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Understanding and handling interference
across multiple active cameras.

BY JONGHO LEE, MOHIT GUPTA,
BHUVANA KRISHNASWAMY, AND SUMAN BANERJEE

When Two
Cameras
Are a Crowd

VISION AND ROBOTICS systems enabled by cameras
that recover 3D scene geometry are revolutionizing
several aspects of our lives via technologies such as
autonomous transportation, robotic surgery, and
‘hands-free’ user interfaces. Modern 3D cameras
are active devices, where a programmable light
source emits coded illumination. The emitted light
gets reflected from the scene and is received by a
sensor to infer the 3D structure of the surroundings.
In a multi-camera environment, such active 3D
cameras may receive light from the sources of

other cameras, resulting in large depth errors. This
problem is becoming increasingly important due to
the emergence of low-cost and compact active 3D
cameras, which are becoming ubiquitous across a
wide range of applications, from consumer devices to
vehicular vision systems.
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We observe that the multi-camera
interference (MCI) problem shares
several similarities and dissimilari-
ties with common interference prob-
lems in the RF domain. Based on this
observation, this article describes
new and emerging challenges when
multiple active 3D cameras operate
in the same spatio-temporal region.
The article also outlines some solu-
tions, and more importantly, high-
lights the next steps.

The 3D Revolution
We are in the midst of a 3D revolution
fueled by cameras that can recover 3D
geometry of their surroundings (Figure
1). The key catalyst driving this revo-
lution is the emergence of low-cost,
time-of-flight (ToF) 3D cameras that
emit coded light and infer distances
(depths) based on reflections from sur-
rounding surfaces. ToF cameras can be
made into extremely compact devices,?
and thus, can potentially measure ac-
curate 3D shapes over a wide area.
Applications. Due to their low cost,
compact form factors and low computa-
tional complexity, ToF-based active 3D

a In comparison, 3D cameras based on other
principles, such as binocular stereo and paral-
lax, require large form factors and are unsuit-
able for long-range 3D imaging applications
such as automotive navigation.

key insights

m 3D cameras are revolutionizing several
aspects of our lives in many applications,
such as autonomous vehicles, cellphones,
tablets, AR and VR devices.

m 3D cameras reconstruct 3D geometry
of the surroundings by emitting and
receving light. As multiple 3D cameras
operate in the same spatiotemporal
region, the light interference between
cameras can cause large depth errors.

m Multi-camera interference (MCI) is
becoming an important issue as 3D
cameras become ubiquitous. The
MCI problem shares similarities and
dissimilarities with the interference
problem in wireless communications.

m We describe several challenges and
solutions for MCI based on these
similarities and differences.
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cameras are now the method of choice
in most commercial 3D imaging sys-

Figure 1. The 3D revolution.

Cameras that recover the 3D structure of their surroundings are becoming tems, including vehicular LiDARs, and
ubiquitous in several application domains, including transportation, augmented more recently in commodity” and con-
and virtual reality, mobile robotics, and phones. sumer—grade devices, such as cell

phones, tablets (for example, Apple
iPad), and gaming and AR/VR headsets
(for example, Microsoft Kinect and Ho-
lolens). They are also used by inspection
and delivery robots to navigate in ware-
houses** and perform 3D modeling,*"
directly impacting safety and function-
ality. Going forward, our dependence on
Transportation Augmented reality  Robot navigation Mobile phones them is only going to grow as these cam-
eras will drive an even larger, potentially
transformative set of applications such

as human-machine interaction® and
Figure 2. Multidevice interference and the resulting depth errors in active 3D cameras. home robotics.

MS HoloLens

Apple iPad

Active 3D cameras and interfer-
ence. More generally, ToF cameras
belong to the class of active 3D cam-

(a) An active 3D camera consists of a programmable light source and a sensor.
(b) Multiple active 3D cameras simultaneously imaging the same scene point
leads to MCI. (c) The estimated scene depths can be significantly different

from the true depths due to interference. (d) An example scene. eras, which consist of a programma-

(e) Ground-truth scene depths. (f) Depths measured in the presence of ble light source that emits spatially or

an interfering camera have large systematic errors. Part of the figure adapted temporally coded light b For example
. b

L d Gupta™ with permission. .
from Lee and Gupta™ with permissi the light source could be a laser or an

LED whose intensity is modulated
over time. The emitted light signal
3D scene travels to the scene of interest, gets
reflected, and is captured by the sen-
sor (typically co-located with the light
source), as shown in Figure 2a. Scene
depths (and hence, the 3D geometry)
are extracted by comparing the emit-
Light source Emission ted and the reflected light. Since the
camera actively controls the illumina-
tion, it can reliably recover highly pre-
cise 3D geometry even in challenging
real-world scenarios, including large
lighting variations (bright sunlight to
dark night sky) and optically uncoop-
erative scenes (shiny materials, tex-
tureless and dark objects), which are
otherwise difficult to handle for pas-
sive 3D cameras.

