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Historical Audio Search and Preservation: Finding Waldo  
Within the Fearless Steps Apollo 11 Naturalistic Audio Corpus

pollo 11 was the first manned space 
mission to successfully bring astro-
nauts to the Moon and return them 

safely. As part of NASA’s goal in assess-
ing team and mission success, all voice 
communications within mission control, 
astronauts, and support staff were cap-
tured using a multichannel analog sys-
tem, which until recently had never been 
made available. More than 400 person-
nel served as mission specialists/sup-
port who communicated across 30 audio 
loops, resulting in 9,000+ h of data. It is 
essential to identify each speaker’s role 
during Apollo and analyze group com-
munication to achieve a common goal. 
Manual annotation is costly, so this 
makes it necessary to determine robust 
speaker identification and tracking 
methods. In this study, a subset of 100 h  
derived from the collective 9,000  h 
of the Fearless Steps (FSteps) Apollo 
11 audio data were investigated, cor-
responding to three critical mission 
phases: liftoff, lunar landing, and lunar 
walk. A speaker recognition assessment 
is performed on 140 speakers from a col-
lective set of 183 NASA mission special-
ists who participated, based on sufficient 
training data obtained from 5 (out of 
30) mission channels. We observe that 
SincNet performs the best in terms of 
accuracy and F score achieving 78.6% 
accuracy. Speaker models trained on 
specific phases are also compared with 
each other to determine if stress, g-force/

atmospheric pressure, acoustic environ-
ments, etc., impact the robustness of 
the models. Higher performance was 
obtained using i-vector and x-vector sys-
tems for phases with limited data, such 
as liftoff and lunar walk. When provided 
with a sufficient amount of data (lunar 
landing phase), SincNet was shown to 
perform the best. This represents one of 
the first investigations on speaker rec-
ognition for massively large team-based 
communications involving naturalistic 
communication data. In addition, we 
use the concept of “Where’s Waldo?” to 
identify key speakers of interest (SOIs) 
and track them over the complete FSteps 
audio corpus. This additional task pro-
vides an opportunity for the research 
community to transition the FSteps col-
lection as an educational resource while 
also serving as a tribute to the “heroes 
behind the heroes of Apollo.”

Introduction
Speech technology has evolved dramat-
ically in recent decades with voice com-
munication and voice-enabled devices 
becoming ubiquitous in the daily lives 
of consumers. Many research advance-
ments in the speech and language com-
munity have been possible through 
advanced machine learning algorithms 
and models. However, machine learning 
algorithms require extensive and diverse 
audio data to develop effective models. 
Most existing datasets rely primarily on 
simulated/recorded speech over limited 
time periods (e.g., one to maybe sev-
eral hours). To develop next-generation 

technologies, there is a requirement for 
audio materials to be collected in the 
presence of highly variable background 
noise and channel conditions, pose sig-
nificant real-world challenges, be real 
and not simulated, and include speaker 
variability (age, dialect, task stress, 
emotions, etc.). Today, both education 
and industry rely more on collaborative 
team-based problem solving. However, 
there is a lack of resources available to 
understand and model the dynamics of 
how individuals with different skill sets 
blend their expertise to address a com-
mon task. Unfortunately, corporations 
with speech/audio data are reluctant to 
share data with the community due in 
part to privacy/legal reasons. Hence, 
there is a significant need by the speech 
community for access to “big data” con-
sisting of natural speech that is freely 
available. Fortunately, a massive audio 
dataset that is naturalistic, real-world, 
multispeaker, task directed, and con-
sisting of fully diarized, synchronized 
audio has recently been made freely 
available to the community: the FSteps 
Apollo 11 audio corpus (thanks to the 
Center for Robust Speech Systems, the 
University of Texas at Dallas [CRSS-
UTDallas] [1]). With 400+ personnel, 
more than 9,000 h of audio data, a full 
diarized speaker, and Automatic Speech 
Recognition transcripts, significant res
earch potential exists through analysis 
of these data. It is essential to analyze 
groups of teams that communicate to 
learn, engage, and solve complex prob-
lems. It is not possible to annotate every 
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speaker manually in this massive cor-
pus, nor is it possible for any individual 
human being to decipher the interac-
tions taking place among 400+ speak-
ers, making it necessary to employ 
automatic methods to transcribe and 
track speakers. In addition, we use the 
concept of “Where’s Waldo?” to iden-
tify key SOIs and track them across 
the complete FSteps audio corpus. This 
provides an opportunity for the research 
community to leverage this collection as 
an educational resource while also serv-
ing as a tribute to the heroes behind the 
heroes of Apollo.

