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ABSTRACT

We construct explicit deterministic extractors for polynomial images
of varieties, that is, distributions sampled by applying a low-degree
polynomial map f : Fj — F to an element sampled uniformly
at random from a k-dimensional variety V' C ]Fg. This class of
sources generalizes both polynomial sources, studied by Dvir, Gabi-
zon and Wigderson (FOCS 2007, Comput. Complex. 2009), and va-
riety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012).

Assuming certain natural non-degeneracy conditions on the
map f and the variety V, which in particular ensure that the source
has enough min-entropy, we extract almost all the min-entropy
of the distribution. Unlike the Dvir-Gabizon-Wigderson and Dvir
results, our construction works over large enough finite fields of
arbitrary characteristic. One key part of our construction is an
improved deterministic rank extractor for varieties. As a by-product,
we obtain explicit Noether normalization lemmas for affine varieties
and affine algebras.

Additionally, we generalize a construction of affine extractors
with exponentially small error due to Bourgain, Dvir and Leeman
(Comput. Complex. 2016) by extending it to all finite prime fields
of quasipolynomial size.
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1 INTRODUCTION

Randomness is a powerful resource in computing. There are many
useful randomized algorithms, and randomness is provably neces-
sary in cryptography and distributed computing. Naturally, these
uses of randomness assume access to uniformly random bits. How-
ever, it can be expensive or impossible to obtain such high-quality
randomness. A randomness extractor converts low-quality random-
ness into high-quality randomness.

Low-quality random sources can arise in several ways. First,
natural sources of randomness may be defective. Second, in cryp-
tography, if an adversary gains information about a string, then
conditioned on this information, the string is weakly random. Third,
in constructing pseudorandom generators, a similar situation arises
when we condition on the state of the computation. Besides the
computer science motivation, randomness extraction questions are
natural mathematically.

We model a weak source as a class D of distributions over a finite
set Q. A randomness extractor for D is a deterministic function
that extracts randomness from any distribution in D.

DEFINITION 1.1. An extractor for a class D of distributions with
error &, or an e-extractor, is a function Ext : Q — B such that for any
D € D, the distribution Ext(D) is e-close, in statistical distance, to
the uniform distribution over B.

Typically the codomain B will be {0, 1}™.

The most general class of distributions is the set of distributions
with high min-entropy;, i.e., distributions that do not place much
probability on any string. However, it is not hard to show that it
is impossible to extract from such sources. It is possible to extract
using an auxiliary seed, and there are many applications of such
seeded extractors (see [32] for a survey). It is also possible to extract
from two independent general weak sources (e.g., [8]). However, if
we want to avoid adding a seed and only have one source, we must
restrict the class of distributions further.

Various models of weak sources have been studied. It is not hard
to show that if there are not too many distributions in the class,
then most functions are extractors with excellent parameters. Of
course, we really want efficiently-computable extractors.

Models of weak sources tend to be either complexity-theoretic
or algebraic. In this work, we focus on algebraic sources. That is, we
consider distributions over subsets Q which have a “nice” algebraic
structure.
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1.1 Algebraic Sources of Randomness

Suppose Fis a finite field and Q = F". The simplest class of algebraic
sources is the set of affine sources. An affine source is simply the
uniform distribution over an affine subspace V' C F" of dimension
k. Note that since |V| = |F|¥, the single parameter k also determines
the min-entropy of the uniform distribution over the source.

Gabizon and Raz [15] constructed an explicit extractor Ext :
F" — Fk-1, assuming the field size is bounded from below by a
large enough polynomial in n. For a large enough field size g, their
construction extracts almost all of the randomness from the source
and has error ¢ = 1/poly(q).

The last feature is slightly undesirable, as ideally, one would
like the error to decrease exponentially with k, the dimension of
the source. Such a construction was given by Bourgain, Dvir and
Leeman [5], albeit their construction requires the field size to be
slightly super-polynomial in n, and only works for certain fields.

Over smaller fields, constructing affine extractors for small min-
entropy is a more challenging task. Further, it is possible to show
that any function f : F)} — F; is constant on some affine subspace
of dimension Q(logn) (see, e.g., Lemma 6.7 of the arXiv version of
[1]), and thus one cannot hope to extract even a single bit when
the min-entropy is smaller than log n (compare this with the fact
that over large fields, the Gabizon-Raz extractor works for any k).

Bourgain [4] constructed an extractor that works over Fy for
min-entropy k = cn for a small constant c. This result was slightly
improved by Yehudayoff [34] and Li [22]. Li [23] then presented a
much improved construction which works when the min-entropy is
as small as k = logc(n) for some constant C, which was improved
by [7] to k = log“"’(l) (n). However, one drawback of the last two
constructions is that the error parameter ¢ is either constant or poly-
nomially small, whereas one would hope for it to be exponentially
small in k, as in the earlier constructions of Bourgain, Yehudayoff
and Li.

There are several natural ways to generalize affine sources, but
some care is needed when defining those generalizations. As we
remarked earlier, for an affine subspace, the single parameter k
determines its size and hence the min-entropy of the correspond-
ing source. For more complicated algebraic sets, however, as we
shall now see, there are multiple parameters controlling their “com-
plexity,” and the connection between those parameters and the
min-entropy of the source is not always obvious.

Dvir, Gabizon and Wigderson [10] considered polynomial sources,
which are defined by applying a low-degree polynomial map P :
FK — F" on a uniformly random input from F¥. (Note that affine
sources are a special case of polynomial sources when the degree
equals one.) They further impose the algebraic condition that the
Jacobian matrix of the map is of full rank, which in particular
guarantees that the min-entropy of the source is high, assuming the
characteristic of the field is large enough. The field size required by
the construction of [10] is poly(k, d, n)k.

Dvir [9] studied a different generalization called variety sources,
which are uniform distributions over sets V. C F" that are the
common zeros of a set of low-degree polynomials. Varieties also
have an associated concept of dimension, but unlike the affine
case, over finite fields having a large dimension does not guarantee
by itself that the set V is large, and thus this condition must be
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imposed explicitly. Dvir presented two constructions. The first
requires exponentially large fields and works for any dimension
k. The second requires the variety to have size larger than |F|"/2,
but the field size depends only polynomially on the degree d of the
polynomials defining V.

Over Fy, the situation is much more mysterious. This setting
is well motivated, since it turns out that explicit constructions of
extractors (or even dispersers) for varieties with various param-
eters would imply new circuit lower bounds. Golovnev, Kulikov
and Williams [18] proved multiple such results. One is that ex-
plicit extractors for varieties of size at least 2°” defined by constant
degree polynomials would imply lower bounds for general cir-
cuits of the form Cn for larger constants C than what is currently
known. They also showed that extractors for varieties of size at least
20997 defined by polynomials of degree at most n%-°! would imply
super-linear lower bounds for boolean circuits of depth O(logn), a
long-standing challenge in complexity theory (see also [19]).

As for constructions over Fz, Li and Zuckerman [21] showed how
to use correlation bounds against low-degree polynomials to obtain
extractors for variety sources defined by degree d polynomials
for d = O(1) and size at least 2(17¢4)" for some constant cq that
depends on d. Remscrim [30] proved that the majority function is
an extractor for varieties defined by polynomials of degree at most

n% and size at least 2"~ | assuming a + f§ < 1/2. Thus, all the
known constructions are not strong enough to imply new circuit
lower bounds.

1.2 Our Results

1.2.1  Extractor for Polynomial Images of Varieties. In this paper, we
study the class of polynomial images of varieties, which generalizes
both variety sources and polynomial sources. Informally, the source
is specified by a variety V € F" and a polynomial map f : V — F",
and a sample from the source is a random variable X computed by
uniformly at random picking an element x € V and outputting f(x).
We would like to construct an efficient extractor Ext : F* — {0, 1}
that has small error ¢ and large output length m. The largest m we
can hope for is the min-entropy of the input, which is approximately
kloggq, where ¢ = |F| and k is the dimension of the variety V
(see Section 4 for a definition of this notion). Our main result is a
construction of an extractor with m ~ kloggq.

Formally defining such sources takes some care, since varieties
and their associated complexity parameters are easier to define over
algebraically closed fields. As in previous work, we further need to
assume some natural non-degeneracy conditions on the variety V
and the map f. We now describe those sources in more detail.

Polynomial images of variety sources. Let F be a field. For a set
hi,...,hs € F[Xy,...,Xy], define

Lh],...,hs,ﬂ: = {co+c1h1+ - -+cshs : o, ..., cs € F} CF[Xy,...,Xn],

ie, Ly,  pris the linear span of hy, ..., hs and 1 over F.
Denote by F the algebraic closure of F. An affine variety V C
F" over F is the set of common zeros of a set of polynomials in
F[Xi,...,Xn]. Two parameters naturally associated with a variety
V are its dimension, denoted dim V, which equals the length of
the maximal chain with respect to inclusion of distinct irreducible
subvarieties, and its degree, denoted deg V, which is the number
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of intersection points of the variety with an affine subspace of
codimension dim V' in general position (we refer to Section 4 for
more formal definitions).

DEFINITION 1.2 ((n, k, d) ALGEBRAIC SOURCE). Letn,d € N* and
k € N. We say a distribution D over IF‘Z is an (n,k,d) algebraic

source over Fq if there exist r € N, an affine variety V C I_F; over
Fy, polynomials hy, ..., hs € Fq[Xl,...,Xr] with deghy > -+ >
deghs,and fi,.... fn € L, n,F, suchthatD = f(Uyg,)), where
f ﬁ; — Fg is the polynomial map defined by fi, ..., fn, and Uy (r,)
is the uniform distribution over V(Fq) := V NF,, and further, the
following conditions hold:

(1) At least one irreducible component of V of dimension dimV is
absolutely irreducible.

(2) For every irreducible component Vy of dimension dim 'V that
is absolutely irreducible, the dimension ofm is at least
k, where (V) C FZ denotes the closure of f(Vp), i.e., the
smallest affine variety over By containing f(Vp).

(3) degV - TTK, degh; < d.!

In addition, we say D is an irreducible (n, k, d) algebraic source over
Fq if V can be chosen to be irreducible. We say D is a minimal (n, k, d)
algebraic source over Fq if V can be chosen to have dimension k.
Finally, we say D is an irreducibly minimal (n, k, d) algebraic source
over Bq if V can be chosen to be irreducible of dimension k.

