The one-shot simulation via CG sources (and later we will see

that such a simulation is possible with a much richer class of

sources) is possible in light of our deterministic condensers, which

are overviewed in section 3 (see also the discussion in section 4).

We continue with the very natural generalization of CG sources

that we study.

Shannon CG Sources. Instead of requiring that each -8 , condi-

tioned on every pre�x, has at least X3 min-entropy, we only require

the conditional -8 have X3 Shannon entropy.7

While Shannon CG sources seem more general than the almost

CG sources we de�ne next, it turns out that strong enough results

for almost CG sources imply results for Shannon CG sources. Thus,

much of the technical focus of this work is on almost CG sources,

with the case of Shannon CG sources following as a corollary.

Almost CG Sources. Instead of requiring that each -8 , condi-

tioned on every pre�x, has at least X3 min-entropy, we only require

the conditional -8 to be W-close to some source with entropy rate X .

De�nition 2.4 (almost CG source, I). We say that- = -1 ◦ . . . ◦-C ,

each -8 ∼ {0, 1}3 , is a W-almost X-CG source if for any 8 and any

pre�x 0 ∼ - [1,8−1] , it holds that -8 |
{

- [1,8−1] = 0
}

is W-close, in

total variation distance, to a source with X3 min-entropy.

The de�nition of almost CG sources is also quite natural. In

particular, considering W-s which can be much larger than 2−3 is

very natural and has several advantages. In particular, it is often the

case that the -8 -s are a result of some prior transformations, which

almost always incur some error. In fact, we already demonstrate

such an example in this work. In subsection 6.2, we will see that

in order to condense from an (almost) X-CG source, we will �rst

“condense" the original source into a W-almost X ′ CG source with

X ′ > X , and some W > 0. In Theorem 5.3 we will further extend our

de�nition of almost CG sources.

The techniques of [33] also work to give a constant-seeded ex-

tractor for almost CG sources as de�ned in Theorem 2.4.

Theorem 2.5 (see Section A.3 of [24]). For any constants 0 <

Y, X,W ≤ 1, and W ≥ 0, there exists an Y-error extractor for W-almost

X-CG sources, with seed length ℓ = $ (1).

For the formal statement, see [24, Corollary A.8]. Although this

generalization is not hard, we stress that it was not known, and

in particular requires some observations about almost CG sources

provided in this work (see [24, Lemma 3.3]). Later on, we’ll discuss

even further extensions of CG-sources, for which the techniques of

[33] completely fail, while ours do not.

7Recall that one always have that � (- ) ≥ �∞ (- ) , for � ( ·) being the Shannon
entropy. In fact, one can easily �nd - -s with nearly maximal Shannon entropy, but
extremely low min-entropy, or even smooth min-entropy.

3 DETERMINISTIC CONDENSING FROM

ALMOST CG SOURCES

Recall that we have the following parameters:

(1) 3 is the length of each block, and C is the number of blocks

(so - is distributed over = = 3C bits.);

(2) Each block -8 is W-close to having X entropy rate; and,

(3) < denotes the output length of our extractor (and later con-

denser).

Later, wewill study two additional extensions for CG sources: Those

with some _-fraction of damaged blocks, for which we have no

guarantee, and those in which for every good block, it is only

guaranteed that all but some d-fraction of pre�xes give rise to a

(close to) high-entropic block.

While an extractor aims to purify a weak source - into a nearly-

uniform source, a condenser aims to improve the source’s quality,

namely by increasing the entropy rate [35]. Formally,

Cond : {0, 1}= × {0, 1}ℓ → {0, 1}<

is a (: ′, Y) condenser for a class of sourcesX distributed over {0, 1}=

if for any - ∈ X and an independent and uniform . ∼ {0, 1}ℓ , it

holds that Cond(-,. ) is Y-close to a source with : ′ min-entropy.

When ℓ = 0, we say the condenser is deterministic (or seedless), and

that X admits deterministic condensing.

The entropy rate of a condenser is :′

< , and we want it to be larger

than :
= , where : is the min-entropy in each - ∈ X. When the rate

is very close to 1, i.e., when : ′ is very close to<, it makes sense to

measure the additive di�erence< − : ′.

De�nition 3.1 (entropy gap). The entropy gap of a random variable

/ ∼ {0, 1}< is Δ = < − �∞ (/ ). We say that a (: ′, Y) condenser

Cond has entropy gap Δ if its output is Y-close to a source with

entropy gap Δ. (Note that an extractor has entropy gap 0.)

Condensers were proven incredibly useful as building blocks for

extractors (e.g., in [5, 29, 36, 42, 46]). Regardless, they are also of

great independent interest, because:

(1) They can achieve parameters that are unattainable for ex-

tractors, and in particular,

(2) There are classes of sources that admit deterministic con-

densing and (provably) do not admit deterministic extraction.

For item 1, we give as an example the fact that for arbitrary weak

sources, condensers can achieve smaller entropy loss8 and a smaller

seed length. The latter fact was used for the construction of full-

�edged extractors and pseudorandom generators (see [8, 23]).

Our focus in this work is on the intriguing phenomenon de-

scribed in item 2. Recall that the class of CG sources do not admit

deterministic extraction. Our main result is that not only do CG

sources, and even almost CG sources, admit deterministic condens-

ing, but we are able to construct explicit condensers for such sources

with constant entropy gap!

8The entropy loss of a condenser or an extractor is the di�erence between the input
entropy and the output entropy. When X is the set of all :-sources, the entropy loss of

a seeded extractor Ext : {0, 1}= × {0, 1}ℓ → {0, 1}< is : + 3 −<, and the entropy

loss of a (:′, Y) seeded condenser Cond : {0, 1}= × {0, 1}ℓ → {0, 1}< is : + 3 − :′.
In seeded condensers, the entropy loss can be zero, which is impossible for extractors
(see [2, 34]).

