Check for
Updates

Almost Chor-Goldreich Sources and Adversarial Random Walks*

Dean Doron
deand@bgu.ac.il
Ben Gurion University of the Negev
Be’er Sheva, Israel

Justin Oh
sjo@cs.utexas.edu
University of Texas at Austin
Austin, Texas, USA

ABSTRACT

A Chor-Goldreich (CG) source is a sequence of random variables
X = Xj o...0 Xy, where each X; ~ {0, l}d and X; has d min-
entropy conditioned on any fixing of Xj o. ..o X;_1. The parameter
0 < § < 1is the entropy rate of the source. We typically think of
d as constant and t as growing. We extend this notion in several
ways, defining almost CG sources. Most notably, we allow each X;
to only have conditional Shannon entropy dd.

We achieve pseudorandomness results for almost CG sources
which were not known to hold even for standard CG sources, and
even for the weaker model of Santha-Vazirani sources: We con-
struct a deterministic condenser that on input X, outputs a distri-
bution which is close to having constant entropy gap, namely a
distribution Z ~ {0, 1} for m ~ §dt with min-entropy m — O(1).
Therefore, we can simulate any randomized algorithm with small
failure probability using almost CG sources with no multiplicative
slowdown. This result extends to randomized protocols as well,
and any setting in which we cannot simply cycle over all seeds,
and a “one-shot” simulation is needed. Moreover, our construction
works in an online manner, since it is based on random walks on
expanders.

Our main technical contribution is a novel analysis of random
walks, which should be of independent interest. We analyze walks
with adversarially correlated steps, each step being entropy-deficient,
on good enough lossless expanders. We prove that such walks (or
certain interleaved walks on two expanders), starting from a fixed
vertex and walking according to X o ... o X}, accumulate most of
the entropy in X.

CCS CONCEPTS

+ Theory of computation — Pseudorandomness and deran-
domization; Random walks and Markov chains; Expander graphs
and randomness extractors; Complexity classes.
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1 INTRODUCTION

Randomness is an incredibly useful resource. The use of randomness
is sometimes provably essential (e.g., in cryptography or property
testing), and sometimes we conjecture it is not, prominently in
time-bounded randomized algorithms. Yet, it is often the case that
randomized algorithms outperform deterministic ones. However,
true randomness is scarce, and often we may only be able to access a
weak, defective source of randomness. This motivates the problem
of simulating randomized algorithms that expect to receive true
randomness, using only weak sources of randomness.

The most natural way to use a weak random source is to convert
it into a high quality random source. An extractor does exactly this.
Specifically, a (deterministic) extractor for a class of sources X over
n bits is a function Ext: {0, 1} — {0, 1} such that for any X € X
it holds that Ext(X) is close, in total variation distance, to U, the
uniform distribution on m bits. Deterministic extractors are only
possible for some restricted classes of sources.

For general sources X, randomness extraction is possible with
the addition of a short random seed Y ~ {0, 1}[, independent of X.
It is not hard to see that simulation of randomized algorithms given
a weak randomness source can be done by cycling over all seeds;
see the well known [24, Lemma 2.10]. For a running time T, that
simulation takes 2¢(T + tgy) time, where tgy is the time it takes
to compute the extractor. Since typically g, < T, we denote by 2¢
the simulation’s slowdown, and naturally we want to minimize it.
Generally, the distributions that we could hope to extract from are
modeled as an arbitrary probability distribution with some amount
of min-entropy [15, 45], also known as k-sources.! Unfortunately,

!We say that X is a k-source if its min-entropy is at least k, i.e., if every sequence x
occurs in X with probability at most 27k,
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we have a lower bound of £ > log n+ O(1) on the seed length of ex-
tractors for arbitrary k-sources over n bits, so simulating BPP with
weak sources using extractors must incur at least Q(n) slowdown.?

Previous research focused on two extremes: sources where de-
terministic extraction is possible, and hence there’s a negligible
slowdown, and simulations giving an Q(n) slowdown. A basic nat-
ural question is to ask whether anything can be done in between
these extremes.

1. Are there natural weak sources where deterministic extrac-
tion is impossible, but where an o(n) or even constant slow-
down is possible?

It turns out that an affirmative answer to this question can be
inferred from previous results, as we will discuss later. However, for
some applications, such as in one-shot scenarios like cryptography
and interactive proofs, one cannot cycle over all seeds. In other
applications, even a constant slowdown is undesirable. In such
settings, a deterministic transformation is essential. We therefore
ask what is feasible deterministically.

2. Are there natural weak sources where deterministic extrac-
tion is impossible, but nevertheless it is possible to deter-
ministically transform the source into a random variable
that is essentially as useful as uniform randomness in many
settings?

We answer this question in the affirmative for Santha-Vazirani
(SV) and Chor-Goldreich (CG) sources, and generalizations of such
sources, which we call Shannon CG sources and almost CG sources,
by giving constructions of deterministic condensers with constant
entropy gap.

Additionally, in some situations one may not know the ultimate
length of a weak random source, or one may wish to extend the
length of a given transformed random variable while preserving
its useful properties. This leads us to ask:

3. Can the deterministic transformations from Question 2 be
computed in an online manner?

This online extraction question is of interest in cryptography [18,
19]. We also answer this question in the affirmative for our gener-
alized notions of CG sources.