The conditions in Definition 1.2 may look a bit contrived at
first glance. However, as we now explain, they are quite natural,
and indeed some form of them, as observed in previous work, is
necessary.

The third condition is simply a convenient way to “pack” multi-
ple “complexity” parameters of the components of the source that
arise in the analysis. That is, d is a single complexity parameter that,
in particular, bounds the degree of the variety V and the product of
degrees of the polynomial map f. Having d as a single parameter
simplifies the statements of our theorems and clarifies the depen-
dence between the various parameters: the larger d is, the larger
the field size we require and the smaller the output length of the
extractor.

The purpose of the first two conditions is to guarantee that our
source has enough min-entropy. As observed in previous work
[9, 10], it is quite easy to come up with simple varieties V (even of
high dimension) or polynomial maps f (even of low degree) such
that sources arising as f(V) would have very few points in FZ, so
that there will be little to no randomness to extract.

The first condition is analogous to (and, as shown in the full
version of this paper, roughly equivalent to) Dvir’s [9] condition that
the variety V contains enough points in Fg The second condition
is analogous to (and, over fields of large characteristic, implied by)
the full-rank Jacobian condition of Dvir, Gabizon and Wigderson
[10]. Thus, not only is some form of conditions 1 and 2 necessary
for proving any meaningful results, but moreover, these conditions
naturally generalize the conditions imposed by previous related
works.

!Note that dim f(V) > k by previous conditions. So we necessarily have s > k and
degh; > 1fori € [k]. This also implies deg V' < d.
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Finally, we note that the name “(n, k, d) algebraic sources” sup-
presses the dependence on the parameter r in the definition, which
is the ambient dimension in which the variety V lies. This is because
our result, stated next, has no dependence on r. Even in the case
where r is very large with respect to n, k and d, our results only
depend on the latter three parameters. Further, note that when r
is very large, dimV can also be very large compared with n and
k. However, as the definition hints, we will reduce this case to the
case where dimV = k.

We can now state our main theorem.

TueoreM 1. Letn,d € N*, k € N, and ¢ € (0,1/2]. Let q be a
power of a prime p. Suppose q > (nd/e)¢, wherec > 0 is a large
enough absolute constant. Then there exists an explicit e-extractor
Ext : Fy — {0,1}™ for (n, k, d) algebraic sources over Fq with output
length m > klog q — 4loglog p — O(log(nd/¢)).

It can be shown that any (n, k, d) algebraic source D over Fg,
where q > (kd)€ for a sufficiently large constant ¢ > 0, is (close to)
a distribution with min-entropy at least k log ¢ — O(log d). More-
over, this estimate of the min-entropy is tight up to an additive
term O(logd) if D is not an (n, k + 1,d) algebraic source over Fg.
See Lemma 7.4 and Proposition 7.5. Therefore, the extractor in The-
orem 1 extracts most of the min-entropy from (n, k, d) algebraic
sources. In addition, Theorem 1 works over finite fields of any char-
acteristic, while the extractors by Dvir, Gabizon, and Wigderson
[10] and Dvir [9] require large enough characteristics.

As is standard in the literature, by “explicit” we mean that the
output of the extractor is computable in time poly(n,log q) (note
that the input length to the extractor is nlog q).

Along the way to proving Theorem 1, we construct several other
algebraic pseudorandom objects which are interesting on their own.
We mention some of these constructions when we give an overview
of our construction in Section 1.3.

1.2.2  Affine Extractors for Quasipolynomally Large Fields with Ex-
ponentially Small Error. Recall that an explicit affine extractor is an
efficiently computable function Ext : F" — F™ such that for every
affine subspace V C F" of dimension k, and a random variable X
uniformly sampled from V, Ext(X) is close to the uniform distribu-
tion over F™™. We would like m to be as close to k as possible and,
ideally, the error parameter ¢ to be exponentially small in k.

As mentioned earlier, the extractor of Gabizon and Raz [15]
achieves m = k — 1 and error ¢ only polynomially small in the
field size g. In particular, the error does not decrease with k. Bour-
gain, Dvir and Leeman [5] constructed an affine extractor with
m arbitrarily close to k/2 and error q_Q(k). However, their con-
struction requires q to be slightly super-polynomial in n, namely
q = n®Uoglogn) “and furthermore only works for “most” prime
fields F4. We improve the analysis of their construction and present
a construction with identical parameters that works for all prime
fields, assuming q = nf?(loglogn)

THEOREM 2. For every 0 < f < 1/2, there exists a constant C
such that the following holds: Let k < n be integers and F be a prime
field of size g > nC1°8198" Lot m = Bk. There exists an efficiently
computable function E : F* — F™ which is an affine extractor for
min-entropy k with error q_Q(k).
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1.3 Techniques

Our construction from Theorem 1 combines several techniques
used in previous related constructions, as well as several new ideas
which are required to successfully apply these techniques. It is
convenient to think of the construction as proceeding in several
steps.

Preliminary step: decomposing the sources. Our definition for al-
gebraic sources (Definition 1.2) is quite general, and it is convenient
to work with slightly “nicer” sources. We start by approximating
general (n, k, d) algebraic sources as convex combinations of irre-
ducibly minimal (n, k, d) algebraic sources. Recall that this means
that the variety V is irreducible and has dimension k.

This step is done in Section 7: we first decompose a general
source into a convex combination of irreducible sources in a man-
ner that follows naturally from the decomposition of V itself as a
union of irreducible components. We then decompose an irreducible
source into irreducibly minimal sources roughly by intersecting it
with a linear space of the appropriate dimension. Both parts of the
arguments incur a small error.

First step: extracting a short seed. Having reduced to the case
of irreducibly minimal sources, we first design an extractor that
extracts a small number of bits from the source. One commonly used
technique for doing that is to show that the source is an e-biased
distribution, i.e., a distribution whose nontrivial Fourier coefficients
are all small. Similar methods work when the source is close to
such a distribution or to a convex combination of such distributions.
Analyzing and bounding the Fourier coefficients is often done using
bounds on exponential sums from algebraic geometry, such as
Bombieri’s estimate (Theorem 4.3). We follow this general paradigm
as well.

However, the case where the field characteristic is small presents
some unique challenges to overcome. We first prove an extension
of Bombieri’s theorem for small characteristic p. This extension
bounds the corresponding exponential sums save for possibly a
small set of “bad” characters. Hence, we then define and study a
more general class than ¢-biased distributions: (¢, e)-biased distri-
butions, which are distributions in which all but at most e of the
Fourier coefficients have absolute value at most ¢. We show that the
sources we consider are close to convex combinations of such distri-
butions (for meaningful values of ¢ and e), and construct extractors
for such distributions.

Previously, the XOR lemma has been used to construct extractors
for e-biased sources; see, e.g., Rao [29]. We extend these ideas to the
more general and challenging setting of (¢, e)-biased distributions.
On the technical level, we construct explicit functions f : Fj, — IF’I[,
with the following properties: for every nontrivial character i of
F., both the L; and the Lo norms of the Fourier transform of
¥ o f (which is a function from Fz to C) are upper bounded by
sufficiently small quantities. We in fact present two constructions
of such functions f. The first is based on standard error-correcting
codes over Fp, and the second is an improved construction based
on rank-metric codes. Those constructions appear in Section 3.2.

Second step: applying a seeded extractor. Having extracted a small
number of bits, we wish to use them as a seed in an application
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of a seeded extractor on the source to extract almost all the min-
entropy. The challenge, of course, is that the seed is correlated with
the source, whereas a seeded extractor requires the seed to be inde-
pendent of the source. Techniques for dealing with these problems
were developed in [15, 16], as this is also the general methodol-
ogy in their extractor constructions. This is done by analyzing the
conditional distribution of the source conditioned on any possible
output of the seeded extractor with a fixed seed, and showing that it
maintains some nice properties. We first analyze the case where the
image f(V) of the polynomial map is of full rank inside F¥, using
the effective fiber dimension theorem. We then consider the general
case. In order to reduce to that case, we apply a rank extractor for
varieties, a notion we define and develop in this work, building
upon previous work which developed rank extractors for linear
spaces.

Rank extractor for varieties. Let V. C F" be a k-dimensional
variety. We would like to obtain a map E : F* — F¥ which “extracts”
all the rank from V, in the sense that E(V) C F¥ is k-dimensional.
The first obvious challenge is that E(V) need not necessarily be
a variety. It is thus natural in this case to consider the closure of
E(V)in F" where F is the algebraic closure of F.

Previous work has considered the case where V is a linear sub-
space. In this case, observe that if E is linear, then E(V) is also a
linear subspace. However, there clearly cannot be a single map E
that preserves the dimension of all linear subspaces, as given any
fixed E, one could take V to be the kernel of E. Therefore, a natural
relaxation is to consider seeded linear rank extractors, which are
collections of linear maps Ej, ..., E; such that for every V, most of
the maps preserve the dimension. Such objects were first defined
and constructed by Gabizon and Raz [15]. Improved and optimal
parameters (in terms of the “seed length,” i.e., the number of maps)
were obtained by Forbes and Shpilka [14], and a systematic study
of these objects appears in [13].

In this work, we observe that seeded linear rank extractors for ex-
tractors are also seeded linear rank extractors for varieties (see Sec-
tion 5). The key insight is that rank extractors (for linear subspaces)
preserve the dimensions of the tangent spaces at nonsingular points
of the variety, which turns out to be a sufficient criterion.

Linear rank extractors are very useful because they enable us
to condense sources that are not full-rank to full-rank sources
without increasing the degrees of the polynomial maps. However,
it turns out that it is also possible to construct deterministic rank
extractors for varieties, which we do in Section 6. Such extractors
are obviously not linear maps, although in our constructions, they
are polynomials of fairly small degrees (polynomial in n and in the
degree d of the variety). We remark that Dvir [9] constructed such
an extractor for one-dimensional varieties, and his extractor is a
polynomial of degree exponential in n. In addition, Dvir, Gabizon
and Wigderson [10] constructed rank extractors for polynomial
sources using a different technique.

