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ABSTRACT
We construct explicit deterministic extractors for polynomial images
of varieties, that is, distributions sampled by applying a low-degree

polynomial map 𝑓 : F𝑟𝑞 → F𝑛𝑞 to an element sampled uniformly

at random from a 𝑘-dimensional variety 𝑉 ⊆ F𝑟𝑞 . This class of
sources generalizes both polynomial sources, studied by Dvir, Gabi-

zon and Wigderson (FOCS 2007, Comput. Complex. 2009), and va-
riety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012).

Assuming certain natural non-degeneracy conditions on the

map 𝑓 and the variety𝑉 , which in particular ensure that the source

has enough min-entropy, we extract almost all the min-entropy

of the distribution. Unlike the Dvir–Gabizon–Wigderson and Dvir

results, our construction works over large enough finite fields of

arbitrary characteristic. One key part of our construction is an

improved deterministic rank extractor for varieties. As a by-product,

we obtain explicit Noether normalization lemmas for affine varieties

and affine algebras.

Additionally, we generalize a construction of affine extractors

with exponentially small error due to Bourgain, Dvir and Leeman

(Comput. Complex. 2016) by extending it to all finite prime fields

of quasipolynomial size.

CCS CONCEPTS
• Theory of computation→ Pseudorandomness and deran-
domization.
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1 INTRODUCTION
Randomness is a powerful resource in computing. There are many

useful randomized algorithms, and randomness is provably neces-

sary in cryptography and distributed computing. Naturally, these

uses of randomness assume access to uniformly random bits. How-

ever, it can be expensive or impossible to obtain such high-quality

randomness. A randomness extractor converts low-quality random-

ness into high-quality randomness.

Low-quality random sources can arise in several ways. First,

natural sources of randomness may be defective. Second, in cryp-

tography, if an adversary gains information about a string, then

conditioned on this information, the string is weakly random. Third,

in constructing pseudorandom generators, a similar situation arises

when we condition on the state of the computation. Besides the

computer science motivation, randomness extraction questions are

natural mathematically.

Wemodel a weak source as a classD of distributions over a finite

set Ω. A randomness extractor for D is a deterministic function

that extracts randomness from any distribution in D.

Definition 1.1. An extractor for a class D of distributions with
error 𝜀, or an 𝜀-extractor, is a function Ext : Ω → 𝐵 such that for any
𝐷 ∈ D, the distribution Ext(𝐷) is 𝜀-close, in statistical distance, to
the uniform distribution over 𝐵.

Typically the codomain 𝐵 will be {0, 1}𝑚 .

The most general class of distributions is the set of distributions

with high min-entropy, i.e., distributions that do not place much

probability on any string. However, it is not hard to show that it

is impossible to extract from such sources. It is possible to extract

using an auxiliary seed, and there are many applications of such

seeded extractors (see [32] for a survey). It is also possible to extract

from two independent general weak sources (e.g., [8]). However, if

we want to avoid adding a seed and only have one source, we must

restrict the class of distributions further.

Various models of weak sources have been studied. It is not hard

to show that if there are not too many distributions in the class,

then most functions are extractors with excellent parameters. Of

course, we really want efficiently-computable extractors.

Models of weak sources tend to be either complexity-theoretic

or algebraic. In this work, we focus on algebraic sources. That is, we
consider distributions over subsets Ω which have a “nice” algebraic

structure.
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1.1 Algebraic Sources of Randomness
Suppose F is a finite field andΩ = F𝑛 . The simplest class of algebraic

sources is the set of affine sources. An affine source is simply the

uniform distribution over an affine subspace 𝑉 ⊆ F𝑛 of dimension

𝑘 . Note that since |𝑉 | = |F|𝑘 , the single parameter 𝑘 also determines

the min-entropy of the uniform distribution over the source.

Gabizon and Raz [15] constructed an explicit extractor Ext :

F𝑛 → F𝑘−1, assuming the field size is bounded from below by a

large enough polynomial in 𝑛. For a large enough field size 𝑞, their

construction extracts almost all of the randomness from the source

and has error 𝜀 = 1/poly(𝑞).
The last feature is slightly undesirable, as ideally, one would

like the error to decrease exponentially with 𝑘 , the dimension of

the source. Such a construction was given by Bourgain, Dvir and

Leeman [5], albeit their construction requires the field size to be

slightly super-polynomial in 𝑛, and only works for certain fields.

Over smaller fields, constructing affine extractors for small min-

entropy is a more challenging task. Further, it is possible to show

that any function 𝑓 : F𝑛
2
→ F2 is constant on some affine subspace

of dimension Ω(log𝑛) (see, e.g., Lemma 6.7 of the arXiv version of

[1]), and thus one cannot hope to extract even a single bit when

the min-entropy is smaller than log𝑛 (compare this with the fact

that over large fields, the Gabizon–Raz extractor works for any 𝑘).

Bourgain [4] constructed an extractor that works over F2 for
min-entropy 𝑘 = 𝑐𝑛 for a small constant 𝑐 . This result was slightly

improved by Yehudayoff [34] and Li [22]. Li [23] then presented a

much improved construction which works when the min-entropy is

as small as 𝑘 = log
𝐶 (𝑛) for some constant 𝐶 , which was improved

by [7] to 𝑘 = log
1+𝑜 (1) (𝑛). However, one drawback of the last two

constructions is that the error parameter 𝜀 is either constant or poly-

nomially small, whereas one would hope for it to be exponentially

small in 𝑘 , as in the earlier constructions of Bourgain, Yehudayoff

and Li.

There are several natural ways to generalize affine sources, but

some care is needed when defining those generalizations. As we

remarked earlier, for an affine subspace, the single parameter 𝑘

determines its size and hence the min-entropy of the correspond-

ing source. For more complicated algebraic sets, however, as we

shall now see, there are multiple parameters controlling their “com-

plexity,” and the connection between those parameters and the

min-entropy of the source is not always obvious.

Dvir, Gabizon andWigderson [10] considered polynomial sources,
which are defined by applying a low-degree polynomial map 𝑃 :

F𝑘 → F𝑛 on a uniformly random input from F𝑘 . (Note that affine

sources are a special case of polynomial sources when the degree

equals one.) They further impose the algebraic condition that the

Jacobian matrix of the map is of full rank, which in particular

guarantees that the min-entropy of the source is high, assuming the

characteristic of the field is large enough. The field size required by

the construction of [10] is poly(𝑘, 𝑑, 𝑛)𝑘 .
Dvir [9] studied a different generalization called variety sources,

which are uniform distributions over sets 𝑉 ⊆ F𝑛 that are the

common zeros of a set of low-degree polynomials. Varieties also

have an associated concept of dimension, but unlike the affine

case, over finite fields having a large dimension does not guarantee

by itself that the set 𝑉 is large, and thus this condition must be

imposed explicitly. Dvir presented two constructions. The first

requires exponentially large fields and works for any dimension

𝑘 . The second requires the variety to have size larger than |F|𝑛/2,
but the field size depends only polynomially on the degree 𝑑 of the

polynomials defining 𝑉 .

Over F2, the situation is much more mysterious. This setting

is well motivated, since it turns out that explicit constructions of

extractors (or even dispersers) for varieties with various param-

eters would imply new circuit lower bounds. Golovnev, Kulikov

and Williams [18] proved multiple such results. One is that ex-

plicit extractors for varieties of size at least 2
𝜀𝑛

defined by constant

degree polynomials would imply lower bounds for general cir-

cuits of the form 𝐶𝑛 for larger constants 𝐶 than what is currently

known. They also showed that extractors for varieties of size at least

2
0.99𝑛

defined by polynomials of degree at most 𝑛0.01 would imply

super-linear lower bounds for boolean circuits of depth 𝑂 (log𝑛), a
long-standing challenge in complexity theory (see also [19]).

As for constructions over F2, Li and Zuckerman [21] showed how

to use correlation bounds against low-degree polynomials to obtain

extractors for variety sources defined by degree 𝑑 polynomials

for 𝑑 = 𝑂 (1) and size at least 2
(1−𝑐𝑑 )𝑛

for some constant 𝑐𝑑 that

depends on 𝑑 . Remscrim [30] proved that the majority function is

an extractor for varieties defined by polynomials of degree at most

𝑛𝛼 and size at least 2
𝑛−𝑛𝛽

, assuming 𝛼 + 𝛽 < 1/2. Thus, all the
known constructions are not strong enough to imply new circuit

lower bounds.

1.2 Our Results
1.2.1 Extractor for Polynomial Images of Varieties. In this paper, we
study the class of polynomial images of varieties, which generalizes

both variety sources and polynomial sources. Informally, the source

is specified by a variety 𝑉 ⊆ F𝑟 and a polynomial map 𝑓 : 𝑉 → F𝑛 ,
and a sample from the source is a random variable 𝑋 computed by

uniformly at random picking an element 𝑥 ∈ 𝑉 and outputting 𝑓 (𝑥).
We would like to construct an efficient extractor Ext : F𝑛 → {0, 1}𝑚
that has small error 𝜀 and large output length𝑚. The largest𝑚 we

can hope for is the min-entropy of the input, which is approximately

𝑘 log𝑞, where 𝑞 = |F| and 𝑘 is the dimension of the variety 𝑉

(see Section 4 for a definition of this notion). Our main result is a

construction of an extractor with𝑚 ≈ 𝑘 log𝑞.

Formally defining such sources takes some care, since varieties

and their associated complexity parameters are easier to define over

algebraically closed fields. As in previous work, we further need to

assume some natural non-degeneracy conditions on the variety 𝑉

and the map 𝑓 . We now describe those sources in more detail.

Polynomial images of variety sources. Let F be a field. For a set
ℎ1, . . . , ℎ𝑠 ∈ F[𝑋1, . . . , 𝑋𝑛], define
Lℎ1,...,ℎ𝑠 ,F := {𝑐0+𝑐1ℎ1+· · ·+𝑐𝑠ℎ𝑠 : 𝑐0, . . . , 𝑐𝑠 ∈ F} ⊆ F[𝑋1, . . . , 𝑋𝑛],
i.e., Lℎ1,...,ℎ𝑠 ,F is the linear span of ℎ1, . . . , ℎ𝑠 and 1 over F.

Denote by F the algebraic closure of F. An affine variety 𝑉 ⊆
F
𝑛
over F is the set of common zeros of a set of polynomials in

F[𝑋1, . . . , 𝑋𝑛]. Two parameters naturally associated with a variety

𝑉 are its dimension, denoted dim𝑉 , which equals the length of

the maximal chain with respect to inclusion of distinct irreducible

subvarieties, and its degree, denoted deg𝑉 , which is the number
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of intersection points of the variety with an affine subspace of

codimension dim𝑉 in general position (we refer to Section 4 for

more formal definitions).

Definition 1.2 ((𝑛, 𝑘, 𝑑) algebraic source). Let 𝑛,𝑑 ∈ N+ and
𝑘 ∈ N. We say a distribution 𝐷 over F𝑛𝑞 is an (𝑛, 𝑘, 𝑑) algebraic
source over F𝑞 if there exist 𝑟 ∈ N, an affine variety 𝑉 ⊆ F𝑟𝑞 over
F𝑞 , polynomials ℎ1, . . . , ℎ𝑠 ∈ F𝑞 [𝑋1, . . . , 𝑋𝑟 ] with degℎ1 ≥ · · · ≥
degℎ𝑠 , and 𝑓1, . . . , 𝑓𝑛 ∈ Lℎ1,...,ℎ𝑠 ,F𝑞 such that𝐷 = 𝑓 (𝑈𝑉 (F𝑞 ) ), where
𝑓 : F

𝑟
𝑞 → F𝑛𝑞 is the polynomial map defined by 𝑓1, . . . , 𝑓𝑛 , and𝑈𝑉 (F𝑞 )

is the uniform distribution over 𝑉 (F𝑞) := 𝑉 ∩ F𝑟𝑞 , and further, the
following conditions hold:

(1) At least one irreducible component of 𝑉 of dimension dim𝑉 is
absolutely irreducible.

