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Accurately imaging the 3-D ionospheric variation and its temporal evolution
has always been a challenging task for the space weather community. Recent
decades have witnessed tremendous steps forward in implementing ionospheric
imaging, with the rapid growth of ionospheric data availability from multiple
ground-based and space-borne sources. 3-D ionospheric imaging can yield
altitude-resolved electron density and total electron content (TEC) distribution
in the target region. It offers an essential tool for better specification and
understanding of ionospheric dynamical variations, as well as for space weather
applications to support government and industry preparedness and mitigation
of extreme space weather impact. To better meet the above goals within the
next decade, this perspective paper recommends continuous investment across
agencies and joint studies through the community, in support of advancing 3-D
ionospheric imaging approach with finer resolution and precision, better error
covariance specification and uncertainty quantification, improved ionospheric
driver estimation, support space weather nowcast and forecast, and sustained
effort to increase global data coverage.
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1 Introduction

Accurate specification and modeling of the 3-D spatial variation together with
the temporal evolution of Earth’s ionosphere has always been a strong need but a
challenging task for the space weather community, as the ionosphere is a highly
complicated geospace environment that exhibits not only remarkable climatological
variation but also significant weather disturbances. Dynamic ionospheric spatial-temporal
variations are ultimately dependent on solar extreme ultraviolet radiation, geomagnetic
disturbances, and lower atmospheric waves. These variations can significantly affect
radio wave propagation and impose detrimental effects on many modern technological
systems, such as shortwave communication, satellite navigation, positioning and
timing services, Wide Area Augmentation System (WAAS), and over-the-horizon
radars (e.g., Jakowski et al., 2012; Zhang et al., 2017). In an effort to better investigate
the dynamic spatial-temporal variation of the ionosphere as well as to mitigate
ionospheric error and detriments on civilian and commercial systems, it is important
to provide accurate and reliable ionospheric specification and nowcasting, eventually
leading to forecast quality products, especially in the 3-D domain. 3-D ionospheric
imaging will also help boost the scientific discovery potential to advance the current
understanding of cross-scale coupling and modes of response to solar windtransients.
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Recent decades have witnessed tremendous steps forward in
implementing ionospheric imaging, with the rapid growth of
ionospheric data availability frommultiple ground-based and space-
borne sources. In particular, the growing availability of ionospheric
total electron content (TEC) data derived from dense ground-
basedGlobal Navigation Satellite Systems (GNSS) receivers has been
playing a crucial role in specifying the dynamic features of the
ionosphere. The approach also greatly promotes the development
of different global and regional ionospheric 2-D imaging maps
(e.g., Mannucci et al., 1998; Hernández-Pajares et al., 1999; Schaer,
1999; Fuller-Rowell et al., 2006). However, the substantial variability
of the ionosphere can be seen in the vertical domain as well.
The altitude variation of the ionosphere is actually an essential
feature of any ionospheric structure, and provides important,
unique information on ionospheric dynamics (e.g., plasma motion)
and thermal configuration (the topside plasma scale height).
Scientific understanding of multi-scale ionospheric structures and
phenomena, such as the equatorial ionization anomaly (Balan et al.,
2018), storm-enhanced density (Foster, 1993), tongue-of-ionization
(Foster et al., 2005), polar cap patches (Weber et al., 1984), and
the main ionospheric trough (Rodger, 2008), will be significantly
advanced through 3-D imaging beyond what is currently known
from 2-D TEC information. Moreover, the electron density is
certainly the most important parameter from the application
perspective since it governs all of the effects on radio signals
(Bust and Mitchell, 2008), and the 3-D time-evolving electron
density distribution is the most desirable parameter for the
above-mentioned radio system applications. In reality, with the
continuous increase ofmulti-instrument ionosphericmeasurements
from diverse sources, such as ground-based GNSS TEC, radio
occultation data from low-Earth orbit satellites, global digisonde
profiles, incoherent scatter radar (ISR) measurements, in situ
Ne measurements, and ultraviolet airglow data, recent results
have highlighted that 3-D dynamic variations in the ionosphere
could be specified through data-based imaging technique, such as
ionospheric data assimilation and tomography, to reconstruct 3-
D electron density distributions (e.g., Zhai et al., 2020; Aa et al.,
2022).

