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Abstract: In the study, a series of wind tunnel tests were conducted to investigate wind effects acting
on dome structures (1/60 scale) induced by straight-line winds at a Reynolds number in the order
of 10°. Computational Fluid Dynamics (CFD) simulations were performed as well, including a
Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) simulation, and their
performances were validated by a comparison with the wind tunnel testing data. It is concluded that
wind loads generally increase with upstream wind velocities, and they are reduced over suburban
terrain due to ground friction. The maximum positive pressure normally occurs near the base of
the dome on the windward side caused by the stagnation area and divergence of streamlines. The
minimum suction pressure occurs at the apex of the dome because of the blockage of the dome
and convergence of streamlines. Suction force is the most significant among all wind loads, and
special attention should be paid to the roof design for proper wind resistance. Numerical simulations
also indicate that LES results match better with the wind tunnel testing in terms of the distribution
pattern of the mean pressure coefficient on the dome surface and total suction force. The mean and
root-mean-square errors of the meridian pressure coefficient associated with the LES are about 60%
less than those associated with RANS results, and the error of suction force is about 40-70% less.
Moreover, the LES is more accurate in predicting the location of boundary layer separation and
reproducing the complex flow field behind the dome, and is superior in simulating vortex structures
around the dome to further understand the unsteadiness and dynamics in the flow field.

Keywords: wind loads; Computational Fluid Dynamics simulation; wind tunnel testing; spherical
domes; turbulence modeling

1. Introduction

Spherical domes are commonly used as long-span space structures for public assembly
venues, such as conference centers, concert halls, arenas, etc., since such a structure is at
a distinct advantage due to high space usage and economic benefits. An example of a
spherical building shown in Figure 1 is the Avicii Arena in Stockholm, Sweden. Its diameter
is 110 m, and its inner height is 85 m. Winds can generate large loads on dome structures be-
cause of their large outer surface area, as well as severe vibrations because of their long-span
and lightweight roofs. In fact, dome structures have suffered significant damage, and even
total collapse, during past strong wind events. For example, the New Orleans Superdome
suffered severe damage including the loss of its roof during Hurricane Katrina in 2005
(Figure 2a). The Reno/Virginia peak dome collapsed due to strong wind gusts in Western
Nevada in 2008 (Figure 2b). Therefore, the wind resistance design of dome structures
for structural failure elimination and safety assurance is necessary, and the aerodynamic
behavior of dome structures and wind-induced loads need to be well understood.
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(RANS) simulation. The DNS directly solves N-S equations and resolves all scales of
motion, and therefore, fine grid resolution down to the Kolmogorov scale is required. For
example, the total number of grid points is estimated to be 102 for a three-dimensional
simulation of a turbulent flow with a Reynolds number of 106 [12]. Due to the high
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computational demand of the DNS, its application to wind engineering is difficult and
limited, especially for high Reynolds number problems. To reduce computational demand,
the LES is developed to only resolve large scales of motion while smaller scales are re-
moved from the flow variables by filtering the original N-S equations in the physical space.
Smaller scales are then analyzed by subgrid-scale models, such as the Smagorinsky-Lily
model [13], the wall-adapting local eddy-viscosity (WALE) model [14], and the dynamic
Smagorinsky-Lilly model [15,16].

In the RANS simulation, N-S equations are averaged over all scales of motion, and
therefore, the turbulent flow is described by statistical parameters, e.g., mean velocity.
The effects of turbulent fluctuations on the averaged flow are represented by additional
terms obtained in the averaging process, which are called Reynolds stresses prescribed by
turbulence models. Turbulence models are categorized according to the number of required
transport equations. For a one-equation model, there is only one transport equation, and the
Spalart-Allmaras (SA) model [17] is commonly used. The SA model shows the reasonably
robust and time efficient capability to solve mildly separated flows. Additionally, it uses
less memory and converges easily. For the two-equation model, there are two transport
equations. The standard k-¢ [18] and standard k-w models [19] are commonly deployed.
Turbulent kinetic energy is described by k, and the dissipation rate of k is described by ¢
and w. Due to the fact that k at the impinging region is overestimated by the standard k-¢
model when the airflow passes over an isolated obstacle [12], the realizable k-¢ model [20]
and renormalization group (RNG) k- model [21] are developed. The standard k-w model
is sensitive to inlet boundary conditions, and then the shear stress transport (SST) k-w
model [22-24] is developed, which predicts boundary layer separation and reattachment
more accurately.