Although the coded light sources
- enable high-precision 3D recovery in
Time isolation, multiple active cameras,
(b) Multiple active 3D cameras (c) Depth errors by interference each emitting their own light signals,
can cause mutual interference. In
such multi-use scenarios, an active
camera’s sensor may receive light
emitted not just by its own source, but
also by the sources of other cameras.
This interfering signal prevents cor-
rect 3D depth estimation, resulting

Sensor Reflection

(a) Active 3D camera

== True reflection == TInterfering reflection == Total reflection
/

True depth |

Recovered depth

3D scene

Intensity

3D camera

Interfering
3D camera

3 o ) e Om
(d) Scene color image (e) Scene depths: (f) Scene depths:
no interference with interference b In contrast, passive 3D cameras (for example,

stereoscopic 3D cameras) do not actively con-
trol the illumination, thus only passively ob-
serving the scene.
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in potentially large, systematic depth
errors. An example is shown in Figure
2b-f, where the scene depth observed
by one active camera is significantly
distorted in the presence of a second,
interfering one. Such errors in low-
level 3D measurements can make it
near impossible to extract any action-
able information (for example, object
detection and recognition, image
classification) for downstream ma-
chine-learning (ML) algorithms.

Why is now a good time to address
MCI? Until recently, a large propor-
tion of ToF cameras were based on a
scanning laser beam that illuminates
one (or a few) scene point at a time.
Since they illuminate only a small por-
tion of the scene at a time, the proba-
bility that two devices simultaneously
illuminate the same point is relatively
low (Figure 3a). This enabled multiple
devices to co-exist without affecting
each other. However, they require
mechanical moving parts (for exam-
ple, rotating mirrors), often leading
to long acquisition times, high cost,
bulkiness, and reliability issues.

To address its limitations, a new
emerging class of solid-state ToF cam-
eras flood-illuminate the entire scene
(Figure 3b), making them considerably
cheaper, smaller, lighter, and faster.
Hence, solid-state cameras are fast
replacing scanning-based cameras in
autonomous driving and robotics ap-
plications (Figure 3c). But, there is a
trade-off: Several active cameras flood-
illuminating a scene simultaneously
will interfere with each other (Figure
3b). Furthermore, a new generation of
consumer devices (for example, cell
phones) with 3D imaging capabili-
ties are becoming ubiquitous. Due to
stringent size and cost requirements,
these devices also prefer solid-state 3D
cameras (Figure 3d), which will create
strong MCI whenever multiple active
cameras are used in proximity.

Due to their compatibility with
mainstream CMOS fabrication lines,
the capabilities of solid-state cam-
eras (spatial resolution, timing preci-
sion, signal-to-noise-ratio) continue
to grow rapidly.'®**33 Therefore, these
cameras are quickly becoming the
method of choice in almost all ap-
plications that rely on 3D cameras,
including vehicular navigation, ro-
botics, and consumer mobile devices.

On the downside, this growth will
add to the severity of MCI problems.
Imagine several cars equipped with
ToF camera-based LiDARs driving in
close proximity, or an indoor setting
with several consumer devices such
as phones and headsets using their
3D cameras simultaneously for aug-
mented reality (AR), localization, or
3D modeling.>** It is, therefore, criti-
cal to address this problem now so
that 3D cameras continue to function
reliably across a broad spectrum of re-
al-world scenarios, imaging devices,
and application domains.

Therefore, managing interference
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across a multitude of these devices
will be of profound importance as
solid-state ToF cameras become ubig-
uitous in our personal mobile devices,
vehicles, homes, and workplaces, as
well as the basis for numerous critical
applications. The goal of this article is
to shine a light on this important prob-
lem (pun intended) that has received
little attention so far: interference of
light signals emitted by active cameras
and its impact in accurately recovering
3D scene information.

Can research on wireless interfer-
ence be used to address MCI? Typi-
cal wireless communication systems

Figure 3. Emergence of solid-state ToF and consumer-grade 3D cameras.