3
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Theorem 3.2 (see also Theorem 6.1 in [24]). For any constants

X, Y, W > 0, any constant integer 3 ≥ 1, the following holds. For any

positive integer C , there exists an explicit function

Cond : {0, 1}==3C → {0, 1}<=Ω (X3C )

such that given an almost X-CG source - with smoothness parameter

W , Cond(- ) is Y-close to an (< −$ (log 1
Y ))-source.

WeviewTheorem 3.2 as quite striking. It states that even a stream

of constant-length random strings where each element locally ap-

pears essentially deterministic (for example, consider 3 = 1000 and

X3 = 0.01), can be readily transformed, without any additional

resources, into a random variable that is almost as useful as nearly

uniform randomness in many applications.

Deterministic extraction (and thus condensing) is known for

several classes of sources. Some have more algebraic structure, such

as uniform distributions on a�ne subspaces or varieties (see [12, 25]

and references therein), where others are arguably better models of

random sources obtained from natural physical phenomena, such as

bit-�xing sources, samplable sources, small-space sources or local

sources ([11, 16, 30, 43, 44] are just few examples). Our study of

CG sources and almost CG sources adds to the very short list of

natural classes of sources which admit deterministic condensing

(even explicitly) but do not admit deterministic extraction. In [3],

Ball, Goldreich, and Malkin considered the problem of condensing

and extracting from two somewhat dependent sources. They showed

that if- and. are weak sources such that each source has bounded

in�uence on the outcome of the other source9, or that the mutual

information � (-,. ) is bounded, then condensing from - and . is

possible, whereas extraction is not. A more contrived example is a

certain type of block sources which appear in [7].

4 SIMULATING TRUE RANDOMNESS WITH

ALMOST CG SOURCES

The deterministic condenser guaranteed by Theorem 3.2 implies

a constant-seed extractor as in Theorem 2.5. This is because there

are explicit extractors for sources with constant entropy gap Δ that

have seed length $ (Δ) [28] (see [24, Theorem 2.12]; there are even

explicit extractors with seed length$ (log(Δ/Y) [37], but they don’t

further improve our seed length asymptotically). We now state our

more general constant-seed extractor that works even for almost

CG sources.

Theorem 4.1 (see also Theorem 7.1 in [24]). For any constants

X, Y, W > 0, any constant integer 3 ≥ 1, the following holds. For any

positive integer C there exists an explicit function

Ext : {0, 1}==3C × {0, 1}ℓ=$ (1) → {0, 1}<=Ω (X3C )

such that given an almost X-CG source - with smoothness parameter

W , and an independent uniform. ∼ {0, 1}ℓ , it holds that Ext(-,. ) ≈Y
*< .10

9For a discussion about the notion of bounded in�uence, see [3, Section 2.2], or De�ni-
tion 4.1 in the ECCC version of [3].
10We remark that the output length < = Ω (X3C ) can in fact be stated as < =

(1 − \ )X3C where \ is an arbitrary small constant, by slightly strengthening the
constraints on the constructions’ parameters. For simplicity and readability, we do not
give the constraints’ dependence on \ .

We now focus on ways in which our deterministic condenser is

better than the constant-seed extractor (even for exact CG sources).

We give a one-shot simulation of randomized protocols with al-

most CG sources for biased distinguishers, and particularly, a no-

overhead simulation of BPP algorithms that err with small prob-

ability. This wasn’t known even for CG sources, or even for SV

sources. We discuss this next.

The Usefulness of Constant Entropy Gap. While constant seed is

needed to simulate a BPP algorithm with error 1
3 using CG sources,

what if we start with an algorithm that has a very small constant er-

ror?What if we wish to simulate a protocol rather than an algorithm,

and we cannot simply cycle over all seeds? Our next discussion is

devoted to what can be done with nonzero, yet very small, entropy

gap.

Consider the following simple observation.

Proposition 4.2 (see, e.g., [20]). Let / ∼ {0, 1}< be Y
2 -close

to some random variable with < − Δ min-entropy. Then, for any

BAD ⊆ {0, 1}< with density at most d (BAD) ≤ 2−Δ−1Y, it holds

that Pr[/ ∈ BAD] ≤ Y.

Thus, Theorem 3.2 implies that we can sample roughly <
X
bits

from an almost CG source, apply our condenser, and simulate a

randomized algorithm that uses< bits of randomness. As long as

the algorithm’s error is small enough compared to our condenser’s

entropy gap, we can simulate it to within a (larger) error Y, and

the only overhead we have is computing the condenser. This is the

essence of Theorem 2.3. We note that sources with small entropy

gap were recently used to simulate algorithms that err rarely in the

computational setting, where computational entropy is used rather

than the min-entropy of Theorem 4.2 (see [23]).

Additionally, we observe that Theorem 4.2 and Theorem 2.3

suggest an alternative method for simulating BPP algorithms with

constant overhead. Given a randomized algorithm � that errs with

probability at most 1
3 , simply amplify the algorithm to error proba-

bility 2−Δ−1Y by considering�′ that repeats� on fresh randomness

a constant number of times and takes the majority vote. Then, one

can simply run �′ using / as the randomness. Note this method is

di�erent than the standard one as it does not require computing

an extractor at all. In other words, modulo di�erent constant error

probabilities, a source with constant entropy gap is essentially as

useful as a nearly uniform source for BPP algorithms.

Sources with small Δ have found applications in cryptography

(see, e.g., [4, 20–22]), and our one-shot generation of constant-gap

sources from almost CG sources make the latter useful for those

applications. In [20], Dodis, Pietrzak, and Wichs considered the

notion of biased distinguishers, which is well-motivated in cryp-

tography, and studied extractors that are only guaranteed to fool

biased distinguishers rather than arbitrary ones. (This is also related

to “slice extractors.”)

