ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-22 (2022) 340-345

A Holder-continuous Extended

State Observer for Rigid Body
Attitude Dynamics

Ningshan Wang and Amit K. Sanyal *

* Syracuse University, Syracuse, NY 13205 USA (e-mail: {nwang16,
aksanyal} Qsyr.edu,).

Abstract: Estimating rigid body attitude dynamics in the presence of unknown or uncertain
torques, has applications to unmanned aerial, ground, (under)water and space vehicles. This
work provides a new approach to estimating the attitude states and unknown, time-varying,
(disturbance) torque vector acting on a rigid body, using an extended state observer. The
observer design uses the concept of geometric homogeneity to obtain its stability. A Lyapunov
stability analysis is carried out to prove its stability properties. The resulting observer for
the attitude states and disturbance torque is smooth, Hélder-continuous, and exhibits almost
globally finite-time stable (AG-FTS) with a constant disturbance torque in body frame. These
properties are theoretically shown, and a numerical simulation is carried out to demonstrate
how the observer works in a realistic attitude estimation scenario.
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1. INTRODUCTION

Extended state observers (ESO) are used to simultane-
ously estimate states of a system along with disturbance
inputs acting on it. This is a topic of growing research
interest in recent years in the areas of vehicle motion es-
timation and control. In particular, this is very important
for estimation of disturbance torques acting on a vehicle’s
attitude dynamics.

Researches on this particular topic pursue three main
approaches to ESO design. The first is to design a linear
ESO that is designed to be asymptotically stable. Using
this approach, Shao et al. (2018) design a linear ESO for
a vehicle’s translational and attitude dynamics to observe
disturbance force and torque. The second approach utilizes
the super-twisting algorithm Levant (1998) to design an
ESO for attitude dynamics that is finite-time stable (FTS).
An example of this approach is given in Liu et al. (2020).
The third approach utilizes the geometric homogenity
Bhat and Bernstein (2005); Rosier (1992); Guo and Zhao
(2011). In recent years, this approach has been utilized for
ESO design with FTS property for attitude dynamics Shao
et al. (2019); Tian et al. (2018). In all of the prior literature
on attitude dynamics ESO, the attitude kinematics and
dynamics are either linearized locally or represented using
local coordinates (like Euler angles) or quaternions. These
representations can cause singularities for local coordinate
representations (e.g., gimbal lock with Euler angles) and
unwinding instability with quaternions Bhat and Bern-
stein (2000); Chaturvedi et al. (2011).

* The authors acknowledge support from the National Science
Foundation award 2132799.

This work provides an ESO design to estimate the dis-
turbance torque acting on a rotating rigid body. The
proposed ESO can either be utilized to give disturbance
torques estimations for disturbance rejection control, or
as an attitude sensor, or actuator fault detector. The idea
of geometric homogeneity is utilized in the provided ESO
design. To avoid harmful chattering and oscillations, the
signum function is not used in this ESO design. Unlike
much of the existing research on attitude observer design
that directly uses Euler angles or quaternion represen-
tations of attitude motion in vector spaces, this work
represents attitude directly on the Lie group of rigid body
rotations. Moreover, attitude information is obtained from
vector measurements, which is the more common way to
obtain attitude information from such on-board sensors as
vision sensors, accelerometers and magnetometers. Based
on Wahba’s problem Wahba (1965), we use a Morse func-
tion Bullo and Lewis (2019) in the ESO design which is
also directly utilized in its stability proof. This ESO is
guaranteed to be singularity-free and proved to be almost
globally finite-time stable (AG-FTS) with noise-free mea-
surements and a constant disturbance torque. A simulation
is carried out to show stable behavior of the ESO design
with a disturbance torque that is varying with the attitude.

The remainder of this paper is organized as follows. Section
2 outlines the preliminaries on geometric homogeneity,
and the framework used to represent rigid body attitude
kinematics and dynamics. The static attitude determi-
nation problem from vector measurements is posed in
Section 3. The framework for the ESO design for attitude
dynamics is given in Section 4. Section 5 presents the
observer law for the disturbance observer in details. A
Lyapunov stability analysis for the ESO is also carried out
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in Section 5. Numerical simulation results of the proposed
ESO are presented in Section 6. This numerical integration
scheme preserves the geometry of the state space of rigid
body rotational motion. Section 7 summarizes the results
presented, and mentions related research directions to be
pursued in the future.

