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Abstract— This paper proposes a framework for the quantifi-
cation of structured uncertainty in a plant model according to
multivariable input-output data. The only restriction imposed
upon such a model is for its outputs to depend continuously on
the parameters. An Interval Predictor Model (IPM) prescribes
the parameters of a computational model as a bounded, path-
connected set thereby making each predicted output an interval-
valued function of the inputs. The formulation proposed seeks
the parameter set leading to the tightest enclosure of the data.
This set, which is modeled as a semi-algebraic set having
a tunable complexity level, enables the characterization of
parameter dependencies commonly found in practice. This
representation of the uncertain parameters makes the resulting
plant model amenable to robustness analysis and robust control
techniques based on polynomial optimization. Furthermore,
scenario theory is used to evaluate the generalization properties
of the identified model. This evaluation yields a formally-
verifiable, distribution-free upper bound on the probability of
future data falling outside the predicted output intervals.

I. INTRODUCTION

Accurate uncertainty quantification in plant models is
instrumental to the design of not overly conservative robust
controllers. The classic approach to robust identification
entails generating an uncertain plant model comprised of
infinitely many deterministic plant models [1]. This is also
the case for the Interval Predictor Models (IPM) [2], [3],
which characterize the parameters of a computational model
as a path-connected set thereby yielding predicted output
intervals. The formulation proposed herein seeks the param-
eter set leading to the tightest enclosure of multivariable
input-output data. Means to estimate IPMs for computational
models having an affine parameter dependency are available
[4]. This paper extends this framework to models having
a continuous but otherwise arbitrary dependency on the
parameters. This setting includes models having a nonlinear
and implicit structure whose predictions require simulation
or numerical integration.

The parameters of the plant model will be characterized
as a set. A key attribute of this characterization is its
compatibility with the computational model. For instance,
if we are identifying the finite element model of a flexible
structure, all the realizations of the uncertain plant model will
correspond to a feasible pair of mass and stiffness matrices.
This is in contrast to schemes for which the uncertainty
model contains physically unrealizable plant models.
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Parameters prescribed by a set are regarded as dependent
when the range of any of them depends on the value taken
by the others. Modeling these commonly found dependencies
is instrumental in reducing unnecessary conservatism in the
uncertain plant model, thereby reducing the required com-
plexity of robust controllers designed for it [5]. The uncertain
plant models resulting from the proposed framework are
able to characterize such dependencies with varying levels
of complexity.

II. PROBLEM STATEMENT

A dynamic system is postulated to act on an input variable,
x ∈ X ⊂ Rnx , to produce an output variable, y ∈ Y ⊂ Rny .
Assume that n independent and identically distributed input-
output pairs are drawn from an uncertain dynamical system,
and denote by

D , {δ(i)}ni=1, (1)

where δ(i) = (x(i), y(i)), the corresponding data sequence.
Each element of this sequence will be called a datum or
a scenario. Multiple scenarios are needed to account for
the variability in the system response caused by measure-
ment error, unmodeled/unmeasurable inputs, non-linearities,
a changing environment, or by changes in the physical
properties of an ensemble of nominally identical test articles.
It is assumed hereafter that the effects of noise in the
measured inputs and outputs have been filtered out using
standard system identification techniques [6].

Furthermore, assume that a computational model of the
underlying dynamical system is available. This input-output
model will be given by the continuous function y : Rnx ×
Rnp → Rny ,

y(x, p), (2)

where y is the predicted output given some input x and some
parameter p.

The goals of this article are twofold. First, we want to
identify an uncertain plant model according to D. Instead of
fitting all of the data by choosing a single parameter point,
the thrust in this work is to characterize p as a set. This set is
chosen such that the ensemble of predictions corresponding
to all its elements tightly enclose the input-output data. This
characterization makes each predicted output an interval-
valued function of the input. Second, we want to assess
the generalization properties of the identified model without
actually modeling the underlying process that yielded D.

A few remarks regarding notation are in order. A scenario
might correspond to a single value or to a set of values.
For instance, if each of the n input-output pairs corresponds
to a different specimen in an ensemble of test articles, and
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the data describes the Frequency Response Function (FRF)
resulting from modal analysis, the input variable x will
contain nw frequencies, whereas the output variables y1 and
y2 will contain the corresponding magnitude and phase. For
simplicity in the notation we assume that all scenarios have
the same input, so x(i) = x̂ ∈ Rnw for all i = 1, . . . n,
and that each output has nw elements, so y(i) ∈ Rnw×ny .
Specific components of the output will be referenced using
subindices. For instance, the scalar y(i)

j,k will denote the j-th
element of the k-th output of the i-th scenario. Furthermore,
the data subsequence corresponding to the k-th output will
be denoted as Dk.