De�nition 4.3 (unpredictability extractor, [20]). A function

� : {0, 1}< × {0, 1}ℓ → {0, 1}

is a `-distinguisher if E[� (*<, . )] ≤ `, where (*<, . ) is uni-

form over {0, 1}< × {0, 1}ℓ . A function UExt : {0, 1}= × {0, 1}ℓ →

{0, 1}< is a (:, `, Y)-unpredictability extractor if for any :-source

4
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- ∼ {0, 1}= and any `-distinguisher � , we have that

E[� (UExt(-,. ), . )] ≤ Y,

where . is uniform over {0, 1}ℓ and independent of - .

Dodis et al. showed that condensers with small entropy gap are

equivalent to unpredictability extractors [20].11 This follows from

the connection between sources with small entropy gap and biased

distinguishers, essentially rephrasing 4.2: For any / ∼ {0, 1}<

which is Y-close to having<−Δmin-entropy, and a `-distinguisher

� : {0, 1}< → {0, 1}, it holds that E[� (/ )] ≤ Y +2Δ`. While Dodis

et al. discussed seeded primitives and arbitrary weak source, the

connection between constant entropy gap and biased distinguishers

readily follows to our setting as well. Concretely, Theorem 3.2 gives

deterministic unpredictability extractors for almost CG sources.12

We believe the notion of a deterministic unpredictability extractor

is a very natural one and may �nd applications beyond the ones

that stem from [20].

To conclude this section, we mention a work by Gavinsky and

Pudlák on deterministic condensers for SV sources [26]. There,

they studied the less-standard notion of errorless condensers, and

showed that no such determinstic condenser exists for (standard) SV

sources. We do allow error, which evidently does enable determinis-

tic condensing. (Allowing error also enables seeded extraction from

general weak sources, and is the standard model in pseudorandom-

ness.) They also gave a seedless condenser for a more restrictive

model than SV sources, although it doesn’t have constant entropy

gap.

5 ON ALMOST CG SOURCES AND THE

SMOOTHNESS PARAMETER

Before presenting our technique, let us further discuss the smooth-

ness parameter W . Towards this end, let us introduce the notion

of smooth min-entropy, which we implicitly used above. For a

smoothness parameter U > 0, we let

�U
∞ (- ) = max

- ′: |-−- ′ | ≤U
�∞ (- ′).13

Using this terminology, the 8-th block in our almost CG source

satis�es �
W
∞ (-8 |- [1,8−1] = 0) ≥ X3 for any pre�x 0 ∼ - [1,8−1] , and

the output of the condenser satis�es �Y
∞ (Cond(- )) ≥ < −$ (1).

One could imagine the the setting ofW > 0 to be a technical exten-

sion, but successfully handling this regime draws highly nontrivial

consequences. First, note that we cannot reduce the W > 0 setting

to the W = 0 case via a union-bound type argument, since WC ≫ 1.

It turns out that this is not simply a matter of proof technique.

Proposition 5.1 (informal; see Claim 3.14 in [24]). There exists

an almost X-CG source with smoothness parameter W which is far

from any (1 − 2W)X-CG source.

Despite this, our technique does handle constant W-s. Moreover,

we emphasize that an almost CG source with W > 0 over 3C = =

bits may not even have Ω(X=) bits of entropy. To see this, consider

11The use of biased distinguishers is also explicit in the recents works of [13, 40].
12We note that [20] cared about the entropy loss. Our condensers lose roughly a small
constant fraction of the entropy, which is much more that what is attainable for seeded
condensers with small entropy gap.
13The distance here is the total variation distance.

the source - = -1 ◦ . . . ◦ -C such that for each 8 ∈ [C], -8 is zero

with probability W , and an arbitrary X3-source over {0, 1}3 \ {0}.

Thus, Pr[- = 0] = WC and so �∞ (- ) ≤ C log 1
W . Still, our condenser

outputs a source which is close to having roughly X= bits of entropy!

This implies that such an - must have ample smooth min-entropy.

Indeed, this is the case.

Proposition 5.2 (informal; see Claim 3.13 in [24]). Every al-

most X-CG source over = bits with smoothness parameterW has smooth

min-entropy (1 − 2W)X=.

Such a claim follows from a technique similar to “entropy �at-

tening" (see, e.g., [27]), where the min-entropy of a distribution -

is improved by taking multiple independent copies of - .

Handling Shannon Entropy. Handling W > 0 enables us to extend

our results to Shannon CG sources. Given a Shannon X-CG source,

we show that by grouping every $ (1) consecutive blocks, we get

an almost Ω(X2)-CG sources with smoothness parameter W that

is exponentially-small in the number of grouped blocks (see [24,

Corollary 3.11]). Then, we can easily apply our results for almost CG

sources. See [24, Theorems 6.4, 4.3] for the precise condensing and

extraction results. Note that the transition from Shannon entropy

to min-entropy necessarily induces error, so W > 0 is crucial here.

Handling Damaged Blocks. Our random-walks based condensing

method is �exible enough to handle damaged blocks too. Namely,

we allow some _-fraction of the 8-s to have completely arbitrary

conditional distributions.

De�nition 5.3 (almost CG source, II). A (W, _)-almost X-CG source

is a sequence of random variables- = -1◦. . .◦-C , each-8 ∼ {0, 1}3 ,

such that for at least (1−_)C of the 8-s, it holds that�
W
∞ (-8 |- [1,8−1] =

0) ≥ X3 for any pre�x 0 ∼ - [1,8−1] .

When the damage pattern is arbitrary, we can condense to within

$ (_3C) entropy gap (i.e., we lose 3 bits of entropy for each damaged

block). [24, Corollary 4.14] handles the _ > 0 setting as well. We

remark that the [33, 41] technique would fail for even one dam-

aged block. Moreover, when the damaged locations are “nicely

distributed”, our technique regains the$ (1) entropy gap. We elabo-

rate it on this more in subsection 6.4, and give the technical details

in [24, Theorems 5.4, 6.4, 7.3, 7.4].