The LES and RANS simulations with the RNG k-¢ turbulence model were applied to
study velocity profiles in the wake of a dome [25,26]. The RNG k-¢ model performed worse
in simulating flow characteristics in the wake of the dome, and the LES showed better
agreement with measurements. The LES was also applied to simulate mean pressures acting
on a dome structure, which matched fairly well with experimental results [27]. Locations of
boundary layer separation were predicted through the LES utilizing different subgrid-scale
models, consisting of the Smagorinsky-Lily model, the WALE model, and the dynamic
Smagorinsky-Lily model [28]. Since very fine grids were used in the LES, only minor
deviations among different subgrid-scale models were observed. Wind pressures on scallop
domes with a parabolic form of grooving were studied based on CFD simulations, and
equations for surface pressure distribution were developed considering different height-to-
span ratios [29]. Intensive CFD studies were conducted for dome structures to explain the
capability of the CFD technique for determining appropriate design wind data [30]. It was
concluded that pressure coefficients on the windward side and apex of the dome agreed
well with corresponding Euro Code values, while pressure coefficients on the leeward side
were different from all code standards. Wind loads acting on fifteen traditional domes were
simulated by the CFD approach, and wind loads, especially suction force, were significantly
affected by the shape of the dome [31].

The literature reviewed indicates that the DNS is able to provide every detail of the
turbulent flow, but it is difficult to implement in flows of practical interest because of high
computational demand. In comparison to the RANS simulation, the main properties of
turbulent flows can generally be obtained by the LES with higher accuracy, but at a cost of
higher memory usage and CPU time [32-34]. The accurate calculation of turbulent flow
properties affects the reproduction of the flow structure of the wind field and hence, the
accuracy of the wind pressure distribution on the dome surface. Considering respective
advantages of the LES and RANS simulations, both of them are adopted in the current
study. In the RANS simulation, the SA and SST k-w turbulence models are selected because
better prediction of boundary layer separation and reattachment can be achieved. More-
over, they can obtain relatively accurate results while reserving computational efficiency
and good convergence. The LES is also employed because it is time-dependent and can
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accuracy of the wind pressure distribution on the dome surface. Considering respective
advantages of the LES and RANS simulations, both of them are adopted in the current
study. In the RANS simulation, the SA and SST k-w turbulence models are selected be-
cause better prediction of boundary layer separation and reattachment can be achieved.
Moreover, they can obtain relatively accurate results while reserving computatlonaflé’ff%

ciency and good convergence. The LES is also employed because it is time-dependent and
can reproduce turbulence with much higher accuracy. For wind engineering applications,
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Fighite 3: The dome model for wing tynnsl testing:

2.2. Introduction of WOW EF
2.2. Introduction of WOW E
Figure 4 presents the WOW EF, which is a large wind tunnel with an open test section.
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wall, which is used to stop wind-borne debris, is located 60 m to the North of the turning
table center (Figure 4b).
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The Cobra Probe manufactured by Turbulent Flow Instrumentation is used to meas-
ure the flow field at a frequency of 2500 Hz. It is a four-hole pressure probe, and resolves
three components of velocity and local static pressure in real-time. The local coordinate
system of the Cobra Probe is illustrated in Figure 7, which is used to calculate velocity
components of each probe.
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2.4. Testing Cases

Three different cases for the wind tunnel testing were conducted (Table 1). In Case 1,
open terrain configuration is considered for the wind field and the dome is removed. In
Cases 2-3, the dome is placed in the wind tunnel. The open terrain is employed in Case 2,
while the suburban terrain is employed in Case 3. Within each case, three different levels
of velocity are generated, i.e., 24 m/s (Level I), 34 m/s (Level II), and 44 m/s (Level III) at

thoe hetabht Af N 147 v (earroctnmdime Fa 10 v 3 F111 arala)
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2.4. Testing Cases