2. PRELIMINARIES

2.1 Preliminaries on Homogeneous System
Definition 1. Guo and Zhao (2011) V : R™ — R is
called homogeneous of degree d with respect to weights
{r;>0}7_,, if YA > 0 and V(z1, x2, )T € R™, there is
VAN, A 22, N ay,) = ANV (2, 29, ., 1)
Definition 2. A vector F' : R™ — R"™ is called homoge-
neous of degree d with respect to weights {r;>0}7_,, if for
all A > 0 and for all (21, 2,...,2,)T € R", there is :
Fi(/\“acl,)\”xg,...,)\”xi,...,)\r"mn) (1>
= )\d+riFi(JI1, Ly eeey Ly enny IL‘n)
If V: R" — R satisfies (1) and is differentiable with
respect to x;, then the partial derivative of V' in z; satisfies

AT 88 . V(Arlxla )\T2$27 ceey )‘Tixiv ey Arnx’ﬂ)
;i da (2)
=\ axiV(-T17x27~“7xi7"'7xn)

With the knowledge that V' is homogeneous, (2) can be
conveniently used to check the homogeneity of g—;.
Proposition 1. Bhat and Bernstein (2005) Suppose V4 and
V5 are continuous real-valued functions on R™, homoge-
neous with respect to v of degrees I;>0 and l>0, respec-
tively, and V4 > 0. Then Vz € R", lthere is:

[ min Vo)) < V()

z:V1(z)=1

3)

[P}
Ty

<[ max Va(2)][Vi(z)]

z:V1(2)=1
Proposition 2. Rosier (1992) Let f be a vector field satis-
fying f € C(R™,R"™), f(0) =0, f is homogeneous:
V> 0, fi()\rl.’ﬂl, )\”xg, ceey )\7’1‘1.2_, ceey )\T"l'n) (4)
= )\TJrTifi(ﬂ}l, L2y oLy oney Z‘n)
and the trivial solution = = 0 of system & = f(z) is locally
asymptotically stable. Then let p be positive integer, and
k be a real number larger than p-max;<;<y7;. There exists
a function V : R” — R such that:
(i) Ve CP(R™,R) N C*(R™\{0},R), and V(0) = 0.;
(ii) Vo # 0,V (z) > 0 and V(x) — 400 as ||z|| — +o0;
(iii) V' is homogeneous: YA > 0,
V(AN 21, A2 20, ., A ay) = VEfi(21, 20, .., )
(iv) Vo #0,VV(x) - f(z) < 0.
2.2 Preliminaries on Special Orthogonal Group SO(3)
The set of possible attitudes of a rigid body is the special
orthogonal group SO(3) Murray (1994), given by:
SO(3) = {R e R¥3|RTR = RRT = I, det(R) = 1} .
SO(3) c R3*3 is a matrix Lie group under matrix mul-

tiplication. The Lie algebra (tangent space at identity) of
SO(3) is denoted s0(3) and defined as,

s0(3) = {SeR¥? | §=—-5T},
which is identical to the set of 3 x 3 skew-symmetric
matrices. Let (.)* : R? — s0(3) denote the bijective map

from three dimensional Euclidean space to so(3). For a
vector s = [s1 So 33]T € R3, the matrix s* represents the
vector cross product operator, that is s x r = s*r, where
r € R3. The inverse of (.)* is denoted vex(.) : s0(3) — R3,
such that vex(a™) = a, for all a* € s0(3). Define the trace
inner product on R™*", (-,.), as (A;, Ay) = tr(AT Ay).
Any square matrix A € R™ "™ can be written as a sum
of unique symmetric and skew-symmetric matrices as
follows: A = sym(A) + skew(A), where the symmetric
and skew-symmetric components are defined as, sym(A) =
1A+ AT), and skew(A) = 1(A- AT). Additionally, the
following property holds. Let A; € R"*" be a symmetric
matrix and Ay € R"*" be a skew symmetric matrix. Then,
(A1, Ag) =0.

2.8 System Kinematics and Dynamics

The dynamics model for rotational motion represented in
the body-fixed frame, is based on egs. (12)-(13) in Hamrah
and Sanyal (2020). Let Z denote an inertial frame that is
spatially fixed. A body-fixed frame is fixed to the rigid
body with its origin at the center of mass of the body, and
is denoted B. We denote the attitude of the rigid body by
R € SO(3), which transforms vectors in the body frame
B to their counterparts in the inertial frame Z. The rigid
body attitude kinematics and dynamics are given by:

R = RQ* (5)
JA=JAxQ+714+74’

where 0 € R? denotes the angular velocity vector of
the vehicle in body-fixed frame B, J € R3*3 represent
the inertia tensor of the body, 74 is the unmodeled and
unknown (disturbance) dynamics and 7 is the control
torque acting on the rigid body.

