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The Lasso is a method for high-dimensional regression, which is now
commonly used when the number of covariates p is of the same order or
larger than the number of observations . Classical asymptotic normality the-
ory does not apply to this model due to two fundamental reasons: (1) The reg-
ularized risk is nonsmooth; (2) The distance between the estimator 9 and the
true parameters vector @ cannot be neglected. As a consequence, standard
perturbative arguments that are the traditional basis for asymptotic normality
fail.

On the other hand, the Lasso estimator can be precisely characterized in
the regime in which both n and p are large and n/p is of order one. This
characterization was first obtained in the case of Gaussian designs with i.i.d.
covariates: here we generalize it to Gaussian correlated designs with non-
singular covariance structure. This is expressed in terms of a simpler “fixed-
design” model. We establish nonasymptotic bounds on the distance between
the distribution of various quantities in the two models, which hold uniformly
over signals @* in a suitable sparsity class and over values of the regulariza-
tion parameter.

As an application, we study the distribution of the debiased Lasso and
show that a degrees-of-freedom correction is necessary for computing valid
confidence intervals.

1. Introduction. Questions of statistical inference and decision theory are often ad-
dressed by characterizing the distribution of the estimator of interest under a variety of as-
sumptions on the data distribution. A central role is played by normal theory, which guar-
antees that broad classes of estimators are asymptotically normal with prescribed covariance
structure [31, 40]. Normality theory can serve as the basis for inference, facilitate the com-
parison of estimators and justify claims of efficiency.

In high dimensions, the distributional theory available for many estimators of interest is
more limited. Frequently, we have access to upper and lower bounds on important quantities
like the estimation or prediction error or the size of a selected model. These may have the
correct dependence on sample size, dimensionality and certain structural parameters, but are
usually loose in their leading constants. Asymptotic normality often breaks down in high
dimensions, even when considering low-dimensional projections of the coefficients vector
[4, 37, 53, 59]. There has been substantial progress in recovering normality in special cases
by resorting to careful constructions designed to remove bias and target normality [4, 9, 20,
37, 59]. It is of substantial interest to identify precisely the conditions under which such
constructions succeed and fail. This challenge is compounded by the fact that resampling
methods also fail in this context [30].
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The Lasso is arguably the prototypical method in high-dimensional statistics. Given data
{(Vi,xi)}i<n, with y; € R, x; € R?, it performs linear regression of the y;’s on the x;’s by
solving the optimization problem

~ 1 A
(1) 6 :=argmin R(f) := argmin{ — ||y — X0|3 + —||0||1}.
[ 50 gerr 21 2
Here, y € R" is the vector with ith entry equal to y;, and X € R**? is the matrix with ith row
given by xiT. Throughout the paper, we will assume the model to be well specified. Namely,
there exist #* € R? such that

() y=X0"+oz,

where z ~ N(0, I,) is a Gaussian noise vector.! In the informal discussion below, we will
assume 0* to be s-sparse (i.e., to have at most s nonzero entries), although our theorems
apply more generally to coefficient vectors that are only approximately sparse.

Distribution theory for the Lasso. A substantial body of theoretical work studies the Lasso
with fixed (nonrandom) designs X in the regime slog(p/s)/n = O(1) [6, 12, 13, 48] by
providing estimation error bounds that are rate optimal. These results have two types of lim-
itations. First, they usually require that A be chosen larger than the approximate minimax
choice Any = co4/log(p/s) (with ¢ a constant which cannot be taken arbitrarily small).
In practice, however, A is chosen by cross-validation and is often significantly smaller than
Amm because the coefficient 8 is not the least favorable one [21, 45]. Second, these require
restricted eigenvalue or similar compatibility conditions on the design matrix X. These con-
ditions only hold for sample sizes that are strictly larger than what is necessary for accurate
estimation when X is random.

A more recent line of research attempts to address these limitations by characterizing the
distribution of @ with Gaussian design matrices [4, 38, 45, 55]. For example, [4] proved in
the case of i.i.d. Gaussian designs an exact characterization of the distribution of 9, which
is simple enough to be described in words. Imagine, instead of observing y according to the
linear model (2), we are given y/ = 0* 4+ rg where g ~ N(0, I,), and t > o is the original
noise level inflated by the effect of undersampling. Then 0 is approximately distributed as
n(y’; ¢) where n(x; ¢) := (|x| — A/¢)4 sign(x) is the soft thresholding function (applied to
vectors entrywise) and ¢ controls the threshold value. The values of 7, ¢ are determined by
a system of two nonlinear equations (see below). This analysis, as well as that in [45, 55],
assumes 7, p and the number of nonzero coefficients s to be large and of the same order.
It further applies to any A scaling as co+/log(p/s). In particular, unlike the Lasso results
in [6, 12, 13, 48], the constant ¢ here can be taken arbitrarily small, though nonvanishing
asymptotically, which covers the typical values of the regularization selected by standard
procedures such as cross-validation [21, 45].

Of course the case of i.i.d. Gaussian covariates is highly idealized and one can think of
two directions in which the results of [4, 45, 55] could be brought closer to reality:

1. Non-Gaussian but still independent and—say— sub-Gaussian covariates. Both numer-
ical simulations and universality arguments suggest that the same characterization that was
proven for Gaussian covariates also applies to this case. Rigorous universality results were
proven in [3, 46, 49] in closely related settings. Hence, while mathematically interesting, this
generalization yields limited new statistical insight.

IThe assumption of Gaussian noise is not necessary for our results, but is made throughout to simplify our
exposition and proofs. See Remark 4.2.
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2. Gaussian but correlated designs. As we will see, in this case the asymptotic character-
ization is different and depends on the covariance X = E{x,-xiT}. The covariance X (or an
estimate of X) plays a key role in statistically important tasks such as debiasing and hypoth-
esis testing. This will be the focus of the present paper.

By analogy with the uncorrelated designs, we expect our results for correlated Gaussian de-
signs to apply also to correlated non-Gaussian designs. A set of results proved after a first
appearance of this manuscript work supports this expectation [33, 35, 47].

Throughout the paper, we assume that the covariates (each row of X) have distribution

x; ~N(0, X)

for some well-conditioned and known covariance matrix X. As in the i.i.d. case, our results
present two advantages with respect to fixed-design theory. First, they allow for any A of
the order co /log(p/s), with ¢ an arbitrarily small (nonzero) constant. Second, they provide
guarantees for sample sizes n at which the restricted eigenvalue condition does not hold.

In fact, we provide guarantees for all sample sizes above the Gaussian dimension of the
relevant descent cone. This critical sample size marks a sharp transition in the ability of £1-
based methods to achieve noiseless and stable sparse recovery in compressed sensing [19,
56]. We will refer to this as the Donoho—Tanner phase transition (although the original work
of [25, 26] was limited to i.i.d. designs). More details can be found in our Section 3.

In the case of correlated designs, [38] proved a similar characterization in the regime
slog(p)/n = o(1) assuming a bound on ||)3_1ej |l1. The regime studied [38] is substantially
simpler than the one studied here. In particular, the characterization proved here simplifies in
that regime, in that one can take t =0 and ¢ = 1.

An important consequence of our theory is the asymptotic optimality of a hyperparameter
tuning method based on the following degrees-of-freedom adjusted residuals:

_ ly — X013
©) = Bl

It was already observed in [45] that minimizing T(A) over A provides a good selection pro-
cedure for the regularization parameter. Our results provide theoretical support for this ap-
proach under general Gaussian designs. Recently (and after this paper was originally posted),
this criterion has been generalized to a wider class of losses and penalties [7].

Distribution theory for the debiased Lasso. The debiased Lasso is a recently popular-
ized approach for performing hypothesis testing and computing confidence regions for low-
dimensional projections of 8*. Most constructions take the form

~ 1 —~
0°=0+-MX"(y - X0),
n

for an appropriate and possibly data-dependent choice of the matrix M. Under appropriate
choices of M, low-dimensional projections of 9 are approximately normal with mean 6*.

The first constructions for the debiased Lasso took M to be suitable estimators of the
precision matrix ¥~ and proved approximate normality when [|0*|lo =: s = o(/n/log p)
[36-38, 57, 59]. Later work considered the case of Gaussian covariates with known co-
variance, and set M = X~ !. In this idealized setting, the sparsity condition was relaxed to
s =o0(n/(log p)z) under an £-constraint on Z_lej [38],and to s = 0(n2/3/10g(p/s)1/3) for
general X [9]. The latter conditions turn out to be tight for M = )l
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FIG. 1. The debiased Lasso with and without degrees-of-freedom (DOF) adjustment. Here, p = 1000, n = 500,
s =200, % = pli=il = 0.5/l A =4/ /n = .18, 6 = 1. The coefficients vector 0* contains 100 entries
Ol.* = +.707, and 100 entries 91.* = —.707. The histogram plots the raw values of g’;i without standardization,

with the true value of 0% drawn as the vertical dashed line. The qqplot is made with theoretical quantiles from the
standard normal distriéution.