(a) With current LiDARSs using a scanning laser beam, only a small portion of

the scene is illuminated at a time. Thus, the likelihood of MCI is relatively low.

(b) A new class of solid-state ToF devices is emerging where the light source
flood-illuminates the entire scene without any moving parts, thus significantly
increasing the likelihood of interference. (c) This new generation of solid-state
3D cameras is cheaper, smaller, and lighter, and they are fast replacing scanning-
based devices. (d) Consumer devices with solid-state 3D cameras are becoming
ubiquitous, increasing the possibility of strong interference in scenarios when
multiple such devices are used simultaneously in a spatial neighborhood.
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(for example, Wi-Fi, cellular systems)
use radio waves propagating over a
shared channel. These systems have
dealt with multi-node interference
for decades. This has led to the de-
velopment of many techniques using
whichever multiple wireless devices
can co-exist and communicate over
the same shared air medium. Hence,
it is natural to evaluate whether strate-
gies developed for mitigating wireless
interference can be applied to address
MCI. To answer the above question,
we first discuss the similarities and

differences of how interference mani-
fests in these settings.

At first glance, an active 3D camera
is very similar to a wireless transmit-
ter (Figure 4). A wireless transmitter
generates radio waves that propagate
over the air (usually referred to as the
channel/medium) to a wireless re-
ceiver located at a distance with a goal
of communicating information. The
information itself is encoded in the
radio waves. An active 3D camera also
uses a transmitter and a receiver. The
active 3D camera transmitter (or light

Figure 4. Wireless and multi-camera environments.

(@) In an RF network, transmitter (Tx) nodes send signals via the channel to the
receiver (Rx). (b) In a multi-camera environment, multiple active 3D cameras
transmit light from their light sources (Tx) to the 3D scene (channel) and

receive the reflected light by the sensor (Rx).

3D camera
(Terminal)

(a) RF environment

3D scene
(Channel)

(b) Multi-camera environment

Figure 5. Active 3D cameras.

(a) In direct ToF (D-ToF) approaches, the light source emits a periodic train of
short light pulses. Scene depths are estimated by directly measuring the travel
time of each pulse using high-speed timing circuits. (b) In indirect ToF (I-ToF)
approaches, the light source emits continuously modulated periodic light
waveforms. Depths are estimated by measuring the phase-shift between the

emitted and reflected waveforms.
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source) generates a signal (light), and
a corresponding receiver (or sensor)
captures a reflected instance of this
signal. However, unlike the wireless
communication systems, the goal of
active 3D cameras is to estimate the
depth, or distance, of objects in the
environment based on the ToF of the
received reflected signals. This could
be considered as analogous to learn-
ing the channel in wireless systems.

The similarities further extend from
a single transmitter-receiver (trans-
ceiver) pair to a network of transceiv-
ers. In a wireless network, when mul-
tiple nodes attempt to communicate
simultaneously, the radio waves inter-
fere with each other, leading to colli-
sions. Similarly, when multiple light
sources flood-illuminate a scene, they
collide and corrupt the received signal,
resulting in depth errors.

There are, however, two critical
differences between these two sys-
tems. First, in active 3D cameras, the
transmitter and the receiver are co-
located, that is, the light source and
the sensor are both part of the same
active 3D camera (Figure 4b). Second,
signals collide in different ways. In a
wireless channel, collisions could re-
sult in constructive interference or
destructive interference, where the
signal gets strengthened or weakened.
On the other hand, an active 3D cam-
era modulates the intensity of light,
as opposed to the underlying electric
field. The key factor to notice is that
the intensity of light is always positive
with both a constant (DC) and a time-
varying (AC) component; the depth is
encoded in the time-shift of the AC
component. Therefore, the interfer-
ing signals from multiple cameras al-
ways accumulate additively. Although
orthogonal-coding approaches can
remove the AC interference, the DC
component still accumulates, result-
ing in higher photon noise.

Despite these differences, we be-
lieve that the experiences of the wire-
less communications and networking
community in addressing interference
problems can benefit the imaging and
computer-vision community in ad-
dressing MCI. In particular, we believe
that a good understanding of various
approaches to mitigating wireless in-
terference and the theoretical founda-
tions and practical considerations of



active 3D camera design can together
synthesize useful solutions. If success-
ful, the resulting ideas will not just
spur widespread adoption of existing
technologies, but also enable emerg-
ing applications that were hitherto
considered impossible. The theoreti-
cal tools and techniques developed as
part of this work will find applications
in a broad range of techniques which
involve coded light sources and sen-
sors, such as structured light, tomogra-
phy, and microscopy, as well as optical
communication systems using coded
light sources.

