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the effect of canopies and parapets on the wind loads on RTWCs can 
further guide RTWC selection, especially at roof positions where the 
canopy or parapet is attached. 

2.7. Presence of surrounding building 

Prior to 1991, only a few studies (e.g., Hussain and Lee, 1980; 
Vickery, 1976; Walker and Roy, 1985) considered the effect of sur
rounding buildings on the external pressures on low-rise buildings. Ho 
et al. (1991) considered a building in a typical industrial area in North 
America and an isolated building and showed that the isolated building 
experienced higher wind loads than the building located in a city (or 
urban center). However, while mean wind loads were lower, fluctuating 
wind loads on roofs were higher for buildings in cities. A similar result 
was obtained by Case and Isyumov (1998). A study by Surry and Lin 
(1995) concluded that peak, mean and rms suctions on roofs were 
reduced by the presence of surrounding buildings. 

Wind pressure fluctuations can have significant influence on fatigue 
loads in RTWCs (Vickery and Bloxham, 1992). An understanding of this 
connection can guide engineers in the selection of an appropriate RTWC. 
Chang and Meroney (2003) combined both experimental and numerical 
tests to study the effects of surrounding buildings and, like Surry and Lin 
(1995), noted a reduction in peak, mean and rms Cp’s. They noted that 
the shielding effect was dependent on the ratio of distance between 
buildings and building height, and that shielding effects were higher in 
urban than in open country settings. However, there are no specific 
studies that have focused on the impact of surrounding buildings on 
RTWC loads. 

3. Internal pressures and RTWCs 

The crucial role of the internal pressures in determining the net wind 
loads on the building envelope (external walls and roofs) is now well 
recognized. The relative uniformity and small magnitude of internal 
pressures, unlike external pressures, in a nominally sealed building en
velope (Ginger, 2000; Stathopoulos et al., 1979; Oh et al., 2007; Ala
wode et al., 2023) initially resulted in less focus and fewer studies on the 
internal pressures in buildings, in comparison to external pressures. 
However, an opening in the building envelope – produced either 
intentionally (e.g., by doors left open) or accidently (e.g., windows or 
doors broken by flying debris or small cracks of the envelope) results in 
high internal pressures, sometimes higher than external pressure fluc
tuations in situations of Helmholtz resonance, and could easily lead to 
increased roof suction and damage (Conner et al., 1987; Guha et al., 
2011; Yeatts and Mehta, 1993). Experimental studies by Chowdhury 
et al. (2013) have shown that a case of the dominant opening could 
result in an approximately 5.5 times increase in net wind loads. This 
scenario is the governing design criterion as it is the worst possible case 
that could result from a wall and/or roof uplift failure (Holmes, 1979). 
To better understand the influence of internal pressures in cases of 
buildings with openings, it is useful to understand the theory behind it. 

3.1. Theory 

In studying internal pressures in low-rise buildings with openings, 
Holmes (1979) considered the building as a Helmholtz resonator. 
Helmholtz resonance is a concept used in acoustics. With a building 
idealized as a box (resonator) with an opening, a slug of air is pushed 
through the opening (defects in walls, doors or windows) into the 
building as depicted in Fig. 6a. Assuming the pre-existing air inside the 
building acts as a spring, this new slug of air powered by the external 
pressure (Pe) compresses this spring (i.e., internal air) until the pressure 
inside the building (Pi) becomes higher than Pe. At this point, the spring 
pushes back leading to an outward movement of the slug of air (such as 
in Fig. 6b) until Pe becomes greater than Pi. This back-and-forth 
movement (vibration) of the slug of air continues as Pi increases and 

decreases. Resonance occurs when the vibration matches the funda
mental frequency of the box (which depends on opening size, the flex
ibility of the box, the presence of partitions, secondary openings, and 
leakages), resulting in a large fluctuation in Pi. 

An expression describing the motion of the slug of air was derived by 
Holmes as a second-order, non-linear, ordinary differential equation 
that could predict the general behavior of internal pressure, its 
maximum value and time of occurrence. However, this expression is 
only applicable to small pressure variations (Stathopoulos and Luchian, 
1989). Liu and Saathoff (1981) derived a similar expression using an 
approach based on Bernoulli’s equation. This approach is considered to 
be more rigorous (Saathoff and Liu, 1983; Harris, 1990) and the 
expression applies to any pressure variation (Stathopoulos and Luchian, 
1989). The other difference between Liu and Saathoff (1981) and 
Holmes (1979) is the presence of a ‘k’ factor (Contraction Coefficient) in 
the first term of the equation by Liu and Saathoff (1981) (Stathopoulos 
and Luchian, 1989), see Table 2. These two equations have been the 
basis of most of the research works on internal pressure in buildings. 
Experimental studies by Liu and Rhee (1986) showed that the Liu and 
Saathoff (1981) equation was more appropriate. 