A classical model calibration problem consists in finding
a point p in (2) leading to a predicted output that closely
approximates the data. Techniques for identifying this pa-
rameter point are often cast as

p?(D) = argmin
p∈G

n∑
i=1

∥∥∥y(x̂, p)− y(i)
∥∥∥ , (3)

where ‖ · ‖ refers to a norm in the corresponding output
space, and the feasible space, given by

G = {p : g(p) ≤ 0}, (4)

with g : Rnp → Rng , enforces additional performance and
stability requirements.

III. INTERVAL PREDICTOR MODELS

The single-output ny = 1 case will be considered first.
The IPM corresponding to the input-output model (2), the
input x ∈ X , and the set P ⊂ Rnp is defined as

Iy(y;x,P) , {y(x, p) for all p ∈ P} . (5)

Lemma 1: Iy is an interval when y(x, p) is continuous in
p for a fixed x, and P is closed, bounded, and path-connected.
The proof is deferred to the Appendix. The conditions of
Lemma (1) will be assumed to hold hereafter. The IPM in
(5) can be written as

Iy(y;x,P) =
[
y(x,P), y(x,P)

]
, (6)

where the functions

y(x,P) = min
p∈P

y(x, p), (7)

y(x,P) = max
p∈P

y(x, p), (8)

are the lower and upper IPM boundaries respectively. There-
fore, an IPM is an interval-valued function of x given by
the mapping of all possible values of p in P through the
input-output model. For each x ∈ X , (5) is an interval in Y .

IPMs admit a functional interpretation: the graph of each
member of the family of infinitely many output functions
that results from evaluating (2) at all possible realizations of
p in P and x in X lies between the lower and upper IPM
boundaries and no tighter boundaries exist.

Equations (5) and (6) can be naturally extended to the
multi-output/variable case ny > 1. In this setting we have a
collection of ny interdependent IPMs given by Iyk(yk;x,P),

where k = 1, . . . ny . This interdependency stems from all ny
IPMs having the same parameter set P.

The formulation below seeks a set P of a given class lead-
ing to a data-enclosing IPM having a minimal width. This set
will be characterized in the two-step process detailed below.
The first step, described in Section IV, entails mapping each
input-output datum onto a collection of parameter points.
This mapping is built such that the ensemble of predictions
corresponding to these points tightly enclose the datum. The
second step, described in Section V, consists in finding a set
that tightly encloses the points corresponding to all scenarios.

IV. DATA MAPPING

The multi-point IPMs corresponding to the parameter
sequence Q =

{
q(j)
}r
j=1

, with q(j) ∈ Rnp , are given by

Iyk(yk;x,Q) =

[
min
j=1...r

yk

(
x, q(j)

)
, max
j=1...r

yk

(
x, q(j)

)]
,

=
[
y
k
(x,Q), yk(x,Q)

]
, (9)

where k = 1, . . . ny . The spread of the k-th single-output
IPM in (9) is defined as

Sk(Q) , Ex
[
yk (x,Q)− y

k
(x,Q)

]
, (10)

where Ex[·] is the expectation with respect to the input x in
X , and k is fixed. The input distribution needed to compute
(10), often prescribed by the experimentalist, renders x̂. The
collective spread of the IPMs in (9) is

S(Q) =

ny∑
k=1

ωkSk(Q), (11)

where ω > 0 is a fixed vector of weights.
Our goal is to identify the parameter sequence Q that

minimizes S(Q) while satisfying Dk ⊆ Iyk(yk;x,Q) for
k = 1, . . . ny . This sequence can be written as the union of
n subsequences, each corresponding to a datum-containing
IPM, i.e.,

Q =

n⋃
i=1

Q(i), (12)

where δ(i) ⊆ Iy(y;x,Q(i)). An algorithm for estimatingQ(i)

from δ(i) is presented next.

Algorithm 1 (Multi-point IPM): Set1 Q(i) ← p?(δ(i)).
1) Evaluate

λ? = max
j=1...nw
k=1...ny

y
k
(x̂j ,Q(i))− y(i)

j,k,

and
λ
?

= max
j=1...nw
k=1...ny

y
(i)
j,k − yk(x̂j ,Q(i)).

2) If λ? ≤ 0 and λ
? ≤ 0 stop. Otherwise, go to Step 3.

3) Denote j? and k? as the j and k indices corresponding
to the greatest value between λ? and λ

?
.

1If several least squares solutions exist, compute an IPM for each of them,
and chose the one with the smallest spread.
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4) If λ? ≥ λ? solve

q? = argmin
p∈G

{
S(A) : yk?(x̂j? , p) ≤ y(i)

j?,k?