6 OUR TECHNIQUE: A NEW ANALYSIS OF

ADVERSARIAL RANDOMWALKS

Ourmain technical contribution is a new analysis of adversarial ran-

dom walks. Let’s begin our discussion with exact Chor-Goldreich

sources. Spectral analysis has been the main tool to analyze ran-

dom walks on expanders. However, it doesn’t seem to work for CG

sources with rate below 1/2. This is because there is no specialized

method for CG sources; existing spectral methods that work for

CG sources also work for general min-entropy sources, and general

sources with rate below 1/2 do not mix at all (recall that each ran-

dom step may be followed by an adversarial step that reverses the

random step). Moreover, even for general sources with rate above

1/2 a random stopping time is required, which amounts to a linear

number of seeds. We hope to condense without a seed or extract

with a constant number of seeds.
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Furthermore, spectral methods generally exploit the Markovian

nature of random walks. However, an adversarial random walk is

not Markovian. That is, the distribution of the next step depends

not only on the walk’s current node, but also on the path it took to

get there. Indeed, although it is true that the distribution of the next

step from a given node E is a convex combination of instruction

distributions over all the paths that end at E , the memory in the

walk still presents a challenge.

Our approach uses expansion directly. We therefore use the

highest quality expanders: bipartite lossless expanders.

De�nition 6.1 (balanced lossless expander). We say that a �-left-

regular bipartite graph � = ( ["], ["], �) is a ( max, Y) lossless

expander if for all subsets ( ⊆ ["] of size at most  max, the neigh-

borhood set Γ� (() has size at least (1 − Y)� |( |.

For technical purposes, we will actually require that the right

degree of the lossless expander be small as well. For a high-level

understanding of our work, it su�ces to assume that the expander

is biregular.

For numerous applications a modest vertex expansion is not

enough, and lossless expansion is essential.14 An explicit construc-

tion of balanced (and somewhat imbalanced) constant-degree loss-

less expanderswas given byCapalbo, Reingold, Vadhan, andWigder-

son [10].15 As a pseudorandomness primitive, it is instructive to

think of Γ� : {0, 1}< × {0, 1}3 → {0, 1}< , the neighborhood func-

tion of � , as a lossless conductor (where we use {0, 1}< ≡ ["]).

De�nition 6.2 (balanced lossless conductor). A function

LC : {0, 1}< × {0, 1}3 → {0, 1}<

is a (:max, Y) lossless conductor if for any : ≤ :max, a :-source

- , and an independent and uniform . ∼ {0, 1}3 , it holds that

�Y
∞ (LC(-,. )) ≥ : + 3 .16

That is, the output distribution “absorbs” the 3 bits of entropy

from the seed, up to an Y error. Intuitively, the larger the vertex ex-

pansion, the less freedom the adversary has to skew the distribution

over the next step. We soon make this intuition more concrete.

Our �rst construction, which works for large X-s, goes as follows.

Given an almost CG source - = -1 ◦ . . . ◦ -C , each -8 ∼ [�], we

walk, from a �xed node, along a (C + 1)-partite graph with a copy

of � between each two layers (the graph’s size " is chosen as a

function of the source’s parameters). Namely, we start at some �xed

/0 ∈ ["], and for each 8 ∈ [C], let

/8 = Γ� (/8−1, -8 ),

and output Cond(- ) = /C .

For an exact X-CG source, this amounts to a random walk where

an adversary, after seeing previous steps, chooses �X nodes among

14Examples can be found in coding theory, data structures, algorithms, storage models,
and proof complexity (see the references in [10], and [9, 14, 17, 31] for more recent
works).
15For very small sets, Alon showed that lossless expansion follows from high girth.
See also [1]. In the regime where" ≪ # , the degree needs to be super-constant, and
explicit constructions for this regime are known (e.g., [29, 42]).
16The correct equivalence would be to lossless condensers if we allow the construction
itself to depend on : (see [42]). For the sake of our discussion, this di�erence won’t
matter, and in the technical sections we will not use the lossless condensers/conductors
terminology.

the � neighbors, and the random walker steps to a random node

among these �X nodes. We are able to show:

Theorem 6.3 (informal; see Theorem 4.8 in [24]). Let-1 ◦ . . .◦

-C be a X-CG source, with each -8 ∼ {0, 1}3 . Let � be a su�ciently

good � = 23 -regular expander. Then, for any [ > 0, the last step /C
of a random walk on� , performed as above, is [-close to a : −$ (3 +

log 1
[ )-source.

The proof is nontrivial, and we discuss it next.

Evading the Union Bound. The naive approach to analyze the out-

put distribution after C steps is to follow the de�nition of conductors.

However, conductors only guarantee that the output distribution

is Y-close to a distribution with appropriate entropy. Thus, even

disregarding the correlation between source and seed, such an ar-

gument naturally forces us to union bound over the error of each

step. Indeed, one can even show that if each instruction comes from

a X3-source, and one wishes to add exactly X3 entropy, then such a

union bound is necessary. Our ultimate solution avoids this union

bound issue, and in doing so, only argues that the entropy gain at

each step is 0.9X3 instead.17

Expansion of Weight Functions. As usual in analyzing random

walks, we need to handle real nonnegative probabilities. It is stan-

dard to do this using eigenvalues, but there is a loss in going from

expansion to eigenvalues, or other analytic tools such as hypercon-

tractivity. These analytic methods don’t seem to capture lossless

expansion.

We give a simple way to capture lossless expansion by directly

generalizing the combinatorial de�nition of expansion to nonneg-

ative real numbers, which doesn’t seem to have been considered

before. Speci�cally, let 1( denote the indicator function of a set

( . Then 1Γ (() (E) = ∨F∈Γ (E)1( (F). To generalize this to weight

functions (nonnegative real valued functions), we replace the OR

with a max. We then show that the expansion of weight functions

with support size at most  exactly equals the expansion of sets

with size at most  . This enables us to capture the e�ect of lossless

expansion. We can even generalize this weighted notion to unique

neighbor expansion, although it is not necessary for the proof.

