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The type III secreted transcription activator-like effector Tal2g of the rice bacterial leaf streak (BLS) pathogen
Xanthomonas oryzae pv. oryzicola promotes lesion development and bacterial exudation through stomata by
binding to and upregulating a putative sulfate transporter gene in rice, OsSULTR3;6. To understand how
OsSULTR3;6 contributes to disease development, we are characterizing its transport mechanics, subcellular
localization, and potential substrates, and phenotyping OsSULTR3;6 knockout lines generated by genome editing.

Following a brief introduction to the plant SULTR gene family, this chapter summarizes our findings so far and
presents speculative functional models for the role of OsSULTR3;6 in BLS.

Bacteria in the genus Xanthomonas cause disease in many crop spe-
cies. During infection, many Xanthomonas species inject transcription
activator-like effectors (TALEs) into plant cells, where these proteins
directly activate specific, corresponding ‘susceptibility’ (S) genes
important for disease development [1]. Xanthomonas oryzae pv. oryzi-
cola (Xoc) causes bacterial leaf streak (BLS) in rice (Oryza sativa). Xoc
enters the rice leaf through stomata or wounds and colonizes the
mesophyll apoplast. The disease manifests as water-soaking at the site of
entry, which then progresses into interveinal streaks. Late disease is
characterized by tissue necrosis. As the disease progresses, bacteria ooze
out of stomata onto the leaf surface, forming yellow droplets. Virulence
depends on type III secretion of numerous effectors into host cells,
including upwards of thirty distinct TALEs. Cernadas and coworkers
identified one of these, Tal2g, as a major virulence factor [2]. A tal2g
mutant caused shorter lesions and exuded less onto the leaf surface than
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the wild-type bacterium. Consistent with its importance as a virulence
factor, Tal2g is conserved across a global collection of Xoc strains
studied [3]. Tal2g exerts its effect by transcriptionally activating the S
gene OsSULTR3;6, which encodes a putative sulfate transporter. The
processes downstream of OsSULTR3;6 induction that promote lesion
expansion and bacterial exudation have not yet been elucidated. An
important step toward understanding how OsSULTR3;6 contributes to
disease development is to determine its native function in the absence of
the pathogen. We are addressing this unknown by characterizing the
transport mechanics, subcellular localization, and potential substrates of
OsSULTR3;6. We are also investigating the function of OsSULTR3;6 by
phenotyping knockout rice lines generated by genome editing.
Following a brief introduction to the SULTR gene family in plants, this
chapter summarizes our findings to date and presents speculative
models, based on these findings, for how OsSULTR3;6 might promote
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lesion expansion and bacterial exudation from the leaf when its
expression is induced by Tal2g.

1. The sulfate transporter (SULTR) gene family

In plants, members of the Sulfate Transporter (SULTR) gene family
are hypothesized to encode integral membrane proteins that function as
secondary active transporters. Such proteins coordinate the movement
of protons (H") along a favorable electrochemical gradient to power the
movement of anions against an unfavorable electrochemical gradient [4,
5]. The SULTR family name derives from the role of some gene members
in the uptake of sulfate from the soil and its movement internally within
the plant [6,7]. Subsequent work has shown that some SULTR isoforms
facilitate molybdate and phosphate transport, while others contribute to
the abscisic acid (ABA) biosynthetic pathway, seed phytate accumula-
tion, and pathogen susceptibility [8-12].

The SULTRs are grouped into four main subfamilies based on amino
acid sequence similarity, which largely correlate with their differing
functions in planta. The functional differences arise from their unique
localization patterns and substrate affinity. The plasma membrane-
localized members of the SULTR1 and SULTR2 groups demonstrate
high and low-affinity transport of SO3~, respectively. SULTR1 members
are expressed in the root epidermis and cortex, while SULTR2 members
are localized to the root endodermis and root and shoot xylem and
phloem parenchyma, where they facilitate transport between the
vasculature and surrounding tissues [6,13,14]. SULTR3 is the largest
sub-group of the gene family and has several members that display
functions in phosphate transport and seed phytate accumulation [9,10,
15-17]. Individual SULTR3 isoforms localize to the plasma membrane,
endoplasmic reticulum, and chloroplast membrane. SULTR4 members
localize to the tonoplast and facilitate SO3~ export from the vacuole
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[18].