Vickery (1986) updated the expressions for internal pressure by 
considering the flexibility of the building envelope. This was introduced 
as a ratio of the bulk air to the bulk modulus of the building. The 
Helmholtz frequency of the building, which is usually compared with 
the frequency of the wind in the windward direction, is another 
important factor. Table 2 gives a list of the development of different 
expressions for internal pressure. Holmes and Ginger (2012) presented a 
thorough review of the development of the theories, expressions and 
parameters used in determining internal pressures relating to a case of a 
dominant opening, while Oh et al. (2007) provided a summary of pre
vious experimental studies and theoretical development on internal 
pressures from 1930 to 2003. 

Based on these theories, Pearce and Sykes (1999) and Sharma and 
Richards (2003) extended the area of application of the theory to include 
the effects of oblique winds and flexible envelopes (roofs and walls), 
while others (Guha et al., 2011; Holmes and Ginger, 2012) used the 
theory to develop equations comparing the RMS of the internal pressure 
coefficient and external pressure coefficient in cases of dominant 
openings. Sharma (2012) noted a significant difference in the orifice loss 
coefficient (CL) (which accounts for pressure losses caused by the entry 
and exit of air through the opening) and inertia coefficient (CI) (it ac
counts for pressure losses caused by the expansion and contraction of the 
opening) used in several experimental and numerical research works on 
internal pressure where CL ranged from 2.5 to 45 and CI ranged from 0.7 
to 1.55. These two coefficients are major parameters in determining the 
internal pressures (peak and fluctuating) in buildings with a dominant 
opening. Estephan et al. (2021) included a leakage area to volume 
parameter to the equation by Holmes (1979), to improve the prediction 
of internal pressures due to air leakage through defects in walls. To 
further improve the estimation of internal pressures using theoretical 
formulas and reduce the risk of roof failures, there would be a need to 
adopt accurate values for specific building configurations. This would 
require further investigations through accurate experimental (that 
include extra internal volumes in scaled models based on scaled wind 
velocity) and numerical studies. 

3.2. Factors affecting the internal pressure in buildings 

Studies on internal pressures have focused on the transient response, 
the steady-state response, or a combination of both. Factors affecting the 
internal pressures are discussed below. 

3.2.1. Size of opening (dominant and background openings) 
Openings in a building envelope include both background openings 

(often measured in terms of building porosity), and dominant openings 
(such as doors and windows). Ginger et al. (1997) and Ginger (2000) 
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defined dominant openings as openings greater than twice the total 
background leakage area. According to Vickery (1994), for estimating 
mean pressures, a dominant opening is one with an area that is at least 
three times the total background leakage area. Windward openings in a 
building envelope are those at which the external pressure drives air into 
the building (as shown in Fig. 6), thus increasing the internal pressure. 
The size of openings is therefore a major factor in determining the in
ternal pressures. Sharma and Richards (2005) and Chowdhury et al. 
(2013) have shown that dominant openings are a major factor affecting 
net roof pressures in low-rise buildings. 

While considering a non-porous model, Holmes (1979), Saathoff and 
Liu (1983), Ginger et al. (1997) and Ginger (2000) noted that internal 
pressure oscillation frequencies increase with the increasing dominant 
opening area, indicating higher effects of damping in smaller opening 
areas. This conclusion was confirmed by Oh et al. (2007), who consid
ered a porous building. The coefficient of internal pressure has been 
derived as a function of the ratio of the area of windward wall opening 
(AW) to the area of leeward wall opening (AL) assuming conservation of 
mass. From studies of a nominally sealed building, Ginger et al. (1997), 
Ginger (2000) and Holmes (1979) concluded that the mean internal 
pressure coefficients (Cpi ) increases with increasing AW

AL 
ratio while 

Ginger et al. (1997) and Humphreys et al. (2019a) noted that increasing 
the size of the windward wall opening leads to increased internal pres
sure as damping is reduced; the probability of occurrence of resonance 
then increases. Ginger et al. (2010) and Humphreys et al. (2019a) have 
shown that the ratio of opening area to entire room volume (S∗), a 
parameter obtained by multiplying two of the non-dimensional param
eters considered by Holmes (1979), was a factor affecting the internal 
pressure. 

Background porosity is a measure of opening/leakage that affects the 
internal pressure (Oh et al., 2007). Saathoff and Liu (1983) stated the 
difficulty of measuring or estimating the permeability/porosity of a 
building. In their study, they selected a building porosity (background 
leakage) between 0.0 and 3.0% based on existing literature as of 1983. 
Their results indicated that the internal pressures in buildings with low 
porosities were insensitive to wall openings greater than 5% of the wall 
area. Studies by Stathopoulos et al. (1979) indicated that there was a 
reduction in internal pressure with increasing porosity (53% reduction 
from 0 to 0.5% porosity, and 72% reduction from 0.5 to 3.0% porosity). 
From their experimental results, Stathopoulos et al. (1979) concluded 
that with wall openings larger than 20% of the wall area, the internal 
pressure coefficient did not depend significantly on the porosity of the 
building. The study by Oh et al. (2007) observed small or no effects on 
the internal pressure of a background opening of 7.1% of the main/
dominant opening while they observed such effects for background 
openings of 70% of the main/dominant opening. This is consistent with 
the suggestion of Vickery and Bloxham (1992) that the size of back
ground openings only affects the internal pressures when it exceeds 10% 
of the main/dominant opening. Relating this to RTWCs loading, existing 
literature has shown that increasing the size of the openings in the 
building envelope leads to an increased internal pressure resulting in a 
higher net roof pressure, which increases the amount of wind loads 
transferred to the RTWCs. According to Chowdhury et al. (2013), this 
increase can be significant, where for a particular RTWC tested, there 
was a 300% increase in the peak net-uplift force coefficient. 