Three different cases for the wind tunnel testing were conducted (Table 1). In Case 1,
open terrain configuration is considered for the wind field and the dome is removed. In
Cases 2-3, the dome is placed in the wind tunnel. The open terrain is employed in Case 2,
while the suburban terrain is employed in Case 3. Within each case, three different levels of
velocity are generated, i.e., 24 m/s (Level I), 34 m/s (Level II), and 44 m/s (Level III) at the
height of 0.167 m (corresponding to 10 m in full scale).

Table 1. Cases for the wind tunnel testing.

Case 1 Case 2 Case 3
Dome model present? No Yes Yes
Terrain configuration Open Open Suburban
Wind speed level I I I I I I I I I

3. Experimental Results and Discussion
3.1. Mean Velocity Profile

Profiles of mean wind velocity measured over the open terrain without the dome
(Case 1) are depicted in Figure 10. Three different levels of velocity are generated, which
are specified by the wind speed at the height of 0.167 m, 24 m/s (Level I), 34 m/s (Level II),
and 44 m/s (Level III). To reduce measurement uncertainties, the first and last 10 s of each
velocity time history are removed, and then the mean wind velocity is determined based on
the middle range of the record. As the elevation increases, the mean velocity increases. The
power law is used to fit mean velocity profiles, and the applied exponent is 9.5 for the Open
terrain (Surface Roughness C) based on ASCE 7-16 [35] The coefficients of determination 8

respectively. The mean Veloc1ty proﬁle at Level III agrees w1th the power law the best

3.0

g
o

Height (m)
tn

o

O Case 1-1
¢ Case 1-11 ||
+ Case 1-1II

o
n

0.0 ‘
20 30 40 50 60 70

Velocity (m/s)

Figure o mideef srmelangarsdwairtivelocperoespemihesinheidneet Gaeedodme (Case 1).
3.2. Turbulence Intensity and Integral Length Scale

3.2. %rgk{{g{%g éﬁﬁ’g%%%(lﬂlé tﬁ%ﬂ&é@ g&ﬂhé Caécale expressed as a percentage, that

is, tuifuntbudemcendi th €Td)r flow dsfiteirastdrezedib pfarsotln expsgesed afsthepfucentage,
yaind it BReiity tre)ness defndd Acereding Jothe sraraadsHelaetnne fluctus
{rHied FERERP {the mean velocity, accordmg to the measured velocity time series (E
tion (1)).

W= ¢%<us<2+u92+w2) 0
U3 + Uz + Uz

12 2
up” +up” g’

U= /U§+U3+U§



Sustainability 2023, 15, 4635

\/ (e’ +ul® +uy) (

U:\/U§+U§+U§ 8 of 22

Sustainability 2023, 15, 4635

where u’ is the root-mean-square of the fluctuating components of the measured velo
ityhetk s idhaneatinveine qelncifyttevitucthetsagrertippagpesicfdhéhmeesuaddcielocdoyn ponen
ddeisritéaarad yindibsteipis et therrdize Hipe retiddhibyes teboTihfsp@psadnisvatiethe ope
tBidieatebRr sy bast &%ﬁ’oﬂ* : TRUT] ST/ TR Sed Rt Y Thi S Reralit nhe1 ht. |
beaﬁ% cin %uatl § gl a%ka:lﬁa esnv%'ﬁ}é {fgﬁgncreasmg height. In general, the

re a aroun o at glf erent e1g
1.4+ O Case I-1 |
¢ ¢ Case 1-11
1.2¢ + Case 1-111[

—
(e}

Height (m)
[}
oo

®
0.6
04r
]
02¢ Py i ]
0 10 20 30

Turbulence intensity (%)

Hiigaire 11 Truibbiclegec tensitw il 2Ing brighleoyhit erasy topein téeassri Case 1).