Our construction adapts the construction of Dvir, Kollar and
Lovett [11], who constructed different pseudorandom objects called
variety evasive sets. By modifying their proof, we are able to show
that a similar construction yields a deterministic rank extractor
for varieties. This essentially follows because their map ¢ satisfies
the property that for every low-degree variety V and every point
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b € F¥, the intersection @~ 1(b) NV is a finite set. Dvir, Kollar and
Lovett prove it only for the case b = 0, but it is not hard to extend
it to general b.

Explicit Noether normalization lemmas. As a by-product of the
above construction of deterministic rank extractors for varieties,
we prove explicit Noether normalization lemmas for affine varieties
and affine algebras. The Noether normalization lemma [26, 28] is
a classical result in commutative algebra and algebraic geometry,
which states that any affine variety of dimension k admits a sur-
jective finite morphism to an affine space of dimension k. We show
that the construction in [11] in fact gives a direct construction of
such a finite morphism. In contrast, the textbook proof of Nagata
[26] is iterative and uses polynomials of degrees that are at least
doubly exponential in the number of steps of the iteration.

Our proof is inspired by a geometric argument of Kollar, Ronyai
and Szabo [20]. See Section 11 and the full version of this paper for
more details.

Affine extractors with exponentially small error. Our proof of
Theorem 2 follows a very similar route to the proof of the main
theorem of Bourgain, Dvir and Leeman [5], who constructed such
an extractor for prime fields Fy for “typical” primes g. Our main
contribution is an improved number-theoretic lemma (Proposition
10.1) which shows how to find n distinct integers d, . . ., d, with
desirable number theoretic properties. The proof then proceeds by
estimating the Fourier coefficient of the distribution obtained by
applying our extractor to a linear subspace using an exponential
sum estimate of Deligne, much in the same way as [5].

1.4 Comparison with Previous Work

The two works closest to ours are by Dvir [9] and Dvir, Gabizon
and Wigderson [10], both of which construct extractors for sources
with algebraic structures.

As mentioned earlier, Dvir, Gabizon and Wigderson [10] study
polynomial sources, defined by picking an element x € IFI; uniformly
at random and applying a polynomial map f : ]Fl(; — Fg of degree
at most d. This is a special case of the sources we consider when
the variety V is taken to be ]FZ

They further add the non-degeneracy condition that the Jaco-
bian of the mapping f, namely, its matrix of partial derivatives,
has full rank. This in particular guarantees that the source has a
high enough min-entropy. Their main theorem gives an explicit
extractor that outputs a constant fraction of the min-entropy over
prime fields F, of cardinality poly(n, d )Ck for some constant C. Our
construction in Theorem 1, on the other hand, works for a larger
class of sources, outputs almost all the min-entropy, and works over
finite fields of small characteristics as well.

Dvir [9] considers variety sources, which he defines as uniform
distributions over sets of the type

{x:fikx) = fox) =--- = fi(x) = 0}

in Fj;, where deg f; < d for all i. These sources are also a special
case of the type of sources we consider. One should note, however,
the different usage of the term “degree” in our definitions: Dvir
always refers to the degree deg f; of the polynomials which define
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the variety V, whereas we refer to the degree deg V of V as an affine
variety, which is often much larger.

Assuming dimV = k and V| > pK=¢ for some small constant
¢ > 0, Dvir’s extractor [9] outputs a constant fraction of the min-
entropy over prime fields of characteristic p > A" for some
constant C. Again, Dvir uses the parameter d differently than we
do in Theorem 1. In particular, in our construction, the field size ¢
is only polynomial in the parameter d (but d might be exponential
in n).

As mentioned in the discussion after Definition 1.2, our assump-
tions are weaker than those of [10] and [9]. Thus, as our sources is
more general, the characteristic in our results can be arbitrary, and
our conclusions are stronger (since we extract more output bits),
it follows that in particular our result subsumes the extractors of
[10] and [9].

Dvir [9] also presents a different construction that outputs a
very small number of bits from very large varieties over small fields.
This construction is incomparable with our results.

On the more technical level, we discuss a particular feature of
our proof that distinguishes it from [9, 10] and, in particular, allows
us to extend the output length.

For simplicity, consider the case of (1, 1, d) algebraic sources. As
mentioned in Section 1.3, we first prove an extension of Bombieri’s
estimate that holds even if the characteristic p is small: if p is small,
this result implies that a (1, 1, d) algebraic source D over Fqis a
convex combination of (¢, d)-biased sources. That is, we allow a few
large Fourier coefficients. Then we use the machinery developed in
Section 3 to extract randomness from D. On the other hand, if p is
large enough, then D has no large nontrivial Fourier coefficients; it
is e-biased. In this case, the XOR lemma is sufficient, as argued in
[9, 10].

To apply Bombieri’s estimate to a high-dimensional affine variety
V, we follow [9, 10] and decompose V into a family of affine curves
Ci such that the polynomial f that does not vanish identically on
V still does not vanish on most C;.

In [10], this is achieved using an argument based on the Jacobian
criterion for algebraic independence, but it works only when the
characteristic p is large. Instead of using this argument, we use
the decomposition of (n, k,d) algebraic sources into irreducibly
minimal (n, k, d) algebraic sources proved in Section 7, whose proof
is based on the effective fiber dimension theorem (Theorem 4.6)
and works for any characteristic.

The last idea we introduce is the use of the effective Lang-Weil
bound (Theorem 4.2), which allows us to extract almost log g bits.
To explain the idea, consider an affine variety V C qu and write
V(FFg) as a disjoint union of C;(Fg) for a family of affine curves C;
over Fy. Let f be alow-degree polynomial and assume for simplicity
that f is non-constant on every C;. Let y be a nontrivial character of
Fg. The following win-win argument was used in [10] to bound the

bias § := Eer(Fq) [x(f(x))]]: For a curve Cy, if |C;(Fg)| is small,
say |C;(Fg)| < A for some threshold A, then its contribution to the

bias § is small assuming that V has many rational points. On the
other hand, if C;(Fg) > A, then Bombieri’s estimate (Lemma 8.3),
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together with the fact that

[Srec, g (P
Ci(Fy)l

[ rec,ap X (F)]|
- ,

xeC; (]Fq)

x(f (x))]‘

implies that [E,ec, (Fy) [x(f (x))]‘ is small. Considering all curves
C; shows that the bias is small. We note that no information about
|C;(Fg)| was used in this win-win argument. For this reason, the
choice of threshold A cannot be too large or too small, and the
resulting extractors only extract a constant fraction of log g bits. To
improve the output length, we observe that the effective Lang-Weil
bound (Theorem 4.2) together with gives more information about
|Ci(Fg)|. In particular, for an irreducible affine curve C, the number
|C(Fq)| is either close to g or very small, depending on whether
C is absolutely irreducible. Exploiting this fact yields an explicit
construction of deterministic extractors that output almost log q
bits.

1.5 Open Problems

While improving the dependence on any of the parameters in
our construction remains an open problem, in our opinion, the
main challenge is reducing the field size. In our construction for
polynomial images of varieties (Theorem 1), we require field size
poly(n, 1/¢,d). We stress that for certain varieties, d can be expo-
nential in n (although it is by no means necessarily so). Can we
construct extractors for significantly smaller fields, perhaps even
constant size?

As mentioned above, over very small fields, such as Fy, certain
Ramsey-theoretic lower bounds imply that constructions such as
ours that work for any min-entropy cannot exist. A key reason to
study Fy is that explicit extractors with certain parameters imply
new circuit lower bounds.

In our construction of new affine extractors (Theorem 2), we
obtain a field size that is slightly super-polynomial in n. It is a very
appealing open problem to reduce the field size to a polynomial in
n.

A related problem is reducing the degree of our deterministic
rank extractor. In Section 6, we construct a deterministic rank ex-
tractor for varieties whose degree is poly(n, d) for degree d varieties.
Reducing the degree, perhaps to depend only on d, would help lower
the field size requirement for the extractor for polynomial images
of varieties to depend only on the degree.

We end with two general questions. Can our constructions or
techniques help in designing extractors for larger and more general
classes of sources, either algebraic or complexity-theoretic? Do our
constructions have any complexity-theoretic implications, such as
lower bounds for certain models of computation?

2 NOTATIONS AND PRELIMINARIES

LetN = {0,1,...}, N* = {1,2,...}, and [n] = {1,2,...,n} for
n € N. Write Z, for the cyclic group {0, 1,...,n — 1} with addition
modulo n.
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The cardinality of a set S is denoted by |S|. We also use |c| to
denote the absolute value of a number ¢ € C. Denote by log x the
base 2 logarithm of x, and by In x the natural logarithm of x. For
sets A and B, denote by A \ B the set difference {x € A : x ¢ B}.
The restriction of a map f : A — B to a subset A’ C A is denoted
by f|a’, which is a map from A’ to B.

We write x ~ D if x is sampled from a distribution D. The
support of a distribution D over a finite set Q is supp(D) := {a €
Q : Pr[D = a] # 0}. For an event A that occurs with a nonzero
probability under a distribution D, write D|4 for the distribution of
D conditioned on A. The product distribution of two distributions
D, D’ is denoted by D x D’. The statistical distance between two
distributions D, D’ over a finite set Q is defined to be

A(D,D’) := max | Pr[D € A] — Pr[D’ € A]|.
ACQ

Two distributions D and D’ are e-close if their statistical distance is
at most ¢, and we write D =, D’ for this statement.

The uniform distribution over a finite set S is denoted by Us. For
n € N, denote by Uy, the uniform distribution over {0, 1}".

The min-entropy of a distribution D over a finite set Q is

Hppin(D) = —log(max Pr[D = a]).
acQ)

We say D is a k-source if Hpin(D) > k.

Let Q and B be finite sets, and let D be a class of distributions over
Q. A function Ext : Q — B is said to be a (deterministic) e-extractor
for D if Ext(D) =, Ug forall D € D. A function Ext : Qx{0,1}f —
B is said to be a seeded e-extractor for D if Ext(D x Uy) =, Ug for
all D € D, where ¢ € N is called the seed length of Ext.

3 SOURCES WITH LOW BIAS AND THEIR
EXTRACTORS

We consider several natural extensions of e-biased sources which
are useful for our extractor constructions. We then show how to
extract randomness from such sources.

3.1 (¢ e)-Biased Sources

Let A be a finite abelian group and let A denote the dual group of
A, that is, the group of characters over A. A distribution D over
A is e-biased if | E[ y(D)]| < e for all nontrivial characters y € A.
This is a standard definition, introduced in [27], which has been
immensely useful in the construction of extractors and in the theory
of pseudorandomness in general.