6.1 The ℓ@ Norm as a Progress Measure

Recall that spectral analysis typically uses the ℓ2 norm as a measure

of progress.While the ℓ2 norm doesn’t appear to work in our setting,

we manage to use the ℓ@ norm as a progress measure, for some

suitable @ = 1 + U . That is, we show that the ℓ@ norm of the vertex

distribution decreases by a suitable multiplicative factor at each

step.

Theorem 6.4 (informal; see Lemma 4.6 in [24]). Let � = (* =

["],+ = ["], �) be a bipartite �-regular ( , Y) lossless expander

with error Y =
1
�V . For any 0 < U < V , set @ = 1 + U and let

X ≥ 1 − V + U .

Let ?* be a probability distribution over * and let AD , for each

D ∈ * , be a distribution over {0, 1}3 ≡ [�], each being a X3 source.

For any D ∈ * and E ∈ + let AD (D, E) denote the probability that

17Or (1 − \ )X3 for an arbitrary constant \ close to 0, at the expense of modifying
some constraints in the construction.
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the edge leading from D to E is chosen under AD . Namely, for � ’s la-

belling function ℓ : � → [�] we denote AD (D, E) ≡ AD (ℓ (D, E)). De�ne

?+ as the induced probability distribution on + . That is, ?+ (E) =

∑

D∈Γ (E) AD (D, E)?* (D) . Then,

∥?+ ∥
@
@ ≤

8

�XU
· ∥?* ∥

@
@ ,

as long as ∥?* ∥
@
@ is not already smaller than 1/ U .

The ℓ@-norm is a proxy measure for min-entropy, since any dis-

tribution ? such that ∥? ∥
@
@ ≤ 2−U: is Y-close to a distribution with

entropy : − 1
U log 1

Y (see [24, Corollary 2.3]). Thus, Theorem 6.4

implies that every step on a lossless expander, according to a X3

source, adds roughly X3 bits of entropy to the vertex distribution,

up to a “saturation" point of roughly : = log bits of entropy. Since

we have explicit constructions wherein : =< −$ (1), a saturated

vertex distribution already has constant entropy gap.

One advantage of using the @-norm is that it allows us to better

control the error term corresponding to the small lossy part of the

lossless expander. For example, certain nodes on the right may have

high degree, causing their probability after a step of a random walk

to be large. This problem is exacerbated by the adversarial nature

of a random walk via an almost-CG-source, which can assign up

to W probability to edges leading to high degree right nodes. By

considering the@-norm for a su�ciently small U , we have a measure

of entropy that is less sensitive to such error, all while still ensuring

that the entropy gained at each step is roughly the same as the

entropy in each instruction.

To prove Theorem 6.4, since the distribution of the randomwalk’s

vertex may not be uniform, we generalize set expansion and unique

neighbor expansion to apply to “weight functions" and probability

distributions. We then apply Jensen’s inequality with a nonstandard

choice of coe�cients that heavily weights the term where we gain.

This gives a simple analysis of adversarial random walks that uses

expansion directly.

Overall, our analysis gives a “spectral-like" analysis of random

walks even when such techniques cannot be directly applied. In

addition to its application in deterministic condensing, we believe

that this analysis of entropy gain via random walks from correlated

and nonuniform steps is interesting on its own.

Handling Smoothness. Up until now, we did not address the

smoothness parameter W thoroughly. Quite surprisingly, it turns out

that our technique based on the ℓ@-norm analysis is �exible enough

to support constant W-s without substantial changes. Indeed, when

dealing with such instructions, we extend Theorem 6.4 and show

that the ℓ@- norm decrease factor is now roughly 1
�XU + �UW . In

fact, there are cases where this factor is tight. This seems unfortu-

nate, because we are now seemingly only gaining less than log 1
W

min-entropy at each step, or in other words, lose the vast majority

of the desired X3 bits.

The trick to overcome this is to simply pick U su�ciently small

in the ℓ@-norm analysis (recall that we set @ = 1 + U). Indeed, by

choosing U ≈ 1
3
log 1

W , we see that W is then comparable to 1
�XU .

Under the assumption that W ≤ 2−$ (1/X) , the decrease factor can be

made to be �−0.9XU . Thus, we once again gain roughly 90% of the

entropy at each step. Setting U this small only results in a loss of

roughly$ (3) bits of entropy over the entire walk.18 For the precise

norm evolution with an arbitrary W , in [24, Corollaries 4.11, 4.12],

we set U accordingly.

Additionally, we observe that the assumption W ≤ 2−$ (1/X) is

quite mild, as W only depends on X and not 3 . Thus, for su�ciently

large3-s,W ≫ �−$ (1) . We note that setting U to be a small constant,

say U = 1/6, would require W ≤ �−$ (1) in order to argue that

0.9X3 bits of entropy is gained at each step. We view our setting

of parameter U as a way that allows us to avoid treating each

instruction source as pessimistically as a log 1
W -source.

The Limit of Our First Construction. We now explain why our

�rst construction only works for large enough X . For concreteness,

assume that we are at some /8−1 ∼ {0, 1}< with �∞ (/8−1) = : ,

and walk according to -8 ∼ [�] having entropy X3 (assume for

now that W = 0). For simplicity, assume that /8 is �at over some

set ( ⊆ ["] of size  = 2: ≤  max, recalling that we walk over a

sequence of ( max, Y) bipartite lossless expanders with" vertices,

arranged in series. It may be informative to simply think of the

walk as over a single ( max, Y) undirected lossless expander.

