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Abstract— The immune response is a dynamic process
by which the body determines whether an antigen is self
or nonself. The state of this dynamic process is defined
by the relative balance and population of inflammatory
and regulatory actors which comprise this decision making
process. The goal of immunotherapy as applied to, e.g.
Rheumatoid Arthritis (RA), then, is to bias the immune state
in favor of the regulatory actors - thereby shutting down
autoimmune pathways in the response. While there are
several known approaches to immunotherapy, the effective-
ness of the therapy will depend on how this intervention
alters the evolution of this state. Unfortunately, this process
is determined not only by the dynamics of the process,
but the state of the system at the time of intervention - a
state which is difficult if not impossible to determine prior
to application of the therapy. To identify such states we
consider a mouse model of RA (Collagen-Induced Arthritis
(CIA)) immunotherapy; collect high dimensional data on T
cell markers and populations of mice after treatment with a
recently developed immunotherapy for CIA; and use feature
selection algorithms in order to select a lower dimensional
subset of this data which can be used to predict both the
full set of T cell markers and populations, along with the
efficacy of immunotherapy treatment.

Index Terms— Immune State, Immunotherapy, Feature
Selection, Rheumatoid Arthritis, Flow Cytometry

I. INTRODUCTION

WHILE a properly functioning immune system prevents
illness by recognizing nonself antigens as foreign, a

malfunctioning immune system can recognize self antigens
as foreign, causing autoimmune diseases such as Rheumatoid
Arthritis (RA). In recent years immune therapies have been
proposed that attempt to treat autoimmune diseases such as
RA by shifting the relative balance between inflammatory and
regulatory immune responses in favor of the regulatory pop-
ulations. For example, sustained delivery of chemokines [1],
[2], cytokines [3] and small molecule inhibitors [3]–[5] can
modulate immune cell function (e.g. dendritic cells, T cells)
in inflamed tissues to resolve RA and other autoimmune
disease outcomes in pre-clinical animal models. However,
the effect of the immunotherapy regimen is influenced by
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factors such as timing, dosage, and the current balance of
inflammatory/regulatory response in the patient - thus making
identification of effective treatment standards a challenging
problem [6].

For this reason, there is a growing need for an observable
measure of immune system health which can be used for
the prediction and prevention of RA and other autoimmune
diseases [7]–[9]. However, the question of identifying observ-
ables is complicated by our relative lack of understanding of
how the immune system determines self vs nonself and the
number of potential observables which have been identified as
contributing to the function of the immune system. To clarify
the problem at hand, we therefore propose two relatively
uncontroversial theses.

First, we presume that the immune system is governed
by some un-modelled dynamical process wherein the relative
populations of certain immunogenic and regulatory cells and
molecules evolve over time and that the relative balance
of these populations directly influences the establishment or
elimination of autoimmune disease. Furthermore, we assume
that this dynamic process is well-posed so that the inputs
and initial states of the system uniquely determine the output
(i.e. self-nonself). These unknown inputs and states are then
potential observables.

Second, we presume that the problem of data-based model-
ing cannot be separated from the problem of identifying suit-
able observables. Specifically, if we knew which observables
uniquely determined the output, then that knowledge would
necessarily be based on some assumed physical model of the
mechanism for producing that output. Thus, if the model is
truly unknown, identification of observables must be included
in the modeling process.

Given these assertions, we can propose three necessary
components of any process for identification of observables
with clinical predictive power. First, we require a method for
modeling based on a given set of observables. While such a
model may be based on physical principles, the model may
also be derived from data-based methods such as machine
learning. Second, we require a way to test suitability of the
predictive model associated with any given set of observables.
Specifically, this test of suitability may include predictive
accuracy of the associated model, along with other metrics
such as clinical feasibility and robustness to patient variation.
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Finally, we require a methodology for selection and rejection
of observables in order to obtain a set of observables with
maximal suitability as defined previously. In this paper, we
consider each of these requirements: using experimental data
and a variety of machine learning algorithms to generate mod-
els; defining an appropriate metric for suitability; and using
feature selection algorithms to find a set of observables with
maximal suitability. Once we have addressed these require-
ments, we apply the proposed methodology to data obtained
from immunotherapy trials in an autoimmune mouse model
of RA - arriving at a set of maximally suitable observables,
which we define as the “immune state”. An outline of our
approach to addressing these required subproblems is listed
below.

For the first component we focus on machine learning
algorithms for nonlinear regression. In the context of the
immunotherapy, these regression algorithms map initial flow
cytometry data to other observables such as outcome – as
measured by severity of inflammation (See Sec. III for details).

For the second component we propose a dual metric for
suitability of a given set of observables based partially on
predictive power of the associated model. The first part of
this metric is based on minimality (not prediction), wherein
we impose a penalty based on the number of observables
in the set (cardinality) in order to reduce experimental and
clinical complexity. Second, in order to ensure that relevant
immunological data is not lost, we also add a penalty based
on the error of the associated model to predict observables
from the data not included in the given set. Third, to measure
efficacy of the prediction, we impose a penalty based on the
error in prediction of CIA severity - a quantity we refer to as
the “disease state”.

For the third component we propose a variety of feature
selection algorithms to determine the set of observables which
are optimally suited using the suitability metric described
above. We then report the results of applying the resulting
algorithms to our dataset where we apply different weights to
the three parts of the suitability metric and propose sets of
maximally suitable observables for each case. We define the
optimal sets as ”immune states” and analyze the immune cells
that were selected by the feature selection algorithms in each
case.