2 Ionospheric imaging approaches

2.1 Ionospheric data assimilation

Data assimilation is intrinsically an optimal state estimation
technique, which incorporates a myriad of observations into an
existing physical model to obtain a better state estimation (Daley,
1993). Some of the typical optimizationmethods of data assimilation
include recursive estimation techniques, such as Kalman filter and
its different derivatives (Kalman, 1960; Kalman and Bucy, 1961;
Evensen, 1994), as well as variational techniques such as 3-D/4-
D variational algorithms (Barker et al., 2004). Although the data
assimilation technique has been traditionally implemented more
often in meteorology and oceanography, a great number of data
assimilation models have also been developed recently by the
ionospheric research community to meet the needs of ionospheric
specification (e.g., Bust et al., 2004; Schunk et al., 2004; Yue et al.,
2012). For example, the Assimilative Mapping of Ionospheric

Electrodynamics (AMIE, Richmond (1992)) is the original physics-
based assimilative model that is widely used to study high-
latitude ionospheric science. Ionospheric data assimilation can be
categorized with respect to different types of background models.
These include: 1) Data assimilation on the basis of theoretical
ionospheric models. Examples are the Global Assimilation of
Ionospheric Measurements built by Utah State University (USU-
GAIM) (Scherliess et al., 2004; 2006; Schunk et al., 2004) and the
Global Assimilative Ionospheric Model collectively developed by
the University of Southern California and NASA’s Jet Propulsion
Laboratory (USC/JPL-GAIM) (Pi et al., 2003; Wang et al., 2004;
Komjathy et al., 2010). Theoretical models have the advantage of
providing physics-based simulation and prediction, yet may be
somewhat restricted by the accuracy and reliability of drivers and
boundary specification (Jee et al., 2007). 2) Data assimilation on
the basis of coupled ionosphere-thermosphere models. Examples
include the Coupled Thermosphere Ionosphere Plasmasphere
and Electrodynamics (CTIPe) (Codrescu et al., 2018), and the
Thermosphere-Ionosphere-Electrodynamics General Circulation
Model (TIEGCM, Richmond et al. (1992)) as implemented in
the Data Assimilation Research Testbed (DART, Anderson et al.
(2009)) (e.g., Lee et al., 2012; Matsuo et al., 2013; Hsu et al., 2014;
Hsu et al., 2018; Chartier et al., 2016; Chen et al., 2017; Sutton,
2018; He et al., 2019). It is known that the ionosphere can be
strongly adjusted by certain thermospheric parameters, such as
neutral winds, temperature, and composition (Buonsanto, 1999).
Thus, one major merit of utilizing the coupled thermosphere-
ionosphere model to implement data assimilation though with high
computation cost is that the updated thermospheric conditions
can effectively contribute to a longer timescale of ionospheric
state prediction, since the relaxation time of neutral conditions
is much slower than that of ionosphere Matsuo and Araujo-Pradere
(2011); Pedatella et al. (2020). 3) Data assimilation on the basis of
empirical ionospheric models. Examples include the Ionospheric
Data Assimilation Three/Four-Dimensional (IDA3D/4D, Bust et al.
(2004; 2007); Datta-Barua et al. (2011)), the United States TEC
and North American TEC (Spencer et al., 2004; Fuller-Rowell et al.,
2006), the Ionosphere Real-time Assimilative Model (Galkin et al.,
2012; Galkin et al., 2015), as well as other global and regional
assimilation models based on the widely-used International
Reference Ionosphere or NeQuick models (e.g., Aa et al., 2015;
Aa et al., 2016; Aa et al., 2018; Forsythe et al., 2020a; Forsythe et al.,
2020b; Lin et al., 2017; Mengist et al., 2019; Nava et al., 2005;
Ssessanga et al., 2019; Yue et al., 2012; 2014). Empirical model-
based data assimilation can be readily utilized for ionospheric
specification and even operational nowcasting services due to its
modest computational cost, yet is limited by insufficient forecast
abilities.Therefore, the above-mentioned advantages and challenges
continue to drive the ionospheric and space weather community
to upgrade data assimilation techniques for better ionospheric
imaging.