Our algorithms take a very natural approach: perform a random
walk using the source as a sequence of instructions. For arbitrary
sources with entropy rate 1/2, a random walk may not mix at all:
each random step may be followed by an adversarial step that
reverses the random step. This raises the question:

4. Do random walks mix well in some sense for any natural
weak sources with entropy rate below 1/2?

We show that indeed it is possible to get good mixing properties for
random walks using SV sources and their generalizations. That is, for
an adversarial random walk on a sufficiently high quality expander,
it suffices that each step has a small amount of fresh entropy for the
walk to mix quite well. We give an overview of our analysis, which

?Note that the slowdown is (at least) linear in 1, and the number of random coins is
m < n. The difference between n and m naturally depends on the entropy k that the
source has. For the precise lower bounds on the parameters of extractors for arbitrary
k-sources, see [34]. In terms of explicit results, for k = Q(n), a simulation with linear
slowdown follows from [46], and for arbitrary k-s we can get a polynomial slowdown
(e.g., from [29, 32]).
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is readily applicable even beyond the scope of pseudorandomness,
in section 6.

2 SANTHA-VAZIRANI SOURCES AND
CHOR-GOLDREICH SOURCES

Santha—Vazirani (SV) sources [39] are sequences of random bits in
which the conditional distribution of each bit given the previous
ones can be partially controlled by an adversary. Namely, X =
Xjo...0X;, each X; ~ {0, 1}, is a §-SV source if for any i and any
prefixa € {0,1}"'and b € {0, 1}, it holds that Pr[X; = bIX[1,i-1] =
a] < 1-68/2.2 Chor and Goldreich [15] generalized the SV model
by considering each X; ~ {0, 1} and assuming that no sequence
of d bits has too high a probability of being output. Formally, X is a
J-CG source if for any i and any prefix a € {0, 13401 it holds that
Hoo (XilX[1,i—1] = @) 2 6d, where Ho denotes the min-entropy. We
typically think of d being constant and ¢ growing.*

Santha and Vazirani showed that there is no deterministic ex-
tractor for SV sources that’s better than outputting the first bit
[39] (see also [38]). Chor and Goldreich showed an even stronger
result for CG sources.

THEOREM 2.1 ([15]). The class of 5-CG sources does not admit
deterministic extraction.

We first observe that a constant-length seed suffices to extract
from CG sources (and thus SV sources). The proof is actually given
in [33, Lemma 10], although there is no theorem statement to this ef-
fect (because the focus in [33] was on general min-entropy sources).

THEOREM 2.2 (FOLLOWS FROM [33]). For any constants 0 < ¢,§ <
1, there exists an e-error extractor for 5-CG sources, with seed length
£=0(1).

This was improved to CG sources with subconstant § in [41,
Lemma 5.3], but again there is no theorem statement. Since we
believe many are not aware of this result, for completeness, we
include a proof in [24, Appendix A.2] that puts it in a more general
framework.

By the previously mentioned connection, Theorem 2.2 gives a
simulation using CG sources with constant slowdown.® However,
there are scenarios where even constant seed is undesirable. This
work shows that there is a way to deterministically transform such
generalized CG sources, in an online manner, into a random variable
that is essentially as useful as a nearly uniform random variable in
many scenarios. In a bit more detail, surprisingly, we show that
one can simulate low-error randomized algorithms, and in general
biased distinguishers, in a “one-shot” manner. In particular, we have
the following theorem.

3We denote X,i-1) = X10...
independent.

“This is in contrast with “block-sources”, which is the term often used when ¢ is very
small and d is large.

SWe note that some variations of SV sources do admit better deterministic extraction.
See [6].

®We give a brief overview of the construction of Theorem 2.2. Given X o ... 0 X,
we use a constant-sized seed Y to extract, in a “strong” sense (say, using universal
hashing) a uniform Z; from X{ 4] where a = O(1). Then, we use Z; as a seed to
extract from X[441p] to get Zy, where [a + 1, b] is roughly twice as long as [1, a].
Continuing this way for s = O(log t) times, we use Z; as a seed to extract from a
suffix of X of length Q(dt). The output of the final extraction is the output of the
extractor.

o Xj_1. Note that the Xj-s are not assumed to be
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THEOREM 2.3 (INFORMAL; FOLLOWS FROM THEOREM 3.2). There
exists a deterministic, efficient, function Cond such that the following
holds. Given a §-CG source X = Xj0...0Xy, each X; ~ {0, 1}d:O(1),
for any randomized algorithm A and any input w such that A(w,y)
errs with probability Og,d(é‘z) (over a uniformy ~ U), it holds that
A(w, Cond(x)) errs with probability ¢ (over x ~ X).

The one-shot simulation via CG sources (and later we will see
that such a simulation is possible with a much richer class of
sources) is possible in light of our deterministic condensers, which
are overviewed in section 3 (see also the discussion in section 4).
We continue with the very natural generalization of CG sources
that we study.

Shannon CG Sources. Instead of requiring that each Xj, condi-
tioned on every prefix, has at least §d min-entropy, we only require
the conditional X; have d Shannon entropy.”

While Shannon CG sources seem more general than the almost
CG sources we define next, it turns out that strong enough results
for almost CG sources imply results for Shannon CG sources. Thus,
much of the technical focus of this work is on almost CG sources,
with the case of Shannon CG sources following as a corollary.

Almost CG Sources. Instead of requiring that each Xj, condi-
tioned on every prefix, has at least d min-entropy, we only require
the conditional X; to be y-close to some source with entropy rate 8.

Definition 2.4 (almost CG source, I). We say that X = Xjo0...0X;,
each X; ~ {0,1}¢%,isa y-almost §-CG source if for any i and any
prefix a ~ X[q;_1], it holds that X;| {X[L,-_l] =a} is y-close, in
total variation distance, to a source with §d min-entropy.