The rest of the paper is organized as follows. In Sec. II, we
define the dataset which will be used to generate observables
(flow cytometry markers of predictive power). In Sec. III,
we define the computational and mathematical framework
to be employed. This includes the learning algorithms used
to produce the predictive models, a rigorous mathematical
formulation of the feature selection problem defined in terms
of a suitability metric, and a proposed wrapper algorithm for
solving the feature selection problem. In Sec. IV, we apply
the methods from Sec. III to the dataset in Sec. II using
three possible suitability metrics defined as Minimal Disease
State (MDS), Minimal Immune State (MIS), and a combined
Minimal Immune and Disease State (MIDS). The results are
summarized in Sec. V.

II. EXPERIMENTAL METHOD AND ASSOCIATED DATA

The identification of observables for immune state described
in this paper is based on a dataset generated from a series
of experiments involving the use of biomaterials-based parti-
cles [10] containing metabolites to promote self tolerance in
intermediate/late stage CIA in a DBA/1j mouse model. This
study is well-suited to our hypothesis that immune state can
serve to accurately predict the outcome of immunotherapy
treatments and overall disease progression. This section details
the premise and execution of this study and the nature of the
associated data collected.

A. Fabrication of biomaterials-based particles

Immunosuppressive poly aKG (paKG(PFK15+bc2) mi-
croparticles (MPs) have been developed to co-deliver the
glycolytic inhibitor, PFK15, and the CIA-specific antigen,
bc2 (bovine collagen type II), to mice with collagen-induced
arthritis (CIA) [11]–[13]. The underlying hypothesis revolves
around the degradation of paKG MPs, which allows the deliv-
ery of bc2 to facilitate antigen presentation by dendritic cells
(DCs), while simultaneously delivering PFK15 to attenuate
glycolysis and CD86 expression in pro-inflammatory DCs.
Furthermore, the intracellular release of PFK15 and aKG
within DCs could collaboratively meet the cellular energy
needs through the Krebs cycle, potentially curbing the en-
ergy requirements associated with pro-inflammatory glycolysis
and fostering the generation of anti-inflammatory DCs. This
orchestrated induction of anti-inflammatory DCs may conse-
quently trigger suppressive antigen-specific T cell responses.
This study underscores the potential of reprogramming DC
metabolism, coupled with antigen presence, to instigate anti-
inflammatory DC and T cell reactions, effectively alleviating
arthritis symptoms in CIA mice. This innovative microparticle
technology holds promise for addressing autoimmune diseases
with a similar pathogenesis as rheumatoid arthritis [14].

B. Description of Experiment and Measurements

Six to eight week old male DBA/1j mice were obtained from
Jackson Laboratories and, after one to two weeks of mice ac-
climating to the experimental location, mice were induced with
CIA. In this experimental series, the particles were synthesized
either with or without disease-inducing antigen bc2 - a strategy
designed to determine if the particles can generate antigen-
specific anti-inflammatory response. The number of mice per
group were determined using a statistical power of 80 percent
and a significance level of alpha of 0.05. The arthritic scores
were utilized to randomize mice into the control and treatment
groups to assure that the overall average arthritic scores were
comparable between each group. Researchers were aware of
the group allocation throughout the study. An overview of the
experimental procedure is provided in Fig. 1 and is further
described in [15]. The chronology of the experiment is listed
here in detail.

Day 0 and 21: CIA was induced in mice to generate an au-
toimmune response for the development of severe polyarthritis.
On day 35, the mice were divided into 3 groups, each receiving
a distinct therapeutic regimen.



TALITCKII et al.: EMPLOYING FEATURE SELECTION ALGORITHMS TO DETERMINE THE IMMUNE STATE OF A MOUSE MODEL OF RHEUMATOID ARTHRITIS3

Fig. 1. A graphical description of the experimental procedure of
inducing and treating CIA in mice. The first two steps induce CIA, the
next two steps is the application of the treatment and the final step
is the data generation using flow cytometry. CFA = complete Freund’s
adjuvant, IFA = incomplete Freund’s adjuvant.

Group 0 (control) - Days 35/42: The control group consists
of 5 control mice, each receiving two subcutaneous injections
of phosphate buffered saline (PBS) near the hind legs on days
35 and 42.

Group 1 (placebo) - Days 35/42: Treatment group 1
consists of 5 mice. Each mouse receives two injections of 0.5
mg of biomaterials-based particles without embedded antigen
bc2 near the hind legs on days 35 and 42.

Group 2 (treatment) - Days 35/42: Treatment group 2
consists of 8 mice. Each mouse receives two injections of 0.5
mg of biomaterials-based particles with embedded antigen bc2
near the hind legs on days 35 and 42.

Measurements Taken on Days 62/70: The data collection
used for model generation occurs exclusively on either day
62 or 70. Paw thickness measurements are used to deter-
mine arthritic scores for all mice and the end of study paw
measurements were obtained either on day 62 or 70. To
quantify the range of variability and severity in paw swelling
within the CIA model, paw inflammation was evaluated on
a scale from 0 to 6, where a score of 3 or higher indicated
moderate-to-severe arthritis. The scores were determined by
assessing the degree of swelling and/or redness in the rear
left digits, with points assigned as follows: 0 (no swelling),
1 (mild), 2 (moderate), or 3 (severe). Similarly, the degree of
swelling and/or redness in the rear left mid-paw was evaluated
and assigned a corresponding point (0, 1, 2, or 3). This
assessment was repeated for rear right digits and mid-paw.
The cumulative points for the four assessments then determine
the Disease Progression Score (DPS), as defined in Table I.
Scoring was carried out separately for the front and back paws.
The mice were euthanized by carbon dioxide asphyxiation
according to the American Veterinary Medical Association
(AVMA) guidelines and flow cytometry was performed on
cells collected from the popliteal lymph node, cervical lymph
node and spleen of each mouse on day 62 or 70.