Speech technology and challenges
Speech technology and voice commu-
nications have evolved to contribute to 
smart homes, voice dialing, smart class-
rooms, and voice-enabled devices. Voice 
communications have become promi-
nent in the daily lives of consumers, 
with digital assistants such as Apple’s 
Siri, Amazon Alexa, Google Assistant, 
JD Ding Dong, and Microsoft Cortana 
used for completing complex tasks 
using voice. Such research advance-
ments have been possible because of 
using advanced machine learning tech-
niques. However, machine learning 
models are data hungry, and there is 
an increasing need for freely available 
large audio datasets to create effective 
models for voice technologies. Industry 
giants such as Apple, Amazon, IBM, 
YouTube, Google, and Microsoft are 
constrained at some level to share such 
data with the community due to privacy/ 
legal reasons. Other datasets that do exist 
rely primarily on simulated or artificial 
voice problems over a staged limited 
time period. There is a significant need 
from the speech and language commu-
nity to access big-data audio that is natu-
ral, depicts real-life scenarios, is devoid 
of privacy issues, is multispeaker, and is 
freely available, to develop next-genera-
tion technologies [2].

FSteps corpus

Establishing the corpus
Apollo 11 was the first manned space 
mission that landed on the Moon. Vir-
tually all logistics were accomplished 

through audio, with Apollo missions 
spanning 7- to 10-days, representing 
coordinated efforts of hundreds of indi-
viduals within NASA Mission Control. 
Well over 100,000 h of synchronized 
analog data were produced for the entire 
program. The Apollo missions [24] rep-
resent unique data since they are per-
haps some of the few events, where all 
possible communications were recorded 
using multiple synchronized channel 
recorders of these real-world task-driven 
teams, all of which produced multidi-
mension/location data sources with the 
potential to be made freely available to 
the public. For example, recent histori-
cal events, such as the U.S. Hurricane 
Katrina disaster [25], the 9/11 U.S. ter-
rorist attacks [26], or Japan’s Fukushima 
Daiichi nuclear reactor meltdown [27], 
bear resemblance to the Apollo mis-
sions in terms of the need for effective 
team communications, time-sensitive 
tasks, and number of team-focused per-
sonnel involved. These events consist 
of critical task operation, complexity 
of human undertaking, and the degree 
and timing of intercommunications 
required. However, access to such data 
sources for research and scientific study 
may be difficult, if not impossible, due 
to both privacy and any coordinated and 
synchronized recording infrastructure 
when the event took place [3].

Under U.S. NSF support, CRSS-
UTDallas spent six years to recover 
Apollo audio to establish the FSteps 
corpus, consisting of digitizing all ana-
log audio with full diarization meta-
data production (who spoke what and 
when). The corpus was recovered from 
30-track analog tapes, resulting in a cor-
pus containing 30 channels of time-syn-
chronized data, including flight director 
(FD) loop, air-to-ground capsule com-
municator (CAPCOM) communication, 
back-room loops, multiple mission logis-
tics loops, etc. Thus far, CRSS-UTDal-
las has digitized and recovered as well 
as developed an advanced diarization 
(e.g., who said what and when) pipeline 
and processed 19,000 h of Apollo audio 
consisting of naturalistic, multichannel 
conversational speech spanning over 
30 time-synchronized channels (i.e., all 
of Apollo 11 and most of Apollo 13). 