We now introduce two natural generalizations. We say D is
(e, e)-biased if | E[ y(D)]| < ¢ for all but at most e characters y € A
And we say D is strongly (e, e)-biased if the set of y € Xsatisfying
|E[x(D)]| > ¢ is contained in an abelian subgroup of A of size at
most e. The usefulness of the latter definition will be clear shortly.

Suppose that A and B are finite groups. We wish to bound the
bias of conditional distributions over A (or B), assuming bounds
on the bias of a distribution over A x B. We bound the bias of the
marginal distribution Dy conditioned on any value of Dj.

CoROLLARY 3.1. Let A and B be finite abelian groups. Identify
A x B with A X B so that (x.0)(x,y) = x(x)0(y) for (x,y) € AXB
and (x,0) € AXB.LetD = (D1, D7) be a joint distribution over
AXB. Lete, & > 0. Assume that every character y € AXB=AxXB
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satisfying E[ y(D)] > ¢ is contained in the subgroupgx {1}. Then
with probability at least 1—¢’ overx ~ Dy, the conditional distribution
D3| p,=x is |Ale/¢’ -biased.

3.2 Extraction via the XOR Lemma and
Rank-Metric Codes

In the full version of the paper, we construct extractors for ¢-biased
sources, (¢, e)-biased sources and strongly (¢, e)-biased sources. For
e-biased sources we use known constructions that extract random-
ness using the XOR lemma as in [29]. Over large characteristic we
use constructions based on rank metric codes.

The following construction allows us to extract randomness from
e-biased sources over Fy. We use it for fields of large characteristic.

LEMMA 3.2 ([29, LEMMA 4.4]). Let f : Zn — Zpg be the map
sending a mod N to a mod M fora € {0,1,...,N — 1}. Let y be a
character of Zyy. Then H!ﬁ?”l < clog N, where c is an absolute
constant.

When p is large but Fy is possibly non-prime, we simply apply
the mod-M function to the last Fp-coordinate of Fy and use the
following corollary of Lemma 3.2.

CorOLLARY 33. Let f : Z4, — Z\'' x Zy be the map that
sends (ai, . ..,ar—1,amod N) to (ay,...,ar—1,a mod M) for every
(a1,...,ar-1,a) € Z]tv_l x{0,1,...,N — 1}. Let  be a character of

Zf\j_l XZp. Then Hlﬁ of

‘ < clog N, where c is an absolute constant.
1

Lemma 3.4. Let f : Z§, — ZL; ' X Zy be the map in Corollary 3.3.
Then for every e-biased distribution D over th\f’ f(D) is ¢’ -close to
the uniform distribution overZ?[_l X Zpp, wheree' = ¢- (Nt_lM)l/Z .
clog N + M/N and c is an absolute constant.

The XOR lemma requires the distribution to be e-biased. How-
ever, when the characteristic is small, we need to deal with the
more general class of (¢, e)-biased distributions, where e is small.
In the full version of the paper we prove the following theorem.

THEOREM 3.5. Let n, t, e be positive integers and ¢,¢’ € (0,1). Let
n’ = min{ |21og, (1/¢) - Zlogp(lée/s'z)J, n}. Supposet < n’ -3 —
2log, (2e/¢"). Then there exists an explicit ¢’ -extractor Ext : Fjj —
F;, for strongly (e, e)-biased sources.

4 PRELIMINARIES ON ALGEBRAIC
GEOMETRY

We refer to section 4 of the full version of our paper for preliminaries
and notations on algebraic geometry that we require. One can also
refer to a standard text, e.g., [31, 33]. In this condensed version, we
simply cite a few of the claims we need for later sections.

THEOREM 4.1 (FIBER DIMENSION THEOREM). Suppose ¢ : V — V’
is a dominant morphism between irreducible affine varieties over
an algebraically closed field F. Then for every b € ¢(V) and every
irreducible component Z of ¢~ (b), it holds that

dimZ > dimV — dimV’.

Moreover, there exists U C ¢(V) such that U is a dense open subset
of V/ and dim ¢~ 1(b) = dimV — dim V" holds for allb € U.
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See, e.g., [31, §1.6.3, Theorem 7] for a proof.

THEOREM 4.2 (EFFECTIVE LANG-WEIL BOUND). LetV C Ap  be
q

an absolutely irreducible affine variety over Fq of dimension k and
degree d. Then

V(Fq) = ¢| < (d = 1)(d - 2)g" /2 + 5d"/¢F .
In particular, we have |V (Fy)| 2 qk/2 ifq > 20d°.

Bombieri’s estimate for exponential sums. Bombieri’s estimate
gives an upper bound for exponential sums over rational points of
curves over Fg.

THEOREM 4.3 ([3, THEOREM 6]). Let C C A%q be an affine curve
of degree dy over a finite field Fy of characteristic p. Let o : Fp — C*
be the character x > ¢*™X/P of Fp. Suppose f € Fg[X1,...,Xn] is
a polynomial of degree dy such that for any g € Iﬁq [X1,...,X,] and
any irreducible component Cy of C, the function f — (g — g) does
not vanish identically on Cy. Then

Z (g0Trof)(x)| < (d? + 2d1dz — 3d1)q"/? + d2.
xeC(Eq)

where Tr denotes the trace map from Fy to Fp.

Noether normalization. The Noether normalization lemma, due
to Noether [28] states that an affine variety V of dimension k over an
infinite field F admits a finite morphism ¢ : V — A]I;. Moreover, ¢
may be chosen to be a linear map. We give the following quantitative
version of this result, which states that the coefficients that specify
the linear map can be chosen from a finite subset S C F provided
that S is large enough.

LEMMA 4.4 (NOETHER NORMALIZATION). LetV C Af be an affine
variety of dimension k and degree d over a field F. Suppose S is a
finite subset of F of size greater than d. Then there exists a polynomial
map ¢ : AR — A]lg defined by linear polynomials £; = 27:1 ci,jXi €
F[X1,...,Xn] with coefficientsci1,...,cin €S fori=1,...,k such
that ¢ly : V — Aﬁlg is a finite morphism.

For convenience, we also prove the following lemma, which guar-
antees the existence of linear polynomials achieving simultaneous
Noether normalization for two affine varieties.

LEmMA 4.5. Let Ky and Ky be extension fields of a field F. For
i=12letV; C A%i be an affine variety of dimension k; and
degree d; over K;. Suppose S is a finite subset of F of size greater
than dy +dy. Then there exist linear polynomials £1, . . ., byax (k, Ky} €
F[Xi,...,Xn]| with coefficients in S such that the morphism V; —
Agi defined by by, . .., , is finite fori = 1,2.

Effective fiber dimension theorem. We also need an effective ver-
sion of the fiber dimension theorem. To suit our needs, we first
formulate the theorem in the following general form. Recall that
for hy,...,hs € F[Xi,...,Xy], we denote by Ly the linear
span of hy, ..., hs and 1 over F.

THEOREM 4.6 (EFFECTIVE FIBER DIMENSION THEOREM — GENERAL
FORM). Let V C A" be an irreducible affine variety of dimension k
over an algebraically closed field F. Let hy, ..., hs € F[X1,...,Xn]
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withdeghy > --- > deghs. Let fi,..., fm € Lp, . n,F» whichdefine
a polynomial map f : A" — A™. Letk’ = dim f(V).

Let j1,...,jxr € [m] such that the morphism f' : V — A¥
defined by fj,, ..., fj,, is dominant. Let Vyr C Alg(Yl,...,Yk/) be the
generic fiber of f’. Finally, let #y,...,6 € F[Xy,...,X,] be linear
polynomials such that both the morphism & : V. — Ak defined
by ti,..., 4 and the morphismt : Vpr — A]llé(_ll’cll,...,ka) defined by
O, ..., f_p are finite.

Lett € {0,...,k — k’}. Then there exists a polynomial P €
F[X1,...,Xn] of degree at most k” - degV - ]_[fil deg h; that does
not vanish identically on V such that the following holds: Let ¢ :
A" — A be the polynomial map defined by £y, ..., 8, fi, ..., fm.
Then for every a € V satisfying P(a) # 0, the fiber <p|‘_,1 (p(a)) is
equidimensional of dimension k — k’ — t.

As a corollary, we have the following effective fiber dimension
theorem, stated in a more standard form.

COROLLARY 4.7 (EFFECTIVE FIBER DIMENSION THEOREM — STAN-
DARD FORM). Let V C A" be an irreducible affine variety over an
algebraically closed field F. Let hy,...,hs € F[X1,...,Xn] with
deghy > --- > deghs. Let fi,..., fm € L, p,r, which define
a polynomial map f : A" — A™. Finally, let W = f(V) C A™.
Then there exists a polynomial P € F[X1,...,Xy] of degree at most
dimW - degV - H?;T W deg h; that does not vanish identically on V
such that for every a € V satisfying P(a) # 0, theﬁberﬂ‘_,1 (f(a)
is equidimensional of dimension dimV — dim W.

Degree bound for the images of affine varieties. Finally, we need
the following degree bound for the images of affine varieties (or
more precisely, their closures) under polynomial maps.

LemMmA 4.8. Let V. C AL be an affine variety over a field F.
Let hy,...,hs € F[Xj,...,X,] with deghy > --- > deghs. Let
fis-oos fm € Ly, n, F, which define a polynomial map f : AL —
Ag'. Finally, let W = f(V) C AJ'. Then

dim W
degW < degV- [ | deghi.
i=1

5 LINEAR SEEDED RANK EXTRACTORS FOR
VARIETIES

In this section, we consider the problem of constructing seeded
rank extractors for varieties that are linear: i.e., a set of linear maps
such that for every variety V most of the maps in the set preserve
the dimension of V. We show that these objects are simply linear
seeded rank extractors for subspaces, a well-known linear algebraic
pseudorandom object for which explicit constructions were given
in [12, 14, 15].

The proof is based on the notion of tangent spaces of varieties,
which are linear subspaces that are local first-order approximations
of varieties. Intuitively, for an affine variety V, as we look at smaller
and smaller neighborhoods of a nonsingular point a of V, the tangent
space T,V would become a better and better approximation of
V. Thus, one should expect that a linear map that preserves the
dimension of T, V, which is a subspace, also preserves the dimension
of V. While it is not entirely obvious what “smaller and smaller
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neighborhoods” mean in the Zariski topology, we will see that the
claim is indeed true and follows from general facts in algebraic
geometry.