3.2.2. Opening locations 
Holmes (1979), Stathopoulos and Luchian (1989) and Vickery and 

Bloxham (1992) focused on the fluctuating and/or mean internal pres
sures in buildings with a single dominant opening at the centre of the 
wall. Beste and Cermak (1997), Ginger et al. (1997), Kopp et al. (2008), 
Sharma (2008), Sharma and Richards (2003) and Tecle et al. (2015) 
considered multiple dominant opening locations (i.e., centrally located, 
at building edges, and a distance from the centre). Kopp et al. (2008) 
showed that the mean internal pressure coefficients are higher with 

openings near the corner of the wall than with centrally located open
ings. Also, major fluctuations in internal pressure coefficients for 
openings toward the edges of the building occur at non-orthogonal an
gles of attack. In contrast, Oh et al. (2007) reported higher Helmholtz 
resonance pressure at wind directions normal to the opening. 

Internal pressure is sensitive to the size of the opening when the 
opening is located on the windward side (Holmes, 1979; Stathopoulos 
et al., 1979; Habte et al., 2017). Liu and Rhee (1986) observed larger 
internal pressure fluctuations with openings at the leeward section of the 
building and attributed them to the turbulent wake generated by the 
building model, causing large fluctuations in external pressures at the 
leeward side. However, their model was rigid, with no leakages, and the 
flow conditions differed from those present in the atmospheric boundary 
layer. Internal pressure is insensitive to opening size and building 
porosity when the dominant opening is located at the leeward side and 
the windward side is sealed. With openings in both the windward and 
leeward sides of a building, the internal pressure is sensitive to the ratio 
of the areas of the windward opening to that of the leeward opening. The 
internal pressure coefficients increase with increasing ratio between the 
areas of the windward and leeward openings (Ginger et al., 1997). 
Chowdhury et al. (2013) concluded that the location of openings affects 
load distributions in RTWCs. Pfretzschner et al. (2014) made a similar 
observation for L-shaped buildings, where openings located at re-entrant 
corners caused higher uplift loads on building sides containing the 
opening. This effect can be further investigated in future studies. 

3.2.3. Number of openings 
Several studies (Holmes, 1979; Saathoff and Liu, 1983; Liu and Rhee, 

1986) focused on a case of a single dominant opening in the windward 
and leeward sides of the building, while others (Ginger et al., 1997; 
Kopp et al., 2008; Oh et al., 2007; Sharma and Richards, 2003; Tecle 
et al., 2015; Vickery and Bloxham, 1992) considered dominant openings 
and background leakage. 

To the authors’ knowledge, Habte et al. (2017) performed the only 
study that considered progressive multiple wall openings while 
including background leakage. That study did not report internal pres
sures but rather the effective contribution of the internal pressures to the 
bending moments at the ridges and knees of a low-rise building frame. 
One of the reasons why multiple openings were not considered by other 
authors is that increasing the number of openings produces the same 
effect as increasing the area of a single opening. This assumption might 
not be correct as the location of openings affects internal pressures 
(Kopp et al., 2008). This is an area requiring more attention. 

3.2.4. Opening geometry/shape 
Most experiments involving internal pressures in buildings consider 

square or rectangular openings. However, Oh et al. (2007), Vickery and 
Bloxham (1992) and Alawode et al. (2022) considered a dominant cir
cular opening, though no comparison was made between circular and 
rectangular shapes. Humphreys et al. (2019b) found that the opening 
shape had little effect on the loss coefficient, as they considered both 
square and circular background openings. Estephan et al. (2021) also 
found no significant effect of opening shape on the internal pressure 
coefficient while considering square and rectangular openings. Back
ground leakages have usually been represented by having several cir
cular holes in models, distributed over the surface of the model. Since 
analytical methods used in predicting internal pressures have shown the 
importance of the opening shapes, it would be beneficial to perform 
research into verifying existing shape parameters and developing new 
ones for various opening shapes. 

3.2.5. Building volume 
Holmes (1979) showed that an internal volume distortion is required 

in wind tunnel testing involving a scaled model to achieve a dynamically 
equivalent internal volume. His dimensional analysis shows that 
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Table 4 
Previous experimental studies on RTWC’s.  