For the convenience of disturbance observer design, the
dynamics model is simplified from (5) as follows:

R = RO~
QO=J1JAxQ+7)+0 (6)
g =29.

The term J 74 is replaced by the term o, which contains
all of the unknown dynamics involved during the flight.
The following assumption is made for this unknown dy-
namics acting on the vehicle.

Assumption 1. The rate of o, ¢, is unknown but bounded,
and satisfies the inequality: ||&|| < 6. Further, § denotes the
upper bound on ||J]|.

3. STATIC ATTITUDE DETERMINATION FROM
VECTOR MEASUREMENTS

The aim of this section is to formulate the problem of
attitude determination from vector measurements.

8.1 Vector Measurements

The rigid body attitude is determined from body-fixed
measurements of £ known inertial vectors. Let eq, ea, - - - ey,
k € N be the known inertial vectors and ui*,u3",- - up’
be the corresponding body-fixed measurements. The i*®
vector measurement in the body-fixed frame B satisfies,
ut = RT€i+O'1', where o; € R? is the noise in the " vector
measurement, for all ¢ € 1,2,---k. The attitude of the
rigid body can be calculated from the vector measurements
provided the following assumption is satisfied.
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Assumption 2. There are at least three non-collinear vec-
tors in the set {e1,--- ,ex} for attitude determination.

Define the matrix consisting of k£ known inertial vectors e;
as column vectors,

E=le1eg ...e;] € , k>2. (7)
The assumption 2 can be alternatively specified as follows:
matrix E should have rank equal to 3. The corresponding

matrix composed of body-fixed measurements as column
vectors can be defined as,

Um = u] € R3*F k> 2. (8)
The matrix consisting of inertial vectors £ and the matrix
containing the body frame vectors U™ are related by:

U™ =R'E+E (9)
where the columns of matrix = correspond to the measure-
ment errors o; € R3. Let the true vectors in body frame

be denoted by u; = RTYe;, then the matrix of the body

vectors corresponding to the inertial vectors e; is given by
U=R"E (10)

in the absence of measurement errors.

3.2 Cost Function For Attitude Determination

R3><k

[u" uy'

The objective is to obtain an estimate of the atti-

tude denoted by R € SO(3) from k known inertial
vectors ejp,...,er and corresponding measured vectors
ul, ..., up". The static attitude estimation can be formu-
lated as an optimization problem as follows,

Minimize ;U = Zwl RU ) (1*1?5“71) (11)

where w; > 0 are We1ght factors. This is well-known in
the relevant literature as Wahba’s problem Wahba (1965).
The cost function can be re-expressed as,

1 ~ ~

u:§<E—mew—waW> (12)
where W = diag([wy, wa, ..., wg]) and E and U™
are given by equations (7) and (8) respectively. The
structure of the generalized cost function in the absence of
measurement errors, is detailed in the following lemma.
Lemma 1. Tzadi and Sanyal (2014) Define Q = RRT as
the attitude estimation error. Let E € R3** be as defined
in (7) with rank(E) = 3. Let the gain matrix W of the
generalized Wahba cost function be given by,

w=EY(EEY) ' K(EETY)T'E (13)

where K = diag([k)l,kg,kg}) and k1 > ko > kg > 1. Then,
in the absence of measurement errors,

u:%<E—§wmw—§wwW>:mﬂ;Q>(M)
is a Morse function on SO(3) whose critical points are
given by the set,
C ={I,diag([-1, -1, 1)), diag([1, —1,—1])
diag(|~1,1,—1))}
In addition, i has a global minimum at @ = I.
4. PROBLEM FORMULATION FOR ESO ON SO(3)
4.1 Dynamic Attitude Estimation

With the kinematics and dynamics (6), let the measured
angular velocity, denoted by Q™. be given by

Q" =Q+v

(15)

(16)

where v € R? is the vectoerandditive noise in angular
velocity components. Let (R,Q) € SO(3) x R3 be the
estimated attitude and angular velocity states provided by
the estimation scheme, satisfying the following relation:

R=RQ*, Q=0"-Q (17)
where Q € R? is the “excess” or error in estimating the

angular velocity. In addition, define & to be the estimate
of the disturbance torque, which is not directly measured.