C. Observables Measured in the Dataset

The flow cytometry data obtained from this experiment was
stained and gated to provide a robust set of features/(marker

Total points for the mouse Disease progression score
0 0
1 1
2 2

3-4 3
5-7 4
8-10 5

11-12 6

TABLE I
SCORING STRATEGY FOR MICE. THE DEGREE OF REDNESS AND

SWELLING HAS BEEN MEASURED FOR REAR RIGHT DIGITS, REAR LEFT

DIGITS, MID-PAW AND REAR LEFT MID-PAW BASED ON POINTS OUT OF

3, WHERE 0 (NO SWELLING), 1 (MILD), 2 (MODERATE), OR 3
(SEVERE). THE TOTAL POINTS FOR THE MOUSE IS A CUMULATIVE

POINTS FOR PAWS AND DIGITS, THAT HAS BEEN MAPPED TO A DISEASE

PROGRESSION SCORE (DPS).

combinations)/observables. In Sec. III we will define an al-
gorithm for selection of the best lower-dimensional subset
of these markers for predicting disease progression and rep-
resentation of overall immune state. In this subsection, we
briefly describe the full selection of markers and (for moti-
vation) list biological characterizations with which they are
often associated. Specifically, we stained for: CD4 (T helper
(Th) cell marker), CD8 (cytotoxic T (Tc) cell marker), Ki67
(proliferation), CD25 (activation), Foxp3 (regulatory Tcell
transcription factor (TF)), Tbet+GATA3-RORyt- (Th1/Tc1 TF),
GATA3+Tbet-RORyt- (Th2/Tc2 TF), RORyT+Tbet-GATA3-
(Th17/Tc17 TF), CD44 (effector memory marker), CD62L
(naı̈ve T cells and central memory T cells), and a tetramer
(I-A(q) bovine collagen II 271-285, GEPGIAGFKGEQGPK
peptide) that is specific to the disease-inducing antigen. For
notational convenience, we use GATA3+, RORyt+ and Tbet+
as an indicator of GATA3+Tbet-RORyt-, RORyT+Tbet-GATA3-
and Tbet+GATA3-RORyt-, respectively. The flow cytometry
data analysis was performed by comparison of Forward scatter
(FSC) vs. side scatter (SSC), then single cell (SSC-A vs. SSC-
H), followed by live dead stain, followed by CD4 vs. CD8,
followed by individual sub-populations of the T cells [15].
Based on this staining, we identified 41 different combinations
of markers which might be used to classify the phenotype of
a T cell and determined the percentage of either CD4 or CD8
T cells presenting the associated combination of markers.

D. Summary of Associated Dataset

The data consists of 84 samples, based on 18 mice, each
sample is associated with a mouse and sample location. There
were no exclusions of mice, experimental units or data points.
All samples are taken on day 62/70, and each sample consists
of 43 features and one label. The first two features of each
sample indicate group number (0-2) and sample location (1-
3). The remaining 41 features defining the percentage (0-
100) of the CD4/CD8 population exhibiting the associated
combination of markers. The label for each sample is a Disease
Prograssion Score (DPS) (0-6).

This dataset has three crucial properties. First, measured
features represent the significant part of the immune system,
since we identify the wide range of measured T cell markers
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and populations to reflect the majority of aspects of au-
toimmune diseases, such as self-reactivity, memory, activation
and proliferation. Second, the collected data includes a full
list of possible stages of disease, so we include mice with
and without CIA in our experiment. Finally, the dataset has
minimimal distortion effects of non-measurable observables at
measurements days, for example the distorting effects of the
treatment must wear off and measured features then accurately
reflect the immune state. In this case, measurements were
taken more than two weeks after the treatment.

Based on this data we are ready to propose several methods
of machine learning to construct predictive models which
use subsets of the features to predict both the label (disease
progression) and remaining features. For generating these
models, all features are scaled to the interval [0, 1].

III. COMPUTATIONAL METHODS FOR IDENTIFICATION OF
OBSERVABLES

In this section, we describe a general mathematical and
computational approach for generating observables using ma-
chine learning and feature selection. We start with a de-
scription of the several candidate algorithms to be used
for generating predictive models (Subsec. III-A). Next, in
Subsec. III-B we propose a mathematical formulation of the
feature selection problem, using a metric for suitability of a
set of observables in terms of the predictive model generated
by those observables. Then, in Subsec. III-C we describe the
proposed feature selection algorithm along with alternatives to
be used for comparison.

A. Algorithms for Predictive Model Generation
To identify clinically significant observables, we will use a

metric of suitability combined with a feature selection algo-
rithm to determine which observables have the most predictive
power. However, the use of such feature selection algorithms
requires a procedure for using a subset of the features to
predict both the remaining features and the label.

Suppose we are given a dataset of m samples, wherein each
sample {xi, yi} defines a set of features {xi ∈ Rn}mi=1 and an
associated label {yi ∈ R}mi=1. The regression problem, then, is
to find a predictive model, f : Rn → R which minimizes the
predictive errors f(xi)−yi in an appropriately defined metric.
However, this metric and the resulting optimization problems
vary significantly between algorithms. We next define several
state-of-the-art machine learning algorithms which will be
combined with feature selection algorithms to determine fea-
tures with the most predictive power. Finally, we note that in
the context of feature selection algorithms, when only a subset
of the available features are used, the remaining “discarded”
features become labels.

Before beginning, we note that the choice and tuning of
ML algorithms is something more of an art than a science.
Specifically, we want to avoid overfitting the training data
- thus allowing our predictive models to perform well on
unlabelled data. To this end, each of the ML algorithms we
define has an associated set of “regularization parameters”
which should be selected through some ad hoc process. These

tuning parameters will then affect how well the resulting
predictive model will generalize to unlabeled data. In each
case, therefore, we specify these parameters but do not yet
define how they are selected.