References RTWC Types/ 
Roof Type/Scale 

Failure Types Test Methodology Loading Considerations Comments 

Conner et al. 
(1987) 

Toe nailed  
a. 3 16d nails (L- 

Type)  
b. 2- 16d +3-16d 

nails (M-Type),  
c. 3-16d and 8-in 

log bolts (H- 
Type)  

d. Clip angles  
e. Strapping 
Structural Scale- 
1:1 

Nail withdrawal, rafter 
split, 
angle bent, 
bolt pull out, 
top plate collapsed and 
bolt pulled through the 
washer 

Uplift loads applied using 
hydraulic rams 

Static wind loads from ANSI 
A58.1 (1982), using GCp 
values and various wind 
speeds 
Dead loads were not 
considered 

Timber type – Douglas Fir. 
The study presented a roof strength 
graph and experimentally showed that 
the H-type could withstand wind speeds 
of 110–180mph, the M-type can 
withstand 70-120mph and the L-type 
can only withstand 50-90mph wind 
speeds. 

Reed et al. 
(1997a)  

a. Toe nailed (3 
8d nails),  

b. Metal 
connector 
(hurricane 
strip),  

c. Adhesives 
Component 
testing and 
Sectional tests 
3:12 roof slope 
Structural Scale- 
1:1 

Nail withdrawal, strap 
tear, 
rafter split, 
adhesive failure and 
wood fiber failure 

Hydraulic jack for uplift loading 
using 
Spread beam (equal 
displacement) and load tree 
(equal loads on all) 

Wind loads calculated from 
ASCE 7–93 with an assumed 
roof dead load, applied as 
static uplift loads 

Timber type – Southern yellow pine 
and Spruce pine fir. 
Toe-nailed connections have a lower 
uplift capacity in comparison to 
hurricane straps. However, the straps 
provided no major load sharing. 
The study developed a design capacity 
chart based on individual connection 
tests. 

Riley and Sadek 
(2003) 

3-16d nails (Toe 
nailed) 
Hurricane clips 
Gable roof with a 
3:8 slope 
Structural scale- 
1:1 

Nail withdrawal and 
The top plate pulled 
from the wall 

Uplift loads were applied using 
hydraulic rams.  
a monotonic uplifts,  
b monotonic lateral and.  
c cyclic lateral loads.  

d. combined uplift and lateral 

Uplift capacity was the focus. 
The ratio of lateral to uplift 
loads was only assumed for a 
strong windstorm 

Timber type – Spruce pine fir timber 
Nonlinear behavior of both toe-nailed 
and hurricane strap connections 
Uplift failure governs the failure in the 
uplift and shear load scenario 
Toe-nailed connections have a lower 
uplift capacity in comparison to 
hurricane straps. 

Shanmugam 
et al. (2009) 

Toe nailed  
a 2-16d nails.  

b. 3-16d nails.  
c. 3-8d nails. 
Gable roof; 
Sectional test. 
Structural Scale- 
1:1 

Nail withdrawal and 
joist wood split 

Monotonic and cyclic loads were 
applied using screw jacks 

Uplift capacity was the focus. 
Roof dead loads were 
considered. ASTM D1761D 
1761(2020) component 
testing protocol was used 

Timber type – Southern yellow pine 
Toe-nailed connections are unsafe in 
high-wind areas. 
The 3-nail system had a 30% higher 
uplift capacity compared with the 2-nail 
system. 

Ahmed et al. 
(2011) 

Hurricane clips 
(1,2 and 4 clips 
per joint), 
Component 
Testing 
Structural Scale- 
1:1 

Nail withdrawal, top 
plate rupture, 
rafter rupture, 
deformation of clips 
and clip tear 

Uniaxial loading was applied 
with a Universal testing machine 
with a rig 

Uplift capacity was the focus. 
Load rates were applied 
following the ASTM D 1761 
protocol. 

Timber type – Spruce pine fir, southern 
yellow pine, and Douglas fir wood 
Connection capacity is not directly 
proportional to the number of fasteners 
used (not additive), 
Developed an equation for the capacity 
calculation when using more than one 
clip. 

Shanmugam 
et al. (2011)  

a. Flat plate,  
b. Hurricane clip 

and c. 
Hurricane 
straps 

Component 
testing 
Structural Scale- 
1:1 

Strap tear, 
Top plate slip, nail 
withdrawal from the 
top plate, 
buckling and nail 
withdrawal from rafter 

Loads were uniaxial, biaxial and 
triaxial using a reaction frame 

Load rates were applied 
following the ASTM D 1761 
protocol, 
Different uplift to lateral load 
ratios were applied. 

The study addressed multi-axis loading. 
The authors proposed the use of design 
loads that are 75% of connector 
capacity in a given load direction 
The study showed that the interaction 
design formula currently used in 
practice is overly conservative 

Morrison and 
Kopp (2011) 

Toe-nailed (3-12d 
nails) 
Component 
testing 
Gable Roof with 
4:12 slope 
Structural Scale - 
1:1 

Withdrawal of nail and 
rafter wood split 

Ramp and realistic wind loads 
were applied using Pressure 
loading actuators (PLA). 

Only withdrawal loads 
(Uplift) using 
Wind Tunnel (WT) generated 
loads from a 1:50 scale 
testing. 

Timber type – Douglas Fir-Larch 
The failure capacity of connectors is 
independent of the loading rate. 
The maximum load applied during 
realistic wind loads (fluctuating) was 
higher than the failure capacity 
measured from ramp loading (static). 