The definition of almost CG sources is also quite natural. In
particular, considering y-s which can be much larger than 274 js
very natural and has several advantages. In particular, it is often the
case that the X;-s are a result of some prior transformations, which
almost always incur some error. In fact, we already demonstrate
such an example in this work. In subsection 6.2, we will see that
in order to condense from an (almost) §-CG source, we will first
“condense" the original source into a y-almost §’ CG source with
8" > &, and some y > 0. In Theorem 5.3 we will further extend our
definition of almost CG sources.

The techniques of [33] also work to give a constant-seeded ex-
tractor for almost CG sources as defined in Theorem 2.4.

THEOREM 2.5 (SEE SECTION A.3 OF [24]). For any constants 0 <
g0,y < 1,andy > 0, there exists an e-error extractor for y-almost
&-CG sources, with seed length £ = O(1).

For the formal statement, see [24, Corollary A.8]. Although this
generalization is not hard, we stress that it was not known, and
in particular requires some observations about almost CG sources
provided in this work (see [24, Lemma 3.3]). Later on, we’ll discuss
even further extensions of CG-sources, for which the techniques of
[33] completely fail, while ours do not.

"Recall that one always have that H(X) > He(X), for H(+) being the Shannon
entropy. In fact, one can easily find X-s with nearly maximal Shannon entropy, but
extremely low min-entropy, or even smooth min-entropy.
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3 DETERMINISTIC CONDENSING FROM
ALMOST CG SOURCES

Recall that we have the following parameters:

(1) d is the length of each block, and ¢ is the number of blocks
(so X is distributed over n = dt bits.);

(2) Each block X; is y-close to having § entropy rate; and,

(3) m denotes the output length of our extractor (and later con-
denser).

Later, we will study two additional extensions for CG sources: Those
with some A-fraction of damaged blocks, for which we have no
guarantee, and those in which for every good block, it is only
guaranteed that all but some p-fraction of prefixes give rise to a
(close to) high-entropic block.

While an extractor aims to purify a weak source X into a nearly-
uniform source, a condenser aims to improve the source’s quality,
namely by increasing the entropy rate [35]. Formally,

Cond: {0,1}* x {0,1}* — {0,1}™

isa (k’, €) condenser for a class of sources X distributed over {0, 1}"
if for any X € X and an independent and uniform Y ~ {0, 1}, it
holds that Cond(X, Y) is e-close to a source with k” min-entropy.
When ¢ = 0, we say the condenser is deterministic (or seedless), and
that X admits deterministic condensing.

The entropy rate of a condenser is %, and we want it to be larger

than % where k is the min-entropy in each X € X. When the rate
is very close to 1, i.e., when k’ is very close to m, it makes sense to
measure the additive difference m — k’.

Definition 3.1 (entropy gap). The entropy gap of a random variable
Z ~ {0,1}" is A = m — H(Z). We say that a (k’, ¢) condenser
Cond has entropy gap A if its output is e-close to a source with
entropy gap A. (Note that an extractor has entropy gap 0.)

Condensers were proven incredibly useful as building blocks for
extractors (e.g., in [5, 29, 36, 42, 46]). Regardless, they are also of
great independent interest, because:

(1) They can achieve parameters that are unattainable for ex-
tractors, and in particular,

(2) There are classes of sources that admit deterministic con-
densing and (provably) do not admit deterministic extraction.

For item 1, we give as an example the fact that for arbitrary weak
sources, condensers can achieve smaller entropy loss® and a smaller
seed length. The latter fact was used for the construction of full-
fledged extractors and pseudorandom generators (see [8, 23]).

Our focus in this work is on the intriguing phenomenon de-
scribed in item 2. Recall that the class of CG sources do not admit
deterministic extraction. Our main result is that not only do CG
sources, and even almost CG sources, admit deterministic condens-
ing, but we are able to construct explicit condensers for such sources
with constant entropy gap!

8The entropy loss of a condenser or an extractor is the difference between the input
entropy and the output entropy. When X is the set of all k-sources, the entropy loss of
a seeded extractor Ext: {0,1}" x {0,1}¢ — {0,1}™ is k + d — m, and the entropy
loss of a (k’, €) seeded condenser Cond: {0,1}" x {0,1}' — {0,1}"isk+d - k'
In seeded condensers, the entropy loss can be zero, which is impossible for extractors
(see [2, 34]).
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THEOREM 3.2 (SEE ALSO THEOREM 6.1 IN [24]). For any constants
6,&y > 0, any constant integer d > 1, the following holds. For any
positive integer t, there exists an explicit function

Cond: {0,1}™=% — {0, 1}"=R(5d)

such that given an almost §-CG source X with smoothness parameter
¥, Cond(X) is e-close to an (m — O(log %))-source.

We view Theorem 3.2 as quite striking. It states that even a stream
of constant-length random strings where each element locally ap-
pears essentially deterministic (for example, consider d = 1000 and
dd = 0.01), can be readily transformed, without any additional
resources, into a random variable that is almost as useful as nearly
uniform randomness in many applications.

Deterministic extraction (and thus condensing) is known for
several classes of sources. Some have more algebraic structure, such
as uniform distributions on affine subspaces or varieties (see [12, 25]
and references therein), where others are arguably better models of
random sources obtained from natural physical phenomena, such as
bit-fixing sources, samplable sources, small-space sources or local
sources ([11, 16, 30, 43, 44] are just few examples). Our study of
CG sources and almost CG sources adds to the very short list of
natural classes of sources which admit deterministic condensing
(even explicitly) but do not admit deterministic extraction. In [3],
Ball, Goldreich, and Malkin considered the problem of condensing
and extracting from two somewhat dependent sources. They showed
that if X and Y are weak sources such that each source has bounded
influence on the outcome of the other source?, or that the mutual
information I(X, Y) is bounded, then condensing from X and Y is
possible, whereas extraction is not. A more contrived example is a
certain type of block sources which appear in [7].