}
,

where A = Q(i) ∪ p. Otherwise, solve

q? = argmin
p∈G

{
S(A) : yk?(x̂j? , p) ≥ y(i)

j?,k?

}
,

5) Q(i) ← Q(i) ∪ q?. Go to Step 1.

Hence, Iy(y;x,Q(i)) is the multi-point IPM of minimal
spread enclosing2 δ(i). The parameter points corresponding
to all the elements in D comprise the sequence

P ,
{
Q(i)

}n
i=1

. (13)

Therefore, the mapping δ(i) → Q(i) defined by Algorithm 1
yields the sequence of “surrogate data” in (13). A framework
for estimating the set P in (5) from P is presented next.

V. DATA-ENCLOSING SETS

Any path-connected set enclosing the ensemble of pa-
rameter points Q = {p(i)}mi=1 comprising P yields a data-
enclosing IPM, i.e., if Q ⊂ P then Iy(y;x,Q) ⊆ Iy(y;x,P)
for all x ∈ X . The strategies below seek semi-algebraic sets
that maximize the tightness of such an enclosure.

To this end, consider the family of sets P(θ), where θ is
a parameterizing variable. The desired set is the member of
this family corresponding to

θ?(Q) = argmin
θ

{
f(P(θ)) : Q ⊂ P(θ)

}
, (14)

where f(P) ≥ 0 returns a value proportional to the
size of P. Hence, P(θ?(Q)) is the element of the chosen
class that encloses the surrogate data while having minimal
size. The primal IPM Iy(y;x,Q) and the resulting IPM
Iy(y;x,P(θ?(Q))) often differ, with the relationship between
their spreads given by S (Q) ≤ S (P(θ?(Q))).

As such, the desired set P will be designed to contain
not only the elements of Q but also their neighborhood
thereby making the identified model robust to uncertainty.
The extent of this neighborhood should be set according to
engineering judgement. Insufficiently large sets might yield
to uncertain plant models that fail to accurately characterize
the unknown system dynamics thereby incurring a possibly

2The process of calculating Q by using Algorithm 1 is equivalent to
solving the n optimization programs

Q(i) = argmin
R⊂G

{
S(R) : D(i)

k ⊂ Iyk (yk;x,R), k = 1, . . . ny

}
,

for i = 1, . . . n, where R is a collection of parameter points. One could
instead identify Q by solving the single optimization program

Q = argmin
R⊂G

{S(R) : Dk ⊂ Iyk (yk;x,R), k = 1, . . . ny} .

This formulation, however, might lead to predictions that do not resemble
individual scenarios, i.e., there might not be points p in Q for which
y(i) ≈ y(x(i), p), thereby making Q inadequate. A difficulty in solving
these programs directly is not knowing the number of points in R needed
for feasibility. In most cases this number is considerably smaller than nwny

and nwnyn respectively.

high risk, whereas the conservatism resulting from overly
large sets might render unnecessarily complex controllers
that perform poorly in practice.

Instantiations of the optimization program in (14) for P(θ)
families having various geometries, and different objective
functions f are presented below. Each of the resulting sets
P(θ?(Q)) alone, as well as their intersection, complies with
the path-connectedness property required by the IPM. This
feature enables the analyst to adjust the level of robust-
ness/conservatism in the identified plant model according to
the particular application. When the additional requirements
in (3) are present, P must be restricted further so it only
contains elements of G in (4). This practice requires that G
be path-connected as well.

A. Polytopes
The data-enclosing box of minimum volume is

P(θ?(Q)) =
{
p : min

i
p

(i)
j ≤ pj ≤ max

i
p

(i)
j , ∀j

}
. (15)

Even though this set is trivial to compute, it fails to model
the parameter dependencies commonly present in Q, thereby
making most identified plant models overly conservative.

Another choice is the convex hull of Q, given by

P(θ?(Q)) =

{
m∑
i=1

λi p
(i) :

m∑
i=1

λi = 1, λi ≥ 0, ∀i

}
, (16)

which is the data-enclosing convex polytope of minimum
volume. This set can be computed using the Quickhull
Algorithm [7].