For larger values of s, it is necessary to adjust the previous construction for the degrees-of-
freedom by setting2 M = )3_1/(1 —1101lo/n):
1
n— 16l
Figure 1 illustrates the difference between the debiased estimator with and without degrees-
of-freedom correction. It is clear that debiasing without degrees-of-freedom correction can

lead to invalid inference.

Recently, Bellec and Zhang [9, 10] established asymptotic normality and unbiasedness of
the coordinates 89 of the debiased estimator of equation (4). As in the present work, they
assumed correlated Gaussian designs in the proportional regime s < n < p. Our results on
debiasing are not directly comparable with the ones of [10]: on the one hand, we assume
weaker condition on the regularizations and the sample size; on the other hand, we establish
normality in a weaker sense. See Section 4.5 for further discussion.

~d

4) 0" =0+ = IxT(y — X0).

Our results on the debiased Lasso do not imply that a fixed coordinate of 0% is approxi-
mately unbiased and normally distributed. Indeed, without additional assumptions, there can
be a small subset of coordinates for which normality does not hold [10]. Instead, we present
an alternative leave-one-out method to construct confidence intervals for which we prove

2More precisely, [37, 45] showed that the degrees-of-freedom correction is needed for uncorrelated designs with
s = ©(n), [9] showed that it is needed for correlated designs with n > s > n2/3 / log(p/s)l/ 3, and [10] studied
it for correlated designs with s = ®(n), but under stronger conditions on the sample size and regularization
parameter than considered here.



2198 M. CELENTANO, A. MONTANARI AND Y. WEI

asymptotic validity via a direct argument. An advantage of the leave-one out method is that
it produces p-values for single coordinates that are exact (not just asymptotically valid for
large n, p). Empirically, the leave-one-out intervals almost exactly agree with the debiased
intervals in several settings. On the other hand, we demonstrate that—for certain carefully
designed (0™, X)—the leave-one-out intervals can be smaller than the debiased intervals.

Notation. We generally use lowercase for scalars (e.g., x, y, z, ... ), boldface lowercase for
vectors (e.g., u, v, w, ...) and boldface uppercase for matrices (e.g., A, B, C,...). We de-
note the support of vector x as supp(x) := {i|x; # 0}. In addition, the £, norm of a vector
xeR"is ||x||Z =", |xi|9. For r > 0 and ¢ € (0, 00), we use B, (v; r) to represent the
corresponding £,-ball of radius r and center v, namely

By(v;r) :={x eRP||x —vll, <r} forg>0 and By(s):={0 cR”[||f]o <s}.

If the center is omitted, it should be understood that the ball is centered at 0. A function
¢ :R? x R?” — R is L-Lipschitz if for every x, y € R? x R?, it satisfies [¢ (x) — ¢ (y)| <
L|lx — y|l2. The notation SZ ; is used to denote the set of n x n positive semidefinite matrices.
We reserve n for the sample size, p for the dimension of the unknown parameter #* and
always define § :=n/p.

2. A glimpse of our results. Our main result establishes an approximate equivalence
between the undersampled linear model of equation (2) and a related statistical model:

5 Fos2gx L &,
(5 y +ﬁg

Here, g ~N(0,I,) and T > 0. We may take any square root of the matrix X. For simplicity,
we always assume that we take a symmetric square root. The reader should have in mind a
setting in which the singular values of X and the noise parameter t are of order 1.

We call equation (5) the fixed-design model (hence the superscript f) and call model (2)
the random-design model. The Lasso estimator in the fixed-design model can be written as

Af . f . . {{ f 1/2 2 )‘ }
6 0’ = ,0) = min{ = — X705+ —10]1 ¢,
(6) n(y’.¢) agge pln 2Hy Hz ﬁll Il1

with predictions given by y(y/,¢) := > 1/2n(yf, ). We define the debiased Lasso in the
fixed-design model as

-~

(7) 070 =0" + 2712y — 5% )=>3“/2yf=0*+%2‘”2g.
n

The approximate equivalence between the random design and fixed design models holds
for particular choices of v and ¢, which we denote t* and ¢*. Such an equivalence is
relatively straightforward in the low-dimensional regime: in that case, it is sufficient to
take j}f =n"'2712X Ty, and check that for n > p, this is approximately distributed as
y/ of equation (5) with © = o. This equivalence was extended by [38], Theorem 5.1, to
n > slog(p)/n, assuming max IIE_lej It = O(1). As long as these conditions are met, we
cankeept =0 and ¢ = 1.

Here, we consider the more interesting case s log(p/s)/n = ®(1) without an £ -restriction
on the rows of £ ™!, In this regime, the equivalence only holds if we properly select T* > o
and ¢* < 1.

To specify these choices of t and ¢, let the in-sample prediction risk and degrees-of-
freedom of the Lasso estimator in the fixed-design model be

2
2}’

(8&) R(T2,§):: E|:Hy<zl/20*+ é—) _21/20*

T
NO
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df(z2,¢) = */TEE[@(E”ZO* + %g, c), gﬂ

oz o) ]

where the expectation is taken over g ~ N(0, I,,). Here, for notational simplicity, we leave
the dependence of R(rz, ¢) and df(rz, ¢) on 0%, ¥, n, p and A implicit. The notion of
“degrees-of-freedom” is standard to quantify the model complexity of statistical procedures
(see, e.g., [27, 28, 34] and references therein), and its equivalence to the expected sparsity of
the Lasso estimate holds, for example, by [60], Theorem 1. The parameters t*, {* are chosen
as solutions to the system of equations

(8b)

(9a) t2=02+R(t2,§),
2
(9b) f=1- Ltn’ 2

We refer to these equations as the fixed-point equations. As asserted in Section 4.1, there
exists a unique pair of solution to the above fixed-point equations under weak conditions.

Role of fixed-point equations. Before presenting our assumptions and results formally, it is

useful to discuss the interpretation of t* and ¢*. In what follows, we take 8/ and 8" to
be computed according to equation (7) in the fixed-design model with parameters 7 = 7%,
¢ = ¢*, which solve the fixed-point equations (9a) and (9b).

e Prediction and estimation error of the Lasso. We can interpret T*° as a theoretical pre-
diction for the test error E[(yiest — xtestO)z] on an 1ndeEendent test sample (Xtest, Veest)-
Indeed, we obviously have E[(yiest — xtest0) =02+ 16 — 0”‘||2 We will prove that the
prediction risk || — 6* ||%: concentrates on the prediction risk of the fixed-design model
R(r*2,¢*) = E[|[§7 — 0*|1%]; cf. equation (8a). Similarly, we will prove that [[§ — 6% |3

concentrates on E[”@f -0 ||§]. We conclude that E[ (yest — xlstg)z] concentrates on 7*2

by equation (9a).

e Model size of the Lasso. ¢* is interpreted as (a theoretical prediction for) the fraction of
coordinates not selected by the Lasso. Indeed, we will prove that the model size in the
random design model [|@]|o concentrates around df(t*2, £*), that is, the expected model
size in the fixed-design model; cf. equation (8b). The interpretation follows by the second
fixed-point equation (9b). By equation (6), we can also interpret {* as an inverse effective
regularization parameter. Thus, the larger the size of the selected model, the smaller the
effective regularization.

e False discovery proportion (FDP) of the debiased Lasso. Consider the task of constructing
confidence intervals for coordinates of #*. For each j € [p], define the interval

~ 2.
CI?::[Q?_ Jl /j T21-q/2//n, 9d+21| j Tet=q/2/v/n],

where z1_4 2 is the (1 —¢g/2)-quantile of the standard normal distribution, 7 is an empirical
estimate of t* (defined formally in (3)) and

N o . yly
Yjl—j = xy - (B X
We prove that the false-coverage proportion (FCP) concentrates around g, where

1 P
FOPi=— > Loy =~ LS 6~ 67 = 55 %1/ V.
j=l1

j=1
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In other words, confidence intervals based on the debiased Lasso achieve nominal false
coverage. Combining this with the fact that g = E[% Z;’Zl 1{|§Jf’d — 9;| > Ej_‘l_//-zrzlfa/z/
+/n}], we conclude the FCP in the random-design model concentrates on the expectation
of the analogous quantity in the fixed-design model.

The above result provides an additional interpretation of the fixed-point parameter 7*> as
the effective noise-level for the debiased Lasso estimates. Note that in the low-dimensional

limit, which takes p fixed, n — oo, the asymptotic standard error of the OLS estimate for
—-1/2
Jl=Jj N
standard error by replacing o with o2 + || — 0*

o/+/n. The first fixed-point equation states that we should inflate this
I3

67 is given by X
, which concentrates around 7*2. Of

. . . -~ p .
course, under a low-dimensional asymptotics, we expect [|§ — 0* ||%: — 0, recovering the
low-dimensional theory.

Versions of these results and the corresponding interpretations of 7%, {* have appeared
elsewhere [2, 4, 5, 22, 45, 54]. The present paper is the first one establishing these results
under correlated Gaussian designs and optimal sample size requirements.

3. Preliminaries. This section summarizes several important concepts that shall be used
throughout the paper and discusses the assumptions under which our main results are derived.