Canino et al. 
(2011)  

a. Hurricane clips  
b. FRP glass 
Component 
testing 
Plan –square 
Gable Roof with 
4:12 slope 

Nail withdrawal, clip 
rupture, 
fracture of wood and 
detachment of wood 
surface. 

Triaxial loading and uniaxial 
loading using hydraulic jacks 

Triaxial loading was based on 
data obtained from full-scale 
wind loading tests for  
a. closed  
b. partially enclosed and c. 

rain effects 

Timber type – Spruce pine fir 
FRP ties performed better than the 
Hurricane clip. 
Unidirectional component tests 
overestimate the capacity of connectors 
subjected to aerodynamic loads. 

(continued on next page) 
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4.1. Experimental studies on RTWCs 

Experimental studies on RTWCs can be classified into two groups; 
Performance/Capacity of different types of RTWCs (Ahmed et al., 2011; 
Canino et al., 2011; Edmonson et al., 2012; Morrison and Kopp, 2011; 
Reed et al., 1997a; Satheeskumar et al., 2016b), and Load distribution in 
a system of RTWCs (Morrison et al., 2012; Satheeskumar et al., 2016a). 
Studies by Conner et al. (1987) and Reed et al. (1997b) using monotonic 
uplift loads indicate that hurricane straps perform significantly better 
than nailed connections. A NIST study (Riley and Sadek, 2003) consid
ering cases of monotonic lateral loads, monotonic uplift loads, a com
bination of lateral and uplift loads and cyclic lateral loads concluded 
that hurricane straps perform significantly better than nailed connec
tions. Fig. 7 shows a comparison of hurricane straps and toe-nailed 
connection force-displacement response to horizontal/lateral loads 
and uplift/vertical loads, from tests by Riley and Sadek (2003). In Fig. 7 
‘inner’ refers to RTWC away from the roof edge and ‘outer’ refers to 
RTWC at roof edge. The results shown in Fig. 7 indicate higher 

displacements in edge/outer RTWCs (both toe-nailed and hurricane 
strap) in comparison to non-edge/inner RTWCs for similar loads. The 
uplift capacity of some types of RTWC depends on the type of nailing 
method (i.e., hand nails or gun nails), variation in timber type, and 
missing nails (Satheeskumar et al., 2016b). 

The classification of the experimental studies of RTWCs can also be 
based on the type of load considered in each study. On this basis, 
experimental studies can be classified into dynamic wind-loading groups 
and no-wind-loading groups. Most studies in the no-wind-loading 
groups have used monotonic loadings either based on the authors’ 
judgment or on testing standard protocols (e.g., ASTM D 1761). Table 4 
provides a summary of experimental tests conducted on RTWCs. 

Under high wind loads, RTWCs are subjected to tri-axial loads (i.e., 
uplift, in-plane, and out-of-plane loads). While this is the case, most 
RTWC tests prior to Riley and Sadek (2003) used uni-axial loads, which 
resulted in the overestimation of the capacity of RTWCs (Shanmugam 
et al., 2011; Canino et al., 2011). The study by Riley and Sadek (2003) 
considered both uni-axial and bi-axial loading on RTWCs using an 

Table 4 (continued ) 

References RTWC Types/ 
Roof Type/Scale 

Failure Types Test Methodology Loading Considerations Comments 

Structural Scale - 
1:1 

Morrison et al. 
(2012) 

Toe Nailed 
(average of 3 per 
connection) 
Plan –square 
Entire roof testing 
Gable Roof with 
4:12 Slope 
Structural Scale - 
1:1 

Nail withdrawal Ramp and realistic wind loads 
were applied using PLA 

Only withdrawal loads 
(Uplift) using 
Wind Tunnel (WT) generated 
loads from a 1:50 scale 
testing. 

The study suggested that both 
individual components and entire roof 
tests show the incremental failure of 
connections. 
It would take longer duration storms (i. 
e., multiple peak loads) to cause 
complete failure of the toe-nailed 
connections in an entire roof system as 
compared with a few peak loads that 
cause the failure of single connections in 
component testing. 
The effective tributary area for each 
connection is larger than the nominal 
tributary area indicating considerable 
load sharing. 
Shear loads were not included. 

Edmonson et al. 
(2012)  

a. Flat plate 
connector  

b. Toenails (2- 
16d) 

Component 
testing 
Structural Scale - 
1:1 

Strap tear, top plate 
split, 
rafter wood split and 
nail withdrawal 

Monolithic loading (Uniaxial 
uplift, in-plane, and out-of-plane 
loads) was applied separately on 
aged and new wood using a 
reaction frame. 

Focused on uplift capacity 
checks (testing to National 
Design Specification (NDS) ( 
AF&PA, 2005) and ASTM 
D1761) 

Timber type - Aged and new Southern 
pine 
Aged timber has less capacity in 
comparison to new timber 
Uplift and out-of-plane capacities are 
additive (combining two types of 
connectors) but not the in-plane 
capacity 

Chowdhury 
et al. (2013) 

Hurricane clips 
Component 
testing 
Plan -square 
Gable roof with 
4:12 slope 
Structural Scale - 
1:1 

None (Not within the 
scope of testing) 

Peak force coefficients from a 
WT test on a full-scale roof with 
enclosed and partially enclosed 
walls were measured. 