B. Sum of Squares of Polynomials
Sliced-Normal (SN) distributions enable the characteri-

zation of multivariate data as a tight, data-enclosing semi-
algebraic set. A summary of developments in [8] leading to
this characterization is presented next. Consider the poly-
nomial mapping from physical space p to feature space z
given by z = t(p; d), where t : Rnp×N→ Rnz is the vector
of monomials in variables p of positive degree less than or
equal to d, so nz =

(
np+d
np

)
− 1. A Sum of Squares (SOS)

of polynomials in p of degree 2d is

φ(z; θ) = (z − µ)>P (z − µ), (17)

where µ ∈ Rnz , and P ∈ Snz++ with Sn++ denoting the space
of symmetric positive definite matrices in Rn×n. The joint
density of a SN is

fp(p; θ) =

{
1
c(θ) exp

(
− 1

2φ(t(p; d); θ)
)

if p ∈ ∆,

0 otherwise,
(18)

where θ = {µ, P} is the shaping parameter, ∆ is the support
set, and c(θ) is the normalization constant. The super-level
sets of (18) are

L (θ, d, κ) =
{
p ∈ ∆ : φ(t(p; d), θ) ≤ κ

}
, (19)

where κ ≥ 0. The maximization of the worst-case log-
likelihood of the data, mini log fp

(
p(i); θ

)
, yields

θ?(Q) = argmax
θ

min
i=1,...m

l
(
p(i); θ, d

)
, (20)
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where l, the log-likelihood function, is

l(p; θ, d) = −1

2
φ
(
t(p; d); θ

)
− log c(θ). (21)

The tightest data-enclosing element of (19) is given by

P(θ?(Q)) = L
(
θ?, d, κ (t(Q; d), θ?)

)
, (22)

where

κ(R, θ) , max
i

{
φ(r(i); θ) : r(i) ∈ R

}
. (23)

It has been observed that (22) closely approximates the semi-
algebraic set of degree 2d having minimal volume. The
program in (20) is generally non-convex but for the two
particular cases presented next it becomes convex.

1. Sliced-Normals of Polynomial Degree One
When d = 1 the set in (22) becomes an ellipsoid of volume

V (Q, θ?), where

V (R, θ) =
κ(R, θ)np

det(P )
. (24)

When d = 1 and ∆ = Rnp , the solution to (20) is given by
the semi-definite program [8]

min
M∈Snp+1

++ , α∈R+

{α− log det(P ) : h(Q;M) ≤ α}, (25)

where h(p;M) = r>Mr and r = [1, p]>. The relationship
between M and θ = {µ, P} is

M =

[
µ>Pµ −µ>P
−Pµ P

]
. (26)

Lemma 2: The set in (22) with θ? given by the solution
to (25) is a data-enclosing ellipsoid of minimum volume.
The proof is deferred to the Appendix. Specialized algo-
rithms for minimizing the volume of the data-enclosing
ellipsoids in (41), such as Khachiyan’s Algorithm [9], are
more efficient than the SDP algorithms used to solve (25).

2. Sliced-Normals of Polynomial Degree Greater than One
SNs that maximize the worst-case likelihood of the

data in feature space [8], as given by (20) for c(θ) =√
(2π)nz det(P−1), render a convex optimization program

for any polynomial degree d. SNs of this class, whose
elements are suboptimal relative to SNs calculated using the
actual c(θ), should also be estimated by using the specialized
algorithms mentioned above. Even though the resulting sets
often enclose the data tighter than the minimum-volume el-
lipsoid, they might not be path-connected, thereby precluding
their usage in (5).

Figure 1 shows data-enclosing sets of degrees three, four,
five, and six for a dataset in np = 2 dimensions. The
computational costs of calculating such sets using SDPT3 are
7.7s, 12.9s, 29.5s and 37.6s, whereas Khachiyan’s Algorithm
takes 4.5s, 3.8s, 3.0s and 2.7s respectively. The significant
savings of Khachiyan’s Algorithm increase rapidly with both
np and d. Note that the volume of the sets do not decrease
monotonically with d, and that all but the set corresponding
to d = 5 are path-connected.

-3 -2 -1 0 1 2

-2

-1

0

1

2

Fig. 1. Data-enclosing sets corresponding to d = 3 (magenta/dashed),
d = 4 (green/dotted), d = 5 (black/solid), and d = 6 (blue/dashed-dotted).
Elements of the dataset are shown (×).

The set (22) might not be path-connected thereby prevent-
ing its usage in (5). This property can be evaluated by using
Bernstein polynomials within a branch and bound algorithm.
However, the high computational cost of this practice renders
it unsuitable when np is moderately large. This is also the
case when the level sets of (18) are forced to be SOS-convex
by adding constraints to (20). And even when this cost is
acceptable, convexity is a more limiting requirement than
path-connectedness thereby resulting in a suboptimal set,
thus, in an unnecessarily wide IPM.

C. Multi-Ellipsoidal Sets

The formulation below seeks a set P given by the union
of ne intersecting ellipsoids thereby enforcing the desired
path-connectedness property by design. The greater ne the
tighter the enclosure of the data, and therefore the smaller
the corresponding IPM’s spread.