While any large enough subset of ( or of the edges leaving (

has nice properties (for example, at least 1 − 2Y fraction of the

vertices in ( have a unique neighbor), there can still be Y-fraction

of the  � edges leaving ( that behaves badly. In particular, Y �

of the edges may lead to vertices that have many incoming edges

from ( . Assume for simplicity that each node in ( has the same

number of bad edges, namely Y� edges from each node in ( lead to

heavy vertices. When �X ≤ Y� , an adversarial -8 can potentially,

for each node, be supported only on instructions that lead to bad

edges. In this case, /8+1 may have accumulate neither min-entropy,

nor smooth min-entropy. Thus, we must consider the case where

�X ≫ Y� .

This raises the question of how small can we take Y to be as a

function of � , or alternatively, how large can we take X to be given

an existing lossless expander. Non-explicitly, we have Γ� -s with

a great seed length, namely 3 = 1 · log 1
Y + $ (1), in which case

we can take Y ≪ �−(1−X) even when X > 0 is arbitrarily small. In

[10], however, the required seed length is 3 =
1
V
log 1

Y for some

constant V <
1
2 .
19 Denoting Xthr = 1 − V , we see that we can only

hope to handle almost X-CG sources with X > Xthr, and we do

indeed achieve this. We note that both in [10] and in an optimal

lossless expander,  max = Ω� ("), which is good enough to lead

to constant entropy gap.

6.2 Our Two-Level Construction

We handle general X > 0 via a two-level process: We �rst walk

over a small, optimal lossless expander in order to simulate an

instruction with su�ciently large X , and then “�ush” it as a step in

the big CRVW graph over" vertices.

We are given - = -1 ◦ . . . ◦ -C , each -8 ∼ {0, 1}3 ≡ [�]. We let

� = ( [�crvw], [�crvw], �) be an optimal lossless expanders with

degree � , and we can choose its error Y to be very close to 1/� . The

number of vertices in � corresponds to the degree of our standard

18A key point here is that the closer U is to 1, the larger we can allow our ℓ@ -norm

bound to be in order to get high entropy. See [24, Corollary 2.3].
19The actual V is around 1

6 , and V <
1
2 is an inherent barrier for their construction.
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CRVW graph � over" vertices, and we choose �crvw to be quasi-

polynomial in � .20 For the exact choice of parameters for� and � ,

see [24, Section 5]. Now:

• For some parameter 1 = poly(3), we group consecutive

blocks of - into “super-blocks” - ′
1 ◦ . . . -

′
C/1

, each - ′
8 con-

taining 1 blocks of length 3 each.

• For each 8 ∈ [C/1], we use - ′
8 as instructions to a separate

random walk on � , starting from some �xed node each time.

Denote by /8 the �nal node reached after the 1 steps.

• We show that / = /1 ◦ . . . ◦ /C/1 is itself an almost CG

source, but this time with X > Xthr. Thus, we can use / as

instructions for �!

Fortunately, � is constant-sized, so we can �nd it in constant

time. Using optimal constant-sized ingredients is also a key idea in

the [10] construction itself.

6.3 Removing the Constraints on 3 and W

So far, we discussed how to condense from a W-almost X-CG source

when W < 2$ (1/X) and 3 > poly(1/X).21 To obtain Theorem 3.2,

which has no such constraints, we observe that grouping the instruc-

tions of the CG source into blocks of length poly(1/X) yields a new

CG source with roughly the same entropy rate, but with su�ciently

large instruction length, and smoothness error exponentially small

in 1/X . The fact that grouping instructions into blocks improves

the smoothness error follows quite easily from the observation that

sampling a heavy instruction (one whose probability is at most W )

at step 8 is independent of sampling heavy instructions in previous

steps. Thus, the number of heavy instructions sampled over many

8 follows Cherno�-like tail bounds. See [24, Lemma 3.3] for details.

6.4 Su�x-Friendliness

While our technique is �exible enough to recover from damaged

blocks and su�er only the expected decrease in entropy per dam-

aged block, it cannot achieve constant entropy gap, if, say, all the

damaged blocks are at the end. However, if at any step we can

guarantee that we won’t encounter too many damaged blocks from

now on, we can regain constant entropy gap. Roughly speaking,

the favorable case is that the _-fraction of bad blocks is nicely dis-

tributed in the sense that each su�x contains at most _-fraction

of bad blocks (up to an additive term). We call this property su�x

friendliness (see the precise de�nition in [24, De�nition 3.4]), and

show that we can deterministically condense from such sources

to within constant entropy gap in [24, Section 4.3.3]. Moreover,

we observe that given an almost CG source with _ = 0, a random

pattern that damages each block with probability roughly _, leads

to a su�x friendly almost CG source with “bad blocks” parameter

_ (see [24, Lemma 3.5]).

6.5 The Construction’s Runtime

Recall that the simulation slowdown is also a�ected by the time

it takes to compute the extractor, or condenser (in the “one-shot”

simulation setting). Our onlinemanner of condensing, togetherwith

20One can also think of� as an Y-error optimal lossless conductor� : {0, 1}poly(3 ) ×

{0, 1}3 → {0, 1}poly(3 ) with seed length 3 = log 1
Y +$ (1) .

21We did not mention the constraint on 3 explicitly, however the intuition is clear: the
raw amount of entropy in an instruction, X3 , should be at least 1.

the fact that the primitives we use (namely, the CRVW expander

and the GW extractor) are e�cient, makes our construction e�cient

as well. In particular, in we achieve a near-quadratic runtime in

the TM model. See [24, Appendix C]. In the RAM model, in which

each machine word can store integers up to # = 2= and perform

arithmetic in F@ for a prime @ ≤ # at unit cost, our construction

takes linear time.

7 ON SUPPORTING BAD PREFIXES

We extended X-CG sources to handle smoothness W and _ fraction

of bad blocks. One can also try and further relax the notion of CG

sources in the following way: Instead of requiring that for each

non-damaged block -8 , for any pre�x 0 ∼ - [1,8−1] it holds that

-8 |{- [1,8−1] = 0} is W-close to having entropy rate X , we require it

only formost pre�xes. Concretely, what if we allow some d-fraction

of the pre�xes to lead to instructions having low entropy? (See [24,

De�nitions 8.3, 8.6], also for the Shannon-entropy variant.)