Gaussian width and the Donoho—Tanner phase transition. The success probability of £;-
norm based methods changes abruptly at a critical sampling rate dpt, which depends on the
sparsity of the signal and the geometry of the covariates. We will refer to this phenomenon
as the Donoho—Tanner phase transition [25, 26]. Below the transition (roughly speaking,
for n/p < dpr), £1-penalized methods fail to achieve exact noiseless recovery, stable noisy
recovery, bounded minimax noisy recovery over sparse balls and full power for variable se-
lection [19, 23, 24, 51, 56, 58]. Above the transition (for n/p > dpr), £1-penalized methods
are able to succeed according to these metrics.

This paper uses Gaussian comparison techniques [19, 45], and our results hold for all sam-
pling rates n/p exceeding Spt, where Spt is defined below in terms of a certain Gaussian
width. We anticipate that our definition of this threshold is (for general X) slightly differ-
ent from the standard one in the literature. Importantly, the restricted eigenvalue conditions,
which are often used to derive estimation error bounds on the Lasso need not occur near
the Donoho—-Tanner phase transition. Hence, our results could not be established using those
conditions.

Given a vector x € {+1, —1, 0}?, define the closed convex cone KC(x, ¥) and the homoge-
neous convex function F(-; x, X) : R? — R as follows:

Kx,2):={veR’: F(v;x, X) <0},
F(v;x, %) :=(x, E_l/zv) + ”(E_l/zv)sc |, for S :=supp(x).

(The reader should think of v as £~!/2(@ — #*), where 0 is the argument appearing in the
Lasso optimization.)
Consider 8* € R? with x =sign(8™), that is, x; = 1 for 9]’.‘ >0, x; =—1 for 0]’.‘ <0, and

xj =0 for 87 =0. Then K(x, X) is the descent cone of the function v |0* + 2_1/2v||1 at
v = 0, namely (denoting by cl(A) the closure of set A)

K, Z):=cl({veR’:3e > 0s.t. 0%+ 20|, <|0*], ).

The connection between this cone and the Lasso is most easily seen in the case of minimum
£1-norm interpolation (basis pursuit), corresponding to the A — 0 limit of the Lasso (1):

Opp = argmin{||0]|; s.t. X0 = y}.
OcRP
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In the noiseless case o =0 (i.e., y = X0%), Ogpp = 6 if and only if null(G) N K(x, X) =
{0} where G = XX 1/2 is a Gaussian matrix with i.i.d. entries [1]. As proven in [1], the
probability of the event null(G) N K(x, X) = {0} transitions rapidly from O to 1 when the
sampling ratio 1/ p crosses Gy (x, X)2. Specifically, [1], Theorem II, ensures that

if n <Gu(x,X)? — A, P@Bp =0%) < 4exp(—pA2/8);
p

ir 2

>Gu(x,2)> 4+ A, P@pp=0%)>1—4exp(—pA?/S8).

Here, G;(x, X) is the Gaussian width of C(x, X) defined as follows [19, 32, 56]:

1
(10) Ga(x, %) = ﬁE[ve%é}c’,‘z)(”’ 8]
llvllz<1

We next introduce the modified width that is relevant for our results. Consider the probabil-
ity space (R”, B, y,,) with BB being the Borel o -algebra and y,, the standard Gaussian measure
in p dimensions. We denote by L? := L?(R”; RP) the space of functions f : R” — R? that
are square integrable in (R”, B, y,,). This space is equipped with the scalar product

(fro F2e =E[lf1(2), f2(@)] = / (£1(©). F2(&))yp(dg).

The standard notion of Gaussian width defined in equation (10) can be rewritten as

(1)  Gug(x,X) := sup {%(v,g}Lz P(lvll2<)=1,P(F(v;x, %) <0)= 1},

vel?
where g denotes the identity function on L?. Let us emphasize that the supremum is taken

over functions v : R? — R”, g > v(g).
Instead of (11), we will make use of the following relaxed version of Gaussian width:

(12) G(x,X):= vs;JLpz{%(v, g2l <LE[F(v;x,X)] < 0}.

In words, G(x, X) is the maximal correlation of a random direction with a standard Gaussian
vector g subject to F(w; x, X) being nonpositive on average.

Properties of the Gaussian width. 1In the case ¥ =1, G(x,1,) depends on x only through
& :=||x|lo/p- Denote

w*(e) :=Gq(x,I,) forany x with |xo/p =e¢.
Indeed w*(¢) can be computed explicitly, and is given in parametric form by
w*(e)? = +2(1 — &) ®(—a),

. 2[p(a) —aP(—a)]
where « satisfies ¢ = .
o+ 2[p(a) —ad(—a)]
Here, ¢(x) = e/ //27 is the standard Gaussian density, and ®(x) = [* 0o ®(t) dt is the
Gaussian cumulative distribution function. One can show that w*(¢) is increasing and con-
tinuous in ¢, goes to 1 as ¢ — 1, and satisfies

o*(e) = (14 o(e))/2¢ log(1/¢).

Thus, n/p > G(sign(6™), I,,)2 is equivalent to 2(1 + o(s/p))slog(p/s)/n < 1.

For general Gaussian designs X, the critical sampling rate depends not only on the sparsity
of 6 but also on the location and sign of its active coordinates. However, the value of G(x, X)
changes at most by a factor equal to the condition number of X, as stated in the next lemma.
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LEMMA 1. Assume that X has condition number upper bounded by kcona. Then for any
xe{-1,0,1}7,
—-1/2 1/2
Keand *@*(I1l10/p) < G(x. E) < reifng - " (Ix 10/ p)-

In particular, if 2(1 4+ o(s/p))slog(p/s)/n < Kc_orlld’ thenn/p > G(x, ).

We prove Lemma 1 in Appendix C.2.

The definitions (12) and (11) immediately imply G;(x, X) < G(x, X). The next lemma
establishes that the two definitions of Gaussian width differ by a factor that is often negligible.

PROPOSITION 2. For ¢’ depending only on k¢ong, we have

G(x,X) — c/min(g; lélog(p/s)) <Gix,X)<Gx,X),

where s = ||x]|o.

We prove Proposition 2 in Section C.

For designs with a bounded condition number, G(x, X)? = (s/p)log(p/s); cf. Lemma 1.
Comparing with the lower bound in Proposition 2, we obtain that the difference between
Ga(x, ) and G(x, X) is negligible provided s > p?/3/(log p)'/3.

For sublinear sparsity s = o(p), we do not expect the bound of Proposition 2 to be tight.
Because the results in this paper provide nontrivial control of the Lasso and debiased Lasso
estimates for sampling rates n/p of order 1 (see parameter Ap;, in Assumption (A1)(d)
below), we do not pursue a more careful comparison of the standard and functional Gaussian
widths for sublinear sparsities here. Indeed, under sublinear sparsity, any sampling rate of
order 1 is well above the Donoho—Tanner phase transition.

Assumptions. We are ready to formally state the assumptions, which will hold throughout
the paper. The distribution of the random design X, response vector y and Lasso estimate 0
is determined by the tuple (%, X, o, A), the number of samples n and the dimensionality p.
Our results hold uniformly over choices of (8%, X, o, A) and sampling rates n/p that satisfy
the following conditions:

(A1) There exist 0 < Amin < Amax < 09, 0 < Kmin < Kmax < 00, and 0 < Opmin < Omax < 00,
M < 00, Anpin € (0, 1) such that
(a) The Lasso regularization parameter A is bounded Apin < A < Apax-
(b) The singular values «;(X) of the population covariance X are bounded kpin <
kj(X) < kmax for all j. We define kcond := kmax/Kmin > 1.
(c) The noise variance o2 is bounded 02, <02 <02,,.

(d) There exists 0" € R” such that 0" — 0*||1/p < M/./n and
n . =
e G(sign(6"). £)* + Amin.
We denote the collections of constants appearing in assumptions (A1) by

(13) Prmodel := (Amin, Amax, Kmin, Kmaxs Omin, Omax,> Amin, M).

The choice of the constants Ppdel determines via Assumption (A1) the space of parameters
(0*, X, 0,)) and sampling rates n/p (the uniformity class) within which the results stated
below apply. With a slight abuse of language, we will occasionally use Prodel to refer to the
uniformity class as well.
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Assumption (A1)(d) can be v1ewed as an approximate sparsity condition: #* is approxi-
mated in £;-norm by a vector 6" whose sparsity places it above the Donoho—Tanner phase
transition. As established in the next proposition, Assumption (A1)(d) is implied by existing
popular notions of approximate sparsity which appear elsewhere in the Lasso literature.

PROPOSITION 3. Assumption (A1)(d) (with the specified choice of M) is implied by any
of the following:

(@) If |0*|lo < s, then Assumption (A1)(d) is satisfied with M =0 if

1/2

(14) Keond® *(s/p) <1 — Amin.

In particular, it suffices that

(15) 2kcond (1 +0(s/p))slog(p/s)/n < (1 + Amin) "

(b) If 6* € By (v) for q,v > 0, then Assumption (Al)(d) is satisfied by taking M =
Jnv(l —s/p)/p'4 for any s satisfying equation (14) or equation (15).