4 SIMULATING TRUE RANDOMNESS WITH
ALMOST CG SOURCES

The deterministic condenser guaranteed by Theorem 3.2 implies
a constant-seed extractor as in Theorem 2.5. This is because there
are explicit extractors for sources with constant entropy gap A that
have seed length O(A) [28] (see [24, Theorem 2.12]; there are even
explicit extractors with seed length O(log(A/¢) [37], but they don’t
further improve our seed length asymptotically). We now state our
more general constant-seed extractor that works even for almost
CG sources.

THEOREM 4.1 (SEE ALSO THEOREM 7.1 IN [24]). For any constants
6,&y > 0, any constant integer d > 1, the following holds. For any
positive integer t there exists an explicit function

Ext: {0,137 x {0,1}*=0() _; (o, 1)m=2(8d1)

such that given an almost 5-CG source X with smoothness parameter
v, and an independent uniformY ~ {0, 1}, it holds that Ext(X, Y) =,
Um.lo

“For a discussion about the notion of bounded influence, see [3, Section 2.2], or Defini-
tion 4.1 in the ECCC version of [3].

1OWe remark that the output length m = Q(&dt) can in fact be stated as m =
(1 — 0)8dt where 6 is an arbitrary small constant, by slightly strengthening the
constraints on the constructions’ parameters. For simplicity and readability, we do not
give the constraints’ dependence on 6.
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We now focus on ways in which our deterministic condenser is
better than the constant-seed extractor (even for exact CG sources).
We give a one-shot simulation of randomized protocols with al-
most CG sources for biased distinguishers, and particularly, a no-
overhead simulation of BPP algorithms that err with small prob-
ability. This wasn’t known even for CG sources, or even for SV
sources. We discuss this next.

The Usefulness of Constant Entropy Gap. While constant seed is
needed to simulate a BPP algorithm with error % using CG sources,
what if we start with an algorithm that has a very small constant er-
ror? What if we wish to simulate a protocol rather than an algorithm,
and we cannot simply cycle over all seeds? Our next discussion is
devoted to what can be done with nonzero, yet very small, entropy
gap.

Consider the following simple observation.

PROPOSITION 4.2 (SEE, E.G., [20]). Let Z ~ {0,1}" be £-close
to some random variable with m — A min-entropy. Then, for any
BAD C {0,1}" with density at most p(BAD) < 272 1¢, it holds
thatPr[Z € BAD] < e.

Thus, Theorem 3.2 implies that we can sample roughly % bits
from an almost CG source, apply our condenser, and simulate a
randomized algorithm that uses m bits of randomness. As long as
the algorithm’s error is small enough compared to our condenser’s
entropy gap, we can simulate it to within a (larger) error ¢, and
the only overhead we have is computing the condenser. This is the
essence of Theorem 2.3. We note that sources with small entropy
gap were recently used to simulate algorithms that err rarely in the
computational setting, where computational entropy is used rather
than the min-entropy of Theorem 4.2 (see [23]).

Additionally, we observe that Theorem 4.2 and Theorem 2.3
suggest an alternative method for simulating BPP algorithms with
constant overhead. Given a randomized algorithm A that errs with
probability at most 1, simply amplify the algorithm to error proba-
bility 272~ ¢ by considering A’ that repeats A on fresh randomness
a constant number of times and takes the majority vote. Then, one
can simply run A’ using Z as the randomness. Note this method is
different than the standard one as it does not require computing
an extractor at all. In other words, modulo different constant error
probabilities, a source with constant entropy gap is essentially as
useful as a nearly uniform source for BPP algorithms.

Sources with small A have found applications in cryptography
(see, e.g., [4, 20-22]), and our one-shot generation of constant-gap
sources from almost CG sources make the latter useful for those
applications. In [20], Dodis, Pietrzak, and Wichs considered the
notion of biased distinguishers, which is well-motivated in cryp-
tography, and studied extractors that are only guaranteed to fool
biased distinguishers rather than arbitrary ones. (This is also related
to “slice extractors.”)

Definition 4.3 (unpredictability extractor, [20]). A function
D: {01} x {01} — {0,1}

is a p-distinguisher if E[D(Uy,,Y)] < p, where (Up,,Y) is uni-
form over {0, 1} x {0, 1}¢. A function UExt: {0,1}" x {0,1}’ —
{0,1}™ is a (k, y, €)-unpredictability extractor if for any k-source
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X ~ {0,1}" and any p-distinguisher D, we have that
E[D(UExt(X, Y), V)] <&,
where Y is uniform over {0, 1} and independent of X.

Dodis et al. showed that condensers with small entropy gap are
equivalent to unpredictability extractors [20].!! This follows from
the connection between sources with small entropy gap and biased
distinguishers, essentially rephrasing 4.2: For any Z ~ {0,1}™
which is e-close to having m — A min-entropy, and a p-distinguisher
D: {0,1}™ — {0, 1}, it holds that E[D(Z)] < &+ 2%y While Dodis
et al. discussed seeded primitives and arbitrary weak source, the
connection between constant entropy gap and biased distinguishers
readily follows to our setting as well. Concretely, Theorem 3.2 gives
deterministic unpredictability extractors for almost CG sources.!?
We believe the notion of a deterministic unpredictability extractor
is a very natural one and may find applications beyond the ones
that stem from [20].

To conclude this section, we mention a work by Gavinsky and
Pudlak on deterministic condensers for SV sources [26]. There,
they studied the less-standard notion of errorless condensers, and
showed that no such determinstic condenser exists for (standard) SV
sources. We do allow error, which evidently does enable determinis-
tic condensing. (Allowing error also enables seeded extraction from
general weak sources, and is the standard model in pseudorandom-
ness.) They also gave a seedless condenser for a more restrictive
model than SV sources, although it doesn’t have constant entropy

gap.