Fix F to be an algebraically closed field throughout this section.
We first formally define seeded rank extractors for varieties and
subspaces.

DEFINITION 5.1 (SEEDED RANK EXTRACTORS). Let ¢1,...,¢¢ :
A" — A™ be polynomial maps, wheren > m. We say (¢i)ic[¢] is an
(n,m, k, €) seeded rank extractor for varieties (resp. subspaces) if for
every affine variety (resp. linear subspace) V.C A" overF of dimen-
sion at least k, all but at most e-fraction of ¢; satisfy dimm =m
(or equivalently, p;|y : V. — A™ is dominant). We calllog ¢ the seed
length of the seeded rank extractor.

In addition, we say (¢i)ic[¢] is linear if each ¢; is a linear map,
i.e., defined by linear polynomials.

The optimal choice of k is k = m, in which case the seeded
rank extractor is “lossless” Explicit linear (n, m, k, ¢) seeded rank
extractors for subspaces with seed length O(logn + log(1/¢)) and
k = m was first constructed by Gabizon and Raz [15]. We use an
improved construction given in [12, 14].

LEMMA 5.2 ([12, 14]). Letn € N* andm € [n]. Let @ € F* such
that the multiplicative order of w is at least n. Let sy, . . ., s¢ be distinct
elements in F*. Fori € [], let ¢; : A" — A™ be the linear map
defined by the m X n matrix ((wj/_lsi)j_l)jze[m])je[n]. In other
words, ¢; maps (a1, ...,an) to

n X n n
Z sf_laj, Z(wsi)j_laj, . Z(wm_lsi)j_laj .
Jj=1 Jj=1 Jj=1
Then (¢i)ic[e] is a linear (n, m, m, ) seeded rank extractor for sub-
spaces, where ¢ = m(n —m)/¢.

The main result of this section is the following theorem.

THEOREM 5.3. An (n,m, k, ¢) linear seeded rank extractor for sub-
spaces is also an (n,m, k, ¢) linear seeded rank extractor for varieties.

CoRroLLARY 5.4. The construction (¢;)ie[¢] in Lemma 5.2 is a
linear (n, m, m, ) seeded rank extractor for varieties, where e = m(n—
m)/¢.

The proof of Theorem 5.3 appears in the full version of the paper.

6 DETERMINISTIC RANK EXTRACTORS FOR
VARIETIES

Let F be an algebraically closed field. In this section, we consider
the problem of constructing explicit deterministic (lossless) rank
extractors/condensers for varieties. These are polynomial maps A" —
A™ that preserve the dimension of low-degree affine varieties V C
A" over F but reduce the dimension of the ambient space.

Dvir, Gabizon and Wigderson [10] constructed explicit determin-
istic rank extractors for polynomial sources. These objects can also
be viewed as deterministic rank extractors for varieties that are the
closures of the images of polynomial maps. A key technique used
in their analysis is the Jacobian criterion for algebraic independence,
which requires the characteristic of F to be zero or large.

To solve the problem for general varieties, one natural approach
is generalizing the Jacobian criterion for algebraic independence. A
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key step in the proof of [10] is showing that a certain polynomial
associated with the Jacobian matrix is nonzero. Thus, it is natural
for us to show that a similar polynomial does not vanish com-
pletely on affine varieties and that this is sufficient for constructing
deterministic rank extractors for varieties.

While this idea can be made rigorous, the problem is that proving
the nonvanishing of a polynomial on an affine variety appears to
be challenging. We need to show that not only is the polynomial
nonzero, but it remains nonzero modulo the ideal defining the
variety. It is not clear to us how to prove such a result due to the
generality of the variety.

The DKL construction. Instead of using a Jacobian-based con-
struction, we take a different approach. Namely, we show that the
explicit construction of variety evasive sets by Dvir, Kollar, and
Lovett [11] can be used to construct deterministic rank extractors
for varieties. Variety evasive sets are large finite subsets of A"
that have small intersections with varieties of low degree and low
dimension. While they do not give deterministic rank extractors
for varieties in general, we show that the construction of variety
evasive sets in [11] does give such a construction.

More specifically, Dvir, Kollar and Lovett [11] construct explicit
variety evasive sets by constructing an explicit polynomial map
@ : A" — A™ defined by polynomials fi, ..., fm € F[X1,...,X4]
such that the intersection of ¢ ~1(0) = V(fi,..., fm) with any low-
degree variety of dimension at most m is finite, where 0 denotes
the origin of A™. We observe that this remains true if ¢~1(0) is
replaced by ¢~1(b) for any b € A™. In other words, for any low-
degree variety V of dimension at most m, the polynomial map
¢ restricts to a morphism ¢|y : V. — A™ whose fibers are all
finite sets. In the terminology of algebraic geometry, this means
¢ly is a quasi-finite morphism. By the fiber dimension theorem
(Theorem 4.1), we then have dimm = dim(V).

In this section, we construct explicit deterministic rank extractors
and rank condensers for varieties by adapting the analysis in [11].
We also formulate the construction in a way that highlights the
connection with linear error-correcting codes. In particular, a linear
MDS code yields a deterministic rank extractor for varieties in the
sense that the coefficients of the polynomials that define the rank
extractor are specified by a parity-check matrix of the code.

In Section 11, we will show that the polynomial map ¢ has the
stronger property that ¢|y is a finite morphism, not just quasi-finite,
and this gives explicit Noether normalization lemmas for affine
varieties and affine algebras.

Our Explicit Construction. We first define deterministic rank ex-
tractors and rank condensers for varieties.

DEFINITION 6.1 (DETERMINISTIC RANK EXTRACTORS/CONDENSERS
FOR VARIETIES). Letn € N* and m € [n]. A polynomial map ¢ :
A" — A™ is an (n,m, k,d) deterministic (lossless) rank condenser
ifdimm = dimV for every affine variety V.C A" over F of
dimension at most k and degree at most d. When k = m, we also say
@ is an (n, m, d) deterministic (lossless) rank extractor.

k-regular matrices. Let n € Nt and m, k € [n]. We say a matrix
M € F™*" is k-regular if any k distinct columns of M are linearly
independent. (The same definition was given in [11] but for only
for the special case where k = m.)
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The following lemma gives a coding-theoretic characterization
of k-regularity. Its proof is straightforward.

LEMMA 6.2. Let K be a subfield of F and let M € K'"™*" C Fm*",
wherenn € N* and m, k € [n]. The following statements hold.

o M is k-regular iff there does not exist a nonzero vector u € K"
of Hamming weight at most k such that Mu = 0.

o Suppose k = m. Then M is k-regular iff it is an MDS matrix,
i.e., every maximal minor of M is nonzero.

In particular, assuming K is a finite field, the matrix M is k-
regular iff the linear code C = {u € K" : Mu = 0} over K defined
by the parity check matrix M has minimum distance at least k + 1.
And if k = m, then M is k-regular iff C is a linear MDS code of
minimum distance k + 1, i.e., it is a linear code of dimension n — k
and minimum distance k + 1.2

The construction. We now present the explicit construction of
deterministic rank extractors and condensers for varieties. It is
based on the explicit construction of variety evasive sets in [11].

Letn,d € N* andm, k € [n].Letd, ..., dp be n pairwise coprime
integers greater than d.> Let M = (cij)ie[m),jeln] € F™X1 be a
k-regular matrix. Let ¢ = ¢(M) : A™ — A™ be the polynomial
map

n n
¢:(ay,...,an) — ch,jaj’,...,Zcm,ja?’
Jj=1 Jj=1

We remark that, curiously, the construction above is very similar
to the construction of an affine extractor in Section 10, although
their purposes and the techniques used to analyze them are sub-
stantially different.

The following theorem and its corollaries are the main results of
this section.

THEOREM 6.3. For every b € A™ and every affine variety V. C
A" over F of dimension at most k and degree at most d, the fiber
(oly) 1 (b) = ¢~ 1(b) NV is a finite set.

COROLLARY 6.4. ¢ is an (n,m,k,d) deterministic rank condenser
for varieties. In particular, ifm = k, then ¢ is an (n, m, d) deterministic
rank extractor for varieties.

We also show in the full version of our paper that the integers
di, . ..,dn and the matrix A can be efficiently constructed.
So we have the following corollary.

COROLLARY 6.5. For m € {1,n — 1,n}, there exists an explicit
construction of an (n, m,d) deterministic rank extractor for varieties
that is defined by polynomials fi,. .., fm € F[Xa, ..., Xn] satisfying
the following:

o All the coefficients of fi, ..
are in every subfield of F.

o deg fi,...,deg fin = O((n+d) log(n+d)). And the sparse rep-
resentations of fi, ..., fm can be computed in time poly(n,d).
The time complexity can be improved to poly(n,logd) at the
cost of increasing the degrees of fi, ..., fin to O(ndlogn).

. fm are in {0,1,—1}, and hence

2We define the minimum distance of the zero code {0} to be n+1, so that the statement
also holds for k = n.
3While [11] assumes d; > - - - > dp,, this assumption does not really matter.
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A similar statement holds for general m € [n] and the coefficients
of fi,..., fm can be chosen in a finite field Fq, assuming Fy is a
subfield of F and g > n — 1. The time complexity would also depend
polynomially on log q.

The above explicit (n, m, d) deterministic extractor for varieties
will be used in the proof of Theorem 1, but only in the case where
m = 1. Previously, Dvir [9, Theorem 3.1] gave an explicit con-
struction of an (n, 1, d) deterministic rank extractor for varieties,
where the polynomial defining the rank extractor is recursively
constructed and has degree poly(d™). Corollary 6.5 improves the
degree of the polynomial to O(n +d) or O(nd).

The proof of Theorem 6.3 appears in the full version of this paper.

7 DECOMPOSITION AND MIN-ENTROPY
ESTIMATION OF (n, k,d) ALGEBRAIC
SOURCES

In this section, we prove that every (n, k, d) algebraic source can
be (approximately) decomposed into a convex combination of irre-
ducible, or even irreducibly minimal (n, k, d) sources. In particular,
this reduces the problem of constructing deterministic extractors
for general (n, k, d) algebraic sources to that for irreducibly minimal
(n, k, d) algebraic sources. We will use this reduction in Section 8.