(c) If Zp  min(1, N |9* |/ap) < s for a certain ag, then Assumption (A1)(d) is satisfied
with M = aos / p provided equatlon (14) or equation (15) is satisfied.

Proposition 3 follows from Lemma 1. Its proof is given in Appendix D.2.

In words, Assumption (A1)(d) allows 8* to be unbounded on a certain signed support,
and requires that it be small in ¢;-norm on its remaining coordinates. Here “small” means
O(1/4/n) per coordinate on average, with leading constant given by M. The location and
sign of the coordinates on which #* can be unbounded is determined by the Gaussian width
G(X, x) of the corresponding vector x. Assumption (A1)(d) permits that the number of coor-
dinates in which #* is unbounded is proportional to p, but does not allow for arbitrarily large
proportionality constant. For example, as is clear from Proposition 3, we require at least that
s <n, and in fact will require something stronger than this.

Proposition 3 uses Lemma 1 to bound G(X, x) with a suitable x = sign(é*). Since Lemma
1 is loose in general, the sufficient notions of approximate sparsity in Proposition 3 are not
sharp and do not identify the whole domain of validity of our results. In contrast, Assumption
(A1)(d) will imply that our results hold down to the Donoho—Tanner phase transition for a
good £;-approximation of 8*.

4. Main results. We now turn to the statement of our main results and a discussion of
some of their consequences. The proof details are deferred to the Appendix.

4.1. Control of the fixed-point parameters. Each of our results involves a comparison of
the Lasso or debiased Lasso estimators in the random- and fixed-design models. The com-
parison will be valid provided we choose t, { to be the solution to the fixed-point equations
(9a) and (9b). This solution we call t*, ¢*. The next lemma establishes that the solution is
unique, and satisfies uniform bounds under Assumption (A1).

LEMMA 4. [If X is invertible and 02 >0, then equations (9a) and (9b) have a unique
solution T, £*. Under Assumption (A1), there exists Tmax < 00 and {min > 0 depending only
on Prmodel and 8 such that 0% < t*2 < rr%lax and {min < CF < 1.

We prove Lemma 4 in Appendix C. An important consequence of Lemma 4 is that due to
the fixed-point equations (9a) and (9b), the quantity R(t*2, £*) is bounded above by ax —o?
and the quantity df(t*2, £*)/n is bounded away from 1 by 1 — Zmin. As we will see (and as
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described in Section 3), R(t*2, *) and df(z*2, *) are good approximations of the predic-
tion risk ||0 0* ||): and the degrees-of-freedom ||0 llo of the Lasso estimator in the random-
design model (1). Thus, Lemma 4, in addition to being a technical tool, which shall be used
repeatedly in our proofs, has substantive consequences on the behavior of the Lasso: under
an arbitrarily small separation from the Donoho—Tanner phase transition, it gives nontrivial
upper bounds on the Lasso prediction error and model size.

REMARK 4.1. The challenge in proving Lemma 4 lies in the fact that *, * are im-
plicitly defined as the solutions to the fixed-point equations (9a) and (9b). While in the case
of i.i.d. Gaussian designs, one can exploit the explicit analytic formulas for R(z2, ¢) and
df(rz, ) as in [45], no such formulas are available under correlated designs. Thus, we re-
sort to a novel argument based on viewing equations (9a) and (9b) as KKT conditions for
an infinite-dimesional optimization problem defined in Section B (see also Section C). The
Gaussian width plays a central and natural role in the analysis of this optimization prob-
lem. Restricted eigenvalues or similar ideas do not yield a tight analysis of this optimization
problem.

. -~ ~f.d .
For the remainder of the document, we always assume 6/ and 7 are computed with
parameters 7, £*.

4.2. Control of the Lasso estimate. Our first result states that the random-design Lasso
behaves like the fixed-design Lasso from the point of view of Lipschitz test functions. The
proof of this result is deferred to Section C.7.

THEOREM 5. Assume (A1) holds. Then there exist constants C, ¢, ¢’ > 0 depending only
on Pmodel and 8 such that the following holds: if n > \/5/ Anin, then for any 1-Lipschitz
function ¢ : RP — R we have for all € < ¢/,

IP’(EM € [Amin> Amax],

C 4
~E[p@")]] > &) = Zemr.

Here, 07 is the fixed-design Lasso with T, £* solving equations (9a) and (9b).

The proof of this theorem is presented in Section C.8.
Theorem 5 has an obvious corollary which we spell out for future reference. For any fixed
A € [Amins Amax]s

) C
1o B(lg®) ~ E[p@")] > ) < G

Namely, any Lipschitz function of the Lasso estimate concentrates around its expectation
in the fixed-design model with high probability—provided that the sampling rate exceeds
the Donoho-Tanner phase transition for a good ¢; approximation of #* and p is large. In
particular, this concentration holds true even in the case where the sparsity s and dimension
p are proportional to n, although the proportionality constants cannot be arbitrary.

We make note that since @* is deterministic, ¢ may depend implicitly on 6*. In particu-
lar, Theorem 5 applies, for example, to the estimation error and prediction error by taking
¢ @) =10 —0%||2 and ¢ (@) = ||@ — 0| %, respectively. (In the latter case, the constants must
be adjusted to account for the fact that 6 — ||@ — 0|z does not have Lipschitz constant equal
to 1. The adjustment is by at most constant factors because the Lipschitz constant is bounded
under (A1).) Thus, the £>-estimation error and the prediction error concentrate on their ex-
pectations in the fixed-design models. By equation (9a), this implies that the prediction error
||0 6’*||2 concentrates on R(t*, ¢*) = t*2 — o2
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Comparison with earlier results. It is worth comparing this result to the existing fixed-
design results for the Lasso (e.g., [6, 12, 13, 48]). To be definite, we consider £,-estimation
error for 1 < g < 2. The optimal fixed-design results establish the existence of constants
¢, C > 0 such that

R sl/ay
a7 hzeyflogQepls) = [0 =6%], = Coprr,

where RE is an appropriate restricted eigenvalue of X (see [6] for precise statements), and C
may depend on q.

Consider the proportional sparsity regime s = 2(p), which is our focus in the present
paper. We make the following comparisons.

Regularization parameter. When s is proportional to p, c4/log(2ep/s) is of order one, so
that A > c4/log(2ep/s) implies Assumption (A1)(d). On the other hand, Assumption (A1)(d)
permits smaller regularization parameters than are permitted by [6], since Ay in Assumption
(A1)(d) can be arbitrarily small (but nonvanishing as n, p, s — 00), while ¢ in equation (17)
and [6] is a fixed numerical constant bounded away from 0. The case when X is taken to be
exactly zero is considered in recent works (see, e.g., [43]).

Estimation error. Because 0 — [|6 — 0|,/ p!/4=1/2 is 1-Lipschitz, we can apply Theo-

rem 5. Further using the bound on t* from Lemma 4, one can show that E[||5f —6* lg] =
O( pl/ 9/ nl/ 2) under Assumption (A1), where O hides constants depending on Ppogdel (see
(13)). Summarizing, we obtain with probability at least 1 — p~4 for any constant A,

(18) 16 —6%], =E[[8" —0*],]1+ O(p"/" > *10g(p)),
E[[07 —6*], 1= 0(p"/7/n'V?).

In the present setting, p'/9/n'/? is of the same order as Cs'/91/(RE*/n), so that the esti-
mate is consistent with the results of [6]. If in addition n = 6(p3/?), then the error term in
equation (18) is much smaller than E[llaf —6*||,]. In other words, we obtain a more precise
concentration around a deterministic theoretical prediction, which we characterize.

Restricted eigenvalues and sampling rates. The previous bullet point describes a scenario
in which the restricted eigenvalue RE is of order 1 (and, in particular, is bounded away from
0). In the random-design setting, this implicitly corresponds to an assumption on the number
of samples. In Section 4.7, we show that restricted eigenvalues can be O for n/p > (1 +
£)G(X, x) with ¢ a positive constant. Our results provide precise control in an interval of
sampling rates that is excluded by [6] and related work [12, 13, 48].

Exact characterization. By establishing that 16 — 6%, concentrates on E[||§‘f — 0741,
Theorem 5 establishes upper and lower bounds on the risk that hold pointwise with respect to

0* and match up to negligible errors. It is a promising research direction to analyze E[H@f —
6*||,4]1 for specific correlation structures X (e.g., block diagonal or low-rank plus identity).

Theorem 5 and the later results in this paper can be used to design estimators for t*, *,
derive the distribution of the debiased Lasso, and construct confidence intervals for single
coordinates. A recent example of this strategy was given in [17] in a different setting. These
exact concentration results are inaccessible from existing results like those in [6, 12, 13, 48],
which are loose in their leading constants.