To this end, consider the functions

sj(p;β) =

1 if j = argmin
k

φ
(
p; {u(k), N}

)
0 otherwise,

(27)

with j = 1, . . . ne, where φ is in (17), and the parameter β =
{C, N} is comprised of C = {u(k)}nek=1 with u(k) ∈ Rnp , and
N ∈ S

np
++. The functions in (27) act as a ne-classifier for

the m elements of Q. In particular, (27) defines a Voronoi
diagram in which the parameter space is partitioned into the
ne convex polytopes

γj(β) =
{
p : sj(p;β) = 1

}
.

The members of this partition will be ordered such that γj
shares a facet with γj+1. The corresponding partition of the
data is {Qj}nej=1, where

Qj(β) = { p : p ∈ (Q∩ γj(β)) } .

This framework defines a ne-means clustering algorithm in
which β is the decision variable.
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The multi-ellipsoidal set sought is given by

〈θ?j , β?,V?〉 = argmin
θj , β,V⊂G

ne∑
j=1

V
(
Uj
(
Qj(β),V

)
, θj

)
, (28)

where V is defined in (24), θj = {µj , Pj}, V = {v(k)}ne−1
k=1

with v(k) ∈ Rnp , and

Uj(Qj ,V) = Qj ∪
{
v(max(j, ne−1)), v(min(j, ne−1))

}
. (29)

The roles played by various terms in the optimization
program (28) are explained next. The objective function is
the sum of the squares of the volume of ne ellipsoids. At
the optimum these ellipsoids are

Lj = L
(
θ?j , 1, κ

(
Uj(Qj(β?),V?), θ?j

) )
, (30)

where j = 1, . . . ne, and L is in (19). The ellipsoid Lj
contains the elements of Qj(β?) as well as the elements
of V corresponding to the intersection between Lj and
its neighboring ellipsoids, e.g., v(1) is in the intersection
between L1 and L2, v(2) is in the intersection between L2

and L3, etc. These points are appended toQ in (29). The non-
empty intersection between Uj and Uj+1 for j = 1, . . . ne−1
ensures that the union of the ellipsoids is path-connected.
Lastly, V ⊂ G guarantees that at least one point at these
intersections complies with the requirements in (3).

The parameter set P to be used by the IPM is

P(θ?(Q)) =

ne⋃
j=1

Lj . (31)

Figure 2 shows the sets in (31) corresponding to ne = 1 and
ne = 2 for the same dataset in Figure 1. Note the sizable
reduction in the volume of P caused by increasing ne.

-3 -2 -1 0 1 2

-2

-1

0

1

2

3

Sum(Vols)=15.4856

Fig. 2. Data-enclosing sets for ne = 1 (black) and ne = 2 (red and
blue). The dataset Q is divided into Q1(β?) (×) and Q2(β?) (+). The
only element of V required in the latter case is shown as a square.

The optimization program in (28) is non-convex and
NP-hard (as all k-means clustering algorithms are) thereby
restricting its efficient application to moderately large np val-
ues. A suboptimal approximation to (28) corresponding to a

fixed partition of the parameter space is found by solving the
sequence of convex optimization programs detailed below.
This partition, which is fully prescribed by β, can be found
by using any clustering algorithm.

Algorithm 2 (Suboptimal multi-ellipsoidal set): Assume
that the parameter space has been partitioned onto ne subsets,
that they are ordered such that consecutive elements are
adjacent, and that Qj contains the elements of Q falling
onto the j-th subset.

1) Solve θ?j (Qj) = {µ?j , P ?j } for j = 1, . . . ne.
2) Compute the symmetric matrix J , with

Jij = V (pij , θ
?
i ) + V (pij , θ

?
j ), (32)

for i = 1, . . . ne and j = 1, . . . ne, where V is in (24),
pij is the solution to

min
p∈G

∥∥∥∥∥p− qijV (Qi, θ?i ) + qjiV (Qj , θ?j )

V (Qi, θ?i ) + V (Qj , θ?j )

∥∥∥∥∥
2

2

, (33)

and

qkl = argmin
p

{
φ(p; θ?k) : φ(p; θ?l ) ≤ κ(Ql, θ?l )

}
.

3) Generate all the permutations of ne elements having
unique forward and backward orders3. Evaluate the
cost of each of these permutations by summing the
components of J for all overlapping pairs4.

4) Find the permutation with the lowest cost. Expand
the data partition by including the intersection points
pij corresponding to all the pairs in this permutation5.
Denote the resulting partition {Q?j}

ne
j=1.

5) Repeat Step 1 using Q?j , and compute the correspond-
ing data-enclosing ellipsoids Lj using (22).