Significant research potential exists 
through analysis of this dataset since it 
is the largest collection of task-specific 
naturalistic time-synchronized speech 
data freely available worldwide [1], [4].

FSteps corpus in the news
The CRSS-UTDallas and FSteps Audio 
corpus have been featured in over 40 
television, radio, newspaper, and online 
news stories from NBC, CBS, BBC-UK, 
NPR, NSF, ASEE, Discover, NHK-
Japan, National Geographic, the Dallas 
Morning News, Texas Country Reporter, 
Community Impact, NSF, and others [5], 
[6], [7], [8], [9]. The most significant rec-
ognition was the contribution to the News 
Network CNN documentary movie on 
Apollo 11, where CRSS-UTDallas pro-
vided all recovered audio including 
complete diarized transcript speaker/text 
content that allowed convolutional neural 
network (CNN) to “stitch” the recovered 
voice to hundreds of hours of NASA 
silent 70-mm mission control room 
video footage (i.e., CRSS-UTDallas 
was recognized in the film credits). The 
FSteps corpus poses a unique opportunity 
for the development of semi-supervised 
systems for massive data with limited 
ground truth annotations.

Challenges of the Apollo corpus
The sheer volume and complexity of the 
NASA Apollo data and the underlying 
operation provide many research oppor-
tunities for audio, speech, and language 
processing. In the context of Apollo, this 
is a difficult problem given that audio 
contains several artifacts, such as 1) vari-
able additive noise, 2) variable channel 
characteristics, 3) reverberation, and 
4) variable bandwidth accompanied by 
speech production issues (such as stress) 
and speech capture issues (such as astro-
naut speech captured while walking on 
the Moon in space suits). A number of 
studies have considered detection of 
speech under stress [10], [11], [12] or 
recognition of speech under stress [13], 
[14]. An interesting study of the Apollo 
astronauts’ voice characteristics was 
conducted over three different acoustic 
environments as well [15]. For such time 
and mission-critical naturalistic data, 
there is extensive and diverse speaker 
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variability. The diversity and variabil-
ity of speaker state for astronauts over 
a 6- to 11-day mission offers a unique 
opportunity in monitoring individu-
als through voice communications. 
The mission-specific aspects can pro-
vide further insights regarding speech 
content, conversational turns, speech 
duration, and other conversational 
engagement factors that vary depend-
ing on mission phases.

The UTDallas FSteps Apollo data 
are composed of 19,000 h (9,000 for 
Apollo 11) possessing unique and mul-
tiple challenges over 30 subteam-based 
channels. For our study, we have select-
ed a subset of 100 h [1] from five speech 
active channel loops manually tran-
scribed by professional annotators for 
speaker labels. The 100 h are obtained 
from three mission critical events: 1) lift 
off (25 h), 2) lunar landing (50 h), and 3) 
lunar walking (25 h).

The five channels are
1)	 flight director (FD)
2)	mission operations control room 

(MOCR)

3)	guidance navigation and control 
(GNC)

4)	 network controller (NTWK)
5)	 electrical, environmental, and con-

sumables manager (EECOM).
The 100 h are divided into train-

ing (60 h), development (20 h), and 
test (20 h) sets. For the 183 speakers in 
this 100 h set, we considered a total of 
140 speakers who produced at least 
15 s of total speaker duration with three 
or more speech utterances for each 
speaker. Each speaker had a minimum 
duration of 1+ s of audio speech. Of 
the 140 speakers, three speakers are 
astronauts who are present only in the 
lunar landing phase. Figure 1 shows the 
speech content distribution over the five 
primary channels (FD, MOCR, GNC, 
NTWK, and EECOM) in three differ-
ent phases. Although this corpus has 
100 h of audio data, the actual speech 
content consists of about 17 h. Figure 1 
shows that there is a nonuniform distri-
bution across most speakers, and some 
speakers are present in only one of three 
phases. Very few speakers are present in 

all three mission phases (note that this 
is constrained only for this subset). To 
understand why a speaker may not be 
present in all three phases, it is neces-
sary to understand how NASA special-
ists communicate with each other in the 
MOCR. The next section highlights the 
MOCR communications protocol.