(2) For every irreducible component 𝑉0 of dimension dim𝑉 that
is absolutely irreducible, the dimension of 𝑓 (𝑉0) is at least
𝑘 , where 𝑓 (𝑉0) ⊆ F𝑛𝑞 denotes the closure of 𝑓 (𝑉0), i.e., the
smallest affine variety over F𝑞 containing 𝑓 (𝑉0).

(3) deg𝑉 ·∏𝑘
𝑖=1 degℎ𝑖 ≤ 𝑑 .1

In addition, we say 𝐷 is an irreducible (𝑛, 𝑘, 𝑑) algebraic source over
F𝑞 if𝑉 can be chosen to be irreducible. We say𝐷 is aminimal (𝑛, 𝑘, 𝑑)
algebraic source over F𝑞 if 𝑉 can be chosen to have dimension 𝑘 .
Finally, we say 𝐷 is an irreducibly minimal (𝑛, 𝑘, 𝑑) algebraic source
over F𝑞 if 𝑉 can be chosen to be irreducible of dimension 𝑘 .

The conditions in Definition 1.2 may look a bit contrived at

first glance. However, as we now explain, they are quite natural,

and indeed some form of them, as observed in previous work, is

necessary.

The third condition is simply a convenient way to “pack” multi-

ple “complexity” parameters of the components of the source that

arise in the analysis. That is, 𝑑 is a single complexity parameter that,

in particular, bounds the degree of the variety𝑉 and the product of

degrees of the polynomial map 𝑓 . Having 𝑑 as a single parameter

simplifies the statements of our theorems and clarifies the depen-

dence between the various parameters: the larger 𝑑 is, the larger

the field size we require and the smaller the output length of the

extractor.

The purpose of the first two conditions is to guarantee that our

source has enough min-entropy. As observed in previous work

[9, 10], it is quite easy to come up with simple varieties 𝑉 (even of

high dimension) or polynomial maps 𝑓 (even of low degree) such

that sources arising as 𝑓 (𝑉 ) would have very few points in F𝑛𝑞 , so

that there will be little to no randomness to extract.

The first condition is analogous to (and, as shown in the full

version of this paper, roughly equivalent to) Dvir’s [9] condition that

the variety 𝑉 contains enough points in F𝑛𝑝 . The second condition

is analogous to (and, over fields of large characteristic, implied by)

the full-rank Jacobian condition of Dvir, Gabizon and Wigderson

[10]. Thus, not only is some form of conditions 1 and 2 necessary

for proving any meaningful results, but moreover, these conditions

naturally generalize the conditions imposed by previous related

works.

1
Note that dim 𝑓 (𝑉 ) ≥ 𝑘 by previous conditions. So we necessarily have 𝑠 ≥ 𝑘 and

degℎ𝑖 ≥ 1 for 𝑖 ∈ [𝑘 ]. This also implies deg𝑉 ≤ 𝑑 .

Finally, we note that the name “(𝑛, 𝑘, 𝑑) algebraic sources” sup-
presses the dependence on the parameter 𝑟 in the definition, which

is the ambient dimension in which the variety𝑉 lies. This is because

our result, stated next, has no dependence on 𝑟 . Even in the case

where 𝑟 is very large with respect to 𝑛, 𝑘 and 𝑑 , our results only

depend on the latter three parameters. Further, note that when 𝑟

is very large, dim𝑉 can also be very large compared with 𝑛 and

𝑘 . However, as the definition hints, we will reduce this case to the

case where dim𝑉 = 𝑘 .

We can now state our main theorem.

Theorem 1. Let 𝑛,𝑑 ∈ N+, 𝑘 ∈ N, and 𝜀 ∈ (0, 1/2]. Let 𝑞 be a
power of a prime 𝑝 . Suppose 𝑞 ≥ (𝑛𝑑/𝜀)𝑐 , where 𝑐 > 0 is a large
enough absolute constant. Then there exists an explicit 𝜀-extractor
Ext : F𝑛𝑞 → {0, 1}𝑚 for (𝑛, 𝑘, 𝑑) algebraic sources over F𝑞 with output
length𝑚 ≥ 𝑘 log𝑞 − 4 log log 𝑝 −𝑂 (log(𝑛𝑑/𝜀)).

It can be shown that any (𝑛, 𝑘, 𝑑) algebraic source 𝐷 over F𝑞 ,
where 𝑞 ≥ (𝑘𝑑)𝑐 for a sufficiently large constant 𝑐 > 0, is (close to)

a distribution with min-entropy at least 𝑘 log𝑞 −𝑂 (log𝑑). More-

over, this estimate of the min-entropy is tight up to an additive

term 𝑂 (log𝑑) if 𝐷 is not an (𝑛, 𝑘 + 1, 𝑑) algebraic source over F𝑞 .
See Lemma 7.4 and Proposition 7.5. Therefore, the extractor in The-

orem 1 extracts most of the min-entropy from (𝑛, 𝑘, 𝑑) algebraic
sources. In addition, Theorem 1 works over finite fields of any char-

acteristic, while the extractors by Dvir, Gabizon, and Wigderson

[10] and Dvir [9] require large enough characteristics.

As is standard in the literature, by “explicit” we mean that the

output of the extractor is computable in time poly(𝑛, log𝑞) (note
that the input length to the extractor is 𝑛 log𝑞).

Along the way to proving Theorem 1, we construct several other

algebraic pseudorandom objects which are interesting on their own.

We mention some of these constructions when we give an overview

of our construction in Section 1.3.

1.2.2 Affine Extractors for Quasipolynomally Large Fields with Ex-
ponentially Small Error. Recall that an explicit affine extractor is an

efficiently computable function Ext : F𝑛 → F𝑚 such that for every

affine subspace 𝑉 ⊆ F𝑛 of dimension 𝑘 , and a random variable 𝑋

uniformly sampled from 𝑉 , Ext(𝑋 ) is close to the uniform distribu-

tion over F𝑚 . We would like𝑚 to be as close to 𝑘 as possible and,

ideally, the error parameter 𝜀 to be exponentially small in 𝑘 .

As mentioned earlier, the extractor of Gabizon and Raz [15]

achieves 𝑚 = 𝑘 − 1 and error 𝜀 only polynomially small in the

field size 𝑞. In particular, the error does not decrease with 𝑘 . Bour-

gain, Dvir and Leeman [5] constructed an affine extractor with

𝑚 arbitrarily close to 𝑘/2 and error 𝑞−Ω (𝑘 )
. However, their con-

struction requires 𝑞 to be slightly super-polynomial in 𝑛, namely

𝑞 = 𝑛Ω (log log𝑛)
, and furthermore only works for “most” prime

fields F𝑞 . We improve the analysis of their construction and present

a construction with identical parameters that works for all prime

fields, assuming 𝑞 = 𝑛Ω (log log𝑛)
.

Theorem 2. For every 0 < 𝛽 < 1/2, there exists a constant 𝐶
such that the following holds: Let 𝑘 ≤ 𝑛 be integers and F be a prime
field of size 𝑞 ≥ 𝑛𝐶 log log𝑛 . Let𝑚 = 𝛽𝑘 . There exists an efficiently
computable function 𝐸 : F𝑛 → F𝑚 which is an affine extractor for
min-entropy 𝑘 with error 𝑞−Ω (𝑘 ) .
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1.3 Techniques
Our construction from Theorem 1 combines several techniques

used in previous related constructions, as well as several new ideas

which are required to successfully apply these techniques. It is

convenient to think of the construction as proceeding in several

steps.

Preliminary step: decomposing the sources. Our definition for al-

gebraic sources (Definition 1.2) is quite general, and it is convenient

to work with slightly “nicer” sources. We start by approximating

general (𝑛, 𝑘, 𝑑) algebraic sources as convex combinations of irre-
ducibly minimal (𝑛, 𝑘, 𝑑) algebraic sources. Recall that this means

that the variety 𝑉 is irreducible and has dimension 𝑘 .

This step is done in Section 7: we first decompose a general

source into a convex combination of irreducible sources in a man-

ner that follows naturally from the decomposition of 𝑉 itself as a

union of irreducible components.We then decompose an irreducible

source into irreducibly minimal sources roughly by intersecting it

with a linear space of the appropriate dimension. Both parts of the

arguments incur a small error.

First step: extracting a short seed. Having reduced to the case

of irreducibly minimal sources, we first design an extractor that

extracts a small number of bits from the source. One commonly used

technique for doing that is to show that the source is an 𝜀-biased

distribution, i.e., a distribution whose nontrivial Fourier coefficients

are all small. Similar methods work when the source is close to

such a distribution or to a convex combination of such distributions.

Analyzing and bounding the Fourier coefficients is often done using

bounds on exponential sums from algebraic geometry, such as

Bombieri’s estimate (Theorem 4.3). We follow this general paradigm

as well.

However, the case where the field characteristic is small presents

some unique challenges to overcome. We first prove an extension

of Bombieri’s theorem for small characteristic 𝑝 . This extension

bounds the corresponding exponential sums save for possibly a

small set of “bad” characters. Hence, we then define and study a

more general class than 𝜀-biased distributions: (𝜀, 𝑒)-biased distri-

butions, which are distributions in which all but at most 𝑒 of the

Fourier coefficients have absolute value at most 𝜀. We show that the

sources we consider are close to convex combinations of such distri-

butions (for meaningful values of 𝜀 and 𝑒), and construct extractors

for such distributions.

Previously, the XOR lemma has been used to construct extractors

for 𝜀-biased sources; see, e.g., Rao [29]. We extend these ideas to the

more general and challenging setting of (𝜀, 𝑒)-biased distributions.

On the technical level, we construct explicit functions 𝑓 : F𝑛𝑝 → F𝑡𝑝
with the following properties: for every nontrivial character𝜓 of

F𝑡𝑝 , both the 𝐿1 and the 𝐿∞ norms of the Fourier transform of

𝜓 ◦ 𝑓 (which is a function from F𝑛𝑝 to C) are upper bounded by

sufficiently small quantities. We in fact present two constructions

of such functions 𝑓 . The first is based on standard error-correcting

codes over F𝑝 , and the second is an improved construction based

on rank-metric codes. Those constructions appear in Section 3.2.

Second step: applying a seeded extractor. Having extracted a small

number of bits, we wish to use them as a seed in an application

of a seeded extractor on the source to extract almost all the min-

entropy. The challenge, of course, is that the seed is correlated with

the source, whereas a seeded extractor requires the seed to be inde-

pendent of the source. Techniques for dealing with these problems

were developed in [15, 16], as this is also the general methodol-

ogy in their extractor constructions. This is done by analyzing the

conditional distribution of the source conditioned on any possible

output of the seeded extractor with a fixed seed, and showing that it

maintains some nice properties. We first analyze the case where the

image 𝑓 (𝑉 ) of the polynomial map is of full rank inside F𝑘 , using
the effective fiber dimension theorem. We then consider the general

case. In order to reduce to that case, we apply a rank extractor for
varieties, a notion we define and develop in this work, building

upon previous work which developed rank extractors for linear

spaces.

Rank extractor for varieties. Let 𝑉 ⊆ F𝑛 be a 𝑘-dimensional

variety.Wewould like to obtain amap 𝐸 : F𝑛 → F𝑘 which “extracts”

all the rank from 𝑉 , in the sense that 𝐸 (𝑉 ) ⊆ F𝑘 is 𝑘-dimensional.

The first obvious challenge is that 𝐸 (𝑉 ) need not necessarily be

a variety. It is thus natural in this case to consider the closure of

𝐸 (𝑉 ) in F𝑛 where F is the algebraic closure of F.
Previous work has considered the case where 𝑉 is a linear sub-

space. In this case, observe that if 𝐸 is linear, then 𝐸 (𝑉 ) is also a

linear subspace. However, there clearly cannot be a single map 𝐸

that preserves the dimension of all linear subspaces, as given any

fixed 𝐸, one could take𝑉 to be the kernel of 𝐸. Therefore, a natural

relaxation is to consider seeded linear rank extractors, which are

collections of linear maps 𝐸1, . . . , 𝐸𝑡 such that for every 𝑉 , most of

the maps preserve the dimension. Such objects were first defined

and constructed by Gabizon and Raz [15]. Improved and optimal

parameters (in terms of the “seed length,” i.e., the number of maps)

were obtained by Forbes and Shpilka [14], and a systematic study

of these objects appears in [13].