That extension seems too permissive, at least in some regime of

parameters. We show that any random variable - ∼ {0, 1}= with

� (- ) ≥ (1 − Z )= is already an almost Ω(1)-CG source with error

parameters W , _, and d , all roughly equal to ZΩ (1) . Moreover, with

a constant seed, we show that we can even increase the (smooth)

entropy rate from an arbitrary Ω(1) to 1−Z , at the cost of increasing

_ and d . Thus, since we provably cannot condense or extract from

high Shannon entropy with constant seed, we have an inherent

barrier to handling d > 0 alongside a comparable, nonzero _. We

discuss it further, and give the precise details, in [24, Section 8].

8 EXTENSION: ONLINE CONDENSING AND

MAINTAINING CONSTANT ENTROPY GAP

Unlike other condensers, our construction is an “online” one. That

is, the construction makes one pass over the randomness stream

-1 ◦ . . . ◦ -C in order to form the required instructions, and never

needs to store more than a constant number of bits in memory

before updating the location in the big graph. Moreover, we don’t

even need to know the number of blocks ahead of time!22

As given above, it is easy to see that the construction does not en-

sure constant entropy de�ciency in the output distribution through-

out the random walk, but only at the end, even if there are no

corrupted instructions at all (_ = 0). However, one can easily adapt

our approach to also work in such a “completely online” fashion.

The idea is to walk on graphs of gradually increasing size. Namely,

after every constant number of steps (for some �xed constant), we

map the current vertex to a vertex in a graph that is a constant

times larger (but with the same degree) and continue the walk from

there. Although we do not give such a result in full formality, in [24,

Appendix B] we present an informal theorem and a brief discussion

sketching its proof.

ACKNOWLEDGMENTS

We wish to thank Oded Goldreich for valuable comments and sug-

gestions on a preliminary version of this paper, and Salil Vadhan

and Yevgeniy Dodis for very helpful discussions. We also thank an

22In the two-level construction of subsection 6.2, we �rst computed all/8 -s just for the
simplicity of exposition. Clearly we can compute /8 , implement it on the big graph,
and continue to compute /8+1 without the need to keep storing /8 .

8



Almost Chor-Goldreich Sources and Adversarial Random Walks STOC ’23, June 20–23, 2023, Orlando, FL, USA

anonymous reviewer for useful comments and for pointing out a

minor �aw in a previous version of [24].

Dana Moshkovitz was supported in part by NSF Grant CCF-

1705028 and CCF-2200956. Justin Oh was supported in part by NSF

Grant CCF-1705028 and the David L. Miller and Mary H. Miller

Graduate Fellowship. David Zuckerman was supported in part by

NSF Grant CCF-1705028 and CCF-2008076 and a Simons Investiga-

tor Award (#409864).

REFERENCES
[1] Noga Alon and Michael Capalbo. 2002. Explicit unique-neighbor expanders. In

Proceedings of the 43rd Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 73–79.

[2] Nir Aviv and Amnon Ta-Shma. 2019. On the entropy loss and gap of condensers.
ACM Transactions on Computation Theory (TOCT) 11, 3 (2019), 1–14.

[3] Marshall Ball, Oded Goldreich, and Tal Malkin. 2022. Randomness extraction
from somewhat dependent sources. In Proceedings of the 13th Innovations in The-
oretical Computer Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.

[4] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak,
François-Xavier Standaert, and Yu Yu. 2011. Leftover hash lemma, revisited. In
Annual Cryptology Conference. Springer, 1–20.

[5] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson.
2010. Simulating independence: New constructions of condensers, ramsey graphs,
dispersers, and extractors. Journal of the ACM (JACM) 57, 4 (2010), 20.

[6] Salman Beigi, Omid Etesami, and Amin Gohari. 2017. Deterministic Randomness
Extraction from Generalized and Distributed Santha–Vazirani Sources. SIAM J.
Comput. 46, 1 (2017), 1–36.

[7] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. 2019. Two-
source condensers with low error and small entropy gap via entropy-resilient
functions. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[8] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. 2019. An e�cient re-
duction from two-source to nonmalleable extractors: achieving near-logarithmic
min-entropy. SIAM J. Comput. 0 (2019), STOC17–31.

[9] Radu Berinde, Anna C. Gilbert, Piotr Indyk, Howard Karlo�, and Martin J. Strauss.
2008. Combining geometry and combinatorics: A uni�ed approach to sparse
signal recovery. In Proceedings of the 46th Annual Allerton Conference on Commu-
nication, Control, and Computing. IEEE, 798–805.

[10] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Ran-
domness conductors and constant-degree lossless expanders. In Proceedings of
the 34th Annual Symposium on Theory of Computing (STOC). ACM, 659–668.

[11] Eshan Chattopadhyay and Jesse Goodman. 2022. Improved extractors for small-
space sources. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 610–621.

[12] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. 2022. A�ne extractors
for almost logarithmic entropy. In Proceedings of the 62nd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 622–633.

[13] Lijie Chen and Roei Tell. 2021. Simple and fast derandomization from very hard
functions: eliminating randomness at almost no cost. In Proceedings of the 53rd
Annual Symposium on Theory of Computing (STOC). ACM, 283–291.

[14] Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang. 2022. Improved Decoding
of Expander Codes. In Proceedings of the 13th Innovations in Theoretical Computer
Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[15] Benny Chor and Oded Goldreich. 1988. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. SIAM J. Comput. 17, 2
(1988), 230–261.

[16] Anindya De and Thomas Watson. 2012. Extractors and lower bounds for locally
samplable sources. ACM Transactions on Computation Theory (TOCT) 4, 1 (2012),
1–21.

[17] Domingos Dellamonica Jr. and Yoshiharu Kohayakawa. 2008. An algorithmic
Friedman–Pippenger theorem on tree embeddings and applications. The Elec-
tronic Journal of Combinatorics (2008), R127–R127.