In addition, we show that every (n, k, d) algebraic source D over
Fq is close to a distribution with min-entropy about klog g, and
that this estimation is tight up to an additive term of order O(log d)
assuming that k is maximized, i.e., that D is not an (n,k + 1,d)
algebraic source over Fy.

7.1 Decomposition of (n, k,d) Algebraic Sources

In the full version of the paper, we prove the following lemma:

LEMMA 7.1 (DECOMPOSITION INTO IRREDUCIBLE SOURCES). Sup-
pose g > max{20d°,2d? ¢}, where ¢ € (0,1). Then every (n,k,d)
algebraic source D over Fq is e-close to a convex combination of ir-
reducible (n, k,d) algebraic sources D; over Fq. Moreover, ifDisa
minimal (n, k, d) algebraic source over g, then each D; can be chosen
to be an irreducibly minimal (n, k, d) algebraic source over Fq.

Next, we further decompose an irreducible (n, k,d) algebraic
source into a convex combination of irreducibly minimal (n, k, d)
algebraic sources. Our main tool is the effective fiber dimension the-
orem (Theorem 4.6). Using this theorem and the results of Section
4, we intersect the variety V with various translates of a carefully
chosen linear subspace. There are some bad events that could hap-
pen for some of these intersections. For example, the intersection
may have the “wrong” dimension, or the resulting variety might
have the “correct" dimension k but none of the irreducible compo-
nents of dimension k are absolutely irreducible. Using the effective
fiber dimension theorem, we are able to show that these bad events
correspond to small portions of the variety V, and then we again
obtain a natural way to decompose the remaining part as a convex
combination of irreducibly minimal (n, k, d) sources.

LEMMA 7.2. Suppose q > max{20d°, 2(k + 1)d?/e?}, where ¢ €
(0,1). Then every irreducible (n,k,d) algebraic source over Fy is
3e-close to a convex combination of irreducibly minimal (n, k, d)
algebraic sources over Fy.
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Combining Lemma 7.1 and Lemma 7.2 yields the following corol-
lary.

COROLLARY 7.3 (DECOMPOSITION INTO IRREDUCIBLY MINIMAL
ALGEBRAIC SOURCES). Suppose q > max{20d°, 2(k+1)d?/e?}, where
€ € (0,1). Then every (n, k, d) algebraic source over Fy is 4e-close to a
convex combination of irreducibly minimal (n, k, d) algebraic sources
over Fg.

7.2 Estimating the Min-Entropy of (1, k, d)
Algebraic Sources

We prove the following lower bound on the min-entropy of an
(n, k, d) algebraic source D (or more precisely, a distribution D’
close to D). The proof uses the decomposition into irreducible
(n, k, d) algebraic sources (Lemma 7.1).

LEMMA 7.4. Suppose q > max{20d°, 2kd?/e}, where ¢ € (0,1/2].
Then every (n, k,d) algebraic source over Fgq is 2¢e-close to a k’ -source
over the set Fg, where k' =klogq—logd — 2.

The next proposition complements Lemma 7.4 and gives an
upper bound on the min-entropy.

PROPOSITION 7.5. Suppose ¢ > 20d°. Let D be an (n,k,d) al-
gebraic source over Fy such that k is maximal with respect to this
condition, i.e., D is not an (n,k + 1,d) algebraic source over Fq. Then
the statistical distance between D and any (klogq + 2logd + 2)-
source is at least ﬁ. Moreover, if D is an irreducible (n, k,d) alge-
braic source over Fy, then the statistical distance between D and any
(klog q +logd + 1)-source is at least %

8 EXTRACTING A SHORT SEED

In this section, we consider the problem of constructing explicit
deterministic extractors for (n, k, d) algebraic sources over a finite
field Fy in the special case where k = 1.

The main results of this section are explicit constructions of
deterministic extractors that extract almost log ¢ bits from (1, 1, d)
algebraic sources and, more generally, (n, 1,d) algebraic sources
over Fg. They are used as building blocks in the construction of the
full-fledged deterministic extractors that extract most min-entropy
from (n, k, d) algebraic sources.

Formally, we prove the following theorems.

THEOREM 8.1 (EXTRACTOR FOR (1, 1, d) ALGEBRAIC SOURCES). Let
d € N* ande € (0,1/2]. Supposeq > cod® /€2, wherecy > 0 is a large
enough absolute constant. Then there exists an explicit e-extractor
Ext : Fg — {0,1}™ for (1,1,d) algebraic sources over Fq such that
m > logq — 2loglog p — O(log(d/¢)).

THEOREM 8.2 (EXTRACTOR FOR (n, 1, d) ALGEBRAIC SOURCES). Let
d € N" and ¢ € (0,1/2]. Suppose ¢ > (nd/e), where cy > 0
is a large enough absolute constant. Then there exists an explicit e-
extractor Ext : Fg — {0, 1} for (n, 1,d) algebraic sources over Fy
such that m > log q — 2loglog p — O(log(nd/¢)).

Theorem 8.2 is derived from Theorem 8.1. As in [9, 10], the proof
of Theorem 8.1 uses Bombieri’s estimate for exponential sums
(Theorem 4.3). However, the argument in [9, 10] works only when
the characterisitic p is large. Moreover, it only yields an extractor
that extracts c log g bits for some constant ¢ < 1/2. We introduce
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new ideas that allow us to extract almost log g bits regardless of
the characteristic p.

As one of our main tools, we prove the following estimate for
exponential sums over curves, even over finite fields of small char-
acteristics. Recall that Bombieri’s estimate (Theorem 4.3) is valid
as long as the polynomial f does not have the form g — g on the
curve. One way to deal with this difficulty is to require p to be large.
However, we would like to get meaningful results for arbitrary p,
and we do this by paying the cost of excluding a small subgroup of
characters from the estimate.

LEMMA 8.3. LetC C qu be an irreducible affine curve of degree

dy over a finite field By of characteristic p, and let f € Fg[Xy,.. ., Xp]
be a polynomial of degree dy that is not constant on C. Then the set
of characters y € Fq for which

Z x(f))| < (d% + 2d1dy — 3d1)q1/2 +d%
xeC(Fq)

fails to hold is contained in a subgroup ofI’FT; of size at most dyds.

9 DETERMINISTIC EXTRACTORS FOR (n, k,d)
ALGEBRAIC SOURCES

In this section, we provide our main construction of deterministic
extractors for (n, k, d) algebraic sources. Recall that in Section 8 we
considered the case of (n, 1, d) algebraic sources.

We start with the case of (n, n, d) algebraic sources, and we follow
our general proof technique as laid out in Section 1.3: the first step of
the construction is applying our extractor from Section 8 to obtain
a short output, which is then, in the second step, used as a seed for a
seeded extractor for sources with high min-entropy (note that even
though we have more structure in our source, since we are anyway
applying a seeded extractor we might as well use an off-the-shelf
construction which works for any source with high min-entropy).
Proving that this indeed works requires analyzing the conditional
distribution of an (n, n, d) algebraic source under fixing of a subset
of the coordinates, which is done in the full version of the paper.
This construction is presented and analyzed in Section 9.1.

In order to remove the assumption that k = n and handle gen-
eral (n, k, d) algebraic sources, we apply a rank extractor which,
roughly speaking, condenses a k-dimensional source in an ambi-
ent n-dimensional space to a k-dimensional source in an ambient
k-dimensional space, and this enables us to use the extractor from
Section 9.1. As discussed at the end of Section 9.1, this can be done
using the deterministic rank extractor of Section 6, but it would
have an undesirable effect on the field size. Thus, we opt to use a
linear seeded rank extractor (as defined in Section 5), where the seed
of the rank extractor is chosen pseudorandomly using our extractor
for (n, 1, d) algebraic sources from Section 8.

To summarize, in our composition theorem (Theorem 9.3), we
start by applying the extractor for (n, 1, d) algebraic sources from
Section 8 in order to select a seed for the seeded linear rank extractor
from Section 5, we apply the resulting linear map to the source, and
then we use the extractor for full-rank sources from Section 9.1 to
obtain the final output. The details of this construction appear in
Section 9.2.
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9.1 Deterministic Extractors for Full-Rank
Algebraic Sources

We need the following explicit construction of seeded extractors
given by Goldreich and Wigderson [17], which is based on expander
graphs.

THEOREM 9.1 ([17]). Forn € N,0 < A < n and ¢ > 0, there exists
an explicit seeded e-extractor Ext : {0,1}" x {0,1}¢ — {0,1}" for
(n — A)-sources with £ = O(A +log(1/¢)).

We now state our construction for full-rank algebraic sources.
Our construction follows the general paradigm mentioned in Sec-
tion 1.3: we first apply our extractor from Theorem 8.1 to obtain
a short output, which is then used as a seed to the extractor from
Theorem 9.1.

THEOREM 9.2 (EXTRACTOR FOR (1, n, d) ALGEBRAIC SOURCES). Let
n,d € Nt and ¢ € (0,1/2]. Suppose q > (nd/e)°, wherecy > 0
is a large enough absolute constant. Then there exists an explicit e-
extractor Ext : Fg — {0,1}™ for (n,n,d) algebraic sources over Fy
such that m > nlog g — 2loglog p — O(log(d/¢)).

One can remove the full-rank assumption and construct an ex-
tractor for (n, k, d) algebraic sources over Fg by composing the
extractor in Theorem 9.2 with the deterministic rank extractor for
varieties in Section 6. This argument was used by Dvir, Gabizon and
Wigderson [10], except that they considered polynomial sources
only and used a different construction of deterministic rank ex-
tractors. The downside of this argument, however, is that such a
deterministic rank extractor is necessarily nonlinear. In particular,
our rank extractor uses polynomials of degree at least poly(n), and
so does the one in [10]. Composing with such a rank extractor
increases the degree of each polynomial in the polynomial map
by at least a poly(n) factor. The resulting field size ¢ would then
depend at least polynomially on nk, or n" if k = ©(n), assuming
that we want to extract about k log g bits.

In the next subsection, we show how to remove the full-rank
assumption more efficiently using a linear seeded rank extractor
for varieties.