Communications in the MOCR
A total of 38 astronauts made up the 
15 mission crews between 1968 and 
1975. Of those, 24 flew to the Moon 
on nine missions, with 12 being Moon 
walkers. Two 30-track audio histori-
cal recorders were employed to capture 
all team loops of the mission control 
center (MCC) resulting in more than 
100,000 h of Apollo analog audio. The 
MCC was organized hierarchically: one 
FD, one CAPCOM, more than 10–15 
MOCR flight controllers, and a cor-
responding set of backrooms with 
specialists that support each flight 
controller. One channel loop connected 
the FD with the flight controllers, and 
each backroom had a separate loop to 
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FIGURE 1. Varying speaker duration throughout FS Apollo 11 audio. 
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connect them with the flight controller 
who they supported. Two special loops 
were also recorded, one between the 
spacecraft and the MCC (CAPCOM) 
and a second for the news media that 
included those communications along 
with public affairs commentary [16]. 
Only the CAPCOM was able to talk 
directly with the astronauts.

NASA mission specialists used close- 
talking microphones and at times phone 
headsets. Because of the Earth-to-Moon 
trajectory, communication with the 
spacecraft was possible for about 90% 
of this time. Also, audio transmission 
from Earth to/from the Apollo 11 cap-
sule was achieved through S-band com-
munication with multiple relay stations 
across Earth back to NASA in Houston, 
TX, USA (e.g., Goldstone, CA, USA; 
Madrid, Spain; Honeysuckle, Australia; 
and Canary Islands). These recordings 
exhibit highly variable channel charac-
teristics due to the diversity in commu-
nication signal paths [3]. Many complex 
multiparty activities are coordinated 
using speech, including air traffic con-
trol, military command centers, and 
human spaceflight operations. It is not 
possible for one person to listen/uncover 
every event happening or to precisely 
transcribe all interactions taking place. 
This represents motivation for an algo-
rithm-based solution to identify, tag, and 
track all speakers in the Apollo audio. 
Since this is a massive audio corpus, it 
requires an effective and robust solu-
tion for speaker identification.

Finding Waldo
NASA’s Apollo program stands as one 
of the most significant contributions 
to humankind. Given the 9,000+ h of 
Apollo 11 audio, with 400+ speakers 
over an 8-day mission, it is necessary 
to tag speaker exchanges with many 
being short-duration turns. Due to strict 
NASA communication protocols in such 
time-critical missions, most personnel 
employed a compact speaking style, with 
information turn-taking over 3- to 5-s 
windows. This poses a unique and chal-
lenging research problem for speaker 
tagging since most speaker recognition 
systems need 10 s to 5 min for the high-
est accuracy of finding “needles in a 

haystack” from a speaker tagging per-
spective. For example, Figure 2 shows 
five A11 channels at a time instance dur-
ing the liftoff. Communication between 
mission specialists takes place only when 

there is a specific technical or mission 
need. To illustrate the rarity of commu-
nication turns, we consider a 30-min seg-
ment across five channels as shown. Red 
segments highlight silence, while blue 
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segments highlight speech produced by 
speakers. It is difficult to tag <3-s speech 
utterances (utterances such as “uh huh,” 
“yes,” etc.), as well as the need to assess 
the possibility of silence between speak-
er turns. Hence, we divide each 30-min 
segment into a series of 20-s analysis 
blocks. If a 20-s block contains greater 
duration of speech versus silence, this 
20-s block is highlighted in blue, where-
as a greater duration of silence is high-
lighted in red. We see there is significant 
silence compared with speech. Similar 
speech/silence multichannel plots have 
been demonstrated for other phases of 
the mission.