[18] Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, and Zhiye Xie. 2021. No
Time to Hash: On Super-E�cient Entropy Accumulation. In CRYPTO (Lecture
Notes in Computer Science, Vol. 12828). Springer, 548–576.

[19] Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, and Zhiye Xie. 2021. On-
line linear extractors for independent sources. In Proceedings of the 2nd Conference
on Information-Theoretic Cryptography (ITC). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.

[20] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. 2014. Key derivation
without entropy waste. In Advances in Cryptology–EUROCRYPT 2014. Springer,
93–110.

[21] Yevgeniy Dodis, Thomas Ristenpart, and Salil Vadhan. 2012. Randomness con-
densers for e�ciently samplable, seed-dependent sources. In Theory of Cryptog-
raphy Conference. Springer, 618–635.

[22] Yevgeniy Dodis and Yu Yu. 2013. Overcoming weak expectations. In Theory of
Cryptography Conference. Springer, 1–22.

[23] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. 2020. Nearly
optimal pseudorandomness from hardness. In Proceedings of the 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 1057–1068.

[24] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. 2022. Almost
Chor–Goldreich Sources and Adversarial RandomWalks. In Electronic Colloquium
on Computational Complexity (ECCC).

[25] Zeev Dvir. 2012. Extractors for varieties. computational complexity 21, 4 (2012),
515–572.

[26] Dmitry Gavinsky and Pavel Pudlák. 2020. Santha-Vazirani sources, deterministic
condensers and very strong extractors. Theory of Computing Systems 64, 6 (2020),
1140–1154.

[27] Oded Goldreich and Salil Vadhan. 1999. Comparing entropies in statistical zero
knowledge with applications to the structure of SZK. In Proceedings. Fourteenth
Annual IEEE Conference on Computational Complexity (Formerly: Structure in
Complexity Theory Conference)(Cat. No. 99CB36317). IEEE, 54–73.

[28] Oded Goldreich and AviWigderson. 1997. Tiny families of functions with random
properties: A quality-size trade-o� for hashing. Random Structures & Algorithms
11, 4 (1997), 315–343.

[29] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. 2009. Unbalanced
expanders and randomness extractors from Parvaresh–Vardy codes. Journal of
the ACM (JACM) 56, 4 (2009), 20.

[30] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. 2006. Deterministic
extractors for small-space sources. In Proceedings of the 38th Annual Symposium
on Theory of Computing (STOC). ACM, 691–700.

[31] Ting-Chun Lin and Min-Hsiu Hsieh. 2022. Good quantum LDPC codes with
linear time decoder from lossless expanders. arXiv preprint arXiv:2203.03581
(2022).

[32] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. 2003. Extractors:
Optimal up to constant factors. In Proceedings of the 35th Annual Symposium on
Theory of computing (STOC). 602–611.

[33] Noam Nisan and David Zuckerman. 1996. Randomness is Linear in Space. J.
Comput. System Sci. 52, 1 (1996), 43–52.

[34] Jaikumar Radhakrishnan and Amnon Ta-Shma. 2000. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathe-
matics 13, 1 (2000), 2–24.

[35] Ran Raz and Omer Reingold. 1999. On recycling the randomness of states in
space bounded computation. In Proceedings of the 61st Annual Symposium on
Theory of Computing (STOC). ACM, 159–168.

[36] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. 2006. Extracting randomness
via repeated condensing. SIAM J. Comput. 35, 5 (2006), 1185–1209.

[37] Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Entropy waves, the zig-
zag graph product, and new constant-degree expanders. Annals of Mathematics
(2002), 157–187.

[38] Omer Reingold, Salil Vadhan, and Avi Wigderson. 2004. A note on extracting
randomness from Santha-Vazirani sources. Manuscript. In Electronic Colloquium
on Computational Complexity (ECCC).

[39] Miklos Santha and Umesh V. Vazirani. 1986. Generating quasi-random sequences
from semi-random sources. J. Comput. System Sci. 33, 1 (1986), 75–87.

[40] Ronen Shaltiel and Emanuele Viola. 2022. On Hardness Assumptions Needed for
“Extreme High-End” PRGs and Fast Derandomization. In Proceedings of the 13th
Innovations in Theoretical Computer Science Conference (ITCS). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[41] Aravind Srinivasan and David Zuckerman. 1999. Computing with very weak
random sources. SIAM J. Comput. 28, 4 (1999), 1433–1459.

[42] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. 2007. Lossless
condensers, unbalanced expanders, and extractors. Combinatorica 27 (2007),
213–240.

[43] Luca Trevisan and Salil Vadhan. 2000. Extracting randomness from samplable
distributions. In Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2000). IEEE, 32–42.

[44] Emanuele Viola. 2014. Extractors for circuit sources. SIAM J. Comput. 43, 2 (2014),
655–672.

[45] David Zuckerman. 1990. General weak random sources. In Proceedings of the 31st
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 534–543.

[46] David Zuckerman. 2007. Linear Degree Extractors and the Inapproximability of
Max Clique and Chromatic Number. Theory of Computing 3 (2007), 103–128.

Received 2022-11-07; accepted 2023-02-06

9


	Abstract
	1 Introduction
	2 Santha–Vazirani Sources and Chor–Goldreich Sources
	3 Deterministic Condensing from Almost CG Sources
	4 Simulating True Randomness with Almost CG Sources
	5 On Almost CG Sources and the Smoothness Parameter
	6 Our Technique: A New Analysis of Adversarial Random Walks
	6.1 The q Norm as a Progress Measure
	6.2 Our Two-Level Construction
	6.3 Removing the Constraints on d and 
	6.4 Suffix-Friendliness
	6.5 The Construction's Runtime

	7 On Supporting Bad Prefixes
	8 Extension: Online Condensing and Maintaining Constant Entropy Gap
	Acknowledgments
	References