The integral length scale of turbulence is a measure of the average size of turbulent

eddidhanetegra té@mgtmﬂéh%ﬁgtmm@mgﬁr@&mﬁgm af&bﬁﬁyﬁg%g%za&@urbu%el

a@oclaté%bvfﬂt eh@mpi%ﬂﬂgdmdaiamﬁ@wﬁg@gddngm&mmp@ﬂmﬂddﬁ ltéletébhctuahr

R R R e
i) filo W(ill C’g{llr%aﬁese ravels w

'Un._- > t % H
BRore tan o(ei glg’cs SEID;&E?I i c%ﬂgj(c)%o Vlous ﬁ] oun éﬂf e Veloé‘i UX [37
H}ﬁ }ﬁ LY is presente in Flg}ﬁe I 1{@1‘%,? rom 5mto 7m X is mo:
Lx = @)

where R(7) is the autocovariance functlon of the longigltudmal velocity fluctuations.
where R(7)1s the autocovariance function of the longitudinal velocity fluctuations.

1.4+ O Case 1-1 |-
© % 1o Case I-II
1.2+ + Case 1-III}|

—
[w)

Height (m)
(=]
[ee]

)
0.6+
0.4+
[V 5}
0.2¢ i o+

0.0 0.2 04 06 0.8 1.0
Integral length scale (m)

Hiighire 1 iestldenety it kealens BRgH 83 10p6R (SR (edfai: (Case 1).
3.3. Power Spectral Density
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3.3. Power Spectral Density

Figure 13 presents the power spectral density (PSD) of velocity in the along-wind
direction at a height of 0.67 m (dome apex) for Case 1-III over the open terrain. The meas
ured PSD agrees fairly well with the ESDU spectrum, except at around 10 Hz where the

experimental data are higher.
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Figure 13, Power spectral density (PSD) of veloeity in the along-wind direction at a height of 0.67 m
(dome apex) over open terrain (Case 1-1II).

3.4: Reynolds Nusmber
The Reyholds number is the 1atio of inertial o viscous forees, which it definedi s
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Equatien (3), the Reynelds numbers for three levels of velgeity in €ase 1 witheut the deme
medel are determined as 113 x 19 11359<10vane 4675 1010esregicelvely.

3.5. Mean Pressure Coefficient on the Center Meridian of the Model

The dimensionless number, the pressure coefficient (Cp), is used to describe the relative
wind pressure acting on the dome model. It is normalized by the dynamic pressure at the
apex of the dome as:

Cp = PlliP;Ef )
2PV
where P; — P, s is measured by the Scanivalve instrumentation, indicating the pressure
difference between the local and reference pressure P,.; V is the reference mean velocity,
which is the same as in Equation (3). In cases 2-3, the V from each wind speed level is used
to calculate the pressure coefficient under the associated case, i.e., 27 m/s is used for wind
speed level I, 38 m/s for wind speed level II, and 49 m/s for wind speed level III.

Mean pressure coefficients (Cp) on the center meridian of the dome model are pre-
sented in Figure 14. For all Cases, the profiles are of a similar shape, which are consistent
with other reported studies [1,2,5,7]. The maximum pressure occurs at an elevation of
about 20 degrees, and the minimum pressure appears at around 90 degrees. At around
45 degrees, the positive pressure changes to negative pressure. In addition, the pressure
coefficient generally increases with inflow wind velocity, and the magnitude of the pressure
coefficient over the suburban terrain is lower than that over the open terrain.

The results associated with Case 2-III are further compared to other studies with similar
Reynolds numbers using smooth hemispheres in boundary layer flows [1,7]. Figure 15
indicates that the general trends among different studies are similar. A minor difference is
found regarding the peak values of positive and negative pressure. At around 120 degrees,
the curve of the present study is relatively different from the other two studies, implying
that the pressure distribution on the leeward side of the dome may be different. This is
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coefficient over the suburban terrain is lower than that over the open terrain.