In each case below, we assume the data set contains m
samples, {xi, yi}mi=1, each with n features, xi ∈ Rn and a
label yi ∈ R.

Regularized Linear Regression (LR): The regularized
linear regression algorithm returns a predictive model y =
f(x) = wTx + b, where w solves the following optimization
problem.

min
w∈Rn

m∑
i=1

(yi − wTxi − b)2 + α2||w||2 + α1||w||.

In this case, α1 ≥ 0 and α2 ≥ 0 are the regularization parame-
ters. Linear regression has the advantage of low computational
complexity. However, the resulting predictor is linear and if
the underlying physical process is nonlinear, accuracy of the
predictive model will be poor.

ϵ-loss Support Vector Regression (SVR): The support
vector regression problem uses a predictive model of the form
f(x) =

∑m
i=1 αik(x, xi) where α ∈ Rm is the decision

variable and k is a user selected positive kernel function. The
objective function being minimized includes

∑
i |f(xi) − yi|

for any i such that |f(xi) − yi| ≥ ϵ, where ϵ is a tuning
parameter. In addition, there is a regularization parameter,
C where regularization increases as C decreases. SVR can
generate accurate nonlinear predictive models for appropriate
choice of k. However, the selection of the kernel heavily
influences the resulting accuracy and this process of selection
is difficult to automate.

Kernel Learning (PMKL): Kernel learning algorithms
improve on the SVR problem by automating the search for a
kernel function. Note we consider the class of kernel learning
algorithms to include Deep Learning (although the search
problem in this case is non-convex). These approaches are
limited, however, by the class of kernels over which they
are able to search. The class of Tessellated Kernel functions
have been shown in [16] to have the properties of universality,
density, and tractability - meaning the resulting algorithms are
rather accurate and generalize well to new data. Specifically,
the PMKL algorithm for optimizing TK kernel functions was
shown in [17] to be more robust than other tested ML algo-
rithms (including multi-layer neural networks) - at the cost of
some additional computational complexity. The regularization
parameters in this case are the ϵ and C as defined above for
SVR.

Decision Tree Algorithms: Decision trees are composed of
a series of conditional statements that branch in a “tree” like
manner. We say the “depth” of a decision tree is how many
conditional statements appear in a branch before leading to
a label denoted the “leaf”. Both the depth of the decision
trees and the maximum number of leaves are regularization
parameters that can be modified by the user. Decision trees
are often weak predictors alone and in this paper we use en-
semble (random forest) or boosting (boosted trees) methods to
increase predictive performance. These algorithms are defined
as follows.



TALITCKII et al.: EMPLOYING FEATURE SELECTION ALGORITHMS TO DETERMINE THE IMMUNE STATE OF A MOUSE MODEL OF RHEUMATOID ARTHRITIS5

• Random Forest: The random forest algorithm is an en-
semble machine learning method based on a combination
of decision trees. Ensemble methods use a combination
of predictive models (trees) that individually have poor
generalization but when used in combination can have
significantly improved predictions. The number of deci-
sion trees combined in the random forest algorithm can
be used as a regularization parameter.

• Boosted Trees: Gradient boosting is another machine
learning method also based on a combination of decision
trees. In the boosted algorithm trees are added to the
predictive model sequentially, and each additional tree is
fit to the current residuals of the model. A “learning rate”
is a weight applied to the addition of each decision tree,
and is often used as a regularization parameter. Small
learning rates tend to improve the generalization of the
predictive models.

Next we will focus on a metric we may use to identify the
observables which are most suitable to the task of predicting
self vs nonself determination in autoimmune disease.

B. Quantifying Suitability of a Given Set of Observables
To identify a set of observables for predicting self vs nonself

determination we rigorously define a metric for suitability
in order to select the observables which lead to superior
predictive models.

First, for the sake of generality, we define the algorithm,
OPT , which we use as a placeholder for the machine
learning algorithms described previously. For a given dataset
{xi, yi}mi=1 ⊂ Rw × Rq , OPT ({xi, yi}mi=1), returns a predic-
tive function, f = arg OPT ({xi, yi}mi=1), where f : Rw →
Rq .

Next, given a possible set of feature indices F :=
{1, · · · , n}, we define the set of partitions of F as P(F ),
and the set of all possible partitions of F of length w ≤ n as
follows.

Bw := {v ∈ Nw | v ∈ P(F )}

For a given selection of features, b ∈ Bw, we denote the
associated projection Pb : Rn → Rw so that (Pb(x))i = xbi

for x ∈ Rn and i = 1, · · · , w.
To define a metric of suitability we consider three

cost/penalty functions, M1,M2, and, L. The function L is a
function of the cardinality of the number of features selected,
L(|b|C). The costs M1 and M2, however, measure how well
the selection of features can be used to predict the disease state
and the remaining features respectively. To accurately evaluate
the performance of the predictor a partition of the data must be
withheld from the training algorithm, OPT , and used solely
for the purpose of testing the performance. For a given set of
data, these metrics will vary depending on which data points
are used for training OPT and which are used to evaluate its
performance. To explicitly account for the effect of choice in
partitioning of data samples, we now define the set of samples
S := {1, · · · ,m}, and the set of partitions of S as P(S). As
for features, we denote the set of sample partitions of length
r as

Sr := {v ∈ Nr | v ∈ P(S)}

and for a given selection of samples, g ∈ Sr, we denote the
associated projected data set as Pg(X) := {xi ∈ X, i ∈ g}.