In this work, we observe that seeded linear rank extractors for ex-

tractors are also seeded linear rank extractors for varieties (see Sec-

tion 5). The key insight is that rank extractors (for linear subspaces)

preserve the dimensions of the tangent spaces at nonsingular points

of the variety, which turns out to be a sufficient criterion.

Linear rank extractors are very useful because they enable us

to condense sources that are not full-rank to full-rank sources

without increasing the degrees of the polynomial maps. However,

it turns out that it is also possible to construct deterministic rank
extractors for varieties, which we do in Section 6. Such extractors

are obviously not linear maps, although in our constructions, they

are polynomials of fairly small degrees (polynomial in 𝑛 and in the

degree 𝑑 of the variety). We remark that Dvir [9] constructed such

an extractor for one-dimensional varieties, and his extractor is a

polynomial of degree exponential in 𝑛. In addition, Dvir, Gabizon

and Wigderson [10] constructed rank extractors for polynomial

sources using a different technique.

Our construction adapts the construction of Dvir, Kollár and

Lovett [11], who constructed different pseudorandom objects called

variety evasive sets. By modifying their proof, we are able to show

that a similar construction yields a deterministic rank extractor

for varieties. This essentially follows because their map 𝜑 satisfies

the property that for every low-degree variety 𝑉 and every point
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𝑏 ∈ F𝑘 , the intersection 𝜑−1 (𝑏) ∩𝑉 is a finite set. Dvir, Kollár and

Lovett prove it only for the case 𝑏 = 0, but it is not hard to extend

it to general 𝑏.

Explicit Noether normalization lemmas. As a by-product of the
above construction of deterministic rank extractors for varieties,

we prove explicit Noether normalization lemmas for affine varieties

and affine algebras. The Noether normalization lemma [26, 28] is

a classical result in commutative algebra and algebraic geometry,

which states that any affine variety of dimension 𝑘 admits a sur-

jective finite morphism to an affine space of dimension 𝑘 . We show

that the construction in [11] in fact gives a direct construction of

such a finite morphism. In contrast, the textbook proof of Nagata

[26] is iterative and uses polynomials of degrees that are at least

doubly exponential in the number of steps of the iteration.

Our proof is inspired by a geometric argument of Kollár, Rónyai

and Szabó [20]. See Section 11 and the full version of this paper for

more details.

Affine extractors with exponentially small error. Our proof of
Theorem 2 follows a very similar route to the proof of the main

theorem of Bourgain, Dvir and Leeman [5], who constructed such

an extractor for prime fields F𝑞 for “typical” primes 𝑞. Our main

contribution is an improved number-theoretic lemma (Proposition

10.1) which shows how to find 𝑛 distinct integers 𝑑1, . . . , 𝑑𝑛 with

desirable number theoretic properties. The proof then proceeds by

estimating the Fourier coefficient of the distribution obtained by

applying our extractor to a linear subspace using an exponential

sum estimate of Deligne, much in the same way as [5].

1.4 Comparison with Previous Work
The two works closest to ours are by Dvir [9] and Dvir, Gabizon

and Wigderson [10], both of which construct extractors for sources

with algebraic structures.

As mentioned earlier, Dvir, Gabizon and Wigderson [10] study

polynomial sources, defined by picking an element 𝑥 ∈ F𝑘𝑞 uniformly

at random and applying a polynomial map 𝑓 : F𝑘𝑞 → F𝑛𝑞 of degree

at most 𝑑 . This is a special case of the sources we consider when

the variety 𝑉 is taken to be F𝑘𝑞 .

They further add the non-degeneracy condition that the Jaco-
bian of the mapping 𝑓 , namely, its matrix of partial derivatives,

has full rank. This in particular guarantees that the source has a

high enough min-entropy. Their main theorem gives an explicit

extractor that outputs a constant fraction of the min-entropy over

prime fields F𝑝 of cardinality poly(𝑛,𝑑)𝐶𝑘 for some constant𝐶 . Our

construction in Theorem 1, on the other hand, works for a larger

class of sources, outputs almost all the min-entropy, and works over

finite fields of small characteristics as well.

Dvir [9] considers variety sources, which he defines as uniform

distributions over sets of the type

{𝑥 : 𝑓1 (𝑥) = 𝑓2 (𝑥) = · · · = 𝑓𝑡 (𝑥) = 0}

in F𝑛𝑝 , where deg 𝑓𝑖 ≤ 𝑑 for all 𝑖 . These sources are also a special

case of the type of sources we consider. One should note, however,

the different usage of the term “degree” in our definitions: Dvir

always refers to the degree deg 𝑓𝑖 of the polynomials which define

the variety𝑉 , whereas we refer to the degree deg𝑉 of𝑉 as an affine

variety, which is often much larger.

Assuming dim𝑉 = 𝑘 and |𝑉 | ≥ 𝑝𝑘−𝑐 for some small constant

𝑐 > 0, Dvir’s extractor [9] outputs a constant fraction of the min-

entropy over prime fields of characteristic 𝑝 > 𝑑𝐶𝑛
2

for some

constant 𝐶 . Again, Dvir uses the parameter 𝑑 differently than we

do in Theorem 1. In particular, in our construction, the field size 𝑞

is only polynomial in the parameter 𝑑 (but 𝑑 might be exponential

in 𝑛).

As mentioned in the discussion after Definition 1.2, our assump-

tions are weaker than those of [10] and [9]. Thus, as our sources is

more general, the characteristic in our results can be arbitrary, and

our conclusions are stronger (since we extract more output bits),

it follows that in particular our result subsumes the extractors of

[10] and [9].

Dvir [9] also presents a different construction that outputs a

very small number of bits from very large varieties over small fields.

This construction is incomparable with our results.

On the more technical level, we discuss a particular feature of

our proof that distinguishes it from [9, 10] and, in particular, allows

us to extend the output length.

For simplicity, consider the case of (1, 1, 𝑑) algebraic sources. As
mentioned in Section 1.3, we first prove an extension of Bombieri’s

estimate that holds even if the characteristic 𝑝 is small: if 𝑝 is small,

this result implies that a (1, 1, 𝑑) algebraic source 𝐷 over F𝑞 is a

convex combination of (𝜀, 𝑑)-biased sources. That is, we allow a few

large Fourier coefficients. Then we use the machinery developed in

Section 3 to extract randomness from 𝐷 . On the other hand, if 𝑝 is

large enough, then 𝐷 has no large nontrivial Fourier coefficients; it

is 𝜀-biased. In this case, the XOR lemma is sufficient, as argued in

[9, 10].

To apply Bombieri’s estimate to a high-dimensional affine variety

𝑉 , we follow [9, 10] and decompose𝑉 into a family of affine curves

𝐶𝑖 such that the polynomial 𝑓 that does not vanish identically on

𝑉 still does not vanish on most 𝐶𝑖 .

In [10], this is achieved using an argument based on the Jacobian

criterion for algebraic independence, but it works only when the

characteristic 𝑝 is large. Instead of using this argument, we use

the decomposition of (𝑛, 𝑘, 𝑑) algebraic sources into irreducibly

minimal (𝑛, 𝑘, 𝑑) algebraic sources proved in Section 7, whose proof

is based on the effective fiber dimension theorem (Theorem 4.6)

and works for any characteristic.

The last idea we introduce is the use of the effective Lang–Weil

bound (Theorem 4.2), which allows us to extract almost log𝑞 bits.

To explain the idea, consider an affine variety 𝑉 ⊆ A𝑛
F𝑞

and write

𝑉 (F𝑞) as a disjoint union of 𝐶𝑖 (F𝑞) for a family of affine curves 𝐶𝑖
over F𝑞 . Let 𝑓 be a low-degree polynomial and assume for simplicity

that 𝑓 is non-constant on every𝐶𝑖 . Let 𝜒 be a nontrivial character of

F𝑞 . The following win-win argument was used in [10] to bound the

bias 𝛿 :=

���E𝑥∈𝑉 (F𝑞 ) [𝜒 (𝑓 (𝑥))]
���: For a curve 𝐶𝑖 , if |𝐶𝑖 (F𝑞) | is small,

say |𝐶𝑖 (F𝑞) | ≤ Δ for some threshold Δ, then its contribution to the

bias 𝛿 is small assuming that 𝑉 has many rational points. On the

other hand, if 𝐶𝑖 (F𝑞) > Δ, then Bombieri’s estimate (Lemma 8.3),
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together with the fact that����� E
𝑥∈𝐶𝑖 (F𝑞 )

[𝜒 (𝑓 (𝑥))]
����� =

���∑𝑥∈𝐶𝑖 (F𝑞 ) [𝜒 (𝑓 (𝑥))]
���

|𝐶𝑖 (F𝑞) |

≤

���∑𝑥∈𝐶𝑖 (F𝑞 ) [𝜒 (𝑓 (𝑥))]
���

Δ
,

implies that

���E𝑥∈𝐶𝑖 (F𝑞 ) [𝜒 (𝑓 (𝑥))]
��� is small. Considering all curves

𝐶𝑖 shows that the bias is small. We note that no information about

|𝐶𝑖 (F𝑞) | was used in this win-win argument. For this reason, the

choice of threshold Δ cannot be too large or too small, and the

resulting extractors only extract a constant fraction of log𝑞 bits. To

improve the output length, we observe that the effective Lang–Weil

bound (Theorem 4.2) together with gives more information about

|𝐶𝑖 (F𝑞) |. In particular, for an irreducible affine curve𝐶 , the number

|𝐶 (F𝑞) | is either close to 𝑞 or very small, depending on whether

𝐶 is absolutely irreducible. Exploiting this fact yields an explicit

construction of deterministic extractors that output almost log𝑞

bits.

1.5 Open Problems
While improving the dependence on any of the parameters in

our construction remains an open problem, in our opinion, the

main challenge is reducing the field size. In our construction for

polynomial images of varieties (Theorem 1), we require field size

poly(𝑛, 1/𝜀, 𝑑). We stress that for certain varieties, 𝑑 can be expo-

nential in 𝑛 (although it is by no means necessarily so). Can we

construct extractors for significantly smaller fields, perhaps even

constant size?

As mentioned above, over very small fields, such as F2, certain
Ramsey-theoretic lower bounds imply that constructions such as

ours that work for any min-entropy cannot exist. A key reason to

study F2 is that explicit extractors with certain parameters imply

new circuit lower bounds.

In our construction of new affine extractors (Theorem 2), we

obtain a field size that is slightly super-polynomial in 𝑛. It is a very

appealing open problem to reduce the field size to a polynomial in

𝑛.

A related problem is reducing the degree of our deterministic

rank extractor. In Section 6, we construct a deterministic rank ex-

tractor for varieties whose degree is poly(𝑛,𝑑) for degree𝑑 varieties.

Reducing the degree, perhaps to depend only on𝑑 , would help lower

the field size requirement for the extractor for polynomial images

of varieties to depend only on the degree.

We end with two general questions. Can our constructions or

techniques help in designing extractors for larger and more general

classes of sources, either algebraic or complexity-theoretic? Do our

constructions have any complexity-theoretic implications, such as

lower bounds for certain models of computation?

2 NOTATIONS AND PRELIMINARIES
Let N = {0, 1, . . . }, N+ = {1, 2, . . . }, and [𝑛] = {1, 2, . . . , 𝑛} for

𝑛 ∈ N. Write Z𝑛 for the cyclic group {0, 1, . . . , 𝑛 − 1} with addition

modulo 𝑛.

The cardinality of a set 𝑆 is denoted by |𝑆 |. We also use |𝑐 | to
denote the absolute value of a number 𝑐 ∈ C. Denote by log𝑥 the

base 2 logarithm of 𝑥 , and by ln𝑥 the natural logarithm of 𝑥 . For

sets 𝐴 and 𝐵, denote by 𝐴 \ 𝐵 the set difference {𝑥 ∈ 𝐴 : 𝑥 ∉ 𝐵}.
The restriction of a map 𝑓 : 𝐴 → 𝐵 to a subset 𝐴′ ⊆ 𝐴 is denoted

by 𝑓 |𝐴′ , which is a map from 𝐴′
to 𝐵.