In summary, we answer the ques-
tion in this subsection affirmatively by
indicating that research on wireless in-
terference can be used to address MCI.
In the rest of the article, we identify
various MCI mitigation approaches by
leveraging its similarity to wireless and
propose new directions to address the
differences between the two scenarios.

An Overview of Active 3D Cameras
An active 3D camera consists of a light
source that emits coded illumination
toward the scene and a sensor that
captures the reflected light, as shown
in Figure 2a. The most widely used
class of active 3D cameras is based
on the ToF principle. ToF-based cam-
eras have a light source which emits
temporally coded illumination. For
example, the light source could be a
laser or a light-emitting diode (LED)
that sends out short light pulses or a
continuously modulated light. The
emitted light travels to the scene of in-
terest and is reflected back to the sen-
sor. The cameras measure the scene
depths by measuring the total time of
travel, computing the time-shift be-
tween the emitted and received wave-
forms (Figure 5a-b).

ToF-based depth-imaging systems
canbebroadly classified into directand
indirect ToF systems. A direct ToF (D-
ToF) system'¢3* estimates scene depths
by emitting a short light pulse into the
scene and directly measuring the travel
time of the reflected pulse (Figure 5a).
Most vehicular LiDARs are based on
the D-ToF principle. An indirect ToF
(I-ToF) system,'*'#?” on the other hand,
emits light continuously. The intensity
of its light source and the exposure of
the sensor are both modulated over
time for measuring the scene depths.

The multi-camera
interference
problem shares
several similarities
and dissimilarities
with common
interference
problems in

the RF domain.
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The light-source-modulation and sen-
sor-demodulation functions can be
any periodic and continuous functions
such as sinusoids, square waves, or
trapezoidal functions (Figure 5b).'* I-
ToF cameras do not require expensive
components, and hence, are routinely
used in consumer devices such as Mi-
crosoft Kinect and Hololens.

MCI in active 3D cameras. When
multiple active 3D cameras illuminate
a scene, the reflected signals interfere,
corrupting the scene information. In
this section, we provide the mathemat-
ical background for understanding
MCI in active 3D cameras.®

ToF image formation model. The
intensity of the light source in a ToF
camera is temporally modulated as a
continuous periodic function M(?); it
could be a sinusoid,'®* or an impulse
train function.'” The period of M(¢) typi-
cally varies from 10-1,000ns, which
corresponds to a measurable distance
of 1-100m. The light emitted by the
source travels to the scene of interest
and is reflected back toward the cam-
era. The intensity of the reflected light
incident on a sensor pixel p is a time-
shifted and scaled version of M(t):

R(p;¢) = aM(t - 1), €3]

where t =% is the time-shift of the wave-
form due to travel from the source to
the sensor. d is the distance between
the camera and the scene point imaged
atp and cis the light speed. ais a scene-
dependent scale factor that encapsu-
lates the scene’s reflectance properties.
The camera computes t (typically of the
order of ns) by using high-speed, on-
chip timing circuits, and the scene dis-
tance is estimated as d = 5.
Multi-camera interference. If multi-
ple ToF cameras are simultaneously il-
luminating and imaging a scene point
(Figure 2b), the brightness of the light
incident at one of the cameras (referred
to as the primary camera) is given by:
R, D=R®)+MCI,
where, MCI= ) R () (2)
n=1

where N is the number of interfering
cameras, R(t) is the radiance incident
at the primary camera due to its own
source (Eq. 1), and R ()=a M (t-7 )
is the measured intensity due to the n'

¢ ToF image formation model is applicable to
any active 3D camera.
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source. We drop p for brevity. The sum-
mation term in Eq. 2 corrupts the true
radiance R(¢), resulting in erroneous
depth estimates. Figure 2c shows an ex-
ample of a ToF camera using sinusoid
modulation. Assuming all the sources
use sinusoids (or any other periodic
shapes such as squares) of the same
frequency, the phase of R (t) may dif-
fer from the true phase of R(¢), resulting
in systematic, potentially large depth er-
rors as shown in Figure 2d-f.