Much of the research on the function of the proteins encoded by
SULTR genes has been done in the model plant Arabidopsis thaliana, and
literature on the SULTR gene family in rice (Oryza sativa) is limited.
While both Arabidopsis and rice each have 12 SULTR genes, group 3 in
rice has 6 rather than 5 gene members, and OsSULTR3;6 is the one
without an Arabidopsis ortholog [9,19,20]. It is most similar in sequence
to OsSULTR3;5 but contains an additional, C-terminal domain,
COG2252 [21]. Inversely, there is only a single SULTR4 gene in rice
while Arabidopsis contains 2 functional members. The functional rele-
vance of these discrepancies in the OsSULTR gene family, as compared
to AtSULTR, is not yet clear. Since the functionality, localization, and
any substrate(s) of OsSULTR3;6 are unknown, investigation of these
properties is an important first step to understand the role of the protein
in BLS and plant nutrition and may inform our understanding of the
evolution of this gene family.

2. Transport function of OsSULTR3;6

To understand the native role of OsSULTR3;6 and its contributions to
BLS susceptibility, we first wanted to determine whether the protein is a
functional membrane transporter. The assessment of transport function
was carried out in Xenopus laevis oocytes—unfertilized eggs from the
African Claw Frog—using the two-electrode voltage clamp (TEVC)
method [22].

We microinjected oocytes with RNA comprising a YFP::OsSULTR3;6
coding sequence (CDS). Confocal microscopy of these oocytes showed
YFP expression at the periphery of the cell, suggesting localization to the
oocyte plasma membrane (Fig. 1a). Next, we microinjected oocytes with
untagged OsSULTR3;6 CDS or with sterile water as a negative control.
After several days of incubation to allow for protein expression, oocytes

Fig. 1. OsSULTR3;6 is a membrane transporter. A)
Microinjection of RNA encoding YFP-tagged

Brightfield

YFP

1 5%50 OsSULTR3;6 shows YFP at the periphery of the
oocyte. The left image displays a brightfield view of
the oocyte and the right confocal imaging for the YFP
signal (false-colored green). B) Resting membrane
potential (RMP) of oocytes injected with water or
RNA encoding OsSULTR3;6. Each point represents
one cell. C) Current-voltage relationship displaying
the average current measured in cells injected with
water or RNA encoding OsSULTR3;6. D) Effect of
bath solution changes on observed current in
OsSULTR3;6-injected and control cells, relative to the
standard bath solution (96 mM NacCl, 2 mM KCl, 1.8
mM CaCl,, pH 7). Labels on the X-axis refer to the
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were impaled with a microelectrode to measure their resting membrane
potential (RMP), which reflects the net ion balance across the cell’s
membrane. When compared to the water-injected controls,
OsSULTR3;6-injected oocytes maintained less negative resting poten-
tials, indicating that the expression of OsSULTR3;6 resulted in a change
in the net ion balance of the cell (Fig. 1b).

Impalement of the oocytes with a second microelectrode allowed us
to carry out TEVC and measure the amount of current flowing (i.e., ions
transported) across the membrane at a constant, “clamped” voltage
across the membrane. This technique helps to discern when the trans-
porter is activated and how much transport occurs. When compared to
water-injected controls, OsSULTR3;6-injected cells yielded large, nega-
tive currents at the various negative clamped voltages tested, indicating
robust transport activity (Fig. 1c).

The bath solution in which the oocytes reside can be altered to
determine how different ionic conditions affect transport. Therefore, we
altered the pH, Na', or C1™ levels to observe their effects on OsSULTR3;6
function. A reduction in either the bath concentration of H or Na™ led
to significant reductions in currents for OsSULTR3;6-injected cells,
while removal of CI™ had no effect (Fig. 1d); this behavior contrasted
with that of control cells, for which the low currents present were
affected by reduction of any of the three ions (Fig. 1d). These data
suggest that OsSULTR3;6 responds to extracellular cation concentra-
tions, and they agree with the broader observations of SULTRs behaving
as proton-driven co-transporters. Altogether, these observations indicate
that OsSULTR3;6 is a functional transporter and that, similar to other
SULTR members, its activity appears to be influenced by voltage and pH.

Looking ahead, we aim to define the substrate, or range of substrates,
that OsSULTR3;6 is capable of co-transporting through further work
with heterologous systems. For this, the oocyte and TEVC system will
continue to be useful, as we can easily alter extracellular bath solutions
and determine whether these affect the output current under different
voltages. Additionally, expression of OsSULTR3;6 in Saccharomyces
cerevisiae will be useful for screening nutrient transport via growth as-
says. S. cerevisiae mutant strains exist for both the sulfate (YSD1) and
phosphate (PAM2) uptake pathways, allowing for growth complemen-
tation assays on limiting media [23,24]. Further hints from the literature
and our plant nutrition experiments (discussed below) point toward
either phosphate or sulfate as substrates of OsSULTR3;6, making these
yeast strains an attractive starting point.
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3. OsSULTR3;6 localization

In planta subcellular localization, combined with the functional data
from the X. laevis and S. cerevisiae system, will provide insight into the
physiological impact of OsSULTR3;6 activity by revealing the com-
partments between which transport occurs. In contrast to the other
SULTR sub-groups, which each maintain consistent subcellular locali-
zation within a group, the SULTR3 members have been reported to
localize to the plasma membrane, endoplasmic reticulum, or chloroplast
[9,10,25].