Triaxial aerodynamic loads 
obtained from WT studies 
were applied on individual 
connections using a reaction 
frame 

Timber type - Spruce pine fir 
Redistribution of load was not 
considered. 
The study reported a more than 400% 
increase in net-uplift force coefficient 
due to openings in building envelop and 
higher internal pressure. 

Satheeskumar 
et al. (2016b) 

Triple grip 
connector 
Plan -square 
Gable roof with 
4.7:12 slope 
Structural Scale - 
1:1 

None (Not within the 
scope of testing as 
loading was within 
serviceability limits) 

Static loads were applied normal 
to the roof using a hydraulic ram 

Static loads were applied 
ranging from 0.7 kN to 1 kN 

Roof lining elements such as ceilings 
contribute to load sharing. 
RTWCs are most vulnerable to high 
uplift wind loads at roof eaves 

Feng et al. 
(2020) 

Flat plate 
connector 
Plan -Rectangular 
Gable Roof with 
3:12 Slope 
Structural Scale - 
1:1 

None Wind tunnel tests (1:4 length 
scaled building) using hurricane 
winds while considering closed 
and two partially enclosed cases 

Wind tunnel tests using 
hurricane winds 

The scaling of structural properties was 
not considered 
Uplift forces on the roof were higher for 
the partially enclosed cases. The 
location of openings had less effect on 
individual loading on connections near 
the gable end. 

*Sectional tests refer to tests on a section of the roof. 
*Component tests refer to tests on a single roof-to-wall connector. 
*Structural scale refers to the scaling of the roof-to-wall connector’s properties. 
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specific recommendations for RTWCs other than guidance on deter
mining net pressure coefficients from external and internal pressure 
coefficients.  

• ASCE 7–22 Standard 

In determining the internal pressures within a building for design 
purposes, the ASCE 7–22 Standard recommends the classification of 

Table 5 
Previous numerical studies on RTWCs.  

Reference Representation of RTWC Aim Limitations Comments 

Satheeskumar 
et al. (2017a) 

8 node linear brick element (C3D8R) 
was used to assemble the triple grip 
connector and nails 

Developed Finite Element (FE) 
Model to predict the uplift 
capacity of RTWC with or 
without construction defects 
(missing nails) 

Only one joint was modeled. 
Material non-linearity between the 
numerical model and experimental 
tests. 
Nail slip was not observed in the 
model, as it was observed in the 
experimental tests by (Satheeskumar 
et al., 2016b) 

Loading of the joints and arrangement of 
the model was similar to the experimental 
tests by (Satheeskumar et al., 2016b). 
The single nail model used embedment 
functions by (Li et al., 2012). The authors 
used Abaqus software. 
A single missing nail could reduce the 
uplift capacity of the RTWC by up to 40%. 
Uplift capacity was 55% less when a 
combination of lateral and vertical loads 
was applied 

Satheeskumar 
et al. (2017b) 

8-node linear brick element (C3D8R) 
with the nails in the triple grip 
connector, modeled as well (with a 
nonlinear spring element used to 
represent the embodiment property of 
the timber-nail joint) 

Predict structural response in 
both the elastic and post- 
elastic phase, model the 
influence of lining elements 
(ceiling, wall lining and ceiling 
cornice) 

The stiffness of the RTWC was 
constant in the model which was not 
the case in the full-scale test by ( 
Satheeskumar et al., 2016a). Also, 
stiffness deteriorations were not 
accounted for in the model. 

Abaqus Software was used for the FEM 
analysis. Loading used is similar to the 
study by Satheeskumar et al. (2016a). 
RTWCs were modeled using properties 
(force-displacement) from (Satheeskumar 
et al., 2016a) and (Satheeskumar et al., 
2017a), and validated with the 
experimental work in (Satheeskumar et al., 
2016a). 
FEM reactions were 5–15% higher than 
experimental values due to differences in 
stiffness of RTWC modeled, variable 
construction method, non-consideration of 
reduced stiffness with nail withdrawal and 
material non-linearity. 

He et al. (2018a) Zero mass nonlinear spring elements 
(accounting for only the axial uplift 
capacity) were used to represent the 
Hurricane clip 

Develop a 3D FE model to 
determine load paths in low- 
rise buildings under wind 
loading in the linear and non- 
linear phases. 

Experimental validation tests did not 
include mechanical properties tests 
on the connections. Also, nail 
withdrawal was not simulated. 

A multi-linear force-deflection relationship 
was used to model the RTWC, with the 
tension property from the work of (Riley 
and Sadek, 2003). The model was 
validated with deflection measurements 
from wind tunnel tests on a 1:4 length scale 
model. 
The rotational capacity of the wall stud 
connections has negligible effects on the 
RTWCs. 
Sheathing thickness is an important factor 
in envelop behavior. 