Current approaches to address-
ing MCI. A trivial approach to pre-
vent MCI is to assign different wave-
lengths to different cameras. This
approach only eliminates AC inter-
ference, and it faces two practical
constraints: (1) The set of available
wavelengths is strongly limited by the
sensitivity range of the sensor mate-
rial (typically silicon), as well as the
practical requirement for the emitted
light to be invisible to humans. This
limits the available wavelengths to
be # 850-950nm, which is the near-
infrared region of the EM spectrum;
(2) Due to laser and sensor hardware
constraints, each sensor must be as-
signed a range of wavelengths (for
example, 5-10nm). These constraints
restrict the number of distinct wave-
length bands preventing assigning
a unique set of wavelengths to each
active camera. Recent works address-
ing MCI can be broadly classified into
three categories:

Orthogonal coding. The majority of
existing works rely on orthogonal cod-
ing, such as sinusoids of different mod-
ulation frequencies® or phases,?**¢and
pseudo-noise sequences”® for different
cameras. However, they face challeng-
es similar to frequency division mul-
tiple access (FDMA): a limited set of or-
thogonal frequencies and codes which
proves inadequate for the rapidly grow-
ing cameras. These approaches often
require a central authority that assigns
aunique code to each camera, which is
not practical.

Time division multiple access (TDMA).
Other approaches divide the total cap-
ture time of the camera into multiple
time slots and assign them to individ-
ual cameras randomly.” These tech-
niques do not scale with the number of
interfering cameras.

Mechanical approaches. Another
method is to project a planar light
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Several active
cameras
flood-illuminating
a scene
simultaneously
will interfere

with each other.
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sheet which is scanned over the scene.
Since only a portion of the scene is
illuminated at a time, interference
can be reduced.*?** Although these
approaches successfully prevent in-
terference, they require mechanical
scanning, which increase system cost
and size.

Recently, optical phased arrays and
micro-electro-mechanical systems
(MEMS)-based technologies have at-
tracted attention to resolve the limi-
tations of mechanical approaches.
These hardware-based approaches
can be integrated into our software/
firmware-based approaches to cre-
ate hybrid solutions to mitigate MCI.
However, this article focuses on wire-
less-inspired software/firmware ap-
proaches to reduce MCI.

The Promise and Pitfalls of
Wireless-Inspired Approaches
Interference is a classical problem in
wireless communication. A huge body
of literature over multiple decades
has examined this problem to enable
efficient shared access of a common
channel such as the wireless medium.
The wireless community commonly
refers to these approaches as medi-
um access control (MAC) techniques.
Since MCI arises from sharing the
common medium, it has similarities
to MAC protocols in wireless com-
munication. Here, we showcase the
promise and pitfalls of applying well-
known wireless MAC protocols to ad-
dress MCI. As previously discussed,
orthogonal coding across cameras
can only reduce AC interference and
not DC interference. A simple solu-
tion is to avoid collisions; we adapt a
coordinated and distributed collision
avoidance from wireless, simulate
them in a multi-camera setting, and
analyze their performance.
Comparisons using computer simu-
lations of MCI. We developed a physi-
callyaccurate computational simulator
to emulate active 3D cameras, under
a wide range of scene configurations
and sensor-source parameters. The
simulator models different steps of the
image formation process as shown in
Figure 6. Given a source modulation
function M(t) (>0), the emitted light
E(t) is defined as E()=PM(t), where
P is average source power. M(t) can be
any periodic function. For example, for



sinusoid coding, M(t)=1 + cos(21uft),
where f is modulation frequency. The
light signal L(¢) received at the sensor is
defined as the sum of source reflection
at the scene and ambient light:

L= ab(t-29) 4 p, 3)

where a is a scale factor encapsulating
scene reflectance and light fall-off, P,
is average ambient power, d is scene
depth, and c is light speed. Noise-free
sensor measurement C is the correla-
tion between L(t) and sensor demodu-
lation D(¢):

4)

where 7 is integration time. If we as-
sume sinusoid coding, D(¢)=1 + cos
(2mft). Final sensor measurement is
obtained by adding photon noise,
read noise, and ADC noise to C. To re-
cover scene depth, we need multiple
sensor measurements obtained by
changing the phase of D(#). For a 4-tap
sinusoid coding scheme, those mea-
surements C_ are obtained from Eq.
4 with D (=1 + cos(2nft -§(k-1)),
(k=1,...,4). The scene distance esti-
mate d is obtained by

-sgen(cs)  ©
Using this simulator, we compare
the performance of the following two
wireless-inspired MCI reduction ap-
proaches with the conventional or-
thogonal coding approach (OCA). We
implement OCA by assigning orthogo-
nal modulation frequencies to each
camera. Visit https://bit.ly/3MhG4qu
to access the code to simulate MCI re-
duction approaches.