To track and tag individual speakers 
across our FSteps audio dataset, we use 
the concept of Where’s Waldo? to identify 
all instances of our SOIs across a cluster 
of other speakers. The resulting diariza-
tion of Apollo 11 audio and text material 
captures the complex interaction between 
astronauts, mission control, scientists, 
engineers, and others, creating numer-
ous possibilities for task/content linking. 
Figure 3 shows a t-distributed stochastic 
embedding (T-SNE) representation of 
each SOI x-vector embeddings versus 
non-SOI x-vector embeddings. The 
speaker embeddings form a separate 
cluster for each speaker model, making 

it possible for us to extract a particular 
speaker from a cluster of speakers. In this 
example, we select five SOIs: Astronaut 
Neil Armstrong, Astronaut Buzz Aldrin, 
Astronaut Michael Collins, FD Gene 
Kranz, and CAPCOM Charlie Duke. 
Figure 4 shows each speaker’s speech 
duration in what is referred to as a ‘’donut 
plot” for the speaker/other speaker plus 
silence plot. Figure 4 provides an intrigu-
ing global perspective of the speaker 
interaction between each SOI versus 
other speakers and silence across the 
audio clips. We see for CAPCOM, there 
is significant speaker turn-taking activity 
compared with non-SOI speakers where 
CAPCOM normally is the prime speak-
er with the astronauts. Analyzing the 
handful of speakers present in the small 
audio dataset of 100 h can be extended 
to the complete Apollo 11 mission (with 
9,000 h of data) as well as future efforts 
for the complete Apollo program (with 
150,000 h of audio) since many speakers 
are common throughout the Apollo mis-
sions. This big-data community-based 
audio resource will support the team 
members of the Apollo program and their 
families. Identifying these personnel 
can help pay tribute and yield personal 
recognition to the hundreds of notable 
engineers and scientists who made this 
feat possible. This collection opens new 
research options for recognizing team 
communication, group dynamics, and 
human engagement/psychology for 
future deep space missions.

Speaker recognition systems
In the last decade, state-of-the-art speaker 
recognition systems have evolved from 
Gaussian mixture models (GMMs) to 
using deep neural networks (DNN) to 
train speaker models. The combination 
of an i-vector and a distance measure has 
become the dominant approach for text-
independent speaker recognition. For our 
study, we choose three baseline systems 
which are GMM-based i-vector systems 
[17], DNN-based x-vector systems [18], 
and CNN-based SincNet systems [19]. 
For the i-vector and x-vector systems, 
input features of 12 Mel-frequency ceps-
tral coefficients with a frame length of 
25 ms. Delta and double-delta features 
are appended to create a 39-dimensional 
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feature vector. An energy-based voice 
activity detector selects features corre-
sponding to speech frames. To extract 
i vectors for each speaker utterance, the 
Universal Background Model (UBM) 
was trained on the National Institute 
of Standards and Technology-Speaker 
Recognition Evaluation 16 [20] corpora 
to create a 2,048-component full-covari-
ance GMM. A 600-dimensional i-vector 
extractor was developed and extracted. 
To extract x vectors, a feed-forward 
DNN that computes speaker embed-
dings from variable-length acoustic seg-
ments was used. The DNN was trained 
to classify the N speakers in the train-
ing data. DNN embeddings are trained 
on the SRE16 dataset, and extracted x 
vectors are 512-dimensional vectors. 
The Kaldi speech recognition tool kit 
was used to train both i vectors and x 
vectors. For the CNN-based SincNet 
architecture, each raw speech wave-
form is split into chunks of 200 ms with 
10 ms overlap. The first convolutional 
layer uses sinc functions with 80 filters 
of length L = 251 samples followed by 
two standard CNN layers, both using 
60 filters of length 5, and finally, three 
fully connected layers composed of 
2,048 neurons with batch normalization 
and layer normalization. For our study, 
we have combined the speaker recogni-
tion system with several dimensionality 
reduction and scoring methods such as 
principal component analysis (PCA), 
linear discriminant analysis (LDA), 
cosine distance scoring (CDS), random 
forest (RF), and XGBoost.