Therefore, the costs M1 and M2 are a function of the
feature partition, b, the training partition, g ∈ Sr ∈ P(S)
and the associated test partition, h := S/g ∈ Sm−r, so that
M1(b, g) and M2(b, g) are the Root Mean Square Error (MSE)
of predicting the test partition. Specifically, let R(f, x, y) =√

1
m−r

∑
i∈S/g |f(xi)− yi|22 and we have

M1(b, g) = R(fb,g, Pb(x), y)

M2(b, g) =
∑

j∈F/b

R(d
(j)
b,g, Pb(x), Pj(x))

fb,g = argOPT ({Pb(xgi), ygi}ri=1)

d
(j)
b,g = argOPT ({Pb(xgi), Pj(xgi)}ri=1))

In the ideal case, we would average these costs over all
possible partitions of the data set to give an estimate of the
predictive power of b ∈ Bw. However, such an approach would
result in very large computational overhead. Therefore, we use
the k-fold cross validation approach, wherein we divide the
samples into k training partitions of size m(k−1)

k , which we
label as g(i) ∈ Sm(k−1)

k
for i = 1, · · · , k. Then the average

cost of the feature partition b over the k sample partitions is

J(b) =
1

k

k∑
i=1

J ′(b, g(i)).

where
J ′(b, g) := β1M1(b, g) + β2M2(b, g) + L(|b|C) (1)

and where β1, β2 ≥ 0 are given weights. In Sec. IV, we
use specific valued of β1, β2 and L to define three possible
suitability metrics relevant to identification of immune state.
These will be referred to as Minimal Disease State (MDS),
Minimal Immune State (MIS), and the combined Minimal
Immune and Disease State.

In the following Subsection, we propose a feature selection
algorithm which can be used to select observables which
optimize suitability metrics as defined in Eqn. (1).

C. Feature Selection Algorithms
We have now defined the metric of suitability as a function

of the partition, b ∈ Bw. Using this metric, the Feature Se-
lection (FS) problem is defined as the following combinatoric
optimization problem.

min
b∈Bw,w∈N

J(b) (2)

Because optimization problems of this form are combina-
torial, FS problem is considered to be NP-hard [18]. As a
consequence, most existing FS algorithms are either heuristic,
in that they are not guaranteed to converge to a globally
optimal solution, or solve variations of this problem which
may or may not yield reasonable values for Problem (2).

Nonetheless, several techniques have been proposed that
enjoy relative accuracy and computational efficiency. We focus
first on FS methods designed specifically for problems of
the same form as Optimization Problem (2), then consider
two other FS approaches that do not directly try to solve the
optimization problem of interest but provide a comparison to
the direct method.
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Proposed Wrapper Method and Implementations: We first
define the algorithm (a wrapper method) which will be used
and then provide additional details on the various ML al-
gorithms which are combined with this wrapper to solve
Problem (2).

The most common wrapper methods are Sequential Feature
Selection (SFS) algorithms [18]. SFS algorithms begin with an
empty (or full) set of features and sequentially add (or remove)
the highest value (or cost) feature until the set of features is
a certain size or meets a performance metric.

The SFS algorithm used in this paper is as described in [19].
This SFS algorithm begins with b := ∅, and iteratively selects
a locally optimal feature (with respect to the objective function
of Optimization Problem (2)) at each step.

Clearly, the effectiveness of Feature Selection depends on
the ML algorithm (OPT ) used to generate the predictive
model. Therefore, in the Results Section, we test all the
machine learning algorithms proposed herein. Unfortunately,
the accuracy of the predictive model is influenced by user-
selected parameters within the algorithm. For reproducibility,
we list here the selections for these parameter values.
Linear Regression: We test all 16 combinations of α1 ∈
[0, 0.1, 1, 5] and α2 ∈ [0, 0.1, 1, 5] and the data from choice
yielding highest suitability (J) is listed in Tables II-IV.
PMKL: We use the default TK kernel parameters and test
ϵ = .005, and C ∈ [.01, .1, .3, .5, 1] and the data from the
choice yielding highest suitability (J) is listed in Tables II-
IV.
SVR: We test all combinations of ϵ = .1, C ∈ [1, 5, 10] and 3
kernel functions (linear, RBF, or 3rd degree polynomial) and
the data from choice yielding highest suitability (J) is listed in
Tables II-IV. For the RBF kernel the features are normalized
by their variance and a bandwidth of 1

n is selected.
Random Forest We test 9 combinations of number of trees
(ntrees ∈ [50, 100, 150]) and the maximum tree depth of
(maxdepth ∈ [5, 10, 20]) and the data from choice yielding
highest suitability (J) is listed in Table II-IV.
Boosted Trees We test 15 combinations of number of
trees (ntrees ∈ [50, 100, 150, 250]) and learning rate (LR ∈
[0.01, 0.1, 0.5]) and the data from choice yielding highest
suitability (J) is listed in Table II-IV.

Suitability of Filter and Embedded Methods: Alternative fea-
ture selection algorithms will be used as a baseline by which
we may compare the wrapper method. We use three filter
methods and one embedded method in the analysis.

Given a set of data, filter methods use a rating function
to rank each features relative “importance”. After the features
have been ranked, the user may select w features to be kept and
the remaining features will be discarded. The rating functions
used to generate the data in Tables II-IV are as follows.

Mutual Information (MI): The Mutual Information crite-
ria [20] is a statistical function of two random variables that
describes the amount of information contained in one random
variable relative to the other.

Analysis of Variance (ANOVA): The ANOVA method [21]
is a commonly used method for analyzing variable dependen-
cies. The F-test is used to estimate the features importance.

Principle component analysis (PCA): This method ap-

proximates the data with linear manifolds [22]. The main
methods used to perform PCA are based on the singular value
decomposition and diagonalization of the correlation matrix.
We calculate the importance based on the first 3 eigenvectors.

