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pollo 11 was the first manned space

mission to successfully bring astro-

nauts to the Moon and return them
safely. As part of NASA’s goal in assess-
ing team and mission success, all voice
communications within mission control,
astronauts, and support staff were cap-
tured using a multichannel analog sys-
tem, which until recently had never been
made available. More than 400 person-
nel served as mission specialists/sup-
port who communicated across 30 audio
loops, resulting in 9,000+ h of data. It is
essential to identify each speaker’s role
during Apollo and analyze group com-
munication to achieve a common goal.
Manual annotation is costly, so this
makes it necessary to determine robust
speaker identification and tracking
methods. In this study, a subset of 100 h
derived from the collective 9,000 h
of the Fearless Steps (FSteps) Apollo
11 audio data were investigated, cor-
responding to three critical mission
phases: liftoff, lunar landing, and lunar
walk. A speaker recognition assessment
is performed on 140 speakers from a col-
lective set of 183 NASA mission special-
ists who participated, based on sufficient
training data obtained from 5 (out of
30) mission channels. We observe that
SincNet performs the best in terms of
accuracy and F score achieving 78.6%
accuracy. Speaker models trained on
specific phases are also compared with
each other to determine if stress, g-force/
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atmospheric pressure, acoustic environ-
ments, etc., impact the robustness of
the models. Higher performance was
obtained using i-vector and x-vector sys-
tems for phases with limited data, such
as liftoff and lunar walk. When provided
with a sufficient amount of data (lunar
landing phase), SincNet was shown to
perform the best. This represents one of
the first investigations on speaker rec-
ognition for massively large team-based
communications involving naturalistic
communication data. In addition, we
use the concept of “Where’s Waldo?” to
identify key speakers of interest (SOIs)
and track them over the complete FSteps
audio corpus. This additional task pro-
vides an opportunity for the research
community to transition the FSteps col-
lection as an educational resource while
also serving as a tribute to the “heroes
behind the heroes of Apollo.”

Introduction

Speech technology has evolved dramat-
ically in recent decades with voice com-
munication and voice-enabled devices
becoming ubiquitous in the daily lives
of consumers. Many research advance-
ments in the speech and language com-
munity have been possible through
advanced machine learning algorithms
and models. However, machine learning
algorithms require extensive and diverse
audio data to develop effective models.
Most existing datasets rely primarily on
simulated/recorded speech over limited
time periods (e.g., one to maybe sev-
eral hours). To develop next-generation
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technologies, there is a requirement for
audio materials to be collected in the
presence of highly variable background
noise and channel conditions, pose sig-
nificant real-world challenges, be real
and not simulated, and include speaker
variability (age, dialect, task stress,
emotions, etc.). Today, both education
and industry rely more on collaborative
team-based problem solving. However,
there is a lack of resources available to
understand and model the dynamics of
how individuals with different skill sets
blend their expertise to address a com-
mon task. Unfortunately, corporations
with speech/audio data are reluctant to
share data with the community due in
part to privacy/legal reasons. Hence,
there is a significant need by the speech
community for access to “big data” con-
sisting of natural speech that is freely
available. Fortunately, a massive audio
dataset that is naturalistic, real-world,
multispeaker, task directed, and con-
sisting of fully diarized, synchronized
audio has recently been made freely
available to the community: the FSteps
Apollo 11 audio corpus (thanks to the
Center for Robust Speech Systems, the
University of Texas at Dallas [CRSS-
UTDallas] [1]). With 400+ personnel,
more than 9,000 h of audio data, a full
diarized speaker, and Automatic Speech
Recognition transcripts, significant res-
earch potential exists through analysis
of these data. It is essential to analyze
groups of teams that communicate to
learn, engage, and solve complex prob-
lems. It is not possible to annotate every
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speaker manually in this massive cor-
pus, nor is it possible for any individual
human being to decipher the interac-
tions taking place among 400+ speak-
ers, making it necessary to employ
automatic methods to transcribe and
track speakers. In addition, we use the
concept of “Where’s Waldo?” to iden-
tify key SOIs and track them across
the complete FSteps audio corpus. This
provides an opportunity for the research
community to leverage this collection as
an educational resource while also serv-
ing as a tribute to the heroes behind the
heroes of Apollo.