2.2 Ionospheric tomography

Similar to ionospheric data assimilation, computerized
ionospheric tomography is intrinsically an inversion method that
allows the 3-D imaging of ionospheric electron density, which is

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2023.1186513
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Aa et al. 10.3389/fspas.2023.1186513

usually based on TEC observations along the line-of-sight rays from
ground-basedGNSS receivers and low-Earth orbiting (LEO) satellite
occultation observations (Austen et al., 1988; Yao et al., 2014). To
date, various tomography algorithms have been provided to resolve
the ill-posed ionospheric inversion problem due to the insufficient
viewing angle of TEC rays and sparse receiver distribution. These
algorithms can be generally classified into the following two
types: 1) Iterative algorithm. It refers to an image reconstruction
that starts from an initial assumption by using a background
model, and compares it to measurements while making constant
adjustments until the two are in agreement. The commonly used
iterative algorithms include the algebraic reconstruction technique
(ART, Austen et al. (1986)), multiplicative algebraic reconstruction
technique (MART, Raymund et al. (1990)), simultaneous iteration
reconstruction technique (SIRT, Pryse et al. (1993)), as well as other
revised methods based on these three techniques. 2) Non-iterative
algorithms, within which the inversion quality is independent of the
initial assumption but relies on some regularization methods, such
as singular value decomposition and its modifications (Zhou et al.,
1999), empirical orthogonal decomposition (Sutton and Na, 1994),
etc. In short, tomography techniques have been used to reconstruct
the ionospheric electron density distribution and ionospheric
dynamic variations, such as ionospheric storm-time characteristics
(Prol et al., 2021), storm-enhanced density (Zhai et al., 2020), main
ionospheric trough (Yizengaw and Moldwin, 2005), and equatorial
plasma depletions (Comberiate et al., 2006).

3 Discussion of challenges and future
needs

Remarkable progress has been made through previous
ionospheric data assimilation and tomography studies over the
past decades. We have identified the following future research
areas for 3-D ionosphere imaging that are potentially important
but challenging: 1) high-resolution and high-precision regional
ionospheric imaging to specify important dynamical structures
that have space weather impact; 2) Improved capability of
error covariance specification and uncertainty quantification; 3)
Estimation of physical drivers from reanalyzed ionospheric imaging
data; 4) Serving space weather application that needs comprehensive
and efficient nowcast and forecasts; 5) Sustained efforts to increase
data coverage and availability.

3.1 High-resolution and high-precision
regional ionospheric imaging to specify
important dynamical structures that have
space weather impact

Resolution and precision are mutual constraints in ionospheric
imaging. The current algorithms for providing 3-D ionospheric
electron density imaging are relatively mature and well-validated,
but research on improving imaging resolution and precision has
always been linked to the issue of solving the ill-conditioned
inversion problem due to insufficient data coverage. Moreover,
most current ionospheric data assimilation models have been
built to run on a global scale that may not always have an