We write 𝑥 ∼ 𝐷 if 𝑥 is sampled from a distribution 𝐷 . The

support of a distribution 𝐷 over a finite set Ω is supp(𝐷) := {𝑎 ∈
Ω : Pr[𝐷 = 𝑎] ≠ 0}. For an event 𝐴 that occurs with a nonzero

probability under a distribution 𝐷 , write 𝐷 |𝐴 for the distribution of

𝐷 conditioned on 𝐴. The product distribution of two distributions

𝐷,𝐷′
is denoted by 𝐷 × 𝐷′

. The statistical distance between two

distributions 𝐷,𝐷′
over a finite set Ω is defined to be

Δ(𝐷, 𝐷′) := max

𝐴⊆Ω
| Pr[𝐷 ∈ 𝐴] − Pr[𝐷′ ∈ 𝐴] |.

Two distributions 𝐷 and 𝐷′
are 𝜀-close if their statistical distance is

at most 𝜀, and we write 𝐷 =𝜀 𝐷
′
for this statement.

The uniform distribution over a finite set 𝑆 is denoted by𝑈𝑆 . For

𝑛 ∈ N, denote by𝑈𝑛 the uniform distribution over {0, 1}𝑛 .
The min-entropy of a distribution 𝐷 over a finite set Ω is

𝐻min (𝐷) := − log(max

𝑎∈Ω
Pr[𝐷 = 𝑎]).

We say 𝐷 is a 𝑘-source if 𝐻min (𝐷) ≥ 𝑘 .

LetΩ and𝐵 be finite sets, and letD be a class of distributions over

Ω. A function Ext : Ω → 𝐵 is said to be a (deterministic) 𝜀-extractor
forD if Ext(𝐷) =𝜀 𝑈𝐵 for all𝐷 ∈ D. A function Ext : Ω×{0, 1}ℓ →
𝐵 is said to be a seeded 𝜀-extractor for D if Ext(𝐷 ×𝑈ℓ ) =𝜀 𝑈𝐵 for

all 𝐷 ∈ D, where ℓ ∈ N is called the seed length of Ext.

3 SOURCES WITH LOW BIAS AND THEIR
EXTRACTORS

We consider several natural extensions of 𝜀-biased sources which

are useful for our extractor constructions. We then show how to

extract randomness from such sources.

3.1 (𝜀, 𝑒)-Biased Sources
Let 𝐴 be a finite abelian group and let 𝐴 denote the dual group of

𝐴, that is, the group of characters over 𝐴. A distribution 𝐷 over

𝐴 is 𝜀-biased if | E[𝜒 (𝐷)] | ≤ 𝜀 for all nontrivial characters 𝜒 ∈ 𝐴.

This is a standard definition, introduced in [27], which has been

immensely useful in the construction of extractors and in the theory

of pseudorandomness in general.

We now introduce two natural generalizations. We say 𝐷 is

(𝜀, 𝑒)-biased if | E[𝜒 (𝐷)] | ≤ 𝜀 for all but at most 𝑒 characters 𝜒 ∈ 𝐴.

And we say 𝐷 is strongly (𝜀, 𝑒)-biased if the set of 𝜒 ∈ 𝐴 satisfying

| E[𝜒 (𝐷)] | > 𝜀 is contained in an abelian subgroup of 𝐴 of size at

most 𝑒 . The usefulness of the latter definition will be clear shortly.

Suppose that 𝐴 and 𝐵 are finite groups. We wish to bound the

bias of conditional distributions over 𝐴 (or 𝐵), assuming bounds

on the bias of a distribution over 𝐴 × 𝐵. We bound the bias of the

marginal distribution 𝐷2 conditioned on any value of 𝐷1.

Corollary 3.1. Let 𝐴 and 𝐵 be finite abelian groups. Identify
𝐴 × 𝐵 with �𝐴 × 𝐵 so that (𝜒, 𝜃 ) (𝑥,𝑦) = 𝜒 (𝑥)𝜃 (𝑦) for (𝑥,𝑦) ∈ 𝐴 × 𝐵

and (𝜒, 𝜃 ) ∈ 𝐴 × 𝐵. Let 𝐷 = (𝐷1, 𝐷2) be a joint distribution over
𝐴 × 𝐵. Let 𝜀, 𝜀′ > 0. Assume that every character 𝜒 ∈ �𝐴 × 𝐵 � 𝐴 × 𝐵
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satisfying E[𝜒 (𝐷)] > 𝜀 is contained in the subgroup 𝐴 × {1}. Then
with probability at least 1−𝜀′ over 𝑥 ∼ 𝐷1, the conditional distribution
𝐷2 |𝐷1=𝑥 is |𝐴|𝜀/𝜀′-biased.

3.2 Extraction via the XOR Lemma and
Rank-Metric Codes

In the full version of the paper, we construct extractors for 𝜀-biased

sources, (𝜀, 𝑒)-biased sources and strongly (𝜀, 𝑒)-biased sources. For
𝜀-biased sources we use known constructions that extract random-

ness using the XOR lemma as in [29]. Over large characteristic we

use constructions based on rank metric codes.

The following construction allows us to extract randomness from

𝜀-biased sources over F𝑞 . We use it for fields of large characteristic.

Lemma 3.2 ([29, Lemma 4.4]). Let 𝑓 : Z𝑁 → Z𝑀 be the map
sending 𝑎 mod 𝑁 to 𝑎 mod 𝑀 for 𝑎 ∈ {0, 1, . . . , 𝑁 − 1}. Let 𝜓 be a
character of Z𝑀 . Then




�𝜓 ◦ 𝑓





1

≤ 𝑐 log𝑁 , where 𝑐 is an absolute
constant.

When 𝑝 is large but F𝑞 is possibly non-prime, we simply apply

the mod-𝑀 function to the last F𝑝 -coordinate of F𝑞 and use the

following corollary of Lemma 3.2.

Corollary 3.3. Let 𝑓 : Z𝑡
𝑁

→ Z𝑡−1
𝑁

× Z𝑀 be the map that
sends (𝑎1, . . . , 𝑎𝑡−1, 𝑎 mod 𝑁 ) to (𝑎1, . . . , 𝑎𝑡−1, 𝑎 mod 𝑀) for every
(𝑎1, . . . , 𝑎𝑡−1, 𝑎) ∈ Z𝑡−1𝑁

× {0, 1, . . . , 𝑁 − 1}. Let 𝜓 be a character of

Z𝑡−1
𝑁

×Z𝑀 . Then



�𝜓 ◦ 𝑓





1

≤ 𝑐 log𝑁 , where 𝑐 is an absolute constant.

Lemma 3.4. Let 𝑓 : Z𝑡
𝑁

→ Z𝑡−1
𝑁

×Z𝑀 be the map in Corollary 3.3.
Then for every 𝜀-biased distribution 𝐷 over Z𝑡

𝑁
, 𝑓 (𝐷) is 𝜀′-close to

the uniform distribution over Z𝑡−1
𝑁

×Z𝑀 , where 𝜀′ = 𝜀 · (𝑁 𝑡−1𝑀)1/2 ·
𝑐 log𝑁 +𝑀/𝑁 and 𝑐 is an absolute constant.

The XOR lemma requires the distribution to be 𝜀-biased. How-

ever, when the characteristic is small, we need to deal with the

more general class of (𝜀, 𝑒)-biased distributions, where 𝑒 is small.

In the full version of the paper we prove the following theorem.

Theorem 3.5. Let 𝑛, 𝑡, 𝑒 be positive integers and 𝜀, 𝜀′ ∈ (0, 1). Let
𝑛′ = min{⌊2 log𝑝 (1/𝜀) − 2 log𝑝 (16𝑒/𝜀′2)⌋, 𝑛}. Suppose 𝑡 ≤ 𝑛′ − 3 −
2 log𝑝 (2𝑒/𝜀′). Then there exists an explicit 𝜀′-extractor Ext : F𝑛𝑝 →
F𝑡𝑝 for strongly (𝜀, 𝑒)-biased sources.

4 PRELIMINARIES ON ALGEBRAIC
GEOMETRY

We refer to section 4 of the full version of our paper for preliminaries

and notations on algebraic geometry that we require. One can also

refer to a standard text, e.g., [31, 33]. In this condensed version, we

simply cite a few of the claims we need for later sections.

Theorem 4.1 (Fiber dimension theorem). Suppose 𝜑 : 𝑉 → 𝑉 ′

is a dominant morphism between irreducible affine varieties over
an algebraically closed field F. Then for every 𝑏 ∈ 𝜑 (𝑉 ) and every
irreducible component 𝑍 of 𝜑−1 (𝑏), it holds that

dim𝑍 ≥ dim𝑉 − dim𝑉 ′ .

Moreover, there exists𝑈 ⊆ 𝜑 (𝑉 ) such that𝑈 is a dense open subset
of 𝑉 ′ and dim𝜑−1 (𝑏) = dim𝑉 − dim𝑉 ′ holds for all 𝑏 ∈ 𝑈 .

See, e.g., [31, §I.6.3, Theorem 7] for a proof.

Theorem 4.2 (Effective Lang–Weil bound). Let 𝑉 ⊆ A𝑛
F𝑞

be
an absolutely irreducible affine variety over F𝑞 of dimension 𝑘 and
degree 𝑑 . Then

|𝑉 (F𝑞) − 𝑞𝑘 | < (𝑑 − 1) (𝑑 − 2)𝑞𝑘−1/2 + 5𝑑13/3𝑞𝑘−1 .

In particular, we have |𝑉 (F𝑞) | ≥ 𝑞𝑘/2 if 𝑞 ≥ 20𝑑5.

Bombieri’s estimate for exponential sums. Bombieri’s estimate

gives an upper bound for exponential sums over rational points of

curves over F𝑞 .

Theorem 4.3 ([3, Theorem 6]). Let 𝐶 ⊆ A𝑛
F𝑞

be an affine curve

of degree 𝑑1 over a finite field F𝑞 of characteristic 𝑝 . Let 𝜎 : F𝑝 → C×
be the character 𝑥 ↦→ 𝑒2𝜋𝑖𝑥/𝑝 of F𝑝 . Suppose 𝑓 ∈ F𝑞 [𝑋1, . . . , 𝑋𝑛] is
a polynomial of degree 𝑑2 such that for any 𝑔 ∈ F𝑞 [𝑋1, . . . , 𝑋𝑛] and
any irreducible component 𝐶0 of 𝐶 , the function 𝑓 − (𝑔𝑝 − 𝑔) does
not vanish identically on 𝐶0. Then������ ∑︁

𝑥∈𝐶 (F𝑞 )
(𝜎 ◦ Tr ◦𝑓 ) (𝑥)

������ ≤ (𝑑2
1
+ 2𝑑1𝑑2 − 3𝑑1)𝑞1/2 + 𝑑21 .

where Tr denotes the trace map from F𝑞 to F𝑝 .

Noether normalization. The Noether normalization lemma, due

to Noether [28] states that an affine variety𝑉 of dimension𝑘 over an

infinite field F admits a finite morphism 𝜑 : 𝑉 → A𝑘
F
. Moreover, 𝜑

may be chosen to be a linearmap.We give the following quantitative

version of this result, which states that the coefficients that specify

the linear map can be chosen from a finite subset 𝑆 ⊆ F provided
that 𝑆 is large enough.

Lemma 4.4 (Noether normalization). Let 𝑉 ⊆ A𝑛
F
be an affine

variety of dimension 𝑘 and degree 𝑑 over a field F. Suppose 𝑆 is a
finite subset of F of size greater than 𝑑 . Then there exists a polynomial
map 𝜑 : A𝑛

F
→ A𝑘

F
defined by linear polynomials ℓ𝑖 =

∑𝑛
𝑗=1 𝑐𝑖, 𝑗𝑋𝑖 ∈

F[𝑋1, . . . , 𝑋𝑛] with coefficients 𝑐𝑖,1, . . . , 𝑐𝑖,𝑛 ∈ 𝑆 for 𝑖 = 1, . . . , 𝑘 such
that 𝜑 |𝑉 : 𝑉 → A𝑘

F
is a finite morphism.