5 ON ALMOST CG SOURCES AND THE
SMOOTHNESS PARAMETER

Before presenting our technique, let us further discuss the smooth-
ness parameter y. Towards this end, let us introduce the notion
of smooth min-entropy, which we implicitly used above. For a
smoothness parameter a > 0, we let

H%(X) = max

Heo(X').13
X X-X'|<a

Using this terminology, the i-th block in our almost CG source
satisfies Hzo(xi|X[1,i—1] = a) 2 éd for any prefix a ~ X[y ;_1), and
the output of the condenser satisfies HS, (Cond(X)) > m — O(1).

One could imagine the the setting of y > 0 to be a technical exten-
sion, but successfully handling this regime draws highly nontrivial
consequences. First, note that we cannot reduce the y > 0 setting
to the y = 0 case via a union-bound type argument, since yt > 1.
It turns out that this is not simply a matter of proof technique.

PROPOSITION 5.1 (INFORMAL; SEE CLAIM 3.14 IN [24]). There exists
an almost §-CG source with smoothness parameter y which is far
from any (1 — 2y)5-CG source.

Despite this, our technique does handle constant y-s. Moreover,
we emphasize that an almost CG source with y > 0 over dt = n
bits may not even have Q(8n) bits of entropy. To see this, consider

! The use of biased distinguishers is also explicit in the recents works of [13, 40].
12We note that [20] cared about the entropy loss. Our condensers lose roughly a small
constant fraction of the entropy, which is much more that what is attainable for seeded
condensers with small entropy gap.

3The distance here is the total variation distance.
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the source X = Xj o... o X; such that for each i € [t], X; is zero
with probability y, and an arbitrary dd-source over {0, l}d \ {0}
Thus, Pr[X = 0] = y! and so Hw(X) < tlog }—1,. Still, our condenser
outputs a source which is close to having roughly n bits of entropy!
This implies that such an X must have ample smooth min-entropy.
Indeed, this is the case.

PROPOSITION 5.2 (INFORMAL; SEE CLAIM 3.13 IN [24]). Every al-
most §-CG source over n bits with smoothness parameter y has smooth
min-entropy (1 — 2y)dn.

Such a claim follows from a technique similar to “entropy flat-
tening" (see, e.g., [27]), where the min-entropy of a distribution X
is improved by taking multiple independent copies of X.

Handling Shannon Entropy. Handling y > 0 enables us to extend
our results to Shannon CG sources. Given a Shannon §-CG source,
we show that by grouping every O(1) consecutive blocks, we get
an almost Q(5%)-CG sources with smoothness parameter y that
is exponentially-small in the number of grouped blocks (see [24,
Corollary 3.11]). Then, we can easily apply our results for almost CG
sources. See [24, Theorems 6.4, 4.3] for the precise condensing and
extraction results. Note that the transition from Shannon entropy
to min-entropy necessarily induces error, so y > 0 is crucial here.

Handling Damaged Blocks. Our random-walks based condensing
method is flexible enough to handle damaged blocks too. Namely,
we allow some A-fraction of the i-s to have completely arbitrary
conditional distributions.

Definition 5.3 (almost CG source, II). A (y, A)-almost §-CG source
is a sequence of random variables X = Xjo...0X;, each X; ~ {0, l}d,
such that for at least (1-1)¢ of the i-s, it holds that H., (X; 1X[1,i-1] =
a) > 4d for any prefix a ~ X[y ;_1]-

When the damage pattern is arbitrary, we can condense to within
O(Adt) entropy gap (i.e., we lose d bits of entropy for each damaged
block). [24, Corollary 4.14] handles the A > 0 setting as well. We
remark that the [33, 41] technique would fail for even one dam-
aged block. Moreover, when the damaged locations are “nicely
distributed”, our technique regains the O(1) entropy gap. We elabo-
rate it on this more in subsection 6.4, and give the technical details
in [24, Theorems 5.4, 6.4, 7.3, 7.4].

6 OUR TECHNIQUE: A NEW ANALYSIS OF
ADVERSARIAL RANDOM WALKS

Our main technical contribution is a new analysis of adversarial ran-
dom walks. Let’s begin our discussion with exact Chor-Goldreich
sources. Spectral analysis has been the main tool to analyze ran-
dom walks on expanders. However, it doesn’t seem to work for CG
sources with rate below 1/2. This is because there is no specialized
method for CG sources; existing spectral methods that work for
CG sources also work for general min-entropy sources, and general
sources with rate below 1/2 do not mix at all (recall that each ran-
dom step may be followed by an adversarial step that reverses the
random step). Moreover, even for general sources with rate above
1/2 a random stopping time is required, which amounts to a linear
number of seeds. We hope to condense without a seed or extract
with a constant number of seeds.
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Furthermore, spectral methods generally exploit the Markovian
nature of random walks. However, an adversarial random walk is
not Markovian. That is, the distribution of the next step depends
not only on the walk’s current node, but also on the path it took to
get there. Indeed, although it is true that the distribution of the next
step from a given node v is a convex combination of instruction
distributions over all the paths that end at v, the memory in the
walk still presents a challenge.

Our approach uses expansion directly. We therefore use the
highest quality expanders: bipartite lossless expanders.

Definition 6.1 (balanced lossless expander). We say that a D-left-
regular bipartite graph G = ([M], [M],E) is a (Kmax, €) lossless
expander if for all subsets S € [M] of size at most Kmax, the neigh-
borhood set I'5(S) has size at least (1 — £)D|S].