CSMA-based MCI mitigation. A
popular idea in many communication
systems to share a common medium
is the “listen before talk” approach.
In this approach, interference is po-
tentially mitigated by requiring each
transmitter to listen to the channel
before transmitting their data. Wait-
ing until the channel is idle ensures
that a transmitter does not interfere
with an ongoing communication. In
wireless parlance, this is called “car-
rier sensing,” and the technique is
often referred to as carrier sense mul-
tiple access (CSMA). To ensure no two
nodes attempt to transmit simultane-
ously once the channel is sensed to be
idle, CSMA with collision avoidance
(CSMA/CA) is widely used in wireless

c=[LwDpaw dt,

systems such as Wi-Fi. We draw inspi-
ration from CSMA/CA, which requires
nodes to wait a random amount of
time after the channel is idle before
transmitting. Combining carrier sens-
ing and random wait times helps to
avoid collisions. In particular, we
design a “listen/view before illumi-
nation” approach at each camera to
avoid interference from other cam-
eras. Before illuminating the scene,
if the channel is busy, the camera de-
fers; else, it illuminates the scene and
measures the depth information. In
our implementation, we divide the to-
tal capture time (minimum time to es-
timate depth) of an active 3D camera
into multiple time slots and sense the
channel at each slot.

Co-operative random access-based
MCI mitigation (CRA). We compare the
depth accuracy of CSMA-based MCI
with a time-division multiple access
(TDMA) approach. If multiple camer-
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as are synchronized to a global clock,
their transmissions can be scheduled
in fixed slots. Each camera chooses a
random sequence of slots to be active
and illuminate the scene. In our imple-
mentation, all the cameras are syn-
chronized, such that the slot boundar-
ies are the same.

In Figure 7, we compare OCA, CRA,
and CSMA in terms of depth accuracy
and power consumption as a function
of the number of interfering cameras.
For depth accuracy comparison at the
same source power, we employ depth
standard deviation since all compared
approaches cause random depth er-
rors due to noise, instead of struc-
tured errors. For both CSMA and CRA,
we use a slot clash check algorithm*
to check if slot interference occurred,
and depth is estimated from the col-
lection of non-clashed slots. Depth
standard deviation of each MCI ap-
proach is computed from repeated

Figure 6. Simulation steps.

We developed a physics-based simulator that computationally emulates
various steps of an active 3D camera's imaging process for evaluating the

proposed interference mitigation techniques.
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depth estimation. The required pow-
er consumption to achieve the same
depth standard deviation is also com-
pared. CRA and CSMA, the wireless-
inspired approaches, outperform
OCA in terms of both depth accuracy
and power consumption, as they avoid
collisions and hence both AC and DC
interference is reduced. Performance
improves with the number of cam-
eras, which is desired when active 3D
cameras become more prominent in
the near future.

Potential pitfalls. Although CRA
and CSMA show promising results,
the comparisons are based on purely
theoretical and idealized simulations.
In practice, additional overhead is
required to account for various re-
sources, such as power and time for
clash check and carrier sensing. Fur-
thermore, adapting wireless-based
approaches for MCI has a tradeoff:
The probability of collision increases
as the network scales. To avoid col-
lisions, more slots should be used,
which leads to greater capture time
and power consumption. The time to
switch from carrier sensing to normal
camera mode will further increase slot
duration. These can be critical issues
for real-time applications, such as ve-
hicular networks. It is also challeng-
ing to synchronize multiple cameras
to a global clock due to the absence
of a central controller. Therefore, to
accommodate the constraints of an
active 3D camera system, careful algo-
rithm design and post-processing are
required. In the next section, we pres-
ent open research areas that can ad-
dress MCI using approaches inspired
by wireless communication.

The Road Ahead: Challenges in
Wireless-Inspired MCI Solutions
We identify the following research
directions, each inspired by the rich
work on MAC protocols in wireless
networks, with open challenges in
applying them to active 3D camera
networks. We build upon existing ap-
proaches to be applied to active 3D
cameras by leveraging the opportuni-
ties provided by cameras to address
their unique constraints.