For convenience, we also prove the following lemma, which guar-

antees the existence of linear polynomials achieving simultaneous

Noether normalization for two affine varieties.

Lemma 4.5. Let K1 and K2 be extension fields of a field F. For
𝑖 = 1, 2, let 𝑉𝑖 ⊆ A𝑛

K𝑖
be an affine variety of dimension 𝑘𝑖 and

degree 𝑑𝑖 over K𝑖 . Suppose 𝑆 is a finite subset of F of size greater
than 𝑑1 +𝑑2. Then there exist linear polynomials ℓ1, . . . , ℓmax{𝑘1,𝑘2 } ∈
F[𝑋1, . . . , 𝑋𝑛] with coefficients in 𝑆 such that the morphism 𝑉𝑖 →
A𝑘𝑖
K𝑖

defined by ℓ1, . . . , ℓ𝑘𝑖 is finite for 𝑖 = 1, 2.

Effective fiber dimension theorem. We also need an effective ver-

sion of the fiber dimension theorem. To suit our needs, we first

formulate the theorem in the following general form. Recall that

for ℎ1, . . . , ℎ𝑠 ∈ F[𝑋1, . . . , 𝑋𝑛], we denote by Lℎ1,...,ℎ𝑠 ,F the linear

span of ℎ1, . . . , ℎ𝑠 and 1 over F.

Theorem 4.6 (Effective fiber dimension theorem – general

form). Let 𝑉 ⊆ A𝑛 be an irreducible affine variety of dimension 𝑘
over an algebraically closed field F. Let ℎ1, . . . , ℎ𝑠 ∈ F[𝑋1, . . . , 𝑋𝑛]
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with degℎ1 ≥ · · · ≥ degℎ𝑠 . Let 𝑓1, . . . , 𝑓𝑚 ∈ Lℎ1,...,ℎ𝑠 ,F, which define
a polynomial map 𝑓 : A𝑛 → A𝑚 . Let 𝑘′ = dim 𝑓 (𝑉 ).

Let 𝑗1, . . . , 𝑗𝑘 ′ ∈ [𝑚] such that the morphism 𝑓 ′ : 𝑉 → A𝑘
′

defined by 𝑓𝑗1 , . . . , 𝑓𝑗𝑘′ is dominant. Let 𝑉𝑓 ′ ⊆ A𝑛
F(𝑌1,...,𝑌𝑘′ )

be the
generic fiber of 𝑓 ′. Finally, let ℓ1, . . . , ℓ𝑘 ∈ F[𝑋1, . . . , 𝑋𝑛] be linear
polynomials such that both the morphism 𝜋 : 𝑉 → A𝑘 defined
by ℓ1, . . . , ℓ𝑘 and the morphism 𝜏 : 𝑉𝑓 ′ → A𝑘−𝑘

′

F(𝑌1,...,𝑌𝑘′ )
defined by

ℓ1, . . . , ℓ𝑘−𝑘 ′ are finite.
Let 𝑡 ∈ {0, . . . , 𝑘 − 𝑘′}. Then there exists a polynomial 𝑃 ∈

F[𝑋1, . . . , 𝑋𝑛] of degree at most 𝑘′ · deg𝑉 · ∏𝑘 ′
𝑖=1 degℎ𝑖 that does

not vanish identically on 𝑉 such that the following holds: Let 𝜑 :

A𝑛 → A𝑡+𝑚 be the polynomial map defined by ℓ1, . . . , ℓ𝑡 , 𝑓1, . . . , 𝑓𝑚 .
Then for every 𝑎 ∈ 𝑉 satisfying 𝑃 (𝑎) ≠ 0, the fiber 𝜑 |−1

𝑉
(𝜑 (𝑎)) is

equidimensional of dimension 𝑘 − 𝑘′ − 𝑡 .

As a corollary, we have the following effective fiber dimension

theorem, stated in a more standard form.

Corollary 4.7 (Effective fiber dimension theorem – stan-

dard form). Let 𝑉 ⊆ A𝑛 be an irreducible affine variety over an
algebraically closed field F. Let ℎ1, . . . , ℎ𝑠 ∈ F[𝑋1, . . . , 𝑋𝑛] with
degℎ1 ≥ · · · ≥ degℎ𝑠 . Let 𝑓1, . . . , 𝑓𝑚 ∈ Lℎ1,...,ℎ𝑠 ,F, which define
a polynomial map 𝑓 : A𝑛 → A𝑚 . Finally, let𝑊 = 𝑓 (𝑉 ) ⊆ A𝑚 .
Then there exists a polynomial 𝑃 ∈ F[𝑋1, . . . , 𝑋𝑛] of degree at most
dim𝑊 · deg𝑉 ·∏dim𝑊

𝑖=1 degℎ𝑖 that does not vanish identically on 𝑉
such that for every 𝑎 ∈ 𝑉 satisfying 𝑃 (𝑎) ≠ 0, the fiber 𝑓 |−1

𝑉
(𝑓 (𝑎))

is equidimensional of dimension dim𝑉 − dim𝑊 .

Degree bound for the images of affine varieties. Finally, we need
the following degree bound for the images of affine varieties (or

more precisely, their closures) under polynomial maps.

Lemma 4.8. Let 𝑉 ⊆ A𝑛
F
be an affine variety over a field F.

Let ℎ1, . . . , ℎ𝑠 ∈ F[𝑋1, . . . , 𝑋𝑛] with degℎ1 ≥ · · · ≥ degℎ𝑠 . Let
𝑓1, . . . , 𝑓𝑚 ∈ Lℎ1,...,ℎ𝑠 ,F, which define a polynomial map 𝑓 : A𝑛

F
→

A𝑚
F
. Finally, let𝑊 = 𝑓 (𝑉 ) ⊆ A𝑚

F
. Then

deg𝑊 ≤ deg𝑉 ·
dim𝑊∏
𝑖=1

degℎ𝑖 .

5 LINEAR SEEDED RANK EXTRACTORS FOR
VARIETIES

In this section, we consider the problem of constructing seeded
rank extractors for varieties that are linear: i.e., a set of linear maps

such that for every variety 𝑉 most of the maps in the set preserve

the dimension of 𝑉 . We show that these objects are simply linear

seeded rank extractors for subspaces, a well-known linear algebraic

pseudorandom object for which explicit constructions were given

in [12, 14, 15].

The proof is based on the notion of tangent spaces of varieties,
which are linear subspaces that are local first-order approximations

of varieties. Intuitively, for an affine variety𝑉 , as we look at smaller

and smaller neighborhoods of a nonsingular point 𝑎 of𝑉 , the tangent

space 𝑇𝑎𝑉 would become a better and better approximation of

𝑉 . Thus, one should expect that a linear map that preserves the

dimension of𝑇𝑎𝑉 , which is a subspace, also preserves the dimension

of 𝑉 . While it is not entirely obvious what “smaller and smaller

neighborhoods” mean in the Zariski topology, we will see that the

claim is indeed true and follows from general facts in algebraic

geometry.

Fix F to be an algebraically closed field throughout this section.

We first formally define seeded rank extractors for varieties and

subspaces.

Definition 5.1 (Seeded rank extractors). Let 𝜑1, . . . , 𝜑ℓ :

A𝑛 → A𝑚 be polynomial maps, where 𝑛 ≥ 𝑚. We say (𝜑𝑖 )𝑖∈[ℓ ] is an
(𝑛,𝑚, 𝑘, 𝜀) seeded rank extractor for varieties (resp. subspaces) if for
every affine variety (resp. linear subspace) 𝑉 ⊆ A𝑛 over F of dimen-
sion at least 𝑘 , all but at most 𝜀-fraction of 𝜑𝑖 satisfy dim𝜑𝑖 (𝑉 ) =𝑚

(or equivalently, 𝜑𝑖 |𝑉 : 𝑉 → A𝑚 is dominant). We call log ℓ the seed
length of the seeded rank extractor.

In addition, we say (𝜑𝑖 )𝑖∈[ℓ ] is linear if each 𝜑𝑖 is a linear map,
i.e., defined by linear polynomials.

The optimal choice of 𝑘 is 𝑘 = 𝑚, in which case the seeded

rank extractor is “lossless.” Explicit linear (𝑛,𝑚, 𝑘, 𝜀) seeded rank

extractors for subspaces with seed length 𝑂 (log𝑛 + log(1/𝜀)) and
𝑘 = 𝑚 was first constructed by Gabizon and Raz [15]. We use an

improved construction given in [12, 14].

Lemma 5.2 ([12, 14]). Let 𝑛 ∈ N+ and𝑚 ∈ [𝑛]. Let 𝜔 ∈ F× such
that the multiplicative order of𝜔 is at least 𝑛. Let 𝑠1, . . . , 𝑠ℓ be distinct
elements in F× . For 𝑖 ∈ [ℓ], let 𝜑𝑖 : A𝑛 → A𝑚 be the linear map
defined by the 𝑚 × 𝑛 matrix ((𝜔 𝑗 ′−1𝑠𝑖 ) 𝑗−1) 𝑗 ′∈[𝑚], 𝑗∈[𝑛] . In other
words, 𝜑𝑖 maps (𝑎1, . . . , 𝑎𝑛) to©­«

𝑛∑︁
𝑗=1

𝑠
𝑗−1
𝑖

𝑎 𝑗 ,

𝑛∑︁
𝑗=1

(𝜔𝑠𝑖 ) 𝑗−1𝑎 𝑗 , . . . ,
𝑛∑︁
𝑗=1

(𝜔𝑚−1𝑠𝑖 ) 𝑗−1𝑎 𝑗 ª®¬ .
Then (𝜑𝑖 )𝑖∈[ℓ ] is a linear (𝑛,𝑚,𝑚, 𝜀) seeded rank extractor for sub-
spaces, where 𝜀 =𝑚(𝑛 −𝑚)/ℓ .

The main result of this section is the following theorem.

Theorem 5.3. An (𝑛,𝑚, 𝑘, 𝜀) linear seeded rank extractor for sub-
spaces is also an (𝑛,𝑚, 𝑘, 𝜀) linear seeded rank extractor for varieties.

Corollary 5.4. The construction (𝜑𝑖 )𝑖∈[ℓ ] in Lemma 5.2 is a
linear (𝑛,𝑚,𝑚, 𝜀) seeded rank extractor for varieties, where 𝜀 =𝑚(𝑛−
𝑚)/ℓ .

The proof of Theorem 5.3 appears in the full version of the paper.

6 DETERMINISTIC RANK EXTRACTORS FOR
VARIETIES

Let F be an algebraically closed field. In this section, we consider

the problem of constructing explicit deterministic (lossless) rank
extractors/condensers for varieties. These are polynomial mapsA𝑛 →
A𝑚 that preserve the dimension of low-degree affine varieties 𝑉 ⊆
A𝑛 over F but reduce the dimension of the ambient space.

Dvir, Gabizon andWigderson [10] constructed explicit determin-

istic rank extractors for polynomial sources. These objects can also

be viewed as deterministic rank extractors for varieties that are the

closures of the images of polynomial maps. A key technique used

in their analysis is the Jacobian criterion for algebraic independence,
which requires the characteristic of F to be zero or large.

To solve the problem for general varieties, one natural approach

is generalizing the Jacobian criterion for algebraic independence. A
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key step in the proof of [10] is showing that a certain polynomial

associated with the Jacobian matrix is nonzero. Thus, it is natural

for us to show that a similar polynomial does not vanish com-

pletely on affine varieties and that this is sufficient for constructing

deterministic rank extractors for varieties.

While this idea can be made rigorous, the problem is that proving

the nonvanishing of a polynomial on an affine variety appears to

be challenging. We need to show that not only is the polynomial

nonzero, but it remains nonzero modulo the ideal defining the

variety. It is not clear to us how to prove such a result due to the

generality of the variety.

The DKL construction. Instead of using a Jacobian-based con-

struction, we take a different approach. Namely, we show that the

explicit construction of variety evasive sets by Dvir, Kollár, and

Lovett [11] can be used to construct deterministic rank extractors

for varieties. Variety evasive sets are large finite subsets of A𝑛

that have small intersections with varieties of low degree and low

dimension. While they do not give deterministic rank extractors

for varieties in general, we show that the construction of variety

evasive sets in [11] does give such a construction.