Step 1 finds the ellipsoids that enclose each subset of the
data. Step 2 evaluates the volume of pairs of ellipsoids each
enclosing its corresponding data subsets while having a non-
empty intersection. The solution to (33), whose calculation
requires solving a pair of convex optimization programs
upfront, is in this intersection. The program in (33) is convex
when G is convex. Step 3 determines the sequence of inter-
secting ellipsoids having the smallest volume. Step 4 adds
elements to the subsets of the data in order to guarantee that
the resulting union of ellipsoids is path-connected. Finally,
Step 5 calculates the desired ellipsoids.

The parameter set to be used by the IPM is given by (31),
where the Lj’s are given in Step 5.

VI. EXAMPLES

The robust system identification of a single-input single-
output weakly nonlinear system having a non-collocated sen-
sor actuator pair is considered next. The underlying physical

3e.g., all the permutations of interest for ne = 3 are s1 = [1, 2, 3],
s2 = [1, 3, 2], and s3 = [2, 1, 3]. Note that [2, 3, 1] is excluded because it
coincides with the permutation that results from inverting the order of s2.

4e.g., the cost of [1, 2, 3] is J12 + J23.
5e.g., the expanded partition for [1, 2, 3] is Q?

1 = {Q1, p12}, Q?
2 =

{Q2, p12, p23} and Q?
3 = {Q3, p23}.
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system consists of a spring-mass-damper configuration with
3 degrees of freedom. Each measured input corresponds
to nw = 2500 frequency points in the X = [40, 500]
rad/s range, and each measured output consists of the corre-
sponding magnitude and phase. Averaging and windowing
techniques are commonly used to mitigate the effects of
measurement noise in such outputs. We seek to identify a
robustly stable plant with transfer function

H(s, p) =
p1s

4 + p2s
3 + p3s

2 + p4s+ p5

s6 + p6s5 + p7s4 + p8s3 + p9s2 + p10s+ p11
,

according to data sequences D of different lengths. Each sce-
nario corresponds to an element of an ensemble of nominally
identical test-articles.

Example 1: IPM for a Single Scenario

Figure 3 shows the data sequence D = D(1) used herein
to identify the plant. First, Algorithm 1 was used to obtain
Q(1). The corresponding multi-point IPMs, shown in green,
are comprised of 32 FRFs. A data-enclosing ellipsoidal set
P(θ?(Q(1))) was then calculated based on (41). The resulting
IPM, Iy(y;x,P(θ?(Q(1)))), was simulated by using ns =
10000 uniformly distributed samples in P(θ?(Q(1))). The
corresponding input-output functions lead to the multi-point
IPM shown in blue. Both IPMs enclose the datum tightly
while having practically equal spreads.

Fig. 3. The data sequence D(1) (×), the multi-point IPM Iy(y;x,Q(1))
(green-shaded area), and the multi-point IPM corresponding to member
functions of Iy(y;x,P(θ?(Q(1)))) (blue-shaded area).

Example 2: IPM for Multiple Scenarios

Next we identify a plant model according to a data
sequence with n = 100 elements. Figure 4 shows the upper
and lower envelopes of the data in red. The variability among
the FRFs might be caused by variability in the material
properties of an ensemble of test articles or by the effects
of model-form uncertainty on a single test article, e.g., the
power of the excitation in a modal experiment of a nonlinear
structure changes the identified FRFs. The application of
Algorithm 1 to each of the n = 100 data points yields a set
Q with 4135 parameter points in np = 10 dimensions. The

dispersion of these points, shown in red in Figure 5, indicate
that they should be enclosed by a set that characterizes
dependencies, thereby making (15) particularly unsuitable.
The IPMs Iy(y;x,Q), shown in Figure 4 as green-shaded
areas, enclose the input-output data tightly.

Fig. 4. Data envelopes (red), Iy(y;x,Q) (green-shaded area), and multi-
point IPM corresponding to 5000 member functions of Iy(y;x,P(θ?(Q)))
(blue-shaded area).

The set P chosen is the intersection of the ellipsoid in (22),
the hyper-rectangle in (15), and the set of asymptotically
stable plants. Figure 5 illustrates the tightness of the data
enclosure by superimposing ns = 5000 uniformly distributed
points in P. In contrast to this P, the convex hull (16) could
not be computed in finite time. The IPMs corresponding to
these points are shown in Figure 4 as blue-shaded areas.
The magnitude IPM encloses the data tightly, but the phase
IPM does not. Figure 6 shows member FRFs of the phase
IPM. Note that they split into two 360 deg apart branches at
the first natural frequency. This feature, which is not caused
by using an unwrapped angle, yield an IPM that might be
considered overly wide and therefore unsuitable.