Speech technology and challenges
Speech technology and voice commu-
nications have evolved to contribute to
smart homes, voice dialing, smart class-
rooms, and voice-enabled devices. Voice
communications have become promi-
nent in the daily lives of consumers,
with digital assistants such as Apple’s
Siri, Amazon Alexa, Google Assistant,
JD Ding Dong, and Microsoft Cortana
used for completing complex tasks
using voice. Such research advance-
ments have been possible because of
using advanced machine learning tech-
niques. However, machine learning
models are data hungry, and there is
an increasing need for freely available
large audio datasets to create effective
models for voice technologies. Industry
giants such as Apple, Amazon, IBM,
YouTube, Google, and Microsoft are
constrained at some level to share such
data with the community due to privacy/
legal reasons. Other datasets that do exist
rely primarily on simulated or artificial
voice problems over a staged limited
time period. There is a significant need
from the speech and language commu-
nity to access big-data audio that is natu-
ral, depicts real-life scenarios, is devoid
of privacy issues, is multispeaker, and is
freely available, to develop next-genera-
tion technologies [2].

FSteps corpus

Establishing the corpus

Apollo 11 was the first manned space
mission that landed on the Moon. Vir-
tually all logistics were accomplished

through audio, with Apollo missions
spanning 7- to 10-days, representing
coordinated efforts of hundreds of indi-
viduals within NASA Mission Control.
Well over 100,000 h of synchronized
analog data were produced for the entire
program. The Apollo missions [24] rep-
resent unique data since they are per-
haps some of the few events, where all
possible communications were recorded
using multiple synchronized channel
recorders of these real-world task-driven
teams, all of which produced multidi-
mension/location data sources with the
potential to be made freely available to
the public. For example, recent histori-
cal events, such as the U.S. Hurricane
Katrina disaster [25], the 9/11 U.S. ter-
rorist attacks [26], or Japan’s Fukushima
Daiichi nuclear reactor meltdown [27],
bear resemblance to the Apollo mis-
sions in terms of the need for effective
team communications, time-sensitive
tasks, and number of team-focused per-
sonnel involved. These events consist
of critical task operation, complexity
of human undertaking, and the degree
and timing of intercommunications
required. However, access to such data
sources for research and scientific study
may be difficult, if not impossible, due
to both privacy and any coordinated and
synchronized recording infrastructure
when the event took place [3].

Under U.S. NSF support, CRSS-
UTDallas spent six years to recover
Apollo audio to establish the FSteps
corpus, consisting of digitizing all ana-
log audio with full diarization meta-
data production (who spoke what and
when). The corpus was recovered from
30-track analog tapes, resulting in a cor-
pus containing 30 channels of time-syn-
chronized data, including flight director
(FD) loop, air-to-ground capsule com-
municator (CAPCOM) communication,
back-room loops, multiple mission logis-
tics loops, etc. Thus far, CRSS-UTDal-
las has digitized and recovered as well
as developed an advanced diarization
(e.g., who said what and when) pipeline
and processed 19,000 h of Apollo audio
consisting of naturalistic, multichannel
conversational speech spanning over
30 time-synchronized channels (i.e., all
of Apollo 11 and most of Apollo 13).
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Significant research potential exists
through analysis of this dataset since it
is the largest collection of task-specific
naturalistic time-synchronized speech
data freely available worldwide [1], [4].

FSteps corpus in the news

The CRSS-UTDallas and FSteps Audio
corpus have been featured in over 40
television, radio, newspaper, and online
news stories from NBC, CBS, BBC-UK,
NPR, NSF, ASEE, Discover, NHK-
Japan, National Geographic, the Dallas
Morning News, Texas Country Reporter,
Community Impact, NSF, and others [5],
[6], [7], [8], [9]. The most significant rec-
ognition was the contribution to the News
Network CNN documentary movie on
Apollo 11, where CRSS-UTDallas pro-
vided all recovered audio including
complete diarized transcript speaker/text
content that allowed convolutional neural
network (CNN) to “stitch” the recovered
voice to hundreds of hours of NASA
silent 70-mm mission control room
video footage (i.e., CRSS-UTDallas
was recognized in the film credits). The
FSteps corpus poses a unique opportunity
for the development of semi-supervised
systems for massive data with limited
ground truth annotations.