optimal performance in representing local mesoscale ionosphere
morphology, especially for those important dynamical structures
that have space weather impact, such as storm-enhanced density
(SED). Thus, developing high-fidelity regional ionospheric imaging
products with a high spatial-temporal resolution to specify localized
smaller-scale plasma structuring is of great importance from
both scientific and applicational perspectives. In particular, some
regions have consistently been an active research target of growing
scientific interest (e.g., North American and European sectors),
not only because of significant ionospheric density gradients seen
in these regions associated with important space weather impact
due to complicated ionospheric dynamics and electrodynamics
therein that are worth in-depth exploration; but also due to the
availability of dense networks of ground-based GNSS receivers
and other powerful instruments such as ISRs over this area.
Moreover, the subauroral and high-latitude ionosphere presents
an immense opportunity for 4-D ionospheric imaging for both
applied and discovery science, with an ever-expanding network
of sensors/models in place, such as the Canadian High Arctic
Ionospheric Network (CHAIN) and empirical/assimilative models
(E-CHAIM/A-CHAIM, Themens et al. (2021); Reid et al. (2023)),
EISCAT-3D, PFISR, RISR, Millstone Hill ISR, SuperDARN, and
other optical networks, as well as a burgeoning need for assimilative
modeling and GNSS accuracy with the opening of arctic navigation.
Thus, the combination of strong science/application merit and
relatively abundant data availability collectively drive the need
to specify the 3-D time-evolving (actually 4-D) electron density
variation in certain key areas with high spatial-temporal resolution
sufficient to characterize and help understand fine and regional
ionospheric dynamics, variability and weather. Figure 1 shows
an example of high-resolution 3-D ionospheric imaging over the
continental US and adjacent regions during the 17 March 2015
severe geomagnetic storm, given by a new TEC-based Ionospheric
Data Assimilation System (TIDAS; Aa et al. (2022)) with a spatial-
temporal resolution of 1° (latitude) × 1° (longitude) × 20 km
(altitude) × 5 min. Fine structures of mid-latitude SED plume
and associated density gradients are clearly demonstrated in the
reanalyzed data assimilation result.

Recommendation: An important goal of 3-D ionospheric
imaging in the next decade targeted research areas (e.g., American
and European sectors, Arctic region) is to achieve a horizontal
resolution of 0.5° in longitude/latitude and vertical resolution of
10 km, to serve the need for advancing scientific understanding of
important multi-scale ionospheric dynamical structures that have
space weather impact. Observations providing vertical electron
density profile information are necessary to improve model
representation of the ionosphere and are critically needed.

3.2 Improving capability of error
covariance specification and uncertainty
quantification

A major challenge in developing an accurate and reliable data
assimilation system is the proper construction of the background
error covariance, which determines the contribution weights and
information transition from the data-driven to model-driven
regions in the assimilation algorithms (Forsythe et al., 2020a).
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FIGURE 1
An example of 3-D ionospheric imaging with storm-enhanced density plume during the 17 March 2015 severe geomagnetic storm given by TIDAS data
assimilation system (Aa et al., 2022): (A) electron density at 300 km; (B) ionospheric F2 layer peak height (hmF2) and peak density (NmF2, color-coded)
distribution; (C) reanalyzed regional TEC with the terminator (red line) and certain geomagnetic latitude lines being marked.

However, it is almost impossible to obtain a realistic specification
of this covariance matrix, due to lacking true state values and
real errors at each grid point as well as insufficient knowledge
of the spatial distribution of ionospheric correlations. There are
typically two methods to deal with this difficulty. The first one is
to use the ensemble Kalman Filter algorithm, which uses sample
statistics from short-term ensemble forecast of background model
to calculate the error covariance Evensen (1994). This method
has been widely implemented in many theoretical model-based
data assimilation attempts (e.g., Hsu et al., 2014; Chartier et al.,
2016; Pedatella et al., 2018; He et al., 2019). However, the proper
ensemble size, huge computational cost, and appropriate covariance
localization scheme are some issues that have not been fully
addressed. The second method is to use a modeled covariance
matrix with functioned ionospheric correlation description on
the basis of certain mathematical assumptions (e.g., Bust et al.,
2004; Yue et al., 2007; Yue et al., 2011; Aa et al., 2015; Aa et al.,
2016; Forsythe et al., 2020b). In reality, however, the ionospheric
correlation distance may not always be well represented by some
simplified expressions, especially among geospace storm intervals
with large spatial inhomogeneity. Recently, some studies built
global distribution of ionospheric spatial correlation distances and
developed novel background covariance models based on scale tests
of long-term observations and model runs (e.g., Forsythe et al.,
2020a; Forsythe et al., 2020b; Forsythe et al., 2021a; Forsythe et al.,
2021b).