9.2 Removing the Full-Rank Assumption

We now remove the full-rank assumption in Theorem 9.2 without
significantly increasing the required field size. This is done by
extending an argument in [15, 16].

The following theorem shows how to compose all the ingredients
in our construction: an extractor Ext for (n, 1, d) algebraic sources,
an extractor Exty for full-rank algebraic sources, and a linear seeded
rank extractor ¢, in order to obtain extractors for (n, k, d) algebraic
sources. The construction uses Ext; in order to select the seed for
¢, applies ¢ on the input, and then applies Extz on the resulting
“condensed” source.

THEOREM 9.3 (COMPOSITION OF EXTRACTORS). Letn > k > 1 be
integers. Let ¢,¢’ € (0,1). Suppose we are given the following objects:
e an ¢-extractor Exty : IFZ — {0,1}™ for (n,1,d) algebraic
sources over Fq,
e an e-extractor Exty : F’;*l — {0,1}"™ for (k — 1,k — 1,d)
algebraic sources over Fg, and



STOC ’23, June 20-23, 2023, Orlando, FL, USA

o an (n,k — 1,k, &) linear seeded rank extractor (QDy)yE{O’I}(’
for varieties overﬁq (see Definition 5.1) such that ¢ < my and
each ¢y is defined by linear polynomials over Fq.

Write Ext; = (Ext(, Ext{’), where Ext] and Ext{ output the first
¢ bits and the last m; — ¢ bits of Ext; respectively. Assume q >
max{20d°, 2(k + 1)d®/¢*}. Then the map Ext : FZ — {0,1}™ x
{0,1}™2 = {0, 1}"™1*™2 defined by

Ext(x) := (Exty(x), Extz2 (@xt; (x) (%))
is a (6¢ - 2° + 4¢ + £")-extractor for (n, k, d) algebraic sources over Fy.

Instantiating the objects in Theorem 9.3 immediately implies
Theorem 1. The details appear in the full version of this paper.

10 AFFINE EXTRACTORS WITH
EXPONENTIALLY SMALL ERROR FOR
QUASIPOLYNOMIALLY LARGE FIELDS

In this section, we construct affine extractors with exponentially
small error, over prime fields of size ¢ = n©(108108(")) and any
characteristic. Our construction is in fact identical to the extrac-
tor of Bourgain, Dvir and Leeman [5], but our analysis is slightly
improved. Specifically, Bourgain, Dvir and Leeman constructed an
affine extractor over prime fields F; where q = nOUoglogn) ¢ 5
so-called “typical” prime. Our construction works over any prime
finite field of the same size.

The following proposition replaces the use of [5] by finding a set
of degrees dj, . . ., dp, with useful properties for the construction.

ProPOSITION 10.1. Let q be a prime number. Fix ¢ > 0 . Then, if
q> ns 108108(M) there exists an efficient deterministic algorithm that,
in time polynomial in n, finds n integersd; < dz < -+ <dp € N
such that LCM(dy, . .., dn) < q° and each d; is coprime to q — 1.

Let A € F™*" be a matrix where every m columns are linearly
independent (e.g., a Vandermonde matrix). Letd; < dz < --- < dp
be as in Proposition 10.1 and define the function E : F* — F™ by

xfl

E(x1,...,xn) =A-| (1)
x,‘f"

THEOREM 10.2. For every 0 < f < 1/2, there exists a constant
C such that the following holds: Let k < n be integers and F be a
prime field of size ¢ > nC19818" Then for m = pk the function
E:F" — F™ asin (1) is an affine extractor for min-entropy k with
error q’Q(k). That is, for every affine subspace V.C F" of dimension
k, if Xy is a random variable uniformly distributed on V, E(Xy) is

g~ _close to uniform on FF.

11 EXPLICIT NOETHER NORMALIZATION
FOR AFFINE VARIETIES AND AFFINE
ALGEBRAS

The Noether normalization lemma [26, 28] is a cornerstone of com-
mutative algebra and algebraic geometry. It states that any finitely
generated commutative algebra over a field F, or what we call an
affine algebra over F, is not too far from a polynomial ring, in the
sense that it is always a finitely generated module over a subring
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that is isomorphic to a polynomial ring F[Y3, ..., Y;]. The geomet-
ric interpretation of this statement is that any affine variety V over
F is a “branched covering” of an affine space Ak or more precisely,

V admits a surjective finite morphism ¢y : V. — A]];,.

When F is an infinite field (or more generally, a sufficiently large
field), the polynomials that define the finite morphism ¢y may be
chosen to be linear polynomials (see, e.g., Lemma 4.4). In general, ¢y
can always be chosen to be defined by polynomials of sufficiently
large degrees. In fact, counting arguments show that given the
variety, a “random” polynomial map defined by polynomials of
sufficiently large degrees would almost surely yield such a finite
morphism. See [6] for a quantitative analysis. However, it is not
known how to completely “derandomize” such counting arguments.

The first proof of the Noether normalization lemma for general
affine algebras over arbitrary fields was given by Nagata [24-26].
This proof has the interesting feature that it actually constructs a
“universal” polynomial map ¢ : Al — A]]; that works for all low-
degree affine varieties. Namely, for any low-degree affine variety
V C AJ of dimension k, the restriction of ¢ to V gives a finite
morphism ¢|y : V — A]]g. The existence of such a polynomial
map ¢ that is independent of V appears to be stronger and more
intriguing than the existence of finite morphisms V" — Aﬁ;. In fact,
we do not know how to prove the existence of ¢ via a counting
argument.

While the polynomial map ¢ constructed by Nagata gives a
uniform way of constructing finite morphisms, a drawback is that
the degrees of the polynomials that define ¢ can get extremely high
due to the iterative nature of the construction. More specifically,
the map ¢ is constructed as a composition of polynomial maps
©i: A]%H — Aé, i=n—1,...,k such that their restrictions ¢;|v;,,,
are finite morphisms, where we inductively define V;, =V and V; =
@i(Viy1) fori =n—1,..., k. The problem is that composing with a
polynomial map can increase the degree of a variety exponentially
(see Lemma 4.8). The degree bound for the polynomials defining ¢
is at least doubly exponential for this reason.

Thus, it is a natural question to ask if there is a more efficient
construction of the universal polynomial map ¢. In this section,
we show that the DKL construction in Section 6 is indeed such a
construction, which always works when |F| > n.

The construction of ¢. We first recall the DKL construction in
Section 6. Let F be a field. Let n,d € N* and m,k € [n]. Let
di, ..., dp be n pairwise coprime integers greater than d. Let M =
(ci,j)ie[m],je[n] € F™*" be a k-regular matrix, i.e., any k distinct
columns of M are linearly independent. Let ¢ = (M) : Ap — Af
be the polynomial map defined by fi,...,fm € F[Xi,...,Xul,

where f; := Z?zl ci, ijj . In other words, ¢ is given by

n

n
d;j d;j
¢:(ay,...,an) — ch,jaj’,.l.,Zcm,jaj’ .

j:l j:l
The main results of this subsection are the following theorems.

THEOREM 11.1 (EXPLICIT NOETHER NORMALIZATION FOR AFFINE
VARIETIES). Let V be an affine variety of dimension at most k and
degree at most d over a field F. Then ¢ly : V. — Af is a finite
morphism.
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Theorem 11.1 translates into the following algebraic statement,
Theorem 11.2, which gives an explicit Noether normalization lemma
for affine algebras, i.e., finitely generated commutative algebras over
a field.

Recall that the Krull dimension of a commutative ring A is the
supremum of the lengths of all chains of prime ideals in A. If V
is an affine variety over a field I, then the Krull dimension of its
coordinate ring F[V] is just the dimension of V.

THEOREM 11.2 (EXPLICIT NOETHER NORMALIZATION FOR AFFINE
ALGEBRAS). Suppose A is a commutative F-algebra generated by
ai,...,an € A such that the Krull dimension of A is at most k. Let
the ideal I of F[X1, ..., Xn] be the ideal of all polynomial relations
satisfied by ai, ..., an. Also suppose the degree of the affine vari-
ety V(I) C A" is at most d. Then A is a finitely generated module
over its subring S = E[fi(a),..., fm(a)], where fi,..., fm are the
polynomials defining ¢ and a = (ay, ..., an).

The fact that A is a finitely generated module over S implies that
the Krull dimension of S equals that of A. In the case where the
Krull dimension of A is k and k = m, this means fi(a),..., fin(a)
are algebraically independent over F, and hence S is isomorphic to
a polynomial ring F[Y3,. .., Yy,] via fi(a) — Y.

Theorem 11.1 and Theorem 11.2 are proved in the full version of
this paper. The proof is inspired by and closely follows a geometric
proof sketched in [20, Remark 1].

Smaller fields. While kxn MDS matrices are generally not known
over small finite fields Fy, which prevents us from choosing m =
k over Fg, it may still be possible to choose larger m for which
(explicit) k-regular m x n matrices over Fy exist, and this would
yield a finite morphism ¢|y : V — A{FZ by Theorem 11.1. As

compositions of finite morphisms are finite [2, Corollary 5.4], by

replacing n with m and V with V’ = ¢(V), we reduce the problem
of constructing a finite morphism on V C A% to constructing that
q

onV’ C A]Fm , where V’ has the same dimension as V but lives in a
q
possibly much smaller affine space A7 . The degree of V', however,

may be significantly larger than that of V. See Lemma 4.8 for a
general upper bound on the degree.

For example, while we do not know the existence of k X n MDS
matrices over small finite fields Fg, one can still use a BCH-code-
like construction to obtain an m X n k-regular matrix with m =
O(klog, n), which can be much smaller than n if k < n. Applying
the resulting map ¢ reduces the dimension of the ambient space
from n to m.

However, when q is really small and k is close to n, it may be
possible that one can only choose m = n — 1 and hence only reduce
the dimension of the ambient space by one at each step. This is es-
sentially the same method used in Nagata’s construction. Currently,
all constructions of the universal polynomial map ¢ : qu - A{;q

with k = dim V that we know over a constant-size field F4 use
polynomials of degree at least doubly exponential in min{k, n — k}
due to the blow-up of the degree of the variety. It is an interesting
question to ask if there exist constructions with a better degree
bound over constant-size fields.