REMARK 4.2. Although we assume that the error z in the linear model is Gaussian with
independent components, this assumption is not necessary, and Theorem 5 holds provided
that ||z||2/+/n concentrates on o (the rate of this concentration may affect the right-hand
side of equation (16)). This results from the rotational invariance of the £>-norm. In settings
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similar to ours, the extension to non-Gaussian noise is common in the literature (see, e.g.,
[16]). We choose to develop theory with Gaussian noise to simplify the exposition and proofs.

REMARK 4.3. Up to logarithmic factors, Theorem 5 demonstrates a concentration at the
rate p~ /4. Such a rate is typical of results proved using Gordon’s comparison inequality,
which we use to derive all the results in this paper (see Section B). We suspect this rate is
an artifact of our proof technique, and the correct rate should be p‘l/ 2, Recently, [41, 42]
developed a nonasymptotic theory to analyze the approximate message passing algorithm,
which offers another possible path to improve upon the current rate.

At a high level, the source of the rate appearing in Theorem 5 is as follows. Gordon’s
proof technique allows us to localize 6 within a region across which the growth of the ob-
jective value exceeds the size of its typical fluctuations. The size of the typical fluctuations
are Op (n~'/2), and as a function of distance r from the minimizer, we expect to growth to
be 0p(r2). Thus, we get the rate n~!/4. This rate appears again in Theorems 5 and 7. The-
orem C.11, Theorem 10 and Corollary 11 require approximations, which degrade the rate
further. We expect that here, too, the rate appearing in the theorem is not optimal.

Simultaneous control over A. So far, we only discussed the consequences of Theorem 5 for
a fixed value of A, namely equation (16). However, Theorem 5 establishes a characterization
which holds simultaneously over all A in a bounded interval [Apin, Amax]. This is particularly
useful to analyze adaptive procedures to select A.

In particular, it implies that with high probability the minimum estimation error over
choices of A € [Amin, Amax], 1S nearly achieved at a deterministic value A,. Namely, writing

9, and 5{ for the Lasso estimator and fixed-design estimator at regularization A, we have

15 * c —cpe4
P(‘\/ﬁuok* 0%l - xe[xmm Amdx] \/_”‘9A ) = A ’
for Ay ;= argmin [||0f 0% |,].

A€[Amin>Amax] \/_

Recall that it is standard to choose A on the order of /Iog(p/s) (see, e.g., [6]). As we have
already described, applying existing fixed-design analysis to the current setting where s is
proportional to p requires taking Amin > ¢ > 0 for an explicit constant ¢ that is bounded
away from 0. As shown in [45], choosing A based on such conservative lower bounds can
be suboptimal by a large factor. By allowing Ami, to be arbitrarily close to 0, our results can
capture the full range of regularization parameters on which the Lasso behaves well.

Control of the empirical distribution. Previous work on i.i.d. covariates has mainly focused
on establishing the convergence of the joint empirical distribution of the coordinates of the
Lasso estimator and the true parameter vector:

fonpi=— Z(SIG Vot
1_1
to a limiting distribution either weakly or in Wasserstein distance [4, 45]. When covariates are
i.i.d., the behavior of i, , captures all nontrivial behavior of the distribution of 0: : indeed, the
exchangeability of the model implies that conditional on [, , the distribution of 6 is uniform
over permutations of the coordinates, which map each coordinate of 8* to a coordinate with
the same value. This is no longer the case for correlated covariates, and Theorems 5 capture
this this additional structure.
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Nevertheless, the empirical distribution fi,,,, may be of interest, in part because it is easily
interpretable. By applying Theorem 5 to several test functions at once, we can establish con-
centration of the empirical distribution simultaneously in A. We use a particular metrization
of the weak topology? on the space of probability measures on R?, namely

due (. v) =Y 27 Ea~p[¢r(A)] — Ep~ [t (B)]-
k=1

Here, {¢y} denotes a countable subset of the 1-Lipschitz functions R> — R such that for any
compact set K C R2, {ék |k} is dense with respect to the £,-norm.

COROLLARY 6. Assume Assumption (Al) and additionally that n/p < Amax. There ex-
ists ws—a probability distribution on R>—and constants C,C’, ¢ > 0 depending only on
Prodel and Amax such that

1 <& c’ C _ 4
]P)(EI)\ € [Amin> Amax], dw*(? EaﬁGi*,\/ﬁé;s M*) = ﬁ + E) < 6—46 cne s

and

p /
C 2
IP><EI)L € [Amin, Amaxl, dw*( Zaﬁe*,ﬁ@f’ M*) = ﬁ + 6) <2e cnen,

1
P

Corollary 6 states that in both the random-design model and the fixed-design model, the
joint empirical distribution of the estimate and the true parameter concentrates with respect
to weak-x distance, and that moreover, they concentrate on the same value. Using Theorem
5, one can also control properties of w, such as its second moments in terms of Ppodel. We
prove Corollary 6 in Appendix C.15.

REMARK 4.4. The proof of Theorem 5 is similar to the proof of Theorem 3.1 of [45] in
the i.i.d. design case. The proof of simultaneous control over A (Theorem 5) and the control
of the Lasso residual (Theorem 7), stated below, are similar to the proofs of analogous re-
sults in [45]. We emphasize, however, that these proofs rely heavily on the boundedness and
uniqueness of the fixed-point parameters * and {* (see Lemma 4). Regarding the Lasso es-
timate, establishing these properties of the fixed-design characterization is the main technical
innovation of the present paper (see Remark 4.1). Below we will see that further technical
innovations are required for analyzing the Lasso sparsity and the debiased Lasso.

Note that the €* appearing in the exponent in Theorem 5 is faster than the rate appearing
in Theorem 3.1 of [45]. This is because [45] provide a good approximation of the empirical
distribution of the coordinates of @ in Wasserstein metric, which is a more complex object
to control than a single Lipschitz function (see [45], Proposition F.2). Corollary 6 controls
the empirical distribution of the coordinates of #, but in a metric, which is weaker than the
Wasserstein metric.

4.3. Control of the Lasso residual. 1In this section, we establish control for the residual
of the Lasso estimator. The behavior of this residual is of interest because it can be used
in estimators of important quantities. For example, we shall use it to construct an empirical
estimate T of 7*. Informally, the Lasso residual behaves like a normally distributed random
vector with zero mean and covariance (r*;*)zln.

. . . d . .
3The metric dy* metrizes weak convergence in the sense that u; — w if and only if dy,« (;, n) — 0.
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THEOREM 7. Under Assumption (A1), there exist constants C, ¢, ¢’ > 0 depending only
on Pmodel and 8 such that for any 1-Lipschitz function ¢ : RP — R, we have for all € < ¢/,

) ] )2

where h ~ N(0,1,)). Consequently,
- X0
P(’ Iy ll2

C 4
< —Chne
> e) < 3¢ )

The proof of Theorem 7 is provided in Section C.9.

_ T*é.*

4.4. Control of the Lasso sparsity. This section characterizes the sparsity of the Lasso
estimator. In particular, we show that the number of selected parameters per observation

||§||0/n concentrates on E[||§f||o]/n =1-z*

THEOREM 8. Under Assumption (A1), there exist constants C, c, ¢’ > 0 depending only
on Pmodel and § such that for all € < ¢/,

P( ||6n||o (e

The proof of this result is presented in Section C.11.

Note that the €° in the exponent in Theorem 8 is worse than the €* appearing in the ex-
ponent in Theorem 5, Theorem 5, Corollary 6 and Theorem 7. This is because the function
19110 /n is not a Lipschitz function. The proof involves instead analyzing the subgradient of
the ¢ penalty at the Lasso solution and applying certain Lipschitz approximations for indi-
cator functions. Because the Lipschitz constants diverge as € — 0, this results in a weaker
probability bound (see Section C.11 for details). We suspect this rate is not tight, and a depen-
dence of € may be possible, but proving such a tighter dependence may require new tools.
The estimators in the coming sections, which involve ||0 llo/n, will also suffer this degraded
rate.

We make a note that recently Bellec and Zhang [8], Section 3.4, establish that 1 ||5||0|X
concentrates around its expectation with deviations of order O (n~!/?) using the second order
Stein’s formula. Our result is different and complementary in that it shows that 1 ||0||o has
large-deviation probabilities (w.r.t. randomness of both the noise and the design), Wthh decay
exponentially, and characterizes the value around which it concentrates. Moreover, our result
also implies that under Assumptlon (A1) (and, in particular, above the Donoho-Tanner phase
transition), the value on which 1 ||0 llo concentrates is uniformly bounded away from 1.

> € < Se—()l’l€6
—= 63 .

REMARK 4.5. The proof of Theorem 8 is fundamentally different from the proof of the
analogous result for i.i.d. designs [45], Theorem F.1. Indeed, the proof of [45], TheorerE F.1,
draws heavily on simple expression for the empirical distribution of the coordinates of # and
of the subgraident of the £;-norm at the Lasso solution. For general covariances, such simple
expressions are unavailable due to the nonexchangeability of the model. See Section C.11 for
details.