The results associated with Case 2-III are further compared to other studies with sim-
ilar Reynolds numbers using smooth hemispheres in boundary layer flows [1,7]. Figure
15 indicates that the general trends among different studies are similar. A minor difference
is found regarding the peak values of positive and negative pressure. At around 120 de22

OTo0 c COTvVe O O DICSC SIOAY ociativelv—d a O c othe WO adies,

implying that the pressure distribution on the leeward side of the dome may be different.
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Figure 14. Comparison of pressure coefficient (Cp) on the center meridian of the dome model.
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Figure 15. Comparison of pressure coefficient (Cp) on the center meridian of the dome model with
other studies [1,7].

g’:ﬁﬂlﬁ?iﬁ?’n{} a%sgwls(ﬁ Jessure ¢ {)frlﬁéegit,{ ;j@apgeon the center meridian of the dome model with

3.6.1. Open Terrain

3.6. Viiglirgeseishawst e mondpDessvusudisteibution on the dome surface over the open

ermaipy Foreach velocity level, the wind velocity ramps from 0% to the target wind velocity,
and then keeEs constant for 60 s. The mean Pressure coefficient is calculated according to
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ative pressure coefficient occurs over the apex of the dome, which is around —1.0. Then,
negative pressure increases towards the leeward edge, and the negative pressure coeffi-
cient near the base of the dome on the leeward side is around —0.2. Among the three ve-
locity levels, the area enclosed by the isoline of 0.6 near the base increases with the increase
of wind speed. For the area enclosed by the isoline of —1.0, only a small area appears for
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enclosed by the isoline of 0.6 near the base increases with the increase of wind speed. For
the area enclosed by the isoline of —1.0, only a small area appears for Case 2-1, a gl
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larger area for Case 2-1I, and a Very large area for Case 2-III This indicates that wl}gn }l}g
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Figure 16. Contour plots of pres(sb}e coefficients over open terrain: (a) é%)se 2-I; (b) Case 2-1I; (c) Case

2-I11.
Figure 16-Conniauplplobt pfepsaseus faatitieateyssroemniiertajCadaR Cas) LdsdD)If pepCdb

&H%ass Biiban Terrain

%g%@@{{ﬁ}gﬁ%}ﬂs the wind pressure distribution over the suburban terrain. The
sam .{; gllﬁ%)% Bel ing andidata CSSINSR 1

G\

%@%

u 9 O F ple.
s1 1v 3l essure co 1cients are ene ount ban
y caus 6% r n SS resu t om t su terralﬁl
ra . This s pro d ig oF Suirface roug ss resu 1ng rom "the su urban

Case 3-1 terrain. Case 3- II Case 3-II1

—> Velocity — Velocity
Figure 17 Contsurrlntsophpesdiiec cotificiants voesutiidareteata{fd ) @aSaser3h) i seda13 ()

@EBAB-II.
Figure 17. Contour plots of pressure coefficients over suburban terrain: (a) Case 3-I; (b) Case 3-1I; (c)
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tional moment M 2, and the drag force Fy, are very small, which can be neglected. In terms
of Fy and My, they generally increase when the wind velocity increases.
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moment My, and the drag force Fy are very small, which can be neglected. In terms of Fx
and My, they generally increase when the wind velocity increases.

Table 2. Force and moment.

Open Terrain Suburban Terrain
Case 2-1 Case 2-I1 Case 2-II1 Case 3-1 Case 3-11 Case 3-II1
Fx (N) 459 74.1 136.3 59.7 76.4 127.4
Fy (N) —2.6 16.5 1.1 -9.6 —19.6 —235
F7 (N) 597.2 1188.4 2151.8 479.2 1056.0 1764.8
Myx (N-m) —-1.1 6.9 0.4 —4.0 —8.2 —9.8
My (N-m) —19.1 —31.0 —57.0 —249 -31.9 —53.2
Mz (N-m) —0.02 —0.03 —0.08 —0.03 —0.05 —0.08

Force and moment coefficients are also compared, which are normalized by the dy-
namic pressure as defined in Equation (5). Table 3 lists the calculated force and moment
coefficients. The suction force coefficient is also the largest among all coefficients. However,
the difference of the suction force coefficient among different velocity levels is smaller be-
cause of normalization. For example, the difference of the suction force coefficient between
Case 2-I and Case 2-III is around 9%, but such a difference of suction force is around 72%.