Figure 2A provides an example of the horizontal correlation
lengths for the covariance matrix modeling. According to the
distribution of the correlations between themodel errors (calculated
using vertical TEC from the International Reference Ionosphere

(IRI-2016) (Bilitza et al., 2017) and the vertical TEC from theGlobal
Ionospheric Maps (GIM)), there exists horizontal anisotropy, where
the zonal (meridional) correlation lengths L2 and L4 (L1 and L3)
are not equal in length. Moreover, even for the regional grid,
these lengths vary significantly with the location, as can be seen
in Figure 2B. Perhaps even more importantly, the variation of the
vertical correlation lengths (calculated using ISR data) with height,
shown in Figure 2C, has particular characteristics that actually
preserve the layered shape of the vertical density distribution, unlike
the typically used monotonically increased ionospheric scale height
(shown with a white line in Figure 2C) (Forsythe et al., 2021b).
These routes provide a useful step toward improving the modeling
of background error covariance.

Uncertainty quantification consists of the uncertainty
propagation from the input to the output and inverse problems
that result from the calibration of models against measurements.
Uncertainty quantification in theoretical model-based data
assimilation often faces two key challenges: high dimensionality
and high computational cost. Such a background model often
involves the presence of a large number of uncertainty parameters
and uncertainty in the initial and boundary conditions. Exploiting
such high-dimensional spaces typically relies on the utilization of a
large number of computational samples, such as those implemented
in the Ensemble Kalman Filtering technique. Increasing ensemble
size would cause extremely high computational costs that may not
always be a feasible solution tomeet the space weather requirements
of near-real-time nowcasting and forecasting.

Recommendation: Continuous advance in improving the
capability of background error covariance specification as well as
uncertainty quantification in ionospheric imaging.
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FIGURE 2
An example of the horizontal correlation length (Forsythe et al., 2021a) (A, B) modeled using IRI-2016 and GIM, and vertical correlation length (C)
modeled using IRI-2016 with ISR data (Forsythe et al., 2021b).

3.3 Estimation of physical drivers from
reanalyzed ionospheric imaging data

The background physical model is typically an indispensable
part of ionospheric 3-D imaging in both data assimilation and
tomography, which plays an important role in providing an a priori
state estimation used for measurements update, and sometimes,
especially in data assimilation, being used as a state transition
(forward) operator to make the forecast based on a posteriori
reanalyzed results for recursive state update (Wang et al., 2004). In
particular, ionospheric theoretical models can assimilate a diverse

set of data sources and have the merits of providing physics-
based nowcasting and forecasting, yet are somewhat restricted by
lacking reliable drivers and boundary conditions. The combination
of the physical model and ionospheric imaging can be considered
a powerful tool that not only yields 3-D time-evolving ionospheric
electron density reconstruction but also provides appropriate input
values of physical drivers in the model. The time-evolving electron
density distribution can be used to retrieve the driver inputs as well
as provide an updated condition to restart the physical model so
that the time-evolving variation of the drivers could be continuously
updated. Considering the complexity of the forward module in
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theoretical models, making an accurate estimation of the input
drivers in terms of the reanalyzed imaging data is still a challenging
problem but would be with strong needs in the next decade.

Recommendation: The community should implement
approaches to utilize the reanalyzed electron density imaging
data to retrieve quantitative information on the input physical
drivers (e.g., electric fields, neutral winds) that cause the electron
density variations in three dimensions, based on state-of-the-art
ionosphere-thermosphere theoretical models.