Distributed interference manage-
ment. In large-scale active 3D camera
networks, resource-efficient, distrib-
uted interference-management tech-
niques are necessary. We propose
spread spectrum strategies that can
estimate ToF from the cumulative re-
flected signal, enabling multiple cam-
eras to co-exist. Spread spectrum tech-
niques are used to improve a sender’s
resilience to interference and enable
co-existence with other transmitters
by occupying a wider range of fre-
quencies. Since throughput is not a
metric of interest in an active 3D cam-
era network, spread spectrum-based
approaches are an appropriate choice
for MCI.

One of the key opportunities to le-
verage in active 3D cameras is the co-
existence of the transmitter and the
receiver; this enables it to maximize
the potential of spread spectrum with-
out communication overheads. Most
existing active 3D cameras can modu-
late multiple frequencies to achieve
both high precision and large depth
range (for example, Microsoft Kinect
uses 120MHz, 80MHz, and 16MHz>).
On the other hand, one of the big-
gest challenges is the need and abil-

Figure 8. Distributed Interference Management approaches.
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ity to cancel background noise. As
previously explained, unlike wireless,
orthogonal frequencies and codes still
contribute to ambient noise in an ac-
tive 3D camera. A redesign of spread
spectrum is needed to address this
challenge. We explore two spread
spectrum techniques (that are widely
used in wireless) and discuss their
challenges in applying to MCI.

Randomized  frequency  hopping
spread spectrum. Frequency hopping
spread spectrum (FHSS) is a spread
spectrum technique where the carrier
frequency of the transmitter follows a
hopping pattern (Figure 8a). Due to its
robustness to broadband interference,
adaptive FHSS is used in Bluetooth,
which enables Bluetooth devices to
co-exist with Wi-Fi devices. Bluetooth
devices follow a pseudo-random hop
sequence to avoid interference, where
the hopping pattern is known to the
transmitter and the receiver. We adopt
FHSS to reduce MCI. In this design,
each light source randomly chooses a
pseudo-random hopping pattern and
hop duration. Since the light source
and the sensor are co-located, the hop-
ping pattern is known to both of them.
The hopping pattern can also be var-
ied without additional overheads to
exchange the hopping pattern. There-
fore, the sensor keeps track of ToF of
the expected frequencies periodically.
The cumulative ToF of the correspond-
ing pattern is then used to estimate the
depth of the entire scene.

While FHSS reduces the probabil-
ity of two cameras colliding in a given
slot, unlike RF signals, the intensities
of light signals from interfering cam-
eras add up, leading to DC interfer-
ence even when the hopping patterns
of two cameras do not match. With
the help of successive interference
cancellation, we propose to iteratively
cancel DC interference across the fre-
quency bands. For example, consider
two cameras using FHSS colliding in
three slots. The probability of the two
cameras using the same frequencies
in the same slots in round two is sig-
nificantly lower. This probability can
be further reduced by increasing the
scan duration and introducing empty
slots where a light source does not
send anything.

Randomized chirp spread spectrum
(CSS). Chirp signals have been used



for precision ranging in RADAR,"
and more recently, CSS modulation
has been used in LoRa*"** to enable
long-range communication. CSS
spreads energy by linearly increasing
the frequency of operation over time.
Since this linear increase makes it
robust to interference, it can be lev-
eraged to enable multiple cameras to
coexist: Each light source is assigned
a unique starting frequency such
that interference from other sources
does not affect the AC component of
the reflected signal. Figure 8b illus-
trates a chirp signal transmitted by a
source, where the frequency sweeps
the entire assigned bandwidth in a
given duration.

The probability of collision is in-
versely proportional to the number
of chirps. It is therefore desirable to
have a large pool of chirps to reduce
collisions. While decreasing step size
will increase the number of chirps, the
minimum step size is limited by hard-
ware switching speeds. To address this
challenge, non-linear CSS can be ex-
plored. A non-linear chirp with initial
frequency f; is similar to that of linear
chirp in Figure 8b, whose frequency
progression with time is given by a
function g(¢). By choosing orthogonal
non-linear functions, the probability
of collisions can be reduced.'*?* Simi-
lar to FHSS, CSS also must consider DC
interference due to cumulative energy
from other frequencies. We propose
to successively cancel DC interference
from one band to another and, leverag-
ing the lack of time synchronization,
this offers more possibilities to explore
in MCI.