For technical purposes, we will actually require that the right
degree of the lossless expander be small as well. For a high-level
understanding of our work, it suffices to assume that the expander
is biregular.

For numerous applications a modest vertex expansion is not
enough, and lossless expansion is essential.'* An explicit construc-
tion of balanced (and somewhat imbalanced) constant-degree loss-
less expanders was given by Capalbo, Reingold, Vadhan, and Wigder-
son [10].1> As a pseudorandomness primitive, it is instructive to
think of Tg: {0,1} x {0,1}¢ — {0,1}™, the neighborhood func-
tion of G, as a lossless conductor (where we use {0, 1} = [M]).

Definition 6.2 (balanced lossless conductor). A function
LC: {0,1}" x {0,1}¢ — {0,1}™

is a (kmax, €) lossless conductor if for any k < kmax, a k-source
X, and an independent and uniform Y ~ {0, l}d, it holds that
HE(LC(X,Y)) = k+d.1°

That is, the output distribution “absorbs” the d bits of entropy
from the seed, up to an ¢ error. Intuitively, the larger the vertex ex-
pansion, the less freedom the adversary has to skew the distribution
over the next step. We soon make this intuition more concrete.

Our first construction, which works for large §-s, goes as follows.
Given an almost CG source X = Xj o...0 X}, each X; ~ [D], we
walk, from a fixed node, along a (¢ + 1)-partite graph with a copy
of G between each two layers (the graph’s size M is chosen as a
function of the source’s parameters). Namely, we start at some fixed
Zy € [M], and for each i € [t], let

Zi =T6(Zi-1, Xi),

and output Cond(X) = Z;.
For an exact §-CG source, this amounts to a random walk where
an adversary, after seeing previous steps, chooses D% nodes among

14Examples can be found in coding theory, data structures, algorithms, storage models,
and proof complexity (see the references in [10], and [9, 14, 17, 31] for more recent
works).

5For very small sets, Alon showed that lossless expansion follows from high girth.
See also [1]. In the regime where M < N, the degree needs to be super-constant, and
explicit constructions for this regime are known (e.g., [29, 42]).

19The correct equivalence would be to lossless condensers if we allow the construction
itself to depend on k (see [42]). For the sake of our discussion, this difference won’t
matter, and in the technical sections we will not use the lossless condensers/conductors
terminology.
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the D neighbors, and the random walker steps to a random node
among these D? nodes. We are able to show:

THEOREM 6.3 (INFORMAL; SEE THEOREM 4.8 IN [24]). LetXjo...0
X; be a 5-CG source, with each X; ~ {0,1}4. Let G be a sufficiently
good D = 2d—regular expander. Then, for any n > 0, the last step Z;
of a random walk on G, performed as above, is n-close to a k — O(d +
log %)-source.

The proof is nontrivial, and we discuss it next.

Evading the Union Bound. The naive approach to analyze the out-
put distribution after ¢ steps is to follow the definition of conductors.
However, conductors only guarantee that the output distribution
is e-close to a distribution with appropriate entropy. Thus, even
disregarding the correlation between source and seed, such an ar-
gument naturally forces us to union bound over the error of each
step. Indeed, one can even show that if each instruction comes from
a dd-source, and one wishes to add exactly dd entropy, then such a
union bound is necessary. Our ultimate solution avoids this union
bound issue, and in doing so, only argues that the entropy gain at
each step is 0.95d instead.!”

Expansion of Weight Functions. As usual in analyzing random
walks, we need to handle real nonnegative probabilities. It is stan-
dard to do this using eigenvalues, but there is a loss in going from
expansion to eigenvalues, or other analytic tools such as hypercon-
tractivity. These analytic methods don’t seem to capture lossless
expansion.

We give a simple way to capture lossless expansion by directly
generalizing the combinatorial definition of expansion to nonneg-
ative real numbers, which doesn’t seem to have been considered
before. Specifically, let 15 denote the indicator function of a set
S. Then 1p(s)(v) = V,yer(o) 1s(w). To generalize this to weight
functions (nonnegative real valued functions), we replace the OR
with a max. We then show that the expansion of weight functions
with support size at most K exactly equals the expansion of sets
with size at most K. This enables us to capture the effect of lossless
expansion. We can even generalize this weighted notion to unique
neighbor expansion, although it is not necessary for the proof.

6.1 The £, Norm as a Progress Measure

Recall that spectral analysis typically uses the £, norm as a measure
of progress. While the £, norm doesn’t appear to work in our setting,
we manage to use the £; norm as a progress measure, for some
suitable ¢ = 1 + . That is, we show that the £; norm of the vertex
distribution decreases by a suitable multiplicative factor at each
step.

THEOREM 6.4 (INFORMAL; SEE LEMMA 4.6 IN [24]). Let G = (U =
[M],V = [M],E) be a bipartite D-regular (K, ¢) lossless expander
with error ¢ = #. Forany 0 < a < B, setq = 1+ a and let
6>21-f+a.

Let py be a probability distribution over U and let ry,, for each
u € U, be a distribution over {0,1}4 = [D], each being a dd source.
For anyu € U andv € V let ry(u,v) denote the probability that

70r (1 — 6)&d for an arbitrary constant 8 close to 0, at the expense of modifying
some constraints in the construction.
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the edge leading from u tov is chosen under r,,. Namely, for G’s la-
belling function £: E — [D] we denote ry, (u,v) = ry,(£(u,v)). Define
py as the induced probability distribution on V. That is, py (v) =
2uer (o) Tu(u,0)py (u). Then,

8
Do« '
as long as ||pU||3 is not already smaller than 1/K%.

lpv g < lpullg,

The {g-norm is a proxy measure for min-entropy, since any dis-
tribution p such that || p||g < 279 g e-close to a distribution with

entropy k — é Iog% (see [24, Corollary 2.3]). Thus, Theorem 6.4
implies that every step on a lossless expander, according to a dd
source, adds roughly 8d bits of entropy to the vertex distribution,
up to a “saturation” point of roughly k = log K bits of entropy. Since
we have explicit constructions wherein k = m — O(1), a saturated
vertex distribution already has constant entropy gap.