As seen from Figure 1, speaker 
duration is not uniform across all 
speakers, suggesting a data imbal-
ance. Therefore, we show that several 
evaluation metrics to determine where 
performance of each baseline system 
could fail (e.g., micro-average, macro-
average, accuracy). F score is defined 
as the harmonic mean between preci-
sion and recall. The microaverage cal-
culates the contributions of all speaker 
models to compute the average metric, 
whereas the macroaverage computes 
the metric independently and then 
computes the average. The microav-
erage can help in reflecting any class 
imbalance in the dataset. The results 

show that for all three baseline sys-
tems, the microaverage is greater than 
the macroaverage, indicating that these 
systems are classifying speaker models 
with smaller sample sets inaccurately. 
The SincNet solution performs the 
best in terms of both accuracy and f 
scores. This evaluation suggests there 
are viable solutions for tagging mod-
erately short speaker turns in this 
Apollo collection.

Speaker recognition from  
Earth to the Moon
Naturalistic and long-duration continu-
ous audio recordings are very interest-
ing and challenging in terms of speech 
activity detection, speaker recogni-
tion, and speech analysis. The perfor-
mance of speaker recognition systems 
on the Apollo 11 audio dataset can be 

impacted because of various acous-
tic environments (such as Earth, deep 
space, or the surface of the Moon). This 
new Apollo dataset over the span of 8 
days, 3 h, 18 min, and 35 s, or a total 
of approximately 196 h, provides new 
opportunities for speech technology 
and team dynamics analysis. Other fac-
tors that can impact the performance of 
speaker recognition systems include the 
mismatch between the training and the 
test environments. Previous studies have 
addressed this issue by using an acoustic 
modeling framework (GMM-UBM) that 
is trained on specific noisy environments 
[21]. Another study explores speaker 
modeling methods for speaker verifica-
tion in noisy environments by focusing 
on building hybrid classifiers and using 
utterance partitioning [22]. However, 
this study deals with environments where 

Table 1. Performance of baseline speaker recognition systems. 

System
Scoring/Classification 
System

F Score (%) Accuracy 
(%)Microaverage Macroaverage

i-vector CDS 48 42 47
RF + PCA 40 13 39.74
RF + LDA 54 20 49.5
XGBoost + PCA 55 23 54.72

XGBoost + LDA 62 28 62.25
x-vector CDS 47 38 46.8

RF + PCA 58 25 57.87
RF + LDA 67 31 67.05
XGBoost + PCA 70 39 70.27
XGBoost + LDA 73 41 73.4

SincNet – 79 53 78.6

Lunar Landing

Communication
With the AstronautsMission Control Center

Lunar Walking

Liftoff

FIGURE 5. Speaker recognition from Earth to the Moon. 
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FIGURE 6. Detection error tradeoff (DET) curves for speaker models: (a) liftoff model, (b) lunar land model, and (c) lunar walk model.  
EER: equal error rate; PLDA: probabilistic linear discriminant analysis.
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speakers are present in the same NASA 
control rooms on Earth with three astro-
nauts either on Earth, in deep space, or 
on the Moon. It is therefore essential 
to analyze robust speaker recognition 
methods that address mismatch between 
such environments [2]. An additional 
challenge for these naturalistic data is 
the variation of speaker duration accord-
ing to the mission stage, and each phase 
of the mission has different speakers. 
We note that the speakers present in one 
phase of the mission may not necessarily 
be present in other phases of the mission 
(e.g., during Apollo 11 launch at Kenne-
dy Space Center, FL, USA, versus mis-
sion operations at Johnson Space Center, 
TX, USA, 10  min after launch until 
mission completion). For example, in 
this 100-h audio dataset, Buzz Aldrin’s 
audio is present only in the lunar landing 
phase of the mission. Hence, our efforts 
here will be an open set speaker recogni-
tion (Figure 6). To access Apollo audio, 
visit app.explore.apollo.org [28].