We have undertaken initial efforts to localize OsSULTR3;6 by tran-
sient expression of a YFP::OsSULTR3;6 fusion protein in Nicotiana ben-
thamiana epidermal cells. Confocal microscopy shows good expression
in the epidermal cells with clear localization to the periphery (Fig. 2).
Furthermore, co-expression alongside plasma membrane- or tonoplast-
mCHERRY membrane markers shows large areas of overlap of the
fusion protein and marker signals (Fig. 2). In the images we obtained,
however, due to the large volume of the vacuole of the N. benthamiana
epidermal cells, we were unable to unequivocally distinguish the two
membranes. We will be expressing OsSULTR3;6 in both Oryza sativa and
Arabidopsis thaliana mesophyll protoplasts to address this challenge.

4. Editing of OsSULTR3;6

Gene editing technology has been used to modify S genes to reduce
disease susceptibility, and to knockout genes to study their function
[26-28]. We previously developed two sets of edited rice lines as 1)
proof of principle for resistance to BLS through loss of susceptibility and
2) as a resource to elucidate the function of OsSULTR3;6 (our unpub-
lished results). The first set of lines are edited at the Tal2g effector
binding element (EBE) in the promoter of OsSULTR3;6. The second are
edited to remove the CDS of OsSULTR3;6. In representative lines from
each set, the wild-type bacterium showed no difference in virulence
from the tal2g mutant, indicating loss of the susceptibility function of
OsSULTR3;6 in these lines (Fig. 3). Further, based on preliminary phe-
notyping the lines had no apparent growth defects compared to unedited
plants under normal, controlled conditions (Fig. 3).

Both sets of lines yielded seeds. We do not know yet whether the EBE
edit affects endogenous expression patterns of OsSULTR3;6, but if not, it
appears that this edit could indeed be deployed as a tractable form of
quantitative resistance to BLS that might slow disease progression and
protect yields while imposing less selection on the pathogen to evolve to

Brightfield Merge

b

Fig. 2. Expression of a YFP-OSSULTR3;6 fusion protein in Nicotiana benthamiana epidermal cells: A YFP::OsSULTR3;6 fusion protein was transiently co-expressed
with a plasma or tonoplast membrane marker, consisting of a PIP2A or y-TIP fusion to mCHERRY, respectively. Panels left to right show YFP, mCHERRY (false-

colored cyan), brightfield, and a merge of all channels.
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Fig. 4. OsSULTR3;6 influences rice seed function and nutrition. A) Proportion of total wild-type Nipponbare vs. Asultr3;6 seeds germinated over a six-day period,
with or without GA; supplementation. Triangles, Nipponbare; circles, Asultr3;6. Black fill, with GAs; grey fill, without. B) Total phosphorus concentration measured
by ICP-OES in Nipponbare and Asultr3;6 seeds. C) Total sulfur concentration measured by ICP-OES in Nipponbare and Asultr3;6 seeds.
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upregulated in the rice inflorescence, specifically within the developing
embryo (https://ricexpro.dna.affrc.go.jp; Locus ID 0s01g0719300). We
noticed in working with seeds of OsSULTR3;6 CDS deletion (Asultr3;6)
plants that they were slow to germinate. We quantified this phenomenon
in germination assays, and found a 25% reduction in germination
compared to the wild type (Fig. 4a). This observation led us to hy-
pothesize that the loss of OsSULTR3;6 transport causes nutritional
changes in the seed directly, or indirectly via effects on plant
metabolism.

Given that the plant hormone abscisic acid (ABA) is associated with
repressing seed germination, we investigated the connection between
OsSULTR3;6 and ABA [29]. Cysteine, a product of the sulfate assimila-
tion pathway, is a sulfur donor required for the maturation of a mo-
lybdenum co-factor (MoCo) used by abscisic aldehyde oxidase 3 (AAO3)
to catalyze the final oxidation step of the pathway to generate abscisic
acid from abscisic aldehyde [30]. We hypothesized that OsSULTR3;6
activity influences sulfate levels in the reproductive tissue and subse-
quently the ABA concentration of the seed.