In all cases, once a set of features has been selected, suit-
ability (J) is determined using each of the ML algorithms and
we report the minimum of these values. Embedded FS methods
attempt to embed the process of feature selection directly into
the model generation process - typically adding a cost for
inclusion of a particular feature in the model. These methods
have been used in the gene expression domains as in [23] and
have been successfully applied to mass spectrometry analysis
in [24]–[26]. For this analysis, only a single embedded method
was considered.

Mean Decrease in Impurity (RF): The Gini Importance or
Mean Decrease in Impurity [27] is an embedded method for
the Random forest algorithm. It calculates the importance of
features as the mean of the number of splits (over all trees) that
include this feature, weighted by the probability of reaching
this node.

Performance Metrics: To show that the results of Optimiza-
tion Problem (2) as applied to MDS, MIS and MIDS are
consistent with other learning metrics [28], we also include
data on these metrics for the chosen selection of features and
associated predictor. These metrics are defined as follows. Let
y to be the vector of labels (measured non-selected features
and the disease state) associated with features x. Let ŷ be the
predicted labels as generated by the predictor when applied
to features x. Let ȳ and ¯̂y be the average values of y and ŷ.
Then we have the following.
The Correlation Coefficient and relative Root Mean
Squared Error (CC and rRMSE):

CC =

∑N
i=1(yi − ȳi)(ŷi − ¯̂yi)√∑N

i=1(yi − ȳi)2
∑N

i=1(ŷi − ¯̂yi)2
(3)

rRMSE =

√√√√∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(4)

Mean Absolute Error and relative Mean Absolute Error
(MAE and rMAE):

MAE =
1

N

N∑
i=1

|yi − ŷi|; rMAE =

∑N
i=1 |yi − ŷi|∑N
i=1 |yi − ȳi|

(5)

IV. RESULTS: IDENTIFICATION OF OBSERVABLES FROM
A CIA DATASET

In this section, we apply the methods defined in Sec. III
to the data described in Sec. II to obtain three possible
sets of observables (immune state) corresponding to different
suitability metrics (as defined in Subsec. III-B). Specifically,
these three immune states are lower dimensional subsets of
the data which can be used to either predict the progression of
CIA, reconstruct the full set of T cell markers and populations,
or perform both tasks simultaneously.

All results obtained in this section were obtained using
implementations of the ML regression algorithms either from
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Fig. 2. Observables as selected by SFS with each of 5 ML algorithms using the MDS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Sec. III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Subsec. III-B and listed in Table II. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

scikit-learn 0.22.1 or PMKL v1 [29]. Computation was per-
formed on an Intel i7-5960X CPU with 128Gb of RAM.
Details of this implementation, including all experimental data,
FS wrapper, and and codes for regression have been made
publically available and can be found at [30].

A. Suitability metrics for the CIA dataset

In this subsection, we define three metrics of suitability
used for selecting observables. First, we consider the feature
selection problem for Minimal Disease State (MDS) using
the definition of suitability in Subsec. III-B with β1 = 1
and β2 = L(w) = 0. In this case, suitability is defined
only in terms of accuracy of the prediction of the Disease
Progression Score (DPS). Results for MDS suitability are
given in Subsec. IV-B. Second, we define the feature selection
problem for Minimal Immune State (MIS) using β1 = 0

and β2 = 1 and L(w) =

{
0 for w ≤ 10

∞ for w > 10.
In this case,

we ignore the DPS and restrict our definition of state to ten
observables (flow cytometry markers), defining suitability as
the ability to predict all markers not included in our chosen
set of 10 observables. Results for MIS suitability are given in
Subsec. IV-C. Finally, for Minimal Immune and Disease State
(MIDS), we let β1 = β2 = 1 and L(w) as defined for MIS. In
this case, we restrict our definition of state to 10 observables
and define suitability as the ability to predict a weighted
combination of the DPS and all markers not included in the
chosen set of 10 observables. Results for MIDS suitability are
given in Subsec. IV-D.

B. The best features for Predicting Disease Progression
(MDS)

First, we consider selecting observables (markers) which
optimize suitability with respect to Minimal Disease State

Algorithm J MAE rRMSE rMAE CC
Linear Model 0.32 0.27 0.78 0.72 0.55

PMKL 0.34 0.29 0.84 0.84 0.51
Random Forest 0.35 0.29 0.83 0.87 0.53
Boosted Trees 0.36 0.31 0.89 0.88 0.49

SVR 0.37 0.31 0.90 0.93 0.40
MI 0.38 0.34 0.99 0.99 0.28
RF 0.38 0.34 0.98 1.02 0.30

ANOVA 0.38 0.35 1.02 1.01 0.28
PCA 0.40 0.38 1.11 1.10 0.28

TABLE II
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM

THE 5 PROPOSED FEATURE SELECTION ALGORITHMS USING THE MDS
SUITABILITY METRIC. THE 4 WRAPPER METHODS DESCRIBED IN

SUBSEC. III-C ARE INCLUDED FOR COMPARISON. THE ORDER OF THE

METHODS ARE DETERMINED USING THE SUITABILITY METRIC (J). THE

OTHER METRICS (CC,RMSE, MAE, AND RMAE) ARE AS DEFINED IN

SUBSEC. III-C.

(MDS) as defined in Subsec. IV-A. These are observables
which are best at predicting the disease progression score
(DPS).

Performance of FS Algorithms: In Table II we rank
the proposed feature selection algorithms by performance
with respect to the MDS suitability metric, J (as defined in
Optimization Problem (2)). For comparison, we include other
metrics of fit (as defined in Eqs. (3)-(5)), and alternative filter-
based feature selection algorithms.