3.4 Serving space weather application that
needs comprehensive and efficient
nowcast and forecasts

In addition to advancing the current scientific understanding of
ionospheric dynamic structures, characterization of the 3-D electron
density distribution via ionospheric imaging is useful for a number
of space weather applications, such as communications, navigation,
and surveillance. According to the “National SpaceWeather Strategy
and Action Plan”, one important objective is to develop and
disseminate accurate and timely space Weather characterization
and forecasts (Spann et al., 2019). Thus, the ultimate interest of
ionospheric imaging should be to develop operational capabilities
to serve space weather applications for robust, accurate, and timely
ionospheric nowcast and forecast to help quantitatively evaluate
ionospheric weather effects due to geospace disturbances, such as
those related to positioning, navigation, and timing.

Recommendation: Enhanced near-real-time accessibility with
wide spatial coverage and sharing of observational data across the
geospace and other communities are essential for the success of
ionospheric imaging and related nowcast and forecast. Information
of ionospheric electron density profiles from ground-based ISRs,
ionosonde, and next-generation bottomside ionospheric sounding
networks in conjugation with space-based radio occultation data,
in addition to all kinds of GNSS observations, are fundamental
and indispensable data resources. The community should push
the boundaries of observational data availability toward near
real-time.

3.5 Sustained effort to improve data
coverage and availability

Despite that the algorithmdevelopment for ionospheric imaging
is important, there still exists a critical issue of lacking data for
global 3-D imaging.This fundamental problem should be addressed
by effectively filling the critical data gaps beside the widely-used
ground-based GNSS network and LEO radio occultation data.
This includes the deployment of incoherent scatter radar and
affordable digisondes and the increase of radio occultation data
coverage. In particular, the powerful incoherent scatter radars, such
as EISCAT-3D, Poker Flat ISR, Resolute Bay ISR, Millstone Hill
ISR, Jicamarca ISR, etc., will provide important altitude structural
information on electron densities, as well as plasma drift velocities,
electron and ion temperatures, etc., over the E/F region and
topside ionosphere for high-precision 3-D ionospheric imaging
(Stamm et al., 2021). Significant data can also be supplied from

in-situ density observations from LEO satellites such as NASA’s
Ionospheric Connection Explorer (ICON), as well as from remote
sensing data observed by ultraviolet imager onboard GEO satellites
such as the Global-scale Observations of the Limb and Disk
(GOLD). In addition to ionospheric electron density that is used
to generate ionospheric imaging, both space and ground-based
observations of global neutral parameters as well as ionospheric
electric fields and drifts, are highly desired to constrain and assess
physics-based models, validate the retrieved drivers, as well as
to help fill the data gaps. For example, the Super Dual Auroral
Radar Network (SuperDARN) can be used for imaging the flow
field, which is critical to analyze 4-D ionospheric dynamics.
Current observations of these parameters are not adequate but
this problem should be addressed in the next decade. Moreover,
data gaps also exist in the vertical domain. In particular, the
lower ionosphere of the D/E region is very important for the
trans-ionosphere and/or waveguide propagation of low-frequency
electromagnetic waves. This region is not only controlled by solar
extreme ultraviolet radiation, but also influenced by solar flares,
lower atmospheric waves, and other space weather events, yet the
knowledge of this region is still inadequate due to the limitation of
observation means. The incoherent scatter radar and LEO-satellite
radio occultation measurements can partially cover this region.
Moreover, the medium-frequency radar and the very low-frequency
measurements can be used to derive the variation characteristics
of the D region. Accurately imaging the lower ionosphere requires
further expanding the observations to include more measurements
covering this region into data assimilation.

Recommendation: Continuous investment across agencies and
joint effort through the community in support of utilizing more
sensors of measurements, deployment of new ionospheric radar
infrastructure, designing of new satellite missions with various
measurements, as well as the development and update physics-based
ionosphere-thermosphere numerical models.
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