More specifically, Dvir, Kollár and Lovett [11] construct explicit

variety evasive sets by constructing an explicit polynomial map

𝜑 : A𝑛 → A𝑚 defined by polynomials 𝑓1, . . . , 𝑓𝑚 ∈ F[𝑋1, . . . , 𝑋𝑛]
such that the intersection of 𝜑−1 (0) = 𝑉 (𝑓1, . . . , 𝑓𝑚) with any low-

degree variety of dimension at most𝑚 is finite, where 0 denotes

the origin of A𝑛 . We observe that this remains true if 𝜑−1 (0) is
replaced by 𝜑−1 (𝑏) for any 𝑏 ∈ A𝑚 . In other words, for any low-

degree variety 𝑉 of dimension at most 𝑚, the polynomial map

𝜑 restricts to a morphism 𝜑 |𝑉 : 𝑉 → A𝑚 whose fibers are all

finite sets. In the terminology of algebraic geometry, this means

𝜑 |𝑉 is a quasi-finite morphism. By the fiber dimension theorem

(Theorem 4.1), we then have dim𝜑 (𝑉 ) = dim(𝑉 ).
In this section, we construct explicit deterministic rank extractors

and rank condensers for varieties by adapting the analysis in [11].

We also formulate the construction in a way that highlights the

connection with linear error-correcting codes. In particular, a linear

MDS code yields a deterministic rank extractor for varieties in the

sense that the coefficients of the polynomials that define the rank

extractor are specified by a parity-check matrix of the code.

In Section 11, we will show that the polynomial map 𝜑 has the

stronger property that 𝜑 |𝑉 is a finite morphism, not just quasi-finite,

and this gives explicit Noether normalization lemmas for affine

varieties and affine algebras.

Our Explicit Construction. We first define deterministic rank ex-

tractors and rank condensers for varieties.

Definition 6.1 (Deterministic rank extractors/condensers

for varieties). Let 𝑛 ∈ N+ and 𝑚 ∈ [𝑛]. A polynomial map 𝜑 :

A𝑛 → A𝑚 is an (𝑛,𝑚, 𝑘, 𝑑) deterministic (lossless) rank condenser

if dim𝜑 (𝑉 ) = dim𝑉 for every affine variety 𝑉 ⊆ A𝑛 over F of
dimension at most 𝑘 and degree at most 𝑑 . When 𝑘 =𝑚, we also say
𝜑 is an (𝑛,𝑚,𝑑) deterministic (lossless) rank extractor.

𝑘-regular matrices. Let 𝑛 ∈ N+ and𝑚,𝑘 ∈ [𝑛]. We say a matrix

𝑀 ∈ F𝑚×𝑛
is 𝑘-regular if any 𝑘 distinct columns of𝑀 are linearly

independent. (The same definition was given in [11] but for only

for the special case where 𝑘 =𝑚.)

The following lemma gives a coding-theoretic characterization

of 𝑘-regularity. Its proof is straightforward.

Lemma 6.2. Let K be a subfield of F and let𝑀 ∈ K𝑚×𝑛 ⊆ F𝑚×𝑛 ,
where 𝑛 ∈ N+ and𝑚,𝑘 ∈ [𝑛]. The following statements hold.

• 𝑀 is 𝑘-regular iff there does not exist a nonzero vector 𝑢 ∈ K𝑛
of Hamming weight at most 𝑘 such that𝑀𝑢 = 0.

• Suppose 𝑘 =𝑚. Then 𝑀 is 𝑘-regular iff it is an MDS matrix,
i.e., every maximal minor of𝑀 is nonzero.

In particular, assuming K is a finite field, the matrix 𝑀 is 𝑘-

regular iff the linear code 𝐶 = {𝑢 ∈ K𝑛 : 𝑀𝑢 = 0} over K defined

by the parity check matrix𝑀 has minimum distance at least 𝑘 + 1.

And if 𝑘 = 𝑚, then 𝑀 is 𝑘-regular iff 𝐶 is a linear MDS code of

minimum distance 𝑘 + 1, i.e., it is a linear code of dimension 𝑛 − 𝑘

and minimum distance 𝑘 + 1.
2

The construction. We now present the explicit construction of

deterministic rank extractors and condensers for varieties. It is

based on the explicit construction of variety evasive sets in [11].

Let𝑛,𝑑 ∈ N+ and𝑚,𝑘 ∈ [𝑛]. Let𝑑1, . . . , 𝑑𝑛 be𝑛 pairwise coprime

integers greater than 𝑑 .3 Let 𝑀 = (𝑐𝑖, 𝑗 )𝑖∈[𝑚], 𝑗∈[𝑛] ∈ F𝑚×𝑛
be a

𝑘-regular matrix. Let 𝜑 = 𝜑 (𝑀) : A𝑛 → A𝑚 be the polynomial

map

𝜑 : (𝑎1, . . . , 𝑎𝑛) ↦→ ©­«
𝑛∑︁
𝑗=1

𝑐1, 𝑗𝑎
𝑑 𝑗

𝑗
, . . . ,

𝑛∑︁
𝑗=1

𝑐𝑚,𝑗𝑎
𝑑 𝑗

𝑗

ª®¬ .
We remark that, curiously, the construction above is very similar

to the construction of an affine extractor in Section 10, although

their purposes and the techniques used to analyze them are sub-

stantially different.

The following theorem and its corollaries are the main results of

this section.

Theorem 6.3. For every 𝑏 ∈ A𝑚 and every affine variety 𝑉 ⊆
A𝑛 over F of dimension at most 𝑘 and degree at most 𝑑 , the fiber
(𝜑 |𝑉 )−1 (𝑏) = 𝜑−1 (𝑏) ∩𝑉 is a finite set.

Corollary 6.4. 𝜑 is an (𝑛,𝑚, 𝑘, 𝑑) deterministic rank condenser
for varieties. In particular, if𝑚 = 𝑘 , then𝜑 is an (𝑛,𝑚,𝑑) deterministic
rank extractor for varieties.

We also show in the full version of our paper that the integers

𝑑1, . . . , 𝑑𝑛 and the matrix 𝐴 can be efficiently constructed.

So we have the following corollary.

Corollary 6.5. For 𝑚 ∈ {1, 𝑛 − 1, 𝑛}, there exists an explicit
construction of an (𝑛,𝑚,𝑑) deterministic rank extractor for varieties
that is defined by polynomials 𝑓1, . . . , 𝑓𝑚 ∈ F[𝑋1, . . . , 𝑋𝑛] satisfying
the following:

• All the coefficients of 𝑓1, . . . , 𝑓𝑚 are in {0, 1,−1}, and hence
are in every subfield of F.

• deg 𝑓1, . . . , deg 𝑓𝑚 = 𝑂 ((𝑛+𝑑) log(𝑛+𝑑)). And the sparse rep-
resentations of 𝑓1, . . . , 𝑓𝑚 can be computed in time poly(𝑛,𝑑).
The time complexity can be improved to poly(𝑛, log𝑑) at the
cost of increasing the degrees of 𝑓1, . . . , 𝑓𝑚 to 𝑂 (𝑛𝑑 log𝑛).

2
We define the minimum distance of the zero code {0} to be𝑛+1, so that the statement

also holds for 𝑘 = 𝑛.
3
While [11] assumes 𝑑1 > · · · > 𝑑𝑛 , this assumption does not really matter.
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A similar statement holds for general𝑚 ∈ [𝑛] and the coefficients

of 𝑓1, . . . , 𝑓𝑚 can be chosen in a finite field F𝑞 , assuming F𝑞 is a

subfield of F and 𝑞 ≥ 𝑛− 1. The time complexity would also depend

polynomially on log𝑞.

The above explicit (𝑛,𝑚,𝑑) deterministic extractor for varieties

will be used in the proof of Theorem 1, but only in the case where

𝑚 = 1. Previously, Dvir [9, Theorem 3.1] gave an explicit con-

struction of an (𝑛, 1, 𝑑) deterministic rank extractor for varieties,

where the polynomial defining the rank extractor is recursively

constructed and has degree poly(𝑑𝑛). Corollary 6.5 improves the

degree of the polynomial to 𝑂 (𝑛 + 𝑑) or 𝑂 (𝑛𝑑).
The proof of Theorem 6.3 appears in the full version of this paper.

7 DECOMPOSITION AND MIN-ENTROPY
ESTIMATION OF (𝑛, 𝑘, 𝑑) ALGEBRAIC
SOURCES

In this section, we prove that every (𝑛, 𝑘, 𝑑) algebraic source can
be (approximately) decomposed into a convex combination of irre-

ducible, or even irreducibly minimal (𝑛, 𝑘, 𝑑) sources. In particular,

this reduces the problem of constructing deterministic extractors

for general (𝑛, 𝑘, 𝑑) algebraic sources to that for irreducibly minimal

(𝑛, 𝑘, 𝑑) algebraic sources. We will use this reduction in Section 8.

In addition, we show that every (𝑛, 𝑘, 𝑑) algebraic source 𝐷 over

F𝑞 is close to a distribution with min-entropy about 𝑘 log𝑞, and

that this estimation is tight up to an additive term of order𝑂 (log𝑑)
assuming that 𝑘 is maximized, i.e., that 𝐷 is not an (𝑛, 𝑘 + 1, 𝑑)
algebraic source over F𝑞 .

7.1 Decomposition of (𝑛, 𝑘, 𝑑) Algebraic Sources
In the full version of the paper, we prove the following lemma:

Lemma 7.1 (Decomposition into irreducible sources). Sup-
pose 𝑞 ≥ max{20𝑑5, 2𝑑2/𝜀}, where 𝜀 ∈ (0, 1). Then every (𝑛, 𝑘, 𝑑)
algebraic source 𝐷 over F𝑞 is 𝜀-close to a convex combination of ir-
reducible (𝑛, 𝑘, 𝑑) algebraic sources 𝐷𝑖 over F𝑞 . Moreover, if 𝐷 is a
minimal (𝑛, 𝑘, 𝑑) algebraic source over F𝑞 , then each𝐷𝑖 can be chosen
to be an irreducibly minimal (𝑛, 𝑘, 𝑑) algebraic source over F𝑞 .

Next, we further decompose an irreducible (𝑛, 𝑘, 𝑑) algebraic
source into a convex combination of irreducibly minimal (𝑛, 𝑘, 𝑑)
algebraic sources. Our main tool is the effective fiber dimension the-

orem (Theorem 4.6). Using this theorem and the results of Section

4, we intersect the variety 𝑉 with various translates of a carefully

chosen linear subspace. There are some bad events that could hap-

pen for some of these intersections. For example, the intersection

may have the “wrong” dimension, or the resulting variety might

have the “correct" dimension 𝑘 but none of the irreducible compo-

nents of dimension 𝑘 are absolutely irreducible. Using the effective

fiber dimension theorem, we are able to show that these bad events

correspond to small portions of the variety 𝑉 , and then we again

obtain a natural way to decompose the remaining part as a convex

combination of irreducibly minimal (𝑛, 𝑘, 𝑑) sources.

Lemma 7.2. Suppose 𝑞 ≥ max{20𝑑5, 2(𝑘 + 1)𝑑2/𝜀2}, where 𝜀 ∈
(0, 1). Then every irreducible (𝑛, 𝑘, 𝑑) algebraic source over F𝑞 is
3𝜀-close to a convex combination of irreducibly minimal (𝑛, 𝑘, 𝑑)
algebraic sources over F𝑞 .

Combining Lemma 7.1 and Lemma 7.2 yields the following corol-

lary.

Corollary 7.3 (Decomposition into irreducibly minimal

algebraic sources). Suppose 𝑞 ≥ max{20𝑑5, 2(𝑘 +1)𝑑2/𝜀2}, where
𝜀 ∈ (0, 1). Then every (𝑛, 𝑘, 𝑑) algebraic source over F𝑞 is 4𝜀-close to a
convex combination of irreducibly minimal (𝑛, 𝑘, 𝑑) algebraic sources
over F𝑞 .