The objective of the ESO is to obtain estimates ofA the
attitude, angular velocity, and disturbance torque (R, §2
and ) in real time, from the matrix of known inertial
vectors F, the corresponding vector measurements made in
the body-fixed frame U™, and the biased angular velocity
measurement Q.
Lemma 2. Tzadi and Sanyal (2014) Define L = EW/(U™)T.
Let K be as defined in Lemma 1. Then, in the absence
of measurement errors, the time derivative of U along
the trajectories satisfying the kinematic equations (6) and
(17), is given by:

d

Cu= K T-Q =@ (BD)  (18)
:7%uu(—LT§):—sm§)@i (19)
where
Q=0-0 (20)
sk(Q) = vex(KQ — Q1K) (21)
sL(ﬁ) = VeX(LTE — ﬁTL)- (22)

With the above-defined sk (Q) and si(R), the following
lemma is used to prove stability of the ESO in Section 5.
Lemma 8. Bohn and Sanyal (2015),Bullo and Lewis (2019)
Let K be as defined in Lemma 1 and sk (Q) be as defined
by equation (21). Let S C SO(3) be a closed subset
containing the identity in its interior, defined by

S={Q €S0(3) : Qi; >0 and Q;;Q;; <0
Vi, j€{1,2,3}, i # 3} (23)
Then for Q € S, for 6 €]0, 1] we have
sk (Q) sk (Q) > tr(K — KQ) > 05k (Q) sk (Q)  (24)

Lemma 4. Sanyal et al. (2019) Let sp(R) and sk (Q) be
as defined earlier. Then the following holds:

st (R)TsL(R) = sk(Q) sk (Q) (25)
Note that the attitude estimation error Q = RRT is
defined on the group of rigid body rotations, SO(3), not a

vector space. The angular velocity estimation error, Q and
disturbance error, &, are expressed on the vector space R3.

Therefore, for Lyapunov stability analysis of the observer
designed on SO(3) x R? x R3, a Morse-Lyapunov function
is required, where the Morse function U = (K,I — Q)
on SO(3) shall be used as the component of the Morse-
Lyapunov function depending on the attitude component
of the full state and disturbance. The Morse-Lyapunov
function is subsequently used to guarantee convergence of
state estimation errors (@, £2,7) to a small neighbourhood
near (1,0,0) .

5. ATTITUDE ESO

The ESO design is described in details in this section,
along with a stability analysis. The finite-time stability
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(FTS) of the ESO is first shown for the case that the
disturbance torque is constant in body frame and angular
velocity measurement error is zero. Then finite-time input-
to-state stability (FTISS) with time-varying disturbance
torque and angular velocity measurement error is shown.

Following two definitions are provided to establish the

backstepping error terms for the ESO design.
Definition 3. Define z1,(R ) SO(3) — R? and wL(R Q , QM)
SO(3) x R? x R3 — R?, such that

21(R) = (sT(R)se(R) 7 su(R) (26)
wr(R,Q,Q™) = %SL(E)
= Vex(LTﬁﬁX + QX}A{TL)
—vex(RTL(OQ™)* + (™) *LTR). (27)

Definition 4. Define H : R® — Sym(3), the space of
symmetric 3 x 3 matrix, as follows:

H(x):[—2(1_a)@

. 28
PO (28)
~v and « in the Definition 3 and 4 are restricted as follows
and the ESO is proposed.

Proposition 3. Let v € Z* and 3 < a < 1 satisfy v —3a+
1 > 0 and let x be sufficiently large. Define the auxiliary

(backstepping) error: ~ R
U =0—rzr(R),

where zj, is provided in Definition 3.

(29)

Consider the rigid body rotational kinematics and dynam-
ics given by (6), with known inertia J, control torque
7, attitude and angular velocity measurements. Then the
following equations give an ESO for system (6):

R = RO* = R(Q™ — )%,

Q= J 1 (JQm x Q" +T) o+ (wTy)
— k(sp(R)TsL(R)) ™ H(sL(R))we(R,Q,QM),

o =ko(VTW) 1y, (30)

where sy, H and w; have been defined in Lemma 4,
Definition 4 and 3 respectively.

kg W

With (6), (30) and the estimation errors defined earlier,

the error dynamics of the ESO are given by:
Q= Q(RY),
U= —ke(PTO) T U + 5,
&=k, (TTW)* 10 4 6.
Theorem 1 gives the stability of the error dynamics (31)
without the terms § and v, which are the time derivative
of disturbance torque o and the angular velocity mea-

surement error respectively. Lemma 5 is presented here
to support the stability proof .