VII. PERFORMANCE AND RELIABILITY ANALYSES

The smaller the spread of a data-enclosing IPM, the more
informative the prediction, but the lower the probability of
future data falling within its boundaries. These two conflict-
ing notions, to be referred to as performance and reliability
respectively, are studied next.

A. Performance Analysis

The developments that follow evaluate the degree by
which subsets of P influence the spread of Iy(y;x,P). The
deviation of the member function yk(x, p) of Iyk(y;x,P)
from the primal IPM Iyk(y;x,Q) is measured by

λk(p) =
Sk(Q∪ p)− Sk(Q)

Sk(Q)
, (34)

where p ∈ P. The metric λk(p) is the relative increase
in the spread of the IPM that results from appending p
to Q. Hence, predictions for which λk(p) = 0 fall within
Iyk(y;x,Q), whereas those for which λk(p) > 0 increase the
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Fig. 5. Elements of Q (×) and samples of P(θ?(Q)) (+). Marginal
densities are shown on the diagonal whereas off-diagonal subplots show 2-
dimensional projections. p5 has been omitted since it takes on a practically
constant value. Values have been normalized to facilitate visualization.

Fig. 6. Data envelopes (red lines), evaluations of member functions of
Iy(y;x,P(θ?(Q))) (black dots), and multi-point IPM (blue-shaded area).

spread proportionally to λk(p). The cumulative distribution
of λk(p), Fλk , corresponding to a uniformly distributed p
in P enables identifying parameter points responsible for an
overly large spread. These points, which might occur rarely,
i.e., F−1

λk
(1−ε)� F−1

λk
(1) for 0 < ε� 1, might be removed

from P by imposing additional constraints to G in (4).

Example 3: Performance Analysis

The spread of the IPM in Example 2 is examined next. The
evaluation of (34) at uniformly distributed samples in P led
to values of λ1 and λ2 varying in the [0, 0.035] and [0, 10.5]
ranges respectively. The upper limit of these intervals is
consistent with the spreads seen in Figure 4. However, the
empirical distribution Fλ2

shows that F−1
λ2

(0.98) = 0.05 �

F−1
λ2

(1) = 10.5. Therefore, less than 2% of the volume
of P causes the overly large phase spread. Tighter IPMs
are obtained by not letting P enclose some of the worst-
performing elements of P , by further constraining P, e.g.,
use g(p) = λ2(p) − 0.05 in (4), or by increasing ne. None
of these practices, however, will be exemplified herein.

B. Reliability Analysis

This section presents means to formally evaluate the IPM’s
ability to characterize unseen data drawn from the same
process by which D was obtained.
1. Background

Let J : Θ→ R be a cost function of the decision variable
θ ⊂ Rnθ , and hδ be the set of decision points satisfying
the system requirements for scenario δ ∈ ∆. Consider the
scenario program

θ?(P) = argmin
θ∈Θ

{
J(θ) : θ ∈ hδ(i) for i = 1, . . . n

}
, (35)

where D = {δ(i)}ni=1 is drawn from a stationary but
otherwise unknown process having a probability measure P.
The violation probability of θ is defined as

V (θ) , P [δ ∈ ∆ | θ 6∈ hδ] . (36)

The randomness of choosing a particular D out of the
infinitely many having n scenarios makes θ?, thus V (θ?),
random. This notion can be quantified by using

Pn [V (θ?) ≤ ε] ≥ 1− β. (37)

This equation states that the probability of θ? violating a
requirement for future data is no greater than ε with proba-
bility 1 − β. The term ε is called the reliability parameter,
whereas β is called the confidence. In regard to the latter
parameter, note that θ? is a random element that depends on
n observations of P. Therefore, the violation probability can
be greater than ε for some random observations but not for
others, and β refers to the probability Pn = P× · · · × P of
observing one of those bad set of n samples.

Scenario theory enables evaluating (37) without making
any assumption on P. When the scenario program (35) is
convex and its solution is unique, ε can be obtained from(

k + nθ − 1

k

) k+nθ−1∑
i=0

(
n

i

)
εi(1− ε)n−i ≤ β, (38)

where k < n − nθ is the number of scenarios one might
choose to remove from D before θ? was calculated. If (35)
is also non-degenerate, and k = 0, a tighter bound can be
obtained [10]. This bound is ε = 1 − t̂, where t̂ is the zero
of the polynomial in t ∈ [0, 1],

β

n+ 1

n∑
i=`

(
i

`

)
ti−` −

(
n

`

)
tn−` = 0, (39)

and 0 ≤ ` ≤ nθ. The number of support constraints of the
scenario program (35), `, defined as the number of elements
in a sub-sample D′ ⊂ D satisfying θ?(D) = θ?(D′), is a
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complexity measure of θ?. When the scenario program (35)
is non-convex [11], ε is given by

ε(`, n, β) =


1 if ` = n

1−
(

β

n(n`)

) 1
n−`

otherwise,
(40)

where 0 ≤ ` ≤ n. Non-convex programs might admit
several irreducible support sets, with the set having minimal
cardinality yielding the tightest bound ε.