7.2 Estimating the Min-Entropy of (𝑛, 𝑘, 𝑑)
Algebraic Sources

We prove the following lower bound on the min-entropy of an

(𝑛, 𝑘, 𝑑) algebraic source 𝐷 (or more precisely, a distribution 𝐷′

close to 𝐷). The proof uses the decomposition into irreducible

(𝑛, 𝑘, 𝑑) algebraic sources (Lemma 7.1).

Lemma 7.4. Suppose 𝑞 ≥ max{20𝑑5, 2𝑘𝑑2/𝜀}, where 𝜀 ∈ (0, 1/2].
Then every (𝑛, 𝑘, 𝑑) algebraic source over F𝑞 is 2𝜀-close to a 𝑘′-source
over the set F𝑛𝑞 , where 𝑘

′ = 𝑘 log𝑞 − log𝑑 − 2.

The next proposition complements Lemma 7.4 and gives an

upper bound on the min-entropy.

Proposition 7.5. Suppose 𝑞 ≥ 20𝑑5. Let 𝐷 be an (𝑛, 𝑘, 𝑑) al-
gebraic source over F𝑞 such that 𝑘 is maximal with respect to this
condition, i.e., 𝐷 is not an (𝑛, 𝑘 + 1, 𝑑) algebraic source over F𝑞 . Then
the statistical distance between 𝐷 and any (𝑘 log𝑞 + 2 log𝑑 + 2)-
source is at least 1

4𝑑
. Moreover, if 𝐷 is an irreducible (𝑛, 𝑘, 𝑑) alge-

braic source over F𝑞 , then the statistical distance between 𝐷 and any
(𝑘 log𝑞 + log𝑑 + 1)-source is at least 1

2
.

8 EXTRACTING A SHORT SEED
In this section, we consider the problem of constructing explicit

deterministic extractors for (𝑛, 𝑘, 𝑑) algebraic sources over a finite
field F𝑞 in the special case where 𝑘 = 1.

The main results of this section are explicit constructions of

deterministic extractors that extract almost log𝑞 bits from (1, 1, 𝑑)
algebraic sources and, more generally, (𝑛, 1, 𝑑) algebraic sources
over F𝑞 . They are used as building blocks in the construction of the

full-fledged deterministic extractors that extract most min-entropy

from (𝑛, 𝑘, 𝑑) algebraic sources.
Formally, we prove the following theorems.

Theorem 8.1 (Extractor for (1, 1, 𝑑) algebraic sources). Let
𝑑 ∈ N+ and 𝜀 ∈ (0, 1/2]. Suppose𝑞 ≥ 𝑐0𝑑

5/𝜀2, where 𝑐0 > 0 is a large
enough absolute constant. Then there exists an explicit 𝜀-extractor
Ext : F𝑞 → {0, 1}𝑚 for (1, 1, 𝑑) algebraic sources over F𝑞 such that
𝑚 ≥ log𝑞 − 2 log log 𝑝 −𝑂 (log(𝑑/𝜀)).

Theorem 8.2 (Extractor for (𝑛, 1, 𝑑) algebraic sources). Let
𝑑 ∈ N+ and 𝜀 ∈ (0, 1/2]. Suppose 𝑞 ≥ (𝑛𝑑/𝜀)𝑐0 , where 𝑐0 > 0

is a large enough absolute constant. Then there exists an explicit 𝜀-
extractor Ext : F𝑞 → {0, 1}𝑚 for (𝑛, 1, 𝑑) algebraic sources over F𝑞
such that𝑚 ≥ log𝑞 − 2 log log 𝑝 −𝑂 (log(𝑛𝑑/𝜀)).

Theorem 8.2 is derived from Theorem 8.1. As in [9, 10], the proof

of Theorem 8.1 uses Bombieri’s estimate for exponential sums

(Theorem 4.3). However, the argument in [9, 10] works only when

the characterisitic 𝑝 is large. Moreover, it only yields an extractor

that extracts 𝑐 log𝑞 bits for some constant 𝑐 ≤ 1/2. We introduce
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new ideas that allow us to extract almost log𝑞 bits regardless of

the characteristic 𝑝 .

As one of our main tools, we prove the following estimate for

exponential sums over curves, even over finite fields of small char-

acteristics. Recall that Bombieri’s estimate (Theorem 4.3) is valid

as long as the polynomial 𝑓 does not have the form 𝑔𝑝 − 𝑔 on the

curve. One way to deal with this difficulty is to require 𝑝 to be large.

However, we would like to get meaningful results for arbitrary 𝑝 ,

and we do this by paying the cost of excluding a small subgroup of

characters from the estimate.

Lemma 8.3. Let 𝐶 ⊆ A𝑛
F𝑞

be an irreducible affine curve of degree
𝑑1 over a finite field F𝑞 of characteristic 𝑝 , and let 𝑓 ∈ F𝑞 [𝑋1, . . . , 𝑋𝑛]
be a polynomial of degree 𝑑2 that is not constant on 𝐶 . Then the set
of characters 𝜒 ∈ F̂𝑞 for which������ ∑︁

𝑥∈𝐶 (F𝑞 )
𝜒 (𝑓 (𝑥))

������ ≤ (𝑑2
1
+ 2𝑑1𝑑2 − 3𝑑1)𝑞1/2 + 𝑑21

fails to hold is contained in a subgroup of F̂𝑞 of size at most 𝑑1𝑑2.

9 DETERMINISTIC EXTRACTORS FOR (𝑛, 𝑘, 𝑑)
ALGEBRAIC SOURCES

In this section, we provide our main construction of deterministic

extractors for (𝑛, 𝑘, 𝑑) algebraic sources. Recall that in Section 8 we

considered the case of (𝑛, 1, 𝑑) algebraic sources.
We start with the case of (𝑛, 𝑛, 𝑑) algebraic sources, andwe follow

our general proof technique as laid out in Section 1.3: the first step of

the construction is applying our extractor from Section 8 to obtain

a short output, which is then, in the second step, used as a seed for a

seeded extractor for sources with high min-entropy (note that even

though we have more structure in our source, since we are anyway

applying a seeded extractor we might as well use an off-the-shelf

construction which works for any source with high min-entropy).

Proving that this indeed works requires analyzing the conditional

distribution of an (𝑛, 𝑛, 𝑑) algebraic source under fixing of a subset

of the coordinates, which is done in the full version of the paper.

This construction is presented and analyzed in Section 9.1.

In order to remove the assumption that 𝑘 = 𝑛 and handle gen-

eral (𝑛, 𝑘, 𝑑) algebraic sources, we apply a rank extractor which,

roughly speaking, condenses a 𝑘-dimensional source in an ambi-

ent 𝑛-dimensional space to a 𝑘-dimensional source in an ambient

𝑘-dimensional space, and this enables us to use the extractor from

Section 9.1. As discussed at the end of Section 9.1, this can be done

using the deterministic rank extractor of Section 6, but it would

have an undesirable effect on the field size. Thus, we opt to use a

linear seeded rank extractor (as defined in Section 5), where the seed

of the rank extractor is chosen pseudorandomly using our extractor

for (𝑛, 1, 𝑑) algebraic sources from Section 8.

To summarize, in our composition theorem (Theorem 9.3), we

start by applying the extractor for (𝑛, 1, 𝑑) algebraic sources from
Section 8 in order to select a seed for the seeded linear rank extractor

from Section 5, we apply the resulting linear map to the source, and

then we use the extractor for full-rank sources from Section 9.1 to

obtain the final output. The details of this construction appear in

Section 9.2.

9.1 Deterministic Extractors for Full-Rank
Algebraic Sources

We need the following explicit construction of seeded extractors

given by Goldreich andWigderson [17], which is based on expander

graphs.

Theorem 9.1 ([17]). For 𝑛 ∈ N, 0 ≤ Δ ≤ 𝑛 and 𝜀 > 0, there exists
an explicit seeded 𝜀-extractor Ext : {0, 1}𝑛 × {0, 1}ℓ → {0, 1}𝑛 for
(𝑛 − Δ)-sources with ℓ = 𝑂 (Δ + log(1/𝜀)).

We now state our construction for full-rank algebraic sources.

Our construction follows the general paradigm mentioned in Sec-

tion 1.3: we first apply our extractor from Theorem 8.1 to obtain

a short output, which is then used as a seed to the extractor from

Theorem 9.1.

Theorem 9.2 (Extractor for (𝑛, 𝑛, 𝑑) algebraic sources). Let
𝑛,𝑑 ∈ N+ and 𝜀 ∈ (0, 1/2]. Suppose 𝑞 ≥ (𝑛𝑑/𝜀)𝑐0 , where 𝑐0 > 0

is a large enough absolute constant. Then there exists an explicit 𝜀-
extractor Ext : F𝑞 → {0, 1}𝑚 for (𝑛, 𝑛, 𝑑) algebraic sources over F𝑞
such that𝑚 ≥ 𝑛 log𝑞 − 2 log log 𝑝 −𝑂 (log(𝑑/𝜀)).

One can remove the full-rank assumption and construct an ex-

tractor for (𝑛, 𝑘, 𝑑) algebraic sources over F𝑞 by composing the

extractor in Theorem 9.2 with the deterministic rank extractor for

varieties in Section 6. This argument was used by Dvir, Gabizon and

Wigderson [10], except that they considered polynomial sources

only and used a different construction of deterministic rank ex-

tractors. The downside of this argument, however, is that such a

deterministic rank extractor is necessarily nonlinear. In particular,

our rank extractor uses polynomials of degree at least poly(𝑛), and
so does the one in [10]. Composing with such a rank extractor

increases the degree of each polynomial in the polynomial map

by at least a poly(𝑛) factor. The resulting field size 𝑞 would then

depend at least polynomially on 𝑛𝑘 , or 𝑛𝑛 if 𝑘 = Θ(𝑛), assuming

that we want to extract about 𝑘 log𝑞 bits.

In the next subsection, we show how to remove the full-rank

assumption more efficiently using a linear seeded rank extractor

for varieties.

9.2 Removing the Full-Rank Assumption
We now remove the full-rank assumption in Theorem 9.2 without

significantly increasing the required field size. This is done by

extending an argument in [15, 16].

The following theorem shows how to compose all the ingredients

in our construction: an extractor Ext1 for (𝑛, 1, 𝑑) algebraic sources,
an extractor Ext2 for full-rank algebraic sources, and a linear seeded
rank extractor 𝜑 , in order to obtain extractors for (𝑛, 𝑘, 𝑑) algebraic
sources. The construction uses Ext1 in order to select the seed for

𝜑 , applies 𝜑 on the input, and then applies Ext2 on the resulting

“condensed” source.

Theorem 9.3 (Composition of extractors). Let 𝑛 ≥ 𝑘 > 1 be
integers. Let 𝜀, 𝜀′ ∈ (0, 1). Suppose we are given the following objects:

• an 𝜀-extractor Ext1 : F𝑛𝑞 → {0, 1}𝑚1 for (𝑛, 1, 𝑑) algebraic
sources over F𝑞 ,

• an 𝜀-extractor Ext2 : F𝑘−1𝑞 → {0, 1}𝑚2 for (𝑘 − 1, 𝑘 − 1, 𝑑)
algebraic sources over F𝑞 , and
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• an (𝑛, 𝑘 − 1, 𝑘, 𝜀′) linear seeded rank extractor (𝜑𝑦)𝑦∈{0,1}ℓ
for varieties over F𝑞 (see Definition 5.1) such that ℓ ≤ 𝑚1 and
each 𝜑𝑦 is defined by linear polynomials over F𝑞 .

Write Ext1 = (Ext′
1
, Ext′′

1
), where Ext′

1
and Ext′′

1
output the first

ℓ bits and the last 𝑚1 − ℓ bits of Ext1 respectively. Assume 𝑞 ≥
max{20𝑑5, 2(𝑘 + 1)𝑑2/𝜀2}. Then the map Ext : F𝑛𝑞 → {0, 1}𝑚1 ×
{0, 1}𝑚2 = {0, 1}𝑚1+𝑚2 defined by

Ext(𝑥) := (Ext1 (𝑥), Ext2 (𝜑Ext′
1
(𝑥 ) (𝑥)))

is a (6𝜀 · 2ℓ + 4𝜀 + 𝜀′)-extractor for (𝑛, 𝑘, 𝑑) algebraic sources over F𝑞 .