Lemma 5. Hardy et al. (1952) Let xz,y > 0 and let p €
]1,2[. Then z(1/P) 4 4(1/p) > (z+ y)(l/p)_

Theorem 1. Consider the auxiliary system given by (32)
below, where « is as defined in Proposition 3:

Q = Q(RQ)"
\iz = ke (PTH) T U 4+ 5
= — ko (UVTW)2 1y,

(31)

(32)

343

In the absence of measurement errors, the attitude, an-
gular velocity and disturbance estimation errors (Q, €, &)
for this system converge to (I,0,0) € SO(3) x R® x R? in
a finite time stable (FTS) manner, from almost all initial
conditions except those in a set of measure zero.

proof 1. The proof of this result is based on the main
results of Rosier (1992) (given by Proposition 2) and

. Bhat and Bernstein (2005) (given by Proposition 1), both

stated in Section 2. Similar methodology is previously

used in Wang and Sanyal (2021). Define the vectors s =

[@T,5T)T € RS and f(¥,5) € RS, such that the stability

proof of the last two equations in (32) is reduced to the

stability proof of:

= [T, 51T = f(v,6), (33)

where f(-,-) is given by the RHS of the last two equations

in (32). Define the Lyapunov candidate V,(¥,&) for the

stability analysis of (33) as:

1 ko

Va(¥,5) = 5 [-2(WT0)* +575] (34)

The Lie derivative of V,(¥,5) along the vector field
f(¥,6), L#V,, is obtained as follows:

k

LV, =V, (¥,5) = —Zakq,(\I/T\I/)QTH <0. (35

From (35), (33) and the invariance principle, we see
that the auxiliary system (33) is asymptotically stable.
According to Definition 2, it can also be verified that
f(¥,6) is a homogeneous vector field of degree a —
1 with respect to the weight vector {1,a}. According
to Proposition 2, there exists a homogeneous Lyapunov
function V4(¥,5) of degree v € N such that L;V;, =
VW (¥,6)- f(P,5) < 0. Although V} is not given explicitly
by this result, through Proposition 2 in Rosier (1992),
V4 can be obtained from V,. According to Definition 1,

the real-valued function L;V, = VV,(¥,6) - f(¥,5) is
homogeneous of degree v+ a — 1. Thus,
AL T A
v b5 kg (W) T — L G e
Vh(,5) = 5205 — ke (VT0) T W) - 1, S (UTW)
yta—1
<—clV, 7 (36)
Further, according to Proposition 1, we get:
o =— max VV(9,5) - f(T,0). (37)

{0,6:V,(W,5)=1}
Note that VV,(¥,5) - f(¥,5) is negative definite, and
therefore ¢; > 0. Since % < a < 1, the auxiliary system

(33) is proved to be FTS at the origin (¥,&) = (0,0). Now
define the Morse-Lyapunov function V:
Ve(Q,V,5) =V. =V, + U. (38)

With ¥ converging to the origin in finite time, the fol—

lowing equation is true after finite time: Q = /{zL(R)
Combining with Lemmas 2, 3, 4 and 5, the time-derivative
of V. can be obtained as follows:

. yto—1 ~ ~
Vo< —aV, © —QYs (R)

ol
< —min{ey, K} (Vo + (K, T — Q))
Based on (39) and Theorem 1 of Sanyal and Bohn (2015),
the system (32) is proved to be AG-FTS. O
Now with the term ¢, the reduced error dynamics (33) is
augmented to the following equations.
= (@7, 61" = f(¥,6) + [01x3,0"]"
The followmg theorem is obtained for system (40).