Challenges of the Apollo corpus

The sheer volume and complexity of the
NASA Apollo data and the underlying
operation provide many research oppor-
tunities for audio, speech, and language
processing. In the context of Apollo, this
is a difficult problem given that audio
contains several artifacts, such as 1) vari-
able additive noise, 2) variable channel
characteristics, 3) reverberation, and
4) variable bandwidth accompanied by
speech production issues (such as stress)
and speech capture issues (such as astro-
naut speech captured while walking on
the Moon in space suits). A number of
studies have considered detection of
speech under stress [10], [11], [12] or
recognition of speech under stress [13],
[14]. An interesting study of the Apollo
astronauts’ voice characteristics was
conducted over three different acoustic
environments as well [15]. For such time
and mission-critical naturalistic data,
there is extensive and diverse speaker
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variability. The diversity and variabil-
ity of speaker state for astronauts over
a 6- to 11-day mission offers a unique
opportunity in monitoring individu-
als through voice communications.
The mission-specific aspects can pro-
vide further insights regarding speech
content, conversational turns, speech
duration, and other conversational
engagement factors that vary depend-
ing on mission phases.

The UTDallas FSteps Apollo data
are composed of 19,000 h (9,000 for
Apollo 11) possessing unique and mul-
tiple challenges over 30 subteam-based
channels. For our study, we have select-
ed a subset of 100 h [1] from five speech
active channel loops manually tran-
scribed by professional annotators for
speaker labels. The 100 h are obtained
from three mission critical events: 1) lift
off (25 h), 2) lunar landing (50 h), and 3)
lunar walking (25 h).

The five channels are
1) flight director (FD)

2) mission operations control room

(MOCR)

I Lift Off

3) guidance navigation and control

(GNC)

4) network controller (NTWK)
5) electrical, environmental, and con-
sumables manager (EECOM).

The 100 h are divided into train-
ing (60 h), development (20 h), and
test (20 h) sets. For the 183 speakers in
this 100 h set, we considered a total of
140 speakers who produced at least
15 s of total speaker duration with three
or more speech utterances for each
speaker. Each speaker had a minimum
duration of 1+ s of audio speech. Of
the 140 speakers, three speakers are
astronauts who are present only in the
lunar landing phase. Figure 1 shows the
speech content distribution over the five
primary channels (FD, MOCR, GNC,
NTWK, and EECOM) in three differ-
ent phases. Although this corpus has
100 h of audio data, the actual speech
content consists of about 17 h. Figure 1
shows that there is a nonuniform distri-
bution across most speakers, and some
speakers are present in only one of three
phases. Very few speakers are present in

I Lunar Landing

all three mission phases (note that this
is constrained only for this subset). To
understand why a speaker may not be
present in all three phases, it is neces-
sary to understand how NASA special-
ists communicate with each other in the
MOCR. The next section highlights the
MOCR communications protocol.

Communications in the MOCR

A total of 38 astronauts made up the
15 mission crews between 1968 and
1975. Of those, 24 flew to the Moon
on nine missions, with 12 being Moon
walkers. Two 30-track audio histori-
cal recorders were employed to capture
all team loops of the mission control
center (MCC) resulting in more than
100,000 h of Apollo analog audio. The
MCC was organized hierarchically: one
FD, one CAPCOM, more than 10-15
MOCR flight controllers, and a cor-
responding set of backrooms with
specialists that support each flight
controller. One channel loop connected
the FD with the flight controllers, and
each backroom had a separate loop to

I Lunar Walking
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FIGURE 1. Varying speaker duration throughout FS Apollo 11 audio.
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connect them with the flight controller
who they supported. Two special loops
were also recorded, one between the
spacecraft and the MCC (CAPCOM)
and a second for the news media that
included those communications along
with public affairs commentary [16].
Only the CAPCOM was able to talk
directly with the astronauts.

NASA mission specialists used close-
talking microphones and at times phone
headsets. Because of the Earth-to-Moon
trajectory, communication with the
spacecraft was possible for about 90%
of this time. Also, audio transmission
from Earth to/from the Apollo 11 cap-
sule was achieved through S-band com-
munication with multiple relay stations
across Earth back to NASA in Houston,
TX, USA (e.g., Goldstone, CA, USA;
Madrid, Spain; Honeysuckle, Australia;
and Canary Islands). These recordings
exhibit highly variable channel charac-
teristics due to the diversity in commu-
nication signal paths [3]. Many complex
multiparty activities are coordinated
using speech, including air traffic con-
trol, military command centers, and
human spaceflight operations. It is not
possible for one person to listen/uncover
every event happening or to precisely
transcribe all interactions taking place.
This represents motivation for an algo-
rithm-based solution to identify, tag, and
track all speakers in the Apollo audio.
Since this is a massive audio corpus, it
requires an effective and robust solu-
tion for speaker identification.