Prediction error and hyperparameter tuning. Using Theorem 7 and 8, we can construct
an estimator T of t*. This gives rise to a provably optimal method for parameter tuning
and a consistent estimate of the standard error of the debiased Lasso, which can be usgd to
construct confidence intervals. In particular, Theorem 7 shows that the residuals y — X6 are
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approximately N(O, (t*¢*)?I,,) and, moreover, that ||0*|o/n concentrates on 1 — ¢*. Thus,
the parameters t™* is consistently estimated by

_ ly — X8
19 A) = ~ .
1) = 18l

Since 7* controls the noise in the fixed design model, its estimation is of particular interest.
Indeed, because %2 = o2 + E[||§f —0* ||§-] and [|0 — 6* ||% concentrates on E[||§f —6* ||§-],
?()\.)2 concentrates, up to an additive constant, which does not depend on A, on the prediction
error. Because of their importance, we collect these facts in the next theorem.

THEOREM 9. Under Assumption (A1), let T = 1*()) be the unique solution of the sys-
tem of equations (9a), (9b). Then there exist constants C, ¢, ¢’ > 0 depending only on Pmodel
and § such that for all € < ¢/,

6

c _.
P(3 € Damin, Amax ] [£0) = 7 ()| 2 €) < e~

Further defining A= argmin{T(X) : A € [Amin, Amax]}, we have
IP(\

Thus, minimizing T(1)? over A gives a provably optimal parameter tuning method. Impor-
tantly, T(A) does not depend on any unknown model parameters, namely o, X or 8. It was
already observed in [45] that minimizing T()) over A provides a good selection procedure for
the regularization parameter. Our results provide theoretical support for this approach under
general Gaussian designs. After the current paper was posted, similar results were recently
obtained for a wide class of losses and penalties in [7].

o~ o~ C 6
0. — 0* 2 . 0, —0* 2 ) = o cne’
i 0z, min 60"z +e) < e

4.5. Control of the debiased Lasso. Recall that the debiased Lasso with degrees-of-
freedom adjustment is defined according to expression (4),

=0+ — 3 'xT(y— X0).
n—101o
The next theorem establishes that the debiased Lasso behaves like the debiased Lasso in the
fixed-design model 0f " (defined in equation (7)), which follows a Gaussian distribution with

mean #* and covariance T*>% ! /n. The proof of this result is provided in Section C.13.

THEOREM 10.  Under Assumption (A1), there exist constants C, ¢, ¢’ > 0 depending only
on Pmodel and 8 such that for any 1-Lipschitz ¢ : RP — R, we have for all € < ¢’,

6

c _,
B(lp @) ~ E[p®")]| > €) = e 7.
where g ~N(0,1,).

Note that the rate of convergence obtained here is faster than the one appearing in Theo-
rem 3.3 of [45] in the case of i.i.d. Gaussian designs. The results, however, are not directly
comparable, since [45], Theorem 3.3, controls the empirical distribution of the coordinates
of @ in Wasserstein distance, whereas we control a single Lipschitz function (see Remark 4.3
for a similar discussion). Further, our proof techniques differ substantially from that of [45].
While their results rely on a gluing argument (see Section F.2 of the Supplementary Material
to [45]), we connect the debiased Lasso to a “smoothed Lasso” estimator (see Section C.13).
In neither this paper nor in [45] do we expect the rates of concentration to be tight.
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Confidence intervals using the debiased Lasso. Equipped with Theorem 10, one may con-
struct confidence intervals for any individual coordinate of #* with guaranteed coverage on
average. Because t* is unknown, we use the estimator T(1) given by equation (3). We refer
to the resulting intervals as the debiased confidence intervals.

COROLLARY 11. Fixq € (0, 1). For each j € [p], define the interval
o —-1/2~ A —1/24
Cld = [0¢ — £, T2 z1—g 2/ v/ 0 + 2 T2 021 g 2/ /).
where z71_q 2 is the (1 — q/2)-quantile of the standard normal distribution, T(A) is given by
equation (3), and

-1
Yj-j =% =% &) X

Define the false-coverage proportion
1 p
D ; 03 ¢C|3

Under assumptions (A1) and if n/p < Amax < 00, there exist constants C, c, ¢’ > 0 depend-
ing only on Puodel and Amax such that for all € < ¢/,

Cc _.
P(IFCP —¢| > €) < 6—66_‘”6 )

We prove Corollary 11 in Section C.13. Importantly, we are able to show that the debiased
Lasso is successful, at least in the sense of Corollary 11, down to the Donoho—Tanner phase
transition and allow A to be arbitrarily close to zero (though not vanishing asymptotically).

As we have already described in Section 3, in the low-dimensional limit, which takes
p fixed, n — oo, the asymptotic standard error of the OLS estimate for 9’5 is given by

Jll/fa/ J/n. The first fixed- pomt equatlon (9a) states that we should 1nﬂate this standard

error by replacing o? with 02 + ||0 0*||s. By Lemma 4, we have that t* is O(1). Thus,
Theorem 10 shows above the Donoho—Tanner phase transition the debiased Lasso achieves
the parametric n~!/? rate in most coordinates, with standard error inflated at most by a con-
stant.

It is worth emphasizing that the debiasing construction of equation (4) assumes that the
population covariance X is known. In practice, X often needs to be estimated from data. Re-
placing ¥ with T in equation (4) introduces an error - HxT( y—X 0) /(n— |0 o),
which we can crudely bound as O, (||~ I _3- 1||0p) (because under Assumption (Al)
I1XT(y — X@)llg/(n - ||§||0) = 0, (1)). Operator norm consistency of ¥ can be achieved
under two scenarios: (i) when sufficiently strong information is known about the structure of
Y (for instance X or ¥ ! are band diagonal or very sparse); see, for example, [11, 14, 29]
and (ii) when additional “unlabeled” data (x;)izl is available. Alternatively, if one is inter-

ested in a particular coordinate j of b\d, one needs only to control the corresponding row of
¥ !, which can be achieved using, for example, the nodewise Lasso and sufficient sparsity
conditions [38], Section 3.3.2. Finally, we remark that the recent paper [17] studies the prob-
lem of debiasing in a regime where the inverse covariance matrix £ ! cannot be estimated
well, although much about this difficult regime remains open.

REMARK 4.6. It is instructive to compare the degrees-of-freedom adjusted debiased
Lasso of equation (4) with the more standard construction without adjustment [36-38, 57,
59]:

~ 1 -~
=0+ -3 1xT(y— X0).
n
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The degrees-of-freedom adjustment adjusts the second term by a factor 1/(1 — ||§||o /n). In-
tuitively, when the sparsity s is much smaller than #, this factor should be close to 1, and
the two constructions 58, 8 should behave comparably. The paper [9] made this precise by
showing that the impact of the adjustment on a single coordinate égj is op (n~1/2) provided
s = o(n?3/1log(p/s)'/3). For larger values of s, the impact of the adjustment on a single
coordinate can be nonnegligble on the n~!/2 scale, so becomes relevant for inference on a
single coordinate (see the next section). In the proportional regime s = ®(n), we can have
||?0\d — 58”2 = O(1), whence we expect the degrees-of-freedom adjustment to have a non-
negligible impact on all or almost all coordinates simultaneously. The degrees-of-freedom
adjustment in equation (4) is crucial for Theorem 10 and Corollary 11.

4.6. Inference on a single coordinate. While Theorem 10 and Corollary 11 establish
coverage of the debiased confidence intervals CI? on average across coordinates, they do not

guarantee the coverage of CI? for a fixed j. To illustrate the problem, recall that Theorem
10 implies that for any 1-Lipschitz ¢ : R? — R, we have with high probability ¢>(§d) —
El¢ (5(1)] = O(p_l/ 6), where O hides factors which only depend on Ppgel and § or are
polylogarithmic in p. Applied to ¢(§d) = é\? — 9;‘, this implies that the difference /n (@\;l —
6%) lies with high probability in an interval of length O(y/n/p'/®). In contrast, Theorem 10
and Corollary 11 suggest that the typical fluctuations of 4/n (é\}i — 6;‘) are of order O(1). Thus,
the control of a single coordinate provided by Theorem 10 is at a larger scale than the scale
of its typical fluctuations.

In fact, the naive guess based on Theorem 10 that /n 21/ 2 (Gd 0}“) ~ N(0, 7*2) can be
incorrect. For example, the recent paper [10] studies the dlstrlbutlon of a single coordinate

of the debiased Lasso (and other penalized estimators), and establishes that \/n Zjll/ 2 j (Qd

0;‘) /T* —d> N(O, 1) for most, but not all, coordinates of the debiased Lasso. They show that

the variance of /n% />

i (9d 9}‘) is approximately given by (see equation (3.19) of [10])

E[ ly — X082 @—9;-*>2]
n(1—110lo/n)2 1 —10]o/n]

In particular, the standard error estimate T will be too small by a nonnegligible amount when
@; —69)?/(1 = 18]l0/n) does not vanish relative to £(2)> = ||y — X03/n(1 — [B]lo/n)*.
Under a proportional asymptotics, we have shown that both ||0 — 6’*||2 /(1= ||0||0 /n) and
£(1)? are of order 1, which implies that for most coordinates, (9 — 9 )2/(1 — ||0 llo/n) van-
ishes relative to 7 (1)2. Nevertheless, there may exist a sublinear number of coordinates j
for which (é i — 0;.‘)2 = Qp(1) [9]. Note that this can occur even above the Donoho-Tanner
phase transition or when restricted eigenvalue conditions are satisfied. For such coordinates,
the standard error T will be too small. The bounds max; [| X~ 'e;||; used by [38] prohibit the
existence of such coordinates, but need not hold under the Assumption (Al).