_ K _ My

Cr = Tpv2a’ Chy 1pV2AH
_ I — My

CFY - %pva/ CMY - %pVZAH (5)
_ _F — My

Cr, = Tov2a’ Cmz TpV2AH

where Fx, Fy, and F; are forces exerted onto the dome; My, My, and My are moments
exerted onto the dome; H is the height of the dome apex (0.67 m); A is the projected area of
the dome model on a plane parallel to the cross-section of the wind tunnel (0.97 m?); V is
the reference mean velocity at the dome apex (27 m/s, 38 m/s, and 49 m/s from Case 1 for
three velocity levels).

Table 3. Force coefficient and moment coefficient.

Open Terrain Suburban Terrain
Case 2-1 Case 2-11 Case 2-1I1 Case 3-1 Case 3-11 Case 3-II1
Cry 0.11 0.09 0.10 0.15 0.09 0.09
Cr, —0.01 0.02 0.00 —0.02 —0.02 —0.02
Cr, 1.46 1.46 1.59 1.17 1.30 1.31
Chwiy 0.00 0.01 0.00 —0.01 —0.02 —0.01
Cwmy —0.07 —0.06 —0.06 —0.09 —0.06 —0.06
Cm, 0.00 0.00 0.00 0.00 0.00 0.00

4. Numerical Simulations and Discussion of Results

In the study, the commercial code Fluent 19.2 is utilized to numerically simulate the
wind tunnel test. The profile of the mean velocity measured at the turning table center
without the dome model is used as the velocity input. Since the profile of the mean velocity
is measured over the open terrain, only the wind tunnel test over the open terrain with
maximum wind velocity is numerically simulated, that is, Case 2-III. In addition, the
Reynolds numbers of the numerical simulation and the wind tunnel test are the same.

4.1. Numerical Simulations of Wind Tunnel Testing
4.1.1. Numerical Model

Figure 18 presents the numerical model used for CFD simulations. The wind tunnel,
from the test section to the debris wall, is numerically simulated. Part A of the numerical



1Cal model 1S 66.10U In 1ong, 159.24 M wide, and 7.14 I nign, ana tne dimensions are tne
same as those of the wind tunnel. To investigate wind loads exerted onto the dome model,
it is positioned at the same location as the turning table center.

The velocity inlet is set up on the left surface of Part A, which represents the cross
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Bgimilen¢6pds apthiediidertbé IESHitnaatestinng sivbo tifletghle acalesy dheghiditpdepbnd-
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SuHags JRus 9 $he inherent difference between the RANS and LES, different meshing
sizes arep applied. According to Section 3.2, the integral length scale for the turbulent flow
is around 0.6 m. Moreover, the Kolmogor [38] is estimated from Equation (6) as
in the order of 107> m. In reference % & h lgngth scales, the grid independence study (6)
is performed to find the optical meshing sizes for the RANS and LES. Consequently, the
minimum size of the cells for the RANS and LES are 0.3 m and 0.001 m, respectively. The
wall Y+ values for the RANS and LES are 140 and 15, respectively. The total numbers of the
generated cells for the RANS and LES are 0.43 million and 3.12 million, respectively.

3\ 1/4
= (%) ©®)

where v is the kinematic viscosity, which is defined as the ratio of the dynamic viscosity of
air (u) over the density of air (p); € is the rate of dissipation, which is scaled as U3/L (Uis
the mean velocity and L is the integral length scale).
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where v is the kinematic viscosity, which is defined as the ratio of the dynamic viscosity
Sustainability 2023, 15, 4635 of air () over the density of air (p); ¢ is the rate of dissipation, which is scaled as 1W3§%2
(U is the mean velocity and L is the integral length scale).
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4.1.2. Determination of Velocity Input o . ) .
The measured mean velocity shown in Figure 10 is used to determine the velocity
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given in Equation (7), which is based on the power law [36].
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where z is the height (m); z,.. is the reference height of 0.167 m, corresponding to 10 m
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is not considered here. In the RANS simulations, the coupled solver combined with the
pseudo transient mechanism is selected, and the second order discretization scheme is
used for momentum and continuity equations. In the LES, the semi-implicit method for the
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with the pseudo transient mechanism is selected, and the second order discretization
scheme is used for momentum and continuity equations. In the LES, the semi-imipbiici?