Finding Waldo

NASA’s Apollo program stands as one
of the most significant contributions
to humankind. Given the 9,000+ h of
Apollo 11 audio, with 400+ speakers
over an 8-day mission, it is necessary
to tag speaker exchanges with many
being short-duration turns. Due to strict
NASA communication protocols in such
time-critical missions, most personnel
employed a compact speaking style, with
information turn-taking over 3- to 5-s
windows. This poses a unique and chal-
lenging research problem for speaker
tagging since most speaker recognition
systems need 10 s to 5 min for the high-
est accuracy of finding “needles in a
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haystack” from a speaker tagging per-
spective. For example, Figure 2 shows
five A1l channels at a time instance dur-
ing the liftoff. Communication between
mission specialists takes place only when

there is a specific technical or mission
need. To illustrate the rarity of commu-
nication turns, we consider a 30-min seg-
ment across five channels as shown. Red
segments highlight silence, while blue

Channel Name —»

Channel Name —»

Channel Name —»

FIGURE 2. Speech activity detection for three mission critical phases: (a) liftoff, (b) lunar landing,
and (c) lunar walk.
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segments highlight speech produced by
speakers. It is difficult to tag <3-s speech
utterances (utterances such as “uh huh,”
“yes,” etc.), as well as the need to assess
the possibility of silence between speak-
er turns. Hence, we divide each 30-min
segment into a series of 20-s analysis
blocks. If a 20-s block contains greater
duration of speech versus silence, this
20-s block is highlighted in blue, where-
as a greater duration of silence is high-
lighted in red. We see there is significant
silence compared with speech. Similar
speech/silence multichannel plots have
been demonstrated for other phases of
the mission.

To track and tag individual speakers
across our FSteps audio dataset, we use
the concept of Where’s Waldo? to identify
all instances of our SOIs across a cluster
of other speakers. The resulting diariza-
tion of Apollo 11 audio and text material
captures the complex interaction between
astronauts, mission control, scientists,
engineers, and others, creating numer-
ous possibilities for task/content linking.
Figure 3 shows a t-distributed stochastic
embedding (T-SNE) representation of
each SOI x-vector embeddings versus
non-SOI x-vector embeddings. The
speaker embeddings form a separate
cluster for each speaker model, making
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FIGURE 3. T-distributed stochastic embedding (T-SNE) representation of speaker utterances on
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FIGURE 4. Speaker duration of particular speakers versus other speakers.
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it possible for us to extract a particular
speaker from a cluster of speakers. In this
example, we select five SOIs: Astronaut
Neil Armstrong, Astronaut Buzz Aldrin,
Astronaut Michael Collins, FD Gene
Kranz, and CAPCOM Charlie Duke.
Figure 4 shows each speaker’s speech
duration in what is referred to as a “donut
plot” for the speaker/other speaker plus
silence plot. Figure 4 provides an intrigu-
ing global perspective of the speaker
interaction between each SOI versus
other speakers and silence across the
audio clips. We see for CAPCOM, there
is significant speaker turn-taking activity
compared with non-SOI speakers where
CAPCOM normally is the prime speak-
er with the astronauts. Analyzing the
handful of speakers present in the small
audio dataset of 100 h can be extended
to the complete Apollo 11 mission (with
9,000 h of data) as well as future efforts
for the complete Apollo program (with
150,000 h of audio) since many speakers
are common throughout the Apollo mis-
sions. This big-data community-based
audio resource will support the team
members of the Apollo program and their
families. Identifying these personnel
can help pay tribute and yield personal
recognition to the hundreds of notable
engineers and scientists who made this
feat possible. This collection opens new
research options for recognizing team
communication, group dynamics, and
human engagement/psychology for
future deep space missions.