58

STOC ’23, June 20-23, 2023, Orlando, FL, USA

ACKNOWLEDGMENTS

Zeyu Guo was supported in part by a Simons Investigator Award
(#409864, David Zuckerman). David Zuckerman was supported in
part by NSF Grants CCF-1705028 and CCF-2008076, a Simons Inves-
tigator Award (#409864), and the Center of Mathematical Sciences
and Applications at Harvard University.

REFERENCES

[1] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-
Davidowitz. 2021. Fine-grained hardness of CVP(P) - Everything that we can
prove (and nothing else). In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021. SIAM, 1816-1835. https://doi.org/10.1137/1.
9781611976465.109

Michael F. Atiyah and I. G. MacDonald. 1969. Introduction to Commutative Algebra.
Addison-Wesley-Longman.

Enrico Bombieri. 1966. On exponential sums in finite fields. Amer. J. Math. 88
(1966), 71-105. https://doi.org/10.2307/2373048

Jean Bourgain. 2007. On the construction of affine extractors. GAFA Geometric
And Functional Analysis 17, 1 (2007), 33-57. https://doi.org/10.1007/s00039-007-
0593-z

Jean Bourgain, Zeev Dvir, and Ethan Leeman. 2016. Affine extractors over large
fields with exponential error. computational complexity 25, 4 (2016), 921-931.
https://doi.org/10.1007/s00037-015-0108-5

Juliette Bruce and Daniel Erman. 2019. A probabilistic approach to systems of
parameters and Noether normalization. Algebra & Number Theory 13, 9 (2019),
2081-2102. https://doi.org/10.2140/ant.2019.13.2081

Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. 2021. Affine extractors
for almost logarithmic entropy. In 2021 IEEE 62nd Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE. https://doi.org/10.1109/FOCS52979.2021.
00067

Eshan Chattopadhyay and David Zuckerman. 2019. Explicit Two-Source Ex-
tractors and Resilient Functions. Annals of Mathematics 189 (2019), 653-705.
https://doi.org/10.4007/annals.2019.189.3.1

Zeev Dvir. 2012. Extractors for varieties. computational complexity 21, 4 (2012),
515-572. https://doi.org/10.1007/s00037-011-0023-3

Zeev Dvir, Ariel Gabizon, and Avi Wigderson. 2009. Extractors and rank ex-
tractors for polynomial sources. computational complexity 18, 1 (2009), 1-58.
https://doi.org/10.1007/s00037-009-0258-4

Zeev Dvir, Janos Kollar, and Shachar Lovett. 2014. Variety evasive sets. computa-
tional complexity 23, 4 (2014), 509-529. https://doi.org/10.1007/s00037-013-0073-
9

Michael A. Forbes. 2014. Polynomial identity testing of read-once oblivious algebraic
branching programs. Ph.D. Dissertation. Massachusetts Institute of Technology.
Michael A. Forbes and Venkatesan Guruswami. 2015. Dimension Expanders via
Rank Condensers. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2015 (LIPIcs, Vol. 40).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 800-814. https://doi.org/10.
4230/LIPIcs. APPROX-RANDOM.2015.800

Michael A. Forbes and Amir Shpilka. 2012. On identity testing of tensors, low-
rank recovery and compressed sensing. In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing. 163-172.

Ariel Gabizon and Ran Raz. 2008. Deterministic extractors for affine sources over
large fields. Combinatorica 28, 4 (2008), 415-440. https://doi.org/10.1007/s00493-
008-2259-3

Ariel Gabizon, Ran Raz, and Ronen Shaltiel. 2006. Deterministic extractors for
bit-fixing sources by obtaining an independent seed. SIAM J. Comput. 36, 4 (2006),
1072-1094. https://doi.org/10.1137/S0097539705447049

Oded Goldreich and Avi Wigderson. 1997. Tiny families of functions with random
properties: A quality-size trade-off for hashing. Random Structures & Algorithms
11, 4 (1997), 315-343. https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::
AID-RSA3>3.0.CO;2-1

Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. 2021. Circuit
Depth Reductions. In 12th Innovations in Theoretical Computer Science Conference,
ITCS 2021 (LIPIcs, Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
24:1-24:20. https://doi.org/10.4230/LIPIcs.ITCS.2021.24

Pavel Hrube$ and Anup Rao. 2015. Circuits with Medium Fan-In. In 30th Confer-
ence on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA (LIPIcs, Vol. 33). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 381-391.
https://doi.org/10.4230/LIPIcs.CCC.2015.381

Janos Kollar, Lajos Ronyai, and Tibor Szabd. 1996. Norm-graphs and bipartite
Turan numbers. Combinatorica 16, 3 (1996), 399-406. https://doi.org/10.1007/
BF01261323

Fu Li and David Zuckerman. 2019. Improved extractors for recognizable and alge-
braic sources. In 23rd International Conference on Randomization and Computation

[12

(13

[14

=
&

[16

(17

[18

=
L

[20

[21


https://doi.org/10.1137/1.9781611976465.109
https://doi.org/10.1137/1.9781611976465.109
https://doi.org/10.2307/2373048
https://doi.org/10.1007/s00039-007-0593-z
https://doi.org/10.1007/s00039-007-0593-z
https://doi.org/10.1007/s00037-015-0108-5
https://doi.org/10.2140/ant.2019.13.2081
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1007/s00037-011-0023-3
https://doi.org/10.1007/s00037-009-0258-4
https://doi.org/10.1007/s00037-013-0073-9
https://doi.org/10.1007/s00037-013-0073-9
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.1007/s00493-008-2259-3
https://doi.org/10.1007/s00493-008-2259-3
https://doi.org/10.1137/S0097539705447049
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
https://doi.org/10.4230/LIPIcs.ITCS.2021.24
https://doi.org/10.4230/LIPIcs.CCC.2015.381
https://doi.org/10.1007/BF01261323
https://doi.org/10.1007/BF01261323

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[22]

[23]

[24]

[25]

[26]

(RANDOM). https://doi.org/10.4230/LIPIcs. APPROX-RANDOM.2019.72

Xin Li. 2011. A New Approach to Affine Extractors and Dispersers. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San
Jose, California, USA, June 8-10, 2011. IEEE Computer Society, 137-147. https:
//doi.org/10.1109/CCC.2011.27

Xin Li. 2016. Improved Two-Source Extractors, and Affine Extractors for Polylog-
arithmic Entropy. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016. IEEE Computer Society, 168-177. https://doi.org/10.1109/
FOCS.2016.26

Masayoshi Nagata. 1953. Some remarks on local rings. Nagoya Mathematical
Journal 6 (1953), 53-58. https://doi.org/10.1017/S0027763000016974

Masayoshi Nagata. 1956. A general theory of algebraic geometry over Dedekind
domains, I: the notion of models. American Journal of Mathematics 78, 1 (1956),
78-116. https://doi.org/10.2307/2372486

Masayoshi Nagata. 1962. Local Rings. New York, Interscience Publishers.

[27] Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: efficient con-

structions and applications. SIAM J. Comput. 22, 4 (1993), 838-856.
//doi.org/10.1137/0222053

https:

59

[28

[29

[30

[31
[32

[33

(34

]

]
]

]
]
]

]

Zeyu Guo, Ben Lee Volk, Akhil Jalan, and David Zuckerman

Emmy Noether. 1926. Der Endlichkeitssatz der Invarianten endlicher linearer
Gruppen der Charakteristik p. Nachrichten von der Gesellschaft der Wissenschaften
zu Gottingen, Mathematisch-Physikalische Klasse 1926 (1926), 28-35.

Anup Rao. 2007. An Exposition of Bourgain’s 2-Source Extractor. In TR 07-034.
Electronic Collogium on Computaitonal Complexity.

Zachary Remscrim. 2016. The Hilbert function, algebraic extractors, and recur-
sive Fourier sampling. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 197-208. https://doi.org/10.1145/2213977.2213995
Igor R. Shafarevich. 1994. Basic Algebraic Geometry 1: Varieties in Projective Space.
Springer-Verlag. https://doi.org/10.1007/978-3-642-37956-7

Salil Vadhan. 2012. Pseudorandomness. Foundations and Trends® in Theoretical
Computer Science 7, 1-3 (2012), 1-336. https://doi.org/10.1561/0400000010

Ravi Vakil. 2022. The Rising Sea: Foundations of Algebraic Geometry. https:
//math.stanford.edu/~vakil/216blog/FOAGaug2922publici.pdf. August 29, 2022
version.

Amir Yehudayoff. 2011. Affine extractors over prime fields. Combinatorica 31, 2
(2011), 245-256. https://doi.org/10.1007/s00493-011-2604-9

Received 2022-11-07; accepted 2023-02-06


https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.72
https://doi.org/10.1109/CCC.2011.27
https://doi.org/10.1109/CCC.2011.27
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.1017/S0027763000016974
https://doi.org/10.2307/2372486
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
https://doi.org/10.1145/2213977.2213995
https://doi.org/10.1007/978-3-642-37956-7
https://doi.org/10.1561/0400000010
https://math.stanford.edu/~vakil/216blog/FOAGaug2922publici.pdf
https://math.stanford.edu/~vakil/216blog/FOAGaug2922publici.pdf
https://doi.org/10.1007/s00493-011-2604-9

	Abstract
	1 Introduction
	1.1 Algebraic Sources of Randomness
	1.2 Our Results
	1.3 Techniques
	1.4 Comparison with Previous Work
	1.5 Open Problems

	2 Notations and Preliminaries
	3 Sources with Low Bias and Their Extractors
	3.1 (epsilon-e)-Biased Sources
	3.2 Extraction via the XOR Lemma and Rank-Metric Codes

	4 Preliminaries on Algebraic Geometry
	5 Linear Seeded Rank Extractors for Varieties
	6 Deterministic Rank Extractors for Varieties
	7 Decomposition and Min-Entropy Estimation of (n,k,d) Algebraic Sources
	7.1 Decomposition of (n,k,d) Algebraic Sources
	7.2 Estimating the Min-Entropy of (n,k,d) Algebraic Sources

	8 Extracting a Short Seed
	9 Deterministic Extractors for (n,k,d) Algebraic Sources
	9.1 Deterministic Extractors for Full-Rank Algebraic Sources
	9.2 Removing the Full-Rank Assumption

	10 Affine Extractors with Exponentially Small Error for Quasipolynomially Large Fields
	11 Explicit Noether Normalization for Affine Varieties and Affine Algebras
	Acknowledgments
	References