Centralized, networked coordina-
tion. While distributed approaches
to MCI are necessary for many appli-
cations, there are multiple environ-
ments that lend themselves well to
networked coordination with central-
ized control. For example, a factory
floor with mobile autonomous robots
operating in a single administrative
domain can easily be coordinated
through a central server. In such in-
door applications, RF-based wireless
connectivity to network devices via a
central server that helps with synchro-
nization could be integrated with the
cameras. Therefore, combining RF
and camera-based networks could of-
fer real-time control of the cameras to

As solid-state

ToF cameras
become ubiquitous
in our personal
mobile devices,
vehicles, homes,
and workplaces,
managing
interference across
a multitude of
these devices will
be of profound
importance.

research

a central server. Vehicles with LiDARs
on roadways could also accomplish
similar goals with roadside infrastruc-
ture providing the control function.
Finally, home environments are likely
the most challenging as there might
be multiple environment sensing de-
vices from diverse manufacturers,
but if standardization of centralized
coordination were to be developed,
then all such devices could coordi-
nate through a common hub within
the home to manage active camera
activities. We propose the following
approaches in such centralized coor-
dination scenarios.

Creating a conflict graph in real-
time. To schedule simultaneous
transmissions in wireless systems,
one needs to infer the “conflict
graph” that maps the potential of in-
terference between transmitters.**%2
Creating such a conflict graph in real
time in the active camera domain is
more challenging since the goal is to
learn the channel. One possible ap-
proach is to time-synchronize differ-
ent light sources and arrange them to
send sustained pulses, sometimes in
tandem and sometimes in isolation.
If there are differences in received
outcomes, we may conclude that such
transmit-receive pairs interfere. Of
course, a challenge lies in achieving
various synchronization accuracies.
We can combat them by adaptively
choosing pulse durations and pulse
structures that outlast potential clock
synchronization errors. Other sources
of inaccuracies can stem with other
transmitters in the vicinity that are
operating under the control of the
centralized coordinator. Time-series
analysis to identify and eliminate
such interferers is an interesting re-
search problem toward a practical
deployment of a centralized coor-
dination. A bigger challenge is the
ability to meet the same goals as in a
passive setting, that is, by simply ob-
serving activities on the channel and
using time information to determine
the same information. This, however,
may be effective if all 3D cameras are
sufficiently active. Overall, a hybrid
passive-active method would opti-
mize the best of both alternatives.

Networked schedule of activity un-
der centralized control. Prior work on
centralized WLANs has shown that
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it is possible to create efficient par-
tial-traffic scheduling for best per-
formance.?"** Traffic scheduling is
particularly effective when a vast ma-
jority of the traffic can be unsched-
uled, as it can be addressed through
simple distributed mechanisms.
Centralized control can benefit the
fraction that cannot be addressed ef-
fectively by those mechanisms. Such
traffic scheduling can also be used
to minimize collisions in the active
camera environments. The real-time
conflict graphs discussed previously
will inform a centralized coordina-
tor which transmitters might benefit
from scheduling while allowing the
remaining to be unscheduled. Note
that scheduling requirements might
depend on specific environments
and the frequency with which trans-
mitters need to rediscover their 3D
environment. It also depends on how
frequently the environment changes
and external, out-of-band informa-
tion can be used for this purpose.
Based on this information, each
transmitter-receiver pair that can-
not be managed using a distributed
approach may be scheduled to time
slots to accomplish their scene-sens-
ing goals. Note that a sensing attempt
may be scheduled (or not), depend-
ing on the other devices attempting
to sense concurrently.

Conclusion

We strongly believe that due to their
impending growth for consumer ap-
plications and their similarities to
wireless communications, active 3D
camera networks will benefit from
new research from wireless experts.
In particular, as interference be-
tween these cameras grows, sophisti-
cated techniques are needed to han-
dle MCI. Due to some fundamental
differences between active cameras
and wireless networks identified in
this work, careful considerations in
designing interference mitigation,
cancellation, and coordination ap-
proaches are needed. It is interesting
to note that some of the early work
on interference-mitigation strategies
in wireless environments (MACA,"
MACAW?®) started by exploring the
potential use of wired interference-
mitigation strategies in the wireless
environment (Ethernet and related

CSMA/CD approaches) and their
consequent limitations as well as
through the process discovering im-
provements that led to eventually use-
ful solutions. We believe that a simi-
lar approach can be taken by using
the state-of-the-art wireless protocols
as a starting point to uncover how
similar strategies can be designed for
active 3D camera systems.

We believe this problem domain is
ripe for multiple communities to ad-
dress collaboratively. Successful and
effective solutions to this problem can
have a big impact in many applications
in our homes and society.
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