He et al. 
(2018b) 

Nonlinear spring elements using 
mechanics-based load-deformation 
characteristics were used to represent 
the 
Hurricane clip 

Develop an FE model that 
could predict structural 
response under wind loading. 

The pressures on the building model 
could not be updated with the 
addition of openings unlike in the 
experimental study. 
The authors also suggested a 
discrepancy in material properties 
adopted in the model could be the 
reason for the higher failure speed in 
the model. 
The paucity of data on material 
properties of hurricane clips. 

The model captures the progressive 
withdrawal behavior in RTWC as observed 
in experimental studies. The authors used 
ANSYS software. The model assumes 
constant internal pressure. 
Dynamic wind loading input was used in 
the study. 
Properties from (Riley and Sadek, 2003) 
were used for the modeling of the 
hurricane ties. 
The model underestimated the 
displacement of RTWC. 

Stevenson et al. 
(2019) 

A combination of Pinned and rigid 
joints. Authors used both toe-nailed 
connection and hurricane strap. 

Develop a modeling method 
that can be used to assess the 
failure of framing members 
and connections in wood- 
framed trusses due to wind 
loads. 

Limited research on element-by- 
element metal-plate-connected 
(MPC) truss joints 
A 2D finite element model was used 

The study developed a 2D FE model. The 
study used RTWC properties for toe-nailed 
connections from (Morrison and Kopp, 
2011) and hurricane straps from ( 
Ellingwood et al., 2004) (who picked the 
clip properties from the manufacturer’s 
report). 
SAP 2000 software was used. Demand to 
Capacity ratios were found for the different 
RTWC types. Uplift load applied to the 
frame was calculated based on the 
directional procedure of ASCE 7–10 (115 
km/h wind speed). 
It was found that toe-nailed connections 
were the weakest members of the frame. 

Dhakal and 
Parvin (2021) 

SOLID65 with a 6-node solid element Predict the shear strength of 
FRP connectors 

It was a component test Basalt, Carbon, and Glass FRP connector 
component testing using monotonic cyclic 
loading. Shear strengths of glass FRP were 
higher in comparison to hurricane clips.  
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buildings into enclosed, open, partially enclosed, or partially open based 
on comparisons of the opening area with the gross wall area in which the 
opening is located. Each wall in the building is assumed to be a wind
ward wall in selecting the class of the building. The internal pressure 
coefficient (GCpi) is then determined from Table 26.13–1 of ASCE 7–22. 
It should be noted that the values of GCpi in Table 26.13–1 of ASCE 7–22 
are based on the research of Stathopoulos et al. (1979) and Yeatts and 
Mehta (1993), as indicated in C26.13 of the code. The code makes 
provision for a reduction factor for partially enclosed buildings con
taining a single, unpartitioned large volume. The reduction equation is 
based on the work by Vickery and Bloxham (1992) and Irwin and Dunn 
(1994). Also, the code specifies the protection of glazed openings 
depending on the location of the building, and its risk category to avoid 
the impact of wind-borne debris. In cases of multiple classifications, the 
code specifies the worst loading conditions. 

Regarding the design of RTWC, the ASCE 7–22 is not explicit about 
which design method is appropriate, since RTWCs can be regarded as a 
component belonging to the Component and Cladding (C&C) class or as 
a member belonging to the Main Wind Force Resisting System 
(MWFRS). This issue was raised by Morrison and Kopp (2011) regarding 
the ASCE 7-05 Standard, and Henderson et al. (2013) regarding ASCE 
7–10. Henderson et al. (2013) suggest that the C&C loads should be used 
for the design of the RTWC. The study by Feng et al. (2020) indicates 
that force coefficients in RTWCs measured in a wind tunnel model are 
in-between the C&C recommendations and the MWFRS recommenda
tions of ASCE 7–16 (2016), with the latter requiring a value closer to the 
measured force coefficients.  

• EN 1991-1-4:2005 

The Eurocode code (BS EN 1991-1-4:2005 +A1:2010 2011) de
termines the internal pressure coefficient by three methods based on the 
opening area. The first step is to determine if the building has a domi
nant face (i.e., with an opening area that is at least twice the area of 
openings in the remaining faces). Buildings with dominant faces have an 
internal pressure coefficient (Cpi) value given as a function of the 
external pressure coefficient (Cpe). The Cpi values for buildings with no 
dominant face are determined from a graph in Fig. 7.13 of the code, 
which represents a function of the ratio of the building height and depth 
(h/d) and the opening ratio (μ). The opening ratio is the ratio of the sum 
of areas of openings with a negative or zero Cpe to the sum of the areas of 
all openings. Other values are given for silos, chimneys, and vented 
tanks with small openings. The code gives a different provision for 
structures with a total opening area on at least two sides greater than 
30% of the area of that side. It considers these as either canopy roofs or 
free-standing walls, and for these a net pressure coefficient (Cpnet) is 

provided. 
The (BS EN 1991-1-4:2005 +A1:2010 2011) provides Cpe values for 

loaded areas of 1 m2 and 10m 2 as Cpe,1 and Cpe,10, respectively. 
Regarding roofing elements, including RTWCs, the (BS EN 1991-1- 
4:2005 +A1:2010 2011) suggests the use of Cpe,1 values which are 
higher than the Cpe,10 values. 