The results indicate that Sequential Forward Selection (SFS)
based algorithms performed significantly better than embedded
and filter methods with respect to all metrics. Interestingly,
although no weight or limit was placed on the number of
features selected, the SFS Random Forest and the SFS TK
both selected relatively few features (4 and 5, respectively) –
less than half as many features as the 12 average features
selected by other methods. This indicates that use of the
remaining increased error in the testing set – meaning that
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Fig. 3. Observables as selected by SFS with each of 5 ML algorithms using the MIS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Sec. III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Subsec. III-B and listed in Table III. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

other observables are likely redundant or unreliable indicators
of disease progression.

Most Important Features Using the SFS Algorithms:
In Fig. 2 we show the observables that were selected by
each of the proposed algorithms. If we consider only the top
performing algorithms (the SFS based algorithms) and the
markers specific to helper and regulatory cells, then counting
the number of times a feature was selected by the SFS
algorithms, the following features were chosen by at least three
of the algorithms.

(1) CD4+GATA3+CD44+CD62L(Lo) (3 times)
(2) CD4+GATA3+Ki67+ (3 times)
(3) CD4+Foxp3+CD25+ (3 times)
(4) CD4+Foxp3+CD25+Ki67+bc2+ (3 times)
(5) CD4+Tbet+ (3 times)
Among the cytotoxic cells, the algorithms were most con-

sistent, with all five of the algorithms selecting one feature in
common.

(6) CD8+Ki67+ (4 times)
(7) CD8+GATA3+ (3 times)
(8) CD8+Tbet+ (3 times)
This group of cells consists of cytotoxic (6,7,8), Th memory

(1), Th (2,5), and CD4+CD25+Foxp3+ regulatory T cell sub-
populations (3,4). The location feature (origin of the tested
cells), was selected only once by an SFS based algorithm.
In this case we do not include the treatment as a possible
feature, since we are primarily interested in the prediction of
the disease state using sub-populations of T cells as opposed to
the already known correlation between treatment and disease
state. In the next two cases (MIS and MIDS) treatment is
considered a feature.

C. The best features for Reconstructing Discarded
Features (MIS)

Algorithm J MAE rRMSE rMAE CC
Random Forest 0.11 0.08 0.37 0.29 0.89
Boosted Trees 0.12 0.08 0.38 0.31 0.88

PMKL 0.12 0.09 0.37 0.22 0.89
Linear Model 0.13 0.09 0.44 0.31 0.87

SVR 0.13 0.09 0.46 0.32 0.85
PCA 0.15 0.12 0.58 0.49 0.76
MI 0.17 0.13 0.61 0.53 0.74
RF 0.17 0.13 0.59 0.49 0.75

ANOVA 0.18 0.14 0.67 0.60 0.71

TABLE III
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM

THE 5 PROPOSED FEATURE SELECTION ALGORITHMS USING THE MIS
SUITABILITY METRIC. THE 4 WRAPPER METHODS DESCRIBED IN

SUBSEC. III-C ARE INCLUDED FOR COMPARISON. THE ORDER OF THE

METHODS ARE DETERMINED USING THE SUITABILITY METRIC (J). THE

OTHER METRICS (CC,RMSE, MAE, AND RMAE) ARE AS DEFINED IN

SUBSEC. III-C.

Next, we consider selecting observables (markers) which
optimize suitability with respect to Minimal Immune State
(MIS). These observables are optimal for predicting all mark-
ers not included in our chosen set of 10 observables.

Performance of FS Algorithms: In Table III we rank
feature selection methods by performance with respect to the
MIS suitability, J . For comparison, we also include other
metrics and filter-based methods as defined in Subsec. III-C.

The results show that Sequential Forward Selection (SFS)
based algorithms demonstrated the best performance. Espe-
cially, SFS Random Forest and SFS Boosted Trees are the best
methods with respect to MIS suitability metric. Note, that all
algorithms selected the maximum number of 10 features.

Most Important Features Using the SFS Algorithms: In
Fig. 3 we show the features that were selected by each of the
proposed algorithms. Unlike in the previous subsection, there
was less of an agreement among the high-performing SFS
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Fig. 4. Observables as selected by SFS with each of 5 ML algorithms using the MIDS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Sec. III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Subsec. III-B and listed in Table IV. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

algorithms as to the most significant features. For MIS only
6 different features were selected by at least three algorithms.
First, if we consider markers specific to helper and regulatory
cells, and counting the number of times a feature was selected
by the SFS methods (each method selected 10 features), the
following features were each chosen by at least 3 algorithms.

(1) CD4+GATA3+CD44+CD62L(Lo) (4 times)
(2) CD4+Tbet+Ki67+ (4 times)
(3) CD4+GATA3+Ki67+bc2+ (3 times)
(4) CD4+Tbet+bc2+ (3 times)

We note that two of the selected features are bc2 specific as
opposed to the single bc2 specific feature selected for cells in
MDS.

Among the cytotoxic cells, the algorithms were less consis-
tent, with only three of the algorithms selecting similar sub-
populations.

(5) CD8+Ki67 (3 times)
(6) CD8+GATA3+CD44+CD62L(Lo) (3 times)
We note that the central memory T cells

(CD44+CD62L(Lo)) appear in both the helper/regulatory
populations and the cytotoxic cell populations. In this case,
data-rich biomarkers (those containing multiple markers),
were selected slightly more often when compared to MDS.
The average number of markers in the selected features is
3.33 in this case compared to 2.875 in the MDS case. Of
particular note is the fact that the location feature (origin of
the tested cells) and the treatment feature (which treatment
was applied) were both selected by almost every algorithm.