As a first step to test this proposed connection between OsSULTR3;6
and ABA, we repeated the same germination assays, but with or without
gibberellic acid (GA3) added to the medium. GA3 had no effect on the
germination rate of the of the Asultr3;6 seeds or of the wild-type seeds
(Fig. 4a). These results do not exclude the possibility of a connection
between OsSULTR3;6 and ABA, but prompted us to next investigate the
possibility of direct nutritional effects. We used inductively coupled
plasma-optical emission spectroscopy (ICP-OES) to measure the con-
centration of elements within Asultr3;6 vs. wild-type seeds, with a focus
on sulfur and phosphorus. Seeds from Asultr3;6 plants had similar levels
of sulfur to those measured in wild-type seeds, but contained more
phosphorus (Fig. 4b and c).

The above data suggest two attractive hypotheses surrounding the
role of OsSULTR3;6 in seed germination: 1) OsSULTR3;6 transports
sulfate, affecting sulfur metabolism, and consequently, levels of ABA
biosynthesis and accumulation in seeds; 2) OsSULTR3;6 is a phosphate
transporter that controls P content in seeds. The first hypothesis is
plausible even though total sulfur in Asultr3;6 seeds was similar to that in
wild-type seeds. Plant tissues may have similar overall nutrient contents,
yet different subcellular partitioning of ions and downstream metabo-
lites. Further, SULTR3s are involved in sulfate loading into the chloro-
plast and its transport function is positively correlated to a higher
concentration of cysteine and ABA in Arabidopsis thaliana [25]. We plan
to further interrogate the first hypothesis through direct measurement of
ABA levels in the seeds and reproductive organs of wild-type vs.
Asultr3;6 plants.

The second hypothesis is supported by the increased levels of total
phosphorus observed in Asultr3;6 seeds compared to the wild type.
Despite the gene family name, several SULTR homologs in dicots and
monocots have been reported as functional phosphate transporters [9,
15,31]. Outside of the SULTR family, increased seed phosphorus medi-
ated by the OsPHO1;2 transporter was identified as the cause of defec-
tive grain-filling phenotypes observed in forward genetic screens [32].
This excess of P prevented adequate grain filling due to a negative
feedback loop between inorganic phosphate (P;) and ADP-glucose
pyrophosphorylase (AGPase), limiting starch biosynthesis. Investiga-
tion of total starch levels and starch granule morphology in Asultr3;6
seed relative to wild-type seed will be a useful first step in testing the
phosphate transport hypothesis for OsSULTR3;6 function.

Aside from direct effects on the seed itself, the germination defects
we observed could be due to effects in the reproductive tissues in the
parent plant. This notion is supported in the literature for both S and P
nutrition. For example, mutation of a rice transporter involved in
facilitating ABA movement between the flag leaf to the nascent embryos
on the panicle led to decreased grain filling and seed viability [33]. This
finding supports the idea that reduced sulfate accumulation in the flag
leaf, leading to reduced ABA, could result in less successful grain filling
and development. In Arabidopsis, loss of a vacuolar P transporter
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resulted in excess P in the pistil, causing a physiological defect that
restricted pollen tube growth [34]. These considerations necessitate an
investigation of differences in Asultr3;6 plants, relative to wild-type
plants, with respect to mineral nutrition in the reproductive organs,
throughout floral and seed development.

6. How OsSULTR3;6 might contribute to BLS

Macro- and micronutrients regulate various physiological processes
relevant to disease such as stomatal closing, callose deposition, and
defense hormone signaling [35]. The substrate specificity and direc-
tionality of OsSULTR3;6-mediated transport will provide clues
regarding the downstream processes that might be contributing to its
role in BLS. Based on what we have learned so far, one possibility is that
pathogen induction of OsSULTR3;6 in leaf tissue contributes to disease
development by regulating abscisic acid signaling via a sulfate transport
function [11,36]. Perturbations in ABA in guard cells could be expected
to dysregulate stomatal opening and closing. Depending on the nature
and timing of the dysregulation, this could contribute to water accu-
mulation in the leaf apoplast (water-soaking) and/or facilitate bacterial
exudation to the leaf surface, phenotypes both attributed to OsSULTR3;6
induction [2]. A second possibility is that OsSULTR3;6 mediates nutrient
efflux from cells, creating a hypertonic apoplast, and this draws water
out of cells via osmosis, resulting in greater water-soaking, lesion
expansion, and exudation. A third way OsSULTR3;6 might contribute to
disease development is by dampening the plant defense-associated
oxidative burst by driving biosynthesis of sulfur-containing scavengers
of reactive oxygen species such as glutathione [37]. Considering the
temporally dynamic nature of plant-pathogen interactions, it is not un-
reasonable to speculate that more than one of these (or other) mecha-
nisms underlie the contribution of OsSULTR3;6 to BLS. Ongoing
elucidation of the fundamental properties of the transporter and its
impact on plant physiology will help determine and refine the models to
be tested.
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