6.2. Materials testing standards 

Building components such as RTWCs (e.g., nails, hurricane clips, and 
straps) have manufacturers’ ultimate capacity listed on the items. For 
wood fasteners, the capacity is usually based on test procedures stipu
lated by ASTM D1761, with the latest version being ASTM D1761-20. 
Hurricane clips and strap manufacturers have their products tested and 
design values established per ASTM D7147-21 (2021) and evaluated by 
the International Code Council (ICC) Evaluation Service (ES) or a similar 
ES (Shanmugam et al., 2011). Selection of these RTWCs is then based on 
these capacities and the requirements of the building code in the loca
tion of the proposed building project, and the Wood-Frame Construction 
Manual (WFCM) for One and Two-Family Dwellings (AWC American 
Wood Council, 2018a). 

The NDS 2018 (AWC American Wood Council, 2018b) for wood 
construction and the Special Design Provisions for Wind and Seismic 
(SDPWS) (AWC American Wood Council, 2021) are the latest guidance 
from the American Wood Council on the design of mechanical fasteners 
(i.e., RTWCs). Previous versions of the ASTM D1761 have been criticized 
for their inability to provide reliable testing for RTWCs. 

6.2.1. Conclusions, challenges, and prospects of future studies 
RTWCs are an integral part of roofing systems in many low-rise 

buildings and have been identified as one of the weak links in a struc
ture under high wind loads. While they have received some attention 
mainly due to roof failures during high wind events, some knowledge 
gaps still exist regarding their performance under different wind con
ditions and roof configurations. A review of wind loading on RTWCs has 
been presented, with a focus on structural wind engineering aspects such 
as factors that affect these wind loads, load sharing in a roofing system, 
as well as current design recommendations. Research works to date have 
examined the capacity of different types of RTWCs, which loading type 
(i.e., uniaxial, biaxial or triaxial loads) best represents the loads RTWCs 
are subjected to in buildings, and numerical and analytical models that 
can predict the uplift capacity of RTWCs. 

From this review the following prospects for future research have 
been identified: 

Table 6 
Previous analytical studies on RTWCs.  

Reference RTWC Type Focus/Failure Mode Software/Approach Used/Validation 

Shanmugam et al. 
(2009) 

Toe Nailed (2Nail and 3Nails 
connections) 

Approximate the uplift behavior of toe 
nailed connections 
Nail Withdrawal, Splitting wood and a 
combination of both 
Error: 0.7–6.7% 

Open Sees 
Pinching4 Material-Represent RTWC and captures reduced strength 
and stiffness 
Input parameters: 
Ultimate uplift capacity, initial secant stiffness and displacement at 
peak load 
Validation with experimental work 

Shanmugam et al. 
(2011) 

Flat plate connector, hurricane clip 
and hurricane strap 

Developing a design surface for the multi- 
axis loading of RTWC 
Strap tear, wood split, nail withdrawal and 
buckling 
Error: Not stated 

Monte-Carlo Simulation was used to obtain design and safety 
probabilities. 
Data from experimental RTWC response under different loading 
conditions were used to develop the model. 

Guha and Kopp 
(2014) 

Toe Nailed Estimate effect of storm duration on RTWC 
failures. 
Nail-withdrawal/Nail-slip 
Error: 10% 

2D beam element model that combines nail-slip and load sharing. 
Monte Carlo Simulation was used to investigate the impact of 
windstorm duration. 
Model was validated with experimental tests by Khan (2012).  
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connections can be very difficult/challenging, such tests would be 
more accurate and helpful in validating Finite Element models 
currently available. 

• Although some studies suggest that static loading methods are un
able to mimic actual failure modes of wooden connections. Devel
oping an equivalent static and/or dynamic test method to assess the 
capacity of RTWCs could be a reliable alternative approach to wind 
tunnel testing. This would involve careful consideration of the multi- 
axis loading nature of wind actions on roofs of low-rise buildings. 
Such a test method, if adopted by manufacturers could help engi
neers design more resilient buildings.  

• Currently, a general linear or non-linear loading response for 
different RTWC capacities under realistic wind loads with different 
load durations is not available. The absence of these data hinders the 
development of high-fidelity numerical models that can predict the 
performance of RTWCs in a roof under extreme wind conditions.  

• Numerical modeling that can capture the behavior of RTWCs can be 
highly challenging due to computational time. No full study using 
updated wind loads on the changing building envelope (changes due 
to propagation of damage) has to our knowledge been performed. 
This is a path that in our opinion needs to be explored to better 
understand the progressive damage of RTWCs.  

• The influence of aging of the RTWCs and the roof frames is yet to be 
considered in numerical research on RTWCs. Considering aging ef
fects will enhance state-of-the-art numerical modeling. High fidelity 
numerical modeling will help to assess the vulnerability of low-rise 
light-weight wooden frame structures to better assist home-owners 
and insurance companies in the risk analysis of buildings subjected 
to wind loads. 
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