Speaker recognition systems

In the last decade, state-of-the-art speaker
recognition systems have evolved from
Gaussian mixture models (GMMs) to
using deep neural networks (DNN) to
train speaker models. The combination
of an i-vector and a distance measure has
become the dominant approach for text-
independent speaker recognition. For our
study, we choose three baseline systems
which are GMM-based i-vector systems
[17], DNN-based x-vector systems [18],
and CNN-based SincNet systems [19].
For the i-vector and x-vector systems,
input features of 12 Mel-frequency ceps-
tral coefficients with a frame length of
25 ms. Delta and double-delta features
are appended to create a 39-dimensional
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feature vector. An energy-based voice
activity detector selects features corre-
sponding to speech frames. To extract
i vectors for each speaker utterance, the
Universal Background Model (UBM)
was trained on the National Institute
of Standards and Technology-Speaker
Recognition Evaluation 16 [20] corpora
to create a 2,048-component full-covari-
ance GMM. A 600-dimensional i-vector
extractor was developed and extracted.
To extract x vectors, a feed-forward
DNN that computes speaker embed-
dings from variable-length acoustic seg-
ments was used. The DNN was trained
to classify the N speakers in the train-
ing data. DNN embeddings are trained
on the SREI16 dataset, and extracted x
vectors are 512-dimensional vectors.
The Kaldi speech recognition tool kit
was used to train both i vectors and x
vectors. For the CNN-based SincNet
architecture, each raw speech wave-
form is split into chunks of 200 ms with
10 ms overlap. The first convolutional
layer uses sinc functions with 80 filters
of length L = 251 samples followed by
two standard CNN layers, both using
60 filters of length 5, and finally, three
fully connected layers composed of
2,048 neurons with batch normalization
and layer normalization. For our study,
we have combined the speaker recogni-
tion system with several dimensionality
reduction and scoring methods such as
principal component analysis (PCA),
linear discriminant analysis (LDA),
cosine distance scoring (CDS), random
forest (RF), and XGBoost.

As seen from Figure 1, speaker
duration is not uniform across all
speakers, suggesting a data imbal-
ance. Therefore, we show that several
evaluation metrics to determine where
performance of each baseline system
could fail (e.g., micro-average, macro-
average, accuracy). F score is defined
as the harmonic mean between preci-
sion and recall. The microaverage cal-
culates the contributions of all speaker
models to compute the average metric,
whereas the macroaverage computes
the metric independently and then
computes the average. The microav-
erage can help in reflecting any class
imbalance in the dataset. The results

show that for all three baseline sys-
tems, the microaverage is greater than
the macroaverage, indicating that these
systems are classifying speaker models
with smaller sample sets inaccurately.
The SincNet solution performs the
best in terms of both accuracy and f
scores. This evaluation suggests there
are viable solutions for tagging mod-
erately short speaker turns in this
Apollo collection.

Speaker recognition from

Earth to the Moon

Naturalistic and long-duration continu-
ous audio recordings are very interest-
ing and challenging in terms of speech
activity detection, speaker recogni-
tion, and speech analysis. The perfor-
mance of speaker recognition systems
on the Apollo 11 audio dataset can be

impacted because of various acous-
tic environments (such as Earth, deep
space, or the surface of the Moon). This
new Apollo dataset over the span of 8
days, 3 h, 18 min, and 35 s, or a total
of approximately 196 h, provides new
opportunities for speech technology
and team dynamics analysis. Other fac-
tors that can impact the performance of
speaker recognition systems include the
mismatch between the training and the
test environments. Previous studies have
addressed this issue by using an acoustic
modeling framework (GMM-UBM) that
is trained on specific noisy environments
[21]. Another study explores speaker
modeling methods for speaker verifica-
tion in noisy environments by focusing
on building hybrid classifiers and using
utterance partitioning [22]. However,
this study deals with environments where

Table 1. Performance of baseline speaker recognition systems.

Scoring/Classification F Score (%) Accuracy
System System Microaverage Macroaverage (%)
i-vector CDS 48 42 47
RF + PCA 40 13 39.74
RF + LDA 54 20 49.5
XGBoost + PCA 55 23 54.72
XGBoost + LDA 62 28 62.25
x-vector CDS 47 38 46.8
RF + PCA 58 25 57.87
RF + LDA 67 31 67.05
XGBoost + PCA 70 39 70.27
XGBoost + LDA 73 41 734
SincNet - 79 53 78.6