In Figure 1 of [10], the authors demonstrate a case in which T systematically underesti-
mates the variance of é\}i. For convenience, we also include a similar simulation here. Let
v=(0,1;,0,_5_1)/ J/s. That is, v has unit £>-norm, sparsity s, and is constant on its active
set. We take s = 100, n = 500, p = 1000, p> =0.75,0 = 1, . = /20 log(p/s), 0* = 3/s v
and X =1, + pe; v+ ,ovelT. One can check that X is positive definite. For 5000 replica-
tions, we generate data from the model (2), fit the debiased Lasso estimate éd, compute the
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Fi1G. 2. The debiased Lasso test statistic 1’9\1‘1 for p = 1000, n = 500, s = 100, ,o2 =5 o0o=1,
A =20 log(p/s)/n = .096, 0% = 3/siv, where v = (0,15,0,_s_1)//5 and £ =1, + peyv' + pve]. On
the left, we plot a histogram of the debiased Lasso centered and normalized based on the effective noise T and the
theory in this paper, and we superimpose the standard normal density. In the center plot, we normalize instead
by the standard deviation derived in [10] (see equation (20)). On the right, we plot a histograms of Lasso error
§1 - 9? without centering or standarization, demonstrating that the error of the Lasso in this coordinate is O(1).

estimated standard error T and compute

2 > lly— X013 6 —09)?
(20) sdpz 1= = 2 TR
n(1—[8lo/n)> " 1—8]lo/n

In Figure 2, from left to right, we plot histograms of \/1 — p2/n(@% — 65)/T, /n(@" —
07)/sdpz and 6, — 6f. In the first two plots, we superimpose the standard normal density.

In the left plot, we see an overdispersion of /1 — p2./n (/Q\Id — 0])/7 relative to the normal
density, which is no longer present when the errors are instead normalized by sdpz in the

second plot. This validates that for the first coordinate, /1 — p2T//n underestimates the

standard error. The right-most histogram shows that the error 0 — 05 is of order 1, whence
the second term in sdpz is nonnegligible. (Precisely, the standard division in this plot is about
2.2). We emphasize that sdgz is not an empirical quantity. Our purpose is simply to display
evidence that the standard error El_l 1_/12? is incorrect for the first coordinate. The paper [9]
also provides an empirical standard error, which agrees with sdgz to first order.

Figure 2 suggests the conjecture that while 5{1 may have standard error larger that t*
in some coordinates, it is still approximately normally distributed and unbiased. We do not
establish this fact, and as far as we know, establishing it remains open. We expect that com-
pleting this theory will require different techniques than those in the current work.

An alternative approach. In the current paper, we instead provide an alternative construction
of confidence intervals for a single coordinate using a leave-one-out technique. We are able
to establish the coordinatewise validity of these confidence intervals even in cases where
the Lasso error @\j — 9;‘ is of order 1. We call these confidence intervals, defined below, the
leave-one-out confidence intervals, denoted by CIIJPO. According to simulation, the leave-one-
out confidence intervals often approximately agree with the debiased confidence intervals,
though for some coordinates they may have a larger or smaller width.
To facilitate the construction, let us write the observation vector y as

(21) y:(--- .i'j ) 0]* +O’Z=9;<.ifj+X_j0*_j—|-O’z,
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where X _; € R™**(P=1 denotes the original design matrix excluding the jth colurnn and X ;

denotes the jth column. Define ¥7 := ¥; — X _ Z_l jX—j,j € R" so that X x is indepen-

J
dent of X_; (see Section D.3). Let 0, .init be any determlnlstlc real number that is chosen a

priori; for instance, 0, j.init can be set as 0. According to decomposition (21),

22)  y— %50 imic=X_j (0 + (07 —0ini) T} _ ;T j) +%7(0F — 0j.imit) + 02,

= :Hroo
and

2

27(07 — 0jinit) + 0z ~N(0, o5 Ln)  with o := 02 + (07 — 0.imit) -

J N\

Expression (22) can be viewed as defining a linear-model with p — 1 covariates, with true
parameter 0;“00, noise variance 01%)0 and outcome y — .i‘j-‘@ i.init- We call this the leave-one-out
model, and call

._ vl
Yinitk : =Y — xj Oj,lnlt

the pseudo outcome. Let 7} , {1’;0 be the solution to the fixed-point equations (9a) and (9b)
in the leave-one-out model, and )4, be the Lasso fit on y;.; to X _;.

The leave-one-out confidence interval is then constructed based on the variable importance
statistic

E) T inie = X 6100)

(23) & =0 init + =
! o 2j—j(m—10100ll0)

Note the statistic §; is a renormalized empirical correlation between residuals from two
regressions: the population regression of feature j on the other features (i.e., .i'f), and a
sample regression of the pseudo-outcome y;.;. on the other features (i.e., yjnii — X —;0100).

If /H\j,init = 9;‘, these residuals will be independent. Indeed, in this case L s independent

J
of (¥init» X — j) and because 10, is a function of Yinit» X—j)» .7VCJ7 is also independent of
Yinit — X— 10100 In this case, the distribution of &; is easy to understand We will also quan-
tify the distribution of the variable importance statistic &§; when 0 ;.init 18 sufficiently close to
0]*, which will allow us to we estimate the effective confidence intervals.

Similar to T(A) defined in equation (3), we estimate the effective noise level in the leave-
one-out model by

;Ej - ”yinit_X—j0100”2
loo ™™ /(1 = [B100ll0/7)

The leave-one-out confidence interval is then defined as

Ol = (& — 2} Boz1-as2/ Vi & + 5 T8 21map2/ V).

As asserted by the following result, this confidence interval CI1].°° achieves approximate cov-
erage for fixed j provided é\j,init — 0;‘ = 0(1). We prove this result in Section C.14.2.

THEOREM 12. Assume p > 2 and that the leave-one-out model and Lasso estimators
satisfy (Al). Recall T}, {)t | are the solution to the fixed-point equations (9a) and (9b) in the
leave-one-out model.
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(a) (Coverage and power of the leave-one-out confidence interval) For any y > 0, there
exist constants C,c, ¢’ > 0 depending only on Pogel and y such that for all € < ¢/, |9;‘ -

gj,inid <, and 6 € R, we have
(o £ OIF) — (65 + 25720 G/ 0] Z51 s/ V)
- 1
< C<|t9}k — Ojinit|*? + 00T 0¥ — 0] + —>,
: - n

where G ~ N(0, 1). (See the discussion following the theorem for an interpretation of this
bound).
(b) (Length of the leave-one-out confidence interval). There exist constants C,c, ¢’ > 0
depending only on Puogel, M' and 810 such that for all € < ¢/,
=
Tioo _ C -enet
]P’g;?(f* ‘>e)§ése .

loo

Note that IP’(IQJ’?‘ + EHI_/J-ZII”(‘)OG/\/E - 0| > 113011_a/22j_‘1_/]2/\/ﬁ) is the power of the

standard two-sided confidence interval under Gaussian observations X 1/%.6% + .G/

il=i7i
against alternative 6. This normal approximation holds provided 9;!‘ — 6} .init = 0o(1) and
0 — 9;?‘ = o(n—2/%77) for some y > 0. In particular, it holds for 8 — 9;‘ on the n=1/2 scale.

It is convenient to consider a few special cases of Theorem 12:

1. GAj,init =0 and 9;‘ = 0. In this case, setting 6 = 0 yields |P(0 ¢ Cll;"’) —a|<C/n.In
fact, a moment of reflection shows that this bound can be improved to yield

P(0 ¢ CI™) = .

That is, we have exact control of type I errors.
2. 0 inic=0and 9;‘ =o(1). Setting again 6 = 6%, we obtain

P07 ¢ CIN°) — | = o(1).

That is, we obtain asymptotic coverage for all nonzero coefficients that are small (note that if
10*|l2 = O(1), this is the case for most nonzero coefficients).