method for the pressure linked equation-consistent (SJIMPLEC) as a segregated solver is
used. The bounded central differencing discretization scheme is used for momentum
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variables are monitored to reach relatively stable conditions for the achievement of the
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Figure 21. Comparison of pressure coefficients on the center meridian of the dome model between
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numefiegidisttiubrnsed the merndprasswargetficient from the CFD simulations are shown
in Figure 22. The overall patterns from all cases could match with the wind tunnel testing,

that is, the wind pressure is positive near the base of the dome on the windward side,
negative pressure is observed on the leeward side, and the highest intensity of negative
pressure occurs at the apex of the dome. The isolines of numerical results are smoother than
the experimental results, which is probably caused by finer grids for data processing and
certain idealization of numerical simulations. Among the three cases, the isolines from the



shown in Figure 22. The overall patterns from all cases could match with the wind tunnel
testing, that is, the wind pressure is positive near the base of the dome on the windward
side, negative pressure is observed on the leeward side, and the highest intensity of neg-
ative pressure occurs at the apex of the dome. The isolines of numerical results are
Sustainability 2023, 15, 4635 smoother than the experrmental results, whrch is probably caused by finer grrds for7data

isolines from the LES results agree with the wind tunnel testmg the best and only minor
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model causes the convergence of streamlines, and then the airflow accelerates around
the dome apex. Meanwhile, negative pressure occurs and reaches its peak value at the
apex of the dome (Figure 22). This can be explained by the mass continuity and Bernoulli
theorems. On the leeward side, boundary layer separation and another recirculation region
behind the dome are formed, and then the airflow decelerates. The associated area is
affected by negative pressure. The above findings are consistent with the observations
reported by [26,41].
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simulations. However, only the LES exhibits the two opposite rotating vortices. Even at
the upper plane (Figure 25), rotating vortices are still invisible for the RANS simulations,
while these vortices become stronger and extend more in the wake for the LES. In sum-
mary, the simulated time averaged streamlines in Figures 23-25 associated with the LES
Sustainability 2023, 15, 4635 match better with other reported studies [26,27,41], and its back calculated point of b&igid2

ary layer separation is closest to that estimated from the wind tunnel testing.
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5. Conclusions

In the study, wind effects acting on dome structures are investigated based «
scale (1/60) wind tunnel testing and CFD simulations. In the wind tunnel testi
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5. Conclusions

In the study, wind effects acting on dome structures are investigated based on large-
scale (1/60) wind tunnel testing and CFD simulations. In the wind tunnel testing, both
open and suburban terrain configurations are considered, and three velocity levels are
applied to the dome model. Based on the experimental results, the following summary
can be made. The magnitude of the mean pressure coefficient generally increases with the
inflow wind velocity and hence, increasing wind forces, and the magnitude of the pressure
coefficient for the suburban terrain is lower than that for the open terrain. The maximum
pressure coefficient occurs at an elevation of about 20 degrees, and the minimum pressure
coefficient appears at around 90 degrees. Suction force is the most significant among all
wind-induced loads, which may damage the roof or even lift the roof up, and therefore,
special attention should be paid to wind resistance design.

The LES and RANS simulations with the Spalart-Allmaras model and SST k-w model
are performed and their performances are validated against the wind tunnel testing. The
following conclusions can be drawn based on the numerical results. In terms of the mean
pressure coefficients on the center meridian and the overall wind pressure distribution on
the dome surface, the mean and root-mean-square errors associated with the LES are much
smaller than the RANS. Regarding time averaged flow patterns, although both the RANS
and LES can capture the horseshoe vortex, boundary layer separation, and reattachment
behind the dome, the LES is able to predict the location of the boundary layer separation
more accurately and regenerate stronger and more detailed vortices in the wake region.
Moreover, more details of the instantaneous turbulence structure around the dome model
can be provided by the LES, while this cannot be achieved by the RANS simulations.
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