One advantage of using the g-norm is that it allows us to better
control the error term corresponding to the small lossy part of the
lossless expander. For example, certain nodes on the right may have
high degree, causing their probability after a step of a random walk
to be large. This problem is exacerbated by the adversarial nature
of a random walk via an almost-CG-source, which can assign up
to y probability to edges leading to high degree right nodes. By
considering the g-norm for a sufficiently small , we have a measure
of entropy that is less sensitive to such error, all while still ensuring
that the entropy gained at each step is roughly the same as the
entropy in each instruction.

To prove Theorem 6.4, since the distribution of the random walk’s
vertex may not be uniform, we generalize set expansion and unique
neighbor expansion to apply to “weight functions" and probability
distributions. We then apply Jensen’s inequality with a nonstandard
choice of coefficients that heavily weights the term where we gain.
This gives a simple analysis of adversarial random walks that uses
expansion directly.

Overall, our analysis gives a “spectral-like" analysis of random
walks even when such techniques cannot be directly applied. In
addition to its application in deterministic condensing, we believe
that this analysis of entropy gain via random walks from correlated
and nonuniform steps is interesting on its own.

Handling Smoothness. Up until now, we did not address the
smoothness parameter y thoroughly. Quite surprisingly, it turns out
that our technique based on the £z-norm analysis is flexible enough
to support constant y-s without substantial changes. Indeed, when
dealing with such instructions, we extend Theorem 6.4 and show
that the £;- norm decrease factor is now roughly ﬁ +D%.In
fact, there are cases where this factor is tight. This seems unfortu-
nate, because we are now seemingly only gaining less than log )l,
min-entropy at each step, or in other words, lose the vast majority
of the desired dd bits.

The trick to overcome this is to simply pick « sufficiently small
in the £;-norm analysis (recall that we set ¢ = 1 + a). Indeed, by
choosing a = é log )l/ we see that y is then comparable to ﬁ.
Under the assumption that y < 2-0(/ 5), the decrease factor can be
made to be D~0-29% Thus, we once again gain roughly 90% of the

entropy at each step. Setting « this small only results in a loss of
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roughly O(d) bits of entropy over the entire walk.'® For the precise
norm evolution with an arbitrary y, in [24, Corollaries 4.11, 4.12],
we set « accordingly.

Additionally, we observe that the assumption y < 279(1/9) jg
quite mild, as y only depends on § and not d. Thus, for sufficiently
large d-s, y > D=9 We note that setting & to be a small constant,
say o = 1/6, would require y < DO in order to argue that
0.9d bits of entropy is gained at each step. We view our setting
of parameter a as a way that allows us to avoid treating each
instruction source as pessimistically as a log )l/—source.

The Limit of Our First Construction. We now explain why our
first construction only works for large enough 8. For concreteness,
assume that we are at some Z;_; ~ {0,1}"" with H(Z;—1) = k,
and walk according to X; ~ [D] having entropy dd (assume for
now that y = 0). For simplicity, assume that Z; is flat over some
set S C [M] of size K = 2F < Kinaxs recalling that we walk over a
sequence of (Kmax, €) bipartite lossless expanders with M vertices,
arranged in series. It may be informative to simply think of the
walk as over a single (Kmax, €) undirected lossless expander.

While any large enough subset of S or of the edges leaving S
has nice properties (for example, at least 1 — 2¢ fraction of the
vertices in S have a unique neighbor), there can still be e-fraction
of the KD edges leaving S that behaves badly. In particular, eKD
of the edges may lead to vertices that have many incoming edges
from S. Assume for simplicity that each node in S has the same
number of bad edges, namely eD edges from each node in S lead to
heavy vertices. When D% < ¢D, an adversarial X; can potentially,
for each node, be supported only on instructions that lead to bad
edges. In this case, Z;4+1 may have accumulate neither min-entropy,
nor smooth min-entropy. Thus, we must consider the case where
D% > ¢D.

This raises the question of how small can we take ¢ to be as a
function of D, or alternatively, how large can we take § to be given
an existing lossless expander. Non-explicitly, we have I'z-s with
a great seed length, namely d = 1 - log% + O(1), in which case
we can take ¢ < D™(17%) even when 6 > 0 is arbitrarily small. In

[10], however, the required seed length is d = %log % for some

constant f < %.19 Denoting i,y = 1 — f, we see that we can only
hope to handle almost §-CG sources with § > &, and we do
indeed achieve this. We note that both in [10] and in an optimal
lossless expander, Kmax = Qp (M), which is good enough to lead
to constant entropy gap.

6.2 Our Two-Level Construction

We handle general § > 0 via a two-level process: We first walk
over a small, optimal lossless expander in order to simulate an
instruction with sufficiently large 8, and then “flush” it as a step in
the big CRVW graph over M vertices.

We are given X = Xj o... 0 X;, each X; ~ {0, 1}d = [D]. We let
H = ([Dcrvw]s [Dervw ] E) be an optimal lossless expanders with
degree D, and we can choose its error ¢ to be very close to 1/D. The
number of vertices in H corresponds to the degree of our standard

18 A key point here is that the closer « is to 1, the larger we can allow our £g-norm
bound to be in order to get high entropy. See [24, Corollary 2.3].