Instantiating the objects in Theorem 9.3 immediately implies

Theorem 1. The details appear in the full version of this paper.

10 AFFINE EXTRACTORS WITH
EXPONENTIALLY SMALL ERROR FOR
QUASIPOLYNOMIALLY LARGE FIELDS

In this section, we construct affine extractors with exponentially

small error, over prime fields of size 𝑞 = 𝑛𝑂 (log log(𝑛) )
and any

characteristic. Our construction is in fact identical to the extrac-

tor of Bourgain, Dvir and Leeman [5], but our analysis is slightly

improved. Specifically, Bourgain, Dvir and Leeman constructed an

affine extractor over prime fields F𝑞 where 𝑞 = 𝑛𝑂 (log log𝑛)
is a

so-called “typical” prime. Our construction works over any prime

finite field of the same size.

The following proposition replaces the use of [5] by finding a set

of degrees 𝑑1, . . . , 𝑑𝑛 with useful properties for the construction.

Proposition 10.1. Let 𝑞 be a prime number. Fix 𝜀 > 0 . Then, if
𝑞 ≥ 𝑛

2

𝜀
log log(𝑛) , there exists an efficient deterministic algorithm that,

in time polynomial in 𝑛, finds 𝑛 integers 𝑑1 < 𝑑2 < · · · < 𝑑𝑛 ∈ N
such that LCM(𝑑1, . . . , 𝑑𝑛) ≤ 𝑞𝜀 and each 𝑑𝑖 is coprime to 𝑞 − 1.

Let 𝐴 ∈ F𝑚×𝑛
be a matrix where every𝑚 columns are linearly

independent (e.g., a Vandermonde matrix). Let 𝑑1 < 𝑑2 < · · · < 𝑑𝑛
be as in Proposition 10.1 and define the function 𝐸 : F𝑛 → F𝑚 by

𝐸 (𝑥1, . . . , 𝑥𝑛) = 𝐴 ·
©­­­«
𝑥
𝑑1
1

.

.

.

𝑥
𝑑𝑛
𝑛

ª®®®¬ . (1)

Theorem 10.2. For every 0 < 𝛽 < 1/2, there exists a constant
𝐶 such that the following holds: Let 𝑘 ≤ 𝑛 be integers and F be a
prime field of size 𝑞 ≥ 𝑛𝐶 log log𝑛 . Then for 𝑚 = 𝛽𝑘 the function
𝐸 : F𝑛 → F𝑚 as in (1) is an affine extractor for min-entropy 𝑘 with
error 𝑞−Ω (𝑘 ) . That is, for every affine subspace 𝑉 ⊆ F𝑛 of dimension
𝑘 , if 𝑋𝑉 is a random variable uniformly distributed on 𝑉 , 𝐸 (𝑋𝑉 ) is
𝑞−Ω (𝑘 ) -close to uniform on F𝑘 .

11 EXPLICIT NOETHER NORMALIZATION
FOR AFFINE VARIETIES AND AFFINE
ALGEBRAS

The Noether normalization lemma [26, 28] is a cornerstone of com-

mutative algebra and algebraic geometry. It states that any finitely

generated commutative algebra over a field F, or what we call an
affine algebra over F, is not too far from a polynomial ring, in the

sense that it is always a finitely generated module over a subring

that is isomorphic to a polynomial ring F[𝑌1, . . . , 𝑌𝑘 ]. The geomet-

ric interpretation of this statement is that any affine variety 𝑉 over

F is a “branched covering” of an affine space A𝑘
F
, or more precisely,

𝑉 admits a surjective finite morphism 𝜑𝑉 : 𝑉 → A𝑘
F
.

When F is an infinite field (or more generally, a sufficiently large

field), the polynomials that define the finite morphism 𝜑𝑉 may be

chosen to be linear polynomials (see, e.g., Lemma 4.4). In general,𝜑𝑉
can always be chosen to be defined by polynomials of sufficiently

large degrees. In fact, counting arguments show that given the

variety, a “random” polynomial map defined by polynomials of

sufficiently large degrees would almost surely yield such a finite

morphism. See [6] for a quantitative analysis. However, it is not

known how to completely “derandomize” such counting arguments.

The first proof of the Noether normalization lemma for general

affine algebras over arbitrary fields was given by Nagata [24–26].

This proof has the interesting feature that it actually constructs a

“universal” polynomial map 𝜑 : A𝑛
F
→ A𝑘

F
that works for all low-

degree affine varieties. Namely, for any low-degree affine variety

𝑉 ⊆ A𝑛
F
of dimension 𝑘 , the restriction of 𝜑 to 𝑉 gives a finite

morphism 𝜑 |𝑉 : 𝑉 → A𝑘
F
. The existence of such a polynomial

map 𝜑 that is independent of 𝑉 appears to be stronger and more

intriguing than the existence of finite morphisms 𝑉 → A𝑘
F
. In fact,

we do not know how to prove the existence of 𝜑 via a counting

argument.

While the polynomial map 𝜑 constructed by Nagata gives a

uniform way of constructing finite morphisms, a drawback is that

the degrees of the polynomials that define 𝜑 can get extremely high

due to the iterative nature of the construction. More specifically,

the map 𝜑 is constructed as a composition of polynomial maps

𝜑𝑖 : A
𝑖+1
F

→ A𝑖
F
, 𝑖 = 𝑛 − 1, . . . , 𝑘 such that their restrictions 𝜑𝑖 |𝑉𝑖+1

are finite morphisms, where we inductively define𝑉𝑛 = 𝑉 and𝑉𝑖 =

𝜑𝑖 (𝑉𝑖+1) for 𝑖 = 𝑛 − 1, . . . , 𝑘 . The problem is that composing with a

polynomial map can increase the degree of a variety exponentially

(see Lemma 4.8). The degree bound for the polynomials defining 𝜑

is at least doubly exponential for this reason.

Thus, it is a natural question to ask if there is a more efficient

construction of the universal polynomial map 𝜑 . In this section,

we show that the DKL construction in Section 6 is indeed such a

construction, which always works when |F| ≥ 𝑛.

The construction of 𝜑 . We first recall the DKL construction in

Section 6. Let F be a field. Let 𝑛,𝑑 ∈ N+ and 𝑚,𝑘 ∈ [𝑛]. Let
𝑑1, . . . , 𝑑𝑛 be 𝑛 pairwise coprime integers greater than 𝑑 . Let𝑀 =

(𝑐𝑖, 𝑗 )𝑖∈[𝑚], 𝑗∈[𝑛] ∈ F𝑚×𝑛
be a 𝑘-regular matrix, i.e., any 𝑘 distinct

columns of𝑀 are linearly independent. Let 𝜑 = 𝜑 (𝑀) : A𝑛
F
→ A𝑚

F
be the polynomial map defined by 𝑓1, . . . , 𝑓𝑚 ∈ F[𝑋1, . . . , 𝑋𝑛],
where 𝑓𝑖 :=

∑𝑛
𝑗=1 𝑐𝑖, 𝑗𝑋

𝑑 𝑗

𝑗
. In other words, 𝜑 is given by

𝜑 : (𝑎1, . . . , 𝑎𝑛) ↦→ ©­«
𝑛∑︁
𝑗=1

𝑐1, 𝑗𝑎
𝑑 𝑗

𝑗
, . . . ,

𝑛∑︁
𝑗=1

𝑐𝑚,𝑗𝑎
𝑑 𝑗

𝑗

ª®¬ .
The main results of this subsection are the following theorems.

Theorem 11.1 (Explicit Noether normalization for affine

varieties). Let 𝑉 be an affine variety of dimension at most 𝑘 and
degree at most 𝑑 over a field F. Then 𝜑 |𝑉 : 𝑉 → A𝑚

F
is a finite

morphism.
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Theorem 11.1 translates into the following algebraic statement,

Theorem 11.2, which gives an explicit Noether normalization lemma

for affine algebras, i.e., finitely generated commutative algebras over

a field.

Recall that the Krull dimension of a commutative ring 𝐴 is the

supremum of the lengths of all chains of prime ideals in 𝐴. If 𝑉

is an affine variety over a field F, then the Krull dimension of its

coordinate ring F[𝑉 ] is just the dimension of 𝑉 .

Theorem 11.2 (Explicit Noether normalization for affine

algebras). Suppose 𝐴 is a commutative F-algebra generated by
𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 such that the Krull dimension of 𝐴 is at most 𝑘 . Let
the ideal 𝐼 of F[𝑋1, . . . , 𝑋𝑛] be the ideal of all polynomial relations
satisfied by 𝑎1, . . . , 𝑎𝑛 . Also suppose the degree of the affine vari-
ety 𝑉 (𝐼 ) ⊆ A𝑛 is at most 𝑑 . Then 𝐴 is a finitely generated module
over its subring 𝑆 = F[𝑓1 (𝑎), . . . , 𝑓𝑚 (𝑎)], where 𝑓1, . . . , 𝑓𝑚 are the
polynomials defining 𝜑 and 𝑎 = (𝑎1, . . . , 𝑎𝑛).

The fact that𝐴 is a finitely generated module over 𝑆 implies that

the Krull dimension of 𝑆 equals that of 𝐴. In the case where the

Krull dimension of 𝐴 is 𝑘 and 𝑘 = 𝑚, this means 𝑓1 (𝑎), . . . , 𝑓𝑚 (𝑎)
are algebraically independent over F, and hence 𝑆 is isomorphic to

a polynomial ring F[𝑌1, . . . , 𝑌𝑚] via 𝑓𝑖 (𝑎) ↦→ 𝑌𝑖 .

Theorem 11.1 and Theorem 11.2 are proved in the full version of

this paper. The proof is inspired by and closely follows a geometric

proof sketched in [20, Remark 1].

Smaller fields. While𝑘×𝑛MDSmatrices are generally not known

over small finite fields F𝑞 , which prevents us from choosing𝑚 =

𝑘 over F𝑞 , it may still be possible to choose larger 𝑚 for which

(explicit) 𝑘-regular𝑚 × 𝑛 matrices over F𝑞 exist, and this would

yield a finite morphism 𝜑 |𝑉 : 𝑉 → A𝑚
F𝑞

by Theorem 11.1. As

compositions of finite morphisms are finite [2, Corollary 5.4], by

replacing 𝑛 with𝑚 and 𝑉 with 𝑉 ′ = 𝜑 (𝑉 ), we reduce the problem
of constructing a finite morphism on 𝑉 ⊆ A𝑛

F𝑞
to constructing that

on 𝑉 ′ ⊆ A𝑚
F𝑞
, where 𝑉 ′

has the same dimension as 𝑉 but lives in a

possibly much smaller affine space A𝑚
F𝑞
. The degree of𝑉 ′

, however,

may be significantly larger than that of 𝑉 . See Lemma 4.8 for a

general upper bound on the degree.

For example, while we do not know the existence of 𝑘 × 𝑛 MDS

matrices over small finite fields F𝑞 , one can still use a BCH-code-

like construction to obtain an 𝑚 × 𝑛 𝑘-regular matrix with 𝑚 =

𝑂 (𝑘 log𝑞 𝑛), which can be much smaller than 𝑛 if 𝑘 ≪ 𝑛. Applying

the resulting map 𝜑 reduces the dimension of the ambient space

from 𝑛 to𝑚.

However, when 𝑞 is really small and 𝑘 is close to 𝑛, it may be

possible that one can only choose𝑚 = 𝑛 − 1 and hence only reduce

the dimension of the ambient space by one at each step. This is es-

sentially the same method used in Nagata’s construction. Currently,

all constructions of the universal polynomial map 𝜑 : A𝑛
F𝑞

→ A𝑘
F𝑞

with 𝑘 = dim𝑉 that we know over a constant-size field F𝑞 use

polynomials of degree at least doubly exponential in min{𝑘, 𝑛 − 𝑘}
due to the blow-up of the degree of the variety. It is an interesting

question to ask if there exist constructions with a better degree

bound over constant-size fields.
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