2. Reliability of IPMs
The smaller the probability of future data falling outside

the IPM Iy(y;x,P(θ?(Q))) the better its reliability. The
means required to bound this probability depend on how θ?

is computed. This process entails first applying Algorithm
1 to each of the n elements of D in order to obtain the
Q(i)s comprising P , and then finding a set P that optimally
encloses the points in P . The first step may be regarded
as finding a non-convex map between each input-output
datum, and a set of parameter points. Because this mapping
is fixed, a scenario can be interpreted as either an element
of D in (1), or as an element of P in (13). As such,
the convexity of the program used to compute θ? from P
determines whether convex or non-convex scenario theory is
applicable, e.g., (38) and (39) apply to (41), whereas (40)
applies to (31) and (22) for d > 1. Therefore, (37) becomes
a probabilistic statement on Q(n+1) ∈ P. On the other hand,
Q(n+1) ∈ P implies y(n+1)(x(n+1)) ∈ Iy(y;x,P). Hence,
the data mapping δ(i) → Q(i) is immaterial from a reliability
standpoint.

Determining the number of support constraints ` entails
calculating θ? for clouds of parameter points corresponding
to subsets of P . It is noteworthy that this process does
not require recalculating the Q(i)s. Further notice that the
required value of ` is generally different from the value of `
corresponding to the scenario program having the enclosure
of each parameter point as a constraint, e.g., the 2np points
supporting a minimum-volume ellipsoid might correspond to
the same input-output datum.
Example 4: Reliability Analysis

The reliability of the IPM in Example 2 is studied next. In
this case ` can be calculated by solving n times the convex
program (41), each time excluding an element of (13). In
particular, the number of support scenarios is the number of
times θ?(Q \ Q(i)) for i = 1, . . . n differ from θ?(Q). This
practice yields ` = 21, which along with n = 100, β = 1e−3
and (39) lead to ε = 0.4010. Therefore, the probability of
a new datum falling outside the IPM, V (θ?), is no greater
than 0.4010 with confidence 1− β = 0.999.

3. Performance and Reliability Trade-off
The balance between high performance and high reliability

can be formally traded-off using the above framework. For
instance, if P is comprised of ne ellipsoids, the evaluation
of the performance function S (P(θ?(Q))) /S(Q), as given
by (11), and the reliability function 1− ε(θ?(P)) at various
ne values enables finding the desired balance.

APPENDIX

Proof of Lemma 1: P is path-connected if for every pair
of points pa and pb in P there exists a continuous function
f : [0, 1]→ P such that f(0) = pa and f(1) = pb. Suppose
ny = 1, y is continuous in p, and P is path-connected. Let
ya, yb ∈ Iy . There are pa, pb ∈ P such that ya = y(x, pa)
and yb = y(x, pb). Since P is path-connected there is a
continuous function f : [0, 1]→ P such that f(0) = pa and
f(1) = pb. Define g : [0, 1] → Iy , where g(t) = y(x, f(t))
for each t ∈ [0, 1]. Since f and y are continuous, and the
composition of two continuous functions is continuous, g is
continuous. Since g(0) = xa and g(1) = xb, Iy is path-
connected. Being a path-connected subset of R is equivalent
to being an interval. However this interval could be open,
closed, half open, half closed, or unbounded. To ensure that
Iy is bounded and closed, it is required that y is bounded
and P is compact. �

Proof of Lemma 2: program (25) is equivalent to

min
µ, P, α∈R+

{
α− log det(P ) : φ(Q; {µ, P}) ≤ α

}
.

The change of variable R = P/α yields

min
µ,R, α

{α− np log(α)− log det(R) : φ(Q; {µ,R}) ≤ 1},

whose solution is given by α? = np, and

min
µ, R∈Snp++

{
− log det(R) : φ(Q; {µ,R}) ≤ 1

}
.

This optimization program is equivalent to

min
A∈Snp++, b∈R

np

{
log det(A−1) : ‖Ap(i) − b‖2 ≤ 1, ∀i

}
, (41)

where A = R1/2 and b = R1/2µ, which according to [12]
yields a data-enclosing ellipsoids having minimal volume. �
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