D. The best features for Disease Progression and
Reconstruction (MIDS)

Finally, we consider selecting obsevables which optimize
suitability with respect to Minimal Immune and Disease State
(MIDS) as defined in Subsec. IV-A. These observables are op-
timal for predicting a combination of the Disease Progression

Algorithm J MAE rRMSE rMAE CC
Random Forest 0.11 0.09 0.38 0.29 0.90
Boosted Trees 0.12 0.09 0.39 0.31 0.88

PMKL 0.12 0.09 0.38 0.23 0.89
Linear Model 0.13 0.10 0.45 0.31 0.86

SVR 0.14 0.10 0.47 0.34 0.83
PCA 0.14 0.09 0.47 0.63 0.82
RF 0.17 0.12 0.52 0.48 0.77
MI 0.18 0.12 0.56 0.55 0.73

ANOVA 0.18 0.13 0.61 0.65 0.70

TABLE IV
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM

THE 5 PROPOSED FEATURE SELECTION ALGORITHMS USING THE MIDS
SUITABILITY METRIC. THE 4 WRAPPER METHODS DESCRIBED IN

SUBSEC. III-C ARE INCLUDED FOR COMPARISON. THE ORDER OF THE

METHODS ARE DETERMINED USING THE SUITABILITY METRIC (J). THE

OTHER METRICS (CC,RMSE, MAE, AND RMAE) ARE AS DEFINED IN

SUBSEC. III-C.

Score (DPS) and all markers not included in the chosen set of
10 observables.

Overall Performance of FS Algorithms: In Table IV we
rank the proposed feature selection algorithms by performance
with respect to the MIDS suitability metric, J (as defined in
Optimization Problem (2)). We also report the other metrics
(as defined in Eqs. (3)-(5)) and filter-based feature selection
algorithms.

As in the MIS and MDS case, the results indicate that Se-
quential Forward Selection (SFS) based algorithms performed
significantly better than embedded and filter methods with
respect to all metrics. SFS wrapper method with Decision Tree
Algorithms demonstrate the best performance according to the
MIDS suitability metric. All algorithms selected the maximum
number of 10 allowable features.

Most Important Features Using the SFS Algorithms: In
Fig. 4 we show the features that were selected by each of the
proposed algorithms. If we consider markers specific to helper
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and regulatory cells, the following features were each chosen
by at least three of the five algorithms.

(1) CD4+GATA3+CD44+CD62L(Lo) (4 times)
(2) CD4+Tbet+Ki67+ (4 times)
(3) CD4+Tbet+bc2+ (4 times)
(4) CD4+GATA3+Ki67+bc2+ (3 times)

V. INTERPRETATION OF RESULTS

Here we summarize the results for each proposed metric of
suitability: MDS, MIS, and MIDS.

Features for Predicting Disease Progression (MDS): The
MDS case is motivated by the need for T cell markers which
have high accuracy when predicting disease progression and
treatment outcome. In this context, we make the following
observations.

The location feature was not selected by the top performing
feature selection algorithms – suggesting that the location
where the T cells were collected is inconsequential to pre-
dicting the disease state. This implies that there is significant
uniformity in the disease state among the lymph nodes and
spleen.

In addition, 3 of 5 algorithms selected one antigen spe-
cific observable (CD4+FoxP3+CD25+Ki67+bc2+) - indicat-
ing that the other selected T cell markers are likely correlated
to autoimmune disease in general and are not sepecific to CIA.

Finally, we note that most of the selected biomarkers only
consisted of 2 or 3 protein labels (unlike the more specific
sub-populations selected in the MIS and MIDS cases). This
suggests that the ability to predict of disease progression and
immunotherapy outcome is more robust (less prone to error)
– being based mostly on a well-established set of observables
with larger sample sizes.

Features for Reconstructing Discarded Features (MIS):
The MIS case is motivated by the desire to reduce the number
of markers used in flow cytometry by eliminating markers
whose values can be inferred using a lower dimensional set
of observables. However, the observables selected in this case
are not necessarily correlated with disease progression or the
effect of immunotherapy.

Because the MIS case selects markers which are not
necessarily correlated with disease progression, a larger set
of observables was selected and these observables generally
include more peptide labels than in the MDS case.

Interestingly, unlike for MDS, relatively few regulatory T
cell markers were selected in the MIS and MIDS case. This
is likely because for these cases we include treatment as a
potential observable. For MIS and MIDS, all algorithms now
select treatment and this likely acts as a more reliable proxy
for the regulatory population. This suggests that some caution
is advised when deciding whether to include treatment in the
set of selectable features.

Nearly all algorithms selected the location the T cells were
collected as an important observable for predicting T cell
populations. This implies that many aspects of the immune
state are not uniform across the lymph nodes and spleen.

Features for Disease Progression and Reconstruction
(MIDS): The MIDS case combines the suitability metrics for

MDS and MIS. Because weighting of the DPS score was
relatively low, this case selected many of the same features
as MIS.

Finally, we note that the memory T cell sub-population
CD4+GATA3+CD44+CD62L(Lo) was selected in all three
cases (MDS, MIS, and MIDS). It is clear that this sub-
population is significant to both the immune and disease states.

VI. CONCLUSION

In this paper, we have considered the problem of using
machine learning and feature selection algorithms to identify
low dimensional subsets of observables (T cell markers) which
are most useful in predicting disease progression and overall
immune state. Specifically, we have used a robust dataset of
T cell markers obtained from mouse-model immunotherapy
for collagen induced arthritis. Moreover, we have identified
the markers (Tables II-IV) which are most associated with
the process of self-nonself determination. The algorithms
proposed in this paper are general in that they can be used to
identify lower dimensional subsets from any similar dataset.
Furthermore, these algorithms have been made open source
and are available for download online. Finally, we note that
the list of biomarkers used in this set of experiments is not
exhaustive and the accuracy of the results may be improved by
testing whether inclusion of additional markers or exclusions
(e.g. CD127+/-) alters the set of observables selected.
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