Mission Control Center

Lunar Landing

Communication
With the Astronauts

Lunar Walking

FIGURE 5. Speaker recognition from Earth to the Moon.
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FIGURE 6. Detection error tradeoff (DET) curves for speaker models: (a) liftoff model, (b) lunar land model, and (c) lunar walk model.
EER: equal error rate; PLDA: probabilistic linear discriminant analysis.
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speakers are present in the same NASA
control rooms on Earth with three astro-
nauts either on Earth, in deep space, or
on the Moon. It is therefore essential
to analyze robust speaker recognition
methods that address mismatch between
such environments [2]. An additional
challenge for these naturalistic data is
the variation of speaker duration accord-
ing to the mission stage, and each phase
of the mission has different speakers.
We note that the speakers present in one
phase of the mission may not necessarily
be present in other phases of the mission
(e.g., during Apollo 11 launch at Kenne-
dy Space Center, FL, USA, versus mis-
sion operations at Johnson Space Center,
TX, USA, 10 min after launch until
mission completion). For example, in
this 100-h audio dataset, Buzz Aldrin’s
audio is present only in the lunar landing
phase of the mission. Hence, our efforts
here will be an open set speaker recogni-
tion (Figure 6). To access Apollo audio,
visit app.explore.apollo.org [28].

In this evaluation, phase 1 of the
Apollo 11 mission is liftoff, consisting
of 52 speakers with a total audio dura-
tion of 25 h (20 h for training and 5 h
for test) from five primary channels
(see Figure 2). Figure 6 shows detec-
tion error tradeoff curves for the three
systems. Speaker models were trained
on the liftoff phase of the mission and
tested on all three phases of the Apollo
11 mission. The best average equal error
rate (EER) was obtained by the x-vector
+ PLDA system. SincNet performs vis-
ibly well in the liftoff phase; however, it
has poor performance in other phases.
Factors affecting poor performance
in this phase could be because other
phases do not contain speakers that
were present in the liftoff phase. The
lunar landing stage contains 50 h (40 h
for training and 10 h for test) of audio
with a total of 92 speakers from the five
primary channels. A similar analysis
based on speaker models trained on the
lunar landing phase and tested on all
other phases shows that the best average
EER was obtained by the SincNet sys-
tem. This phase has twice the amount
of data (~50 h) compared with the other
two phases (~25 h). The lunar walk
stage has 25 h (20 h for training and 5 h

for test) of audio with 37 speakers. The
best average EER was obtained by the
i-vector system. SincNet’s performance
was heavily degraded because of a lack
of adequate data, although the x-vector
system’s performance is similar to the
i-vector system performance [23].

Condlusions

Establishing and assessing speech tech-
nology such as speaker recognition over
a massive naturalistic corpus with high-
ly variable background and noise con-
ditions represents a challenging goal
but is expected to not only help advance
robust speaker models for future deep
space missions but also allow for
exploring engagement analysis for mul-
tiparty speaker situations. In this study,
we have analyzed the performance of
alternative speaker recognition systems
to understand the impact of mission
task stress, multispeaker common com-
munication channel loops, time-sensi-
tive assessment, and mission decision
speaker content. To demonstrate the
challenges of the Apollo corpus, we 1)
illustrate the rarity of communication
turns by plotting speech activity for
three mission critical phases across five
channels, 2) analyze speaker duration
of SOI versus non-SOI and silence, 3)
compare various state-of-the-art speak-
er recognition technologies for this cor-
pus, and 4) train on a specific phase of
a 6- to 8-day Apollo mission and test on
all phases of mission.

We observe that there is significant
silence (~80 h of silence out of a total
core 100 h of the FSteps challenge cor-
pus) compared with speech. Further
analysis on identifying and tracking
instances of our SOI versus non-SOI
reveals an intriguing global perspec-
tive of speaker interaction between
astronauts and NASA mission special-
ists. Finally, we note that when pro-
vided with a sufficient amount of data,
SincNet was shown to perform the
best in terms of accuracy and F score.
The complete Apollo mission program
(Apollo 1 through Apollo 17) audio data
exceed 150,000+ h, where Apollo 11
and Apollo 13 were recovered through
the efforts of CRSS-UTDallas. There-
fore, it is not possible to manually anno-
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tate the currently available amount of
19,000 h of audio (Apollo 11 and Apollo
13), and hence, this analysis was used to
establish best practices for corpus devel-
opment for improved speaker recogni-
tion. Finally, the concept of Where’s
Waldo? provides an opportunity for
the research community to transition
the FSteps collection as an educational
resource, advancing speech technology,
preserving the “words spoken in space,”’
as well as serving as a lasting tribute to
the heroes behind the heroes of Apollo.
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