The actual 8 is around §, and f§ < } is an inherent barrier for their construction.
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CRVW graph G over M vertices, and we choose D¢y to be quasi-
polynomial in D.?° For the exact choice of parameters for G and H,
see [24, Section 5]. Now:
e For some parameter b = poly(d), we group consecutive
blocks of X into “super-blocks” X| o .. ‘Xt//b’ each X/ con-

taining b blocks of length d each.

e For each i € [t/b], we use X] as instructions to a separate
random walk on H, starting from some fixed node each time.
Denote by Z; the final node reached after the b steps.

e We show that Z = Z; o... 0 Z;);, is itself an almost CG
source, but this time with § > ;.. Thus, we can use Z as
instructions for G!

Fortunately, H is constant-sized, so we can find it in constant
time. Using optimal constant-sized ingredients is also a key idea in
the [10] construction itself.

6.3 Removing the Constraints on d and y

So far, we discussed how to condense from a y-almost §-CG source
when y < 2001/8) and d > poly(1/8).2! To obtain Theorem 3.2,
which has no such constraints, we observe that grouping the instruc-
tions of the CG source into blocks of length poly(1/8) yields a new
CG source with roughly the same entropy rate, but with sufficiently
large instruction length, and smoothness error exponentially small
in 1/8. The fact that grouping instructions into blocks improves
the smoothness error follows quite easily from the observation that
sampling a heavy instruction (one whose probability is at most y)
at step i is independent of sampling heavy instructions in previous
steps. Thus, the number of heavy instructions sampled over many
i follows Chernoff-like tail bounds. See [24, Lemma 3.3] for details.

6.4 Suffix-Friendliness

While our technique is flexible enough to recover from damaged
blocks and suffer only the expected decrease in entropy per dam-
aged block, it cannot achieve constant entropy gap, if, say, all the
damaged blocks are at the end. However, if at any step we can
guarantee that we won’t encounter too many damaged blocks from
now on, we can regain constant entropy gap. Roughly speaking,
the favorable case is that the A-fraction of bad blocks is nicely dis-
tributed in the sense that each suffix contains at most A-fraction
of bad blocks (up to an additive term). We call this property suffix
friendliness (see the precise definition in [24, Definition 3.4]), and
show that we can deterministically condense from such sources
to within constant entropy gap in [24, Section 4.3.3]. Moreover,
we observe that given an almost CG source with A = 0, a random
pattern that damages each block with probability roughly A, leads
to a suffix friendly almost CG source with “bad blocks” parameter
A (see [24, Lemma 3.5]).

6.5 The Construction’s Runtime

Recall that the simulation slowdown is also affected by the time
it takes to compute the extractor, or condenser (in the “one-shot”
simulation setting). Our online manner of condensing, together with

200ne can also think of H as an e-error optimal lossless conductor H: {0, 1}P°¥(@) x
{0,139 — {0, 1}P°Y(@ with seed length d = log  +O(1).

2'We did not mention the constraint on d explicitly, however the intuition is clear: the
raw amount of entropy in an instruction, 8d, should be at least 1.
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the fact that the primitives we use (namely, the CRVW expander
and the GW extractor) are efficient, makes our construction efficient
as well. In particular, in we achieve a near-quadratic runtime in
the TM model. See [24, Appendix C]. In the RAM model, in which
each machine word can store integers up to N = 2" and perform
arithmetic in Fq for a prime g < N at unit cost, our construction
takes linear time.

7 ON SUPPORTING BAD PREFIXES

We extended -CG sources to handle smoothness y and A fraction
of bad blocks. One can also try and further relax the notion of CG
sources in the following way: Instead of requiring that for each
non-damaged block X, for any prefix a ~ X|1;_q] it holds that
Xil{X[1,i-1] = a} is y-close to having entropy rate 8, we require it
only for most prefixes. Concretely, what if we allow some p-fraction
of the prefixes to lead to instructions having low entropy? (See [24,
Definitions 8.3, 8.6], also for the Shannon-entropy variant.)

That extension seems too permissive, at least in some regime of
parameters. We show that any random variable X ~ {0, 1}" with
H(X) = (1 - {)nis already an almost Q(1)-CG source with error
parameters y, A, and p, all roughly equal to { Q1) Moreover, with
a constant seed, we show that we can even increase the (smooth)
entropy rate from an arbitrary Q(1) to 1—{, at the cost of increasing
A and p. Thus, since we provably cannot condense or extract from
high Shannon entropy with constant seed, we have an inherent
barrier to handling p > 0 alongside a comparable, nonzero A. We
discuss it further, and give the precise details, in [24, Section 8].

8 EXTENSION: ONLINE CONDENSING AND
MAINTAINING CONSTANT ENTROPY GAP

Unlike other condensers, our construction is an “online” one. That
is, the construction makes one pass over the randomness stream
X1 o...0X; in order to form the required instructions, and never
needs to store more than a constant number of bits in memory
before updating the location in the big graph. Moreover, we don’t
even need to know the number of blocks ahead of time!??

As given above, it is easy to see that the construction does not en-
sure constant entropy deficiency in the output distribution through-
out the random walk, but only at the end, even if there are no
corrupted instructions at all (A = 0). However, one can easily adapt
our approach to also work in such a “completely online” fashion.
The idea is to walk on graphs of gradually increasing size. Namely,
after every constant number of steps (for some fixed constant), we
map the current vertex to a vertex in a graph that is a constant
times larger (but with the same degree) and continue the walk from
there. Although we do not give such a result in full formality, in [24,
Appendix B] we present an informal theorem and a brief discussion
sketching its proof.
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