In this evaluation, phase 1 of the 
Apollo 11 mission is liftoff, consisting 
of 52 speakers with a total audio dura-
tion of 25 h (20 h for training and 5 h 
for test) from five primary channels 
(see Figure 2). Figure 6 shows detec-
tion error tradeoff curves for the three 
systems. Speaker models were trained 
on the liftoff phase of the mission and 
tested on all three phases of the Apollo 
11 mission. The best average equal error 
rate (EER) was obtained by the x-vector 
+ PLDA system. SincNet performs vis-
ibly well in the liftoff phase; however, it 
has poor performance in other phases. 
Factors affecting poor performance 
in this phase could be because other 
phases do not contain speakers that 
were present in the liftoff phase. The 
lunar landing stage contains 50 h (40 h 
for training and 10 h for test) of audio 
with a total of 92 speakers from the five 
primary channels. A similar analysis 
based on speaker models trained on the 
lunar landing phase and tested on all 
other phases shows that the best average 
EER was obtained by the SincNet sys-
tem. This phase has twice the amount 
of data (~50 h) compared with the other 
two phases (~25 h). The lunar walk 
stage has 25 h (20 h for training and 5 h 

for test) of audio with 37 speakers. The 
best average EER was obtained by the 
i-vector system. SincNet’s performance 
was heavily degraded because of a lack 
of adequate data, although the x-vector 
system’s performance is similar to the 
i-vector system performance [23].

Conclusions
Establishing and assessing speech tech-
nology such as speaker recognition over 
a massive naturalistic corpus with high-
ly variable background and noise con-
ditions represents a challenging goal 
but is expected to not only help advance 
robust speaker models for future deep 
space missions but also allow for 
exploring engagement analysis for mul-
tiparty speaker situations. In this study, 
we have analyzed the performance of 
alternative speaker recognition systems 
to understand the impact of mission 
task stress, multispeaker common com-
munication channel loops, time-sensi-
tive assessment, and mission decision 
speaker content. To demonstrate the 
challenges of the Apollo corpus, we 1) 
illustrate the rarity of communication 
turns by plotting speech activity for 
three mission critical phases across five 
channels, 2) analyze speaker duration 
of SOI versus non-SOI and silence, 3) 
compare various state-of-the-art speak-
er recognition technologies for this cor-
pus, and 4) train on a specific phase of 
a 6- to 8-day Apollo mission and test on 
all phases of mission.

We observe that there is significant 
silence (~80 h of silence out of a total 
core 100 h of the FSteps challenge cor-
pus) compared with speech. Further 
analysis on identifying and tracking 
instances of our SOI versus non-SOI 
reveals an intriguing global perspec-
tive of speaker interaction between 
astronauts and NASA mission special-
ists. Finally, we note that when pro-
vided with a sufficient amount of data, 
SincNet was shown to perform the 
best in terms of accuracy and F score. 
The complete Apollo mission program 
(Apollo 1 through Apollo 17) audio data 
exceed 150,000+ h, where Apollo 11 
and Apollo 13 were recovered through 
the efforts of CRSS-UTDallas. There-
fore, it is not possible to manually anno-

tate the currently available amount of 
19,000 h of audio (Apollo 11 and Apollo 
13), and hence, this analysis was used to 
establish best practices for corpus devel-
opment for improved speaker recogni-
tion. Finally, the concept of Where’s 
Waldo? provides an opportunity for 
the research community to transition 
the FSteps collection as an educational 
resource, advancing speech technology, 
preserving the “words spoken in space,” 
as well as serving as a lasting tribute to 
the heroes behind the heroes of Apollo.
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