3. Generally leave-one-out confidence intervals are successful provided é\_/,init 1s consistent
for 9}‘. Note that we assume @,init is deterministic, which accommodates settings in which
it is based on prior knowledge or is an estimate based on an independent data set. Note that
consistency is a rather weak requirement (indeed |I5— 0*|> = O(1)). We also point at the next
§§cti0n for a construction of exact confidence intervals that do not require the initialization

6}, init-

REMARK 4.7. Even when 97 is 0, it is possible that @\] as estimated by the Lasso is of
order 1; indeed, Figure 2 presents a simulation of such a scenario. In this case, the naive
standard error for the debiased Lasso is too small, but our leave-one-out construction with
gj,init = ( achieves coverage. Moreover, in Section A.2, we provide simulation evidence that
in this scenario, the leave-one-out estimates &; have smaller variance than the debiased esti-
mates ?}1, indicating that they permit more precise inference. Characterizing in which scenar-
ios the leave-one-out intervals are more or less precise than the debaised confidence intervals
is a promising avenue for future work.
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In concurrent work, Bellec and Zhang [10] consider debiasing with a arbitrary convex
penalties, and establish success of the debiased confidence intervals when (among other as-
sumptions) the initial estimate é\J is consistent in coordinate j. Our result is comparable with
theirs (for a special choice of the penalty) but has the advantage of holding down to the
Donoho-Tanner phase transition and permitting that taking A be arbitrarily close to 0. We
also do not require that ||§||0 /n < 1/2 with high probability.

The leave-one-out construction is a renormalized empirical correlation between the residu-
als of the regression of y; ..on X_; and of x ; on X _;. Itis thus similar to a method proposed
by [50, 52], in which the partial correlation between two features in a Gaussian graphical
model is estimated by regressing each of these features on the remaining features. For each
regression, [50, 52] use the scaled Lasso and must assume s = o(4/n) (up to logarithmic
terms) to achieve normal inference. In contrast, we assume that one of the regressions—that
of x; on X_j—is known perfectly, whereas the second regression—that of y;.. on X _;—
must be estimated and can have much less structure (possibly linear sparsity). For this reason,
we require a degrees-of-freedom correction, which is not present in [50, 52].

Relation to the conditional randomization test. It is worth remarking that exact tests and
confidence intervals for 9;‘ may be constructed in our setting. In fact, when the feature distri-
bution is known, one can perform an exact test of

(24) ylx;|X_;,

even without Gaussianity or any assumption on the conditional distribution of the outcome
y given the features X (see, e.g., [15, 39, 44]). The test which achieves this is called the
conditional randomization test and is feasible to use for any arbitrary variable importance
statistic 7'(y, X). The key observation leading to the construction of the conditional random-
ization test is that under the null, the distribution of 7'(y, X)|X _; is equal to the distribution
of T(y, x’j, X_j)|X_; where x/j is drawn by the statistician from the distribution x ;| X _;
without using y. Under the null, this distribution can be computed to arbitrary precision by
Monte Carlo sampling. We refer the reader to [15, 39, 44] for more details about how these
observations lead to the construction of an exact test.

When the linear model is well specified, the null (24) corresponds to 0;‘ =0, and our leave-

one-out procedure with @},init = 0 implements the conditional randomization test under this
null, as we now explain. The statistic &;, defined in equation (23) and used in the construction
of the leave-one-out interval, can also be used as the variable importance statistic in the
conditional randomization test. The Gaussian design assumption and the choice of statistic &;
permit an explicit description of the null conditional distribution &;|y, X ;. Indeed, because

9

L is independent of (y, X _;, 6100> under the null 0;‘ =0, one has

J
—1 (=) \2
Vngjly, X—j ~N(0, Zj|—j(Tloo) ).

In our setting, we can access the null conditional distribution through its analytic form rather
than through Monte Carlo sampling. The test which rejects when 0 ¢ Clljf’0 is exactly the con-
ditional randomization test for the null (24) based on the variable importance statistic |&; |4
As a consequence, the leave-one-out confidence intervals have exact finite sample coverage
under the null 67 = 0 when 6; jiy = 0. Moreover, Theorem 12 provides more than what ex-
isting theory on the conditional randomization test can provide: it gives confidence intervals,
which are valid under proportional asymptotics and a power analysis for the corresponding
tests.

4This holds provided that the statistician computes & |y, X _; exactly by taking an arbitrarily large Monte Carlo
sample.
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The linearity assumption in our setting allows us to push this rationale further. When
0F = é\J init,» the jth residualized covariate .i?j' is independent of the pseudo-outcome y;,;;
and X_;. Thus, by the same logic as above, the leave-one-out confidence interval achieve
exact coverage when 0; j init = 9 In particular, we have an exactly valid test of 0 =0, . init

for all values of §; j,init- The i 1nver510n of this collection of tests, indexed by 0, . inits produces an
exact confidence interval. Details of this construction are provided in Appendix C.14.

We prefer the approximate interval Clljfj0 to the exact interval outlined in the preceding
paragraph for computational reasons. The construction of these exact confidence intervals
requires recomputlng the leave-one-out Lasso estimate using pseudo-outcome y — l@ . init

for each value of @; ;.init- In contrast, the leave-one-out confidence interval we provide requires
only computing a single leave-one-out Lasso estimate. It achieves only approximate cover-
age, but our simulations in Section A.2 show that coverage is good already for n, p, s on the
order of 10 s or 100 s. An additional benefit of Theorem 12 is its quantification of the length
of the leave-one-out confidence intervals and the power of the corresponding tests, which are
not in general accessible for the conditional randomization test or confidence intervals based
on it. In fact, because the test 0 ¢ ClljOO is exactly the conditional randomization test, Theorem
12(a) applied under 9;‘ provides an estimate of the power of the conditional randomization
test under alternative 67 = o.

4.7. Restricted eigenvalues and the Donoho—Tanner phase transition. An important fea-
ture of our results is that they hold down to the Donoho—Tanner phase transition, which can
be weaker than the requirement based on restricted eigenvalue conditions.

Specifically, the standard restricted eigenvalue on support S C [p] of a matrix X € R"*P
is defined as (see, e.g., [6, 12])

RE(S, ¢) :=RE(S, ¢; X) := r;lér(lé L)\/,IIX0||2>0
where Crg(S,c) :={0 ¢ R? : ||0sc|l1 < c||@sll1,]|0|l2 = 1}. In order for bounds based on
restricted eigenvalues to yield the correct estimation error rate, one typically needs RE(S, ¢)
to be bounded away from zero for some c strictly larger than 1.
In the random design setting of the present paper, we illustrate by the following example
that, RE(S, ¢) = 0 with high probability for some nonvanishing interval of sampling rates
above the Donoho-Tanner phase transition.

PROPOSITION 13.  Consider a block diagonal matrix X € RP*P whose first s /2 diagonal
blocks are K = (/1) ’;)) for some constant p > 0, and whose lower right (p —s) X (p — 5)

diagonal block is I, 5. Let S ={1,2,...,s} and x* =15 € RP be the indicator vector on S.

Consider the limit s, p,n — oo with s/p = & and n/p = § fixed. In this setting, the Gaus-
sian width G(x*, X) = ?(8, 8, p) € (0, 00) only depends on n, p, s through the ratios &, §.
Further, there exists A(g, 8, p) > 0 such that if G(x*, £)* <8 < G(x*, £)>+ A(e, 8, p), then
with probability going to 1 as p — oo, RE(S, ¢; X) =0 forall c > 1.

We prove Proposition 13 in Appendix D.4. We remark that the set Crg(S, 1) is closely
related to the cone C(x, X) used in defining the Gaussian width G(x, X): the former is based
on the cone constraint ||@sc||{ < ||#s]|l1, Whereas the latter is based on the cone constraint
10sc|l1 < (sign(x), @), where S = supp(x). The right-hand side ||#s]; is the supremum of
(sign(x), @) over all sign vectors x with support S. Existing proofs based on the restricted
eigenvalue condition [6, 12] go through if ||@s||; were replaced by (sign(x), @) in the def-
inition of the restricted eigenvalue condition (indeed, in these proofs, this quantity serves
only as a bound on [|0%|; — [|@s|l1). Thus, Proposition 13 as demonstrates the importance of
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using (sign(x), #) instead of ||@g||; in definitions of the Gaussian width or restricted eigen-
value rather than demonstrating a fundamental limitation of prior analyses. A fundamental
improvement of our analysis relative to prior analyses is that we can take ¢ = 1 rather than
¢ > 1. For fixed ¢ > 1, even a modified restricted eigenvalue condition using (sign(x), 8)
results in a gap with respect to our condition G(x*, ¥)? < 6.

A natural question is whether our results hold for sampling rates below the Donoho—Tanner
phase transition. The following proposition gives a partial answer, in the negative direction.

PROPOSITION 14. Consider x € {—1,0, 1}? with | x|lo > 1 and € > 0. If

G(x, %) 2\/E+e,
p

then, for any r > 0, there exists 0* (depending on r, A, 0, Kmin, Kmax, 1, p and ||x|o) with
sign(0*) = x such that if the data is generated according to (2), then

IF’(||@’\—6”"||2 >r)>1- Ce_Cpez,

where C, ¢ > 0 depend only on kmax.

In particular, the Lasso has unbounded risk on sparse balls below the Donoho—Tanner
phase transition, whence Theorem 5 cannot hold with bounded fixed-point parameters. We
prove Proposition 14 in Appendix D.1.
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SUPPLEMENTARY MATERIAL

Supplement to “The Lasso with general Gaussian designs with applications to hy-
pothesis testing” [18] (DOI: 10.1214/23-A0S2327SUPP; .pdf). The supplement contains
proofs and technical details that were omitted from the main text.
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