(39)

a—1

(40)
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Theorem 2. Consider the ESO design in Theorem 1, ¢; as
defined in (37) and ¢ defined as:

aVy
41
= e[S (41)
If the initial condition V,(¥y, Uo) satisﬁeS'
y=Satl 2¢1
V, 7 (Wo,00) < . (42)
2

system (40) is Finite-Time Input-to-State Stable (FTISS).
proof 2. Use the Lyapunov function Vj, in Theorem 1 for
the observer error dynamics. Note that V4 is homogenous
of degree v with respect to {1, a}. According to Definitions
1 and 2, it can be further concluded that |%‘fb\ is homo-

geneous of degree v — a with repect to {1,a}. Applying
Proposition 1, the following inequality holds:
oV,
I 8f’|| <&V, 7, >0 (43)

Now considering the term J to be non-zero we obtain the
time derivative of Vj, for the system (40) as:

- ., OV
Vi(,8) = 5[5 — ke (WT0) T 0]
+ %‘f” [~k (UT W) 1] 4 %5 (44)
g
arezl Y
<-aV, " +l5z 0.

With v and « as defined in Proposition 3, v — 3a 4+ 1 >
0 and inequality (43), by applying the Cauchy-Schwarz
inequality to (44), it can be deduced that:

. yta—1 y—a)
Vo(¥,6) < —a1Vy, 7 (Vb T+ 6lP)
c ~y—3a+1 ~yta—1 colld 2
<(-a+ EQVb )V, T #

From (45), when V}, at the initial time V, (g, &) satisfies
(4 2), system (40) can be derived to be FTISS, as defined
in Hong et al. (2010). This implies that s converges to a
small neighbourhood around the origin in finite time.

Remark 1. Hong et al. (2010) Based on Theorem 2, for

the solution of the auxiliary system (40), 37 > 0 such

that Vit > T ||s(t)]| < ~v( sup ||6]]) = v(0), where ~(:) is
o<r<t

a class-C function.

Corollary 1. If the initial value of the Morse-Lyapunov

function V,(Qo, ¥q,50) = Vi (¥, d0)+(K, I7Q0> satisfies:
asern o 9g 1
V;) v (\Ilo,O'O) < E, <K I— Q0> v < 2/€ (46)

then the error dynamics (31) converges to the origin
(1,0,0) in an almost global FTISS (AG-FTISS) manner.

proof 3. With ||s(t)|| < v(6) from Theorem 2 and as stated
in Remark 1, it can be further concluded that | ¥|| < ||s]| <
7(8). Now consider the Morse- Lyapunov function V.. The
time derivative of V, satisfies the following inequality:

Ve =V, — QTs.(R)
Co y—3a+1 ’Y+D< 1
Sta+5V, 7V, T =
— [nzL(ﬁ) + \I/]TSL(E)

By applying Lemmas 3 and 4 and Definition 3, it can be
further derived that:

02”5” 47
5 (47)

. ¢y 2=Batl  ayta-l ezt
Ves(ca+ 2V, 7 )V, 7 —w(E1-Q)
02|\5||2
+ = +lsc(B R)| (48)

Now applying the Cauchy-Schwarz inequality again for
the term ||¥||||sz(R)]||, one obtains:
y—3a+1 yta—1

. c ’y+a 1
Ves(-at 5V, 7)Y, T —s(KI-Q)
& 1 1 - ~
+ 2 S0 s (R)TsL(R). (49)
By applying Lemma 3, one obtains
. Co y—3a+l yta—1 'v+o< 1
Vos(at 2V, )W, s Q)
2 1 1
+ 2+ 20+ S (K- Q). (50)
Applying Lemma 5, (50) leads to:
. CQ y—3a+1 Yta—1 1 =9 1 =2
oo+ U el 500
1 rrecl
+(—f€+§<K7I—Q> KT Q)
yta—1 _ _
<—c(Ve,QVe T+ 5(:262 + 57(6)2, (51)
~—3a+1 1
where ¢(V3, Q) = min{c;— %V, ~ LK I-Q)

which is a time-dependent coefficient. With the given
initial condition (46) and Theorem 1, we can conclude that
vVt > 0, ¢(Vp,Q) > 0. Therefore, from (51), we conclude
that the error dynamics (31) is AG-FTISS. O

6. NUMERICAL SIMULATION

The ESO is numerically implemented using a geometric
numerical integration scheme. Unlike commonly used nu-
merical integration methods like Runge-Kutta, geomet-
ric integration schemes Lee et al. (2005); Nordkvist and
Sanyal (2010) preserve the geometry of the state-space
without any projection or parameterization. Let P; and %
denote the right-hand sides of the last two equations for 2
and & in (30) at time step ¢;. Let h = t;11 —¢; be the time
step size. The initial state estimates for this simulation are
chosen as Ry = I,QO =[0,0,1]T,50 = [2,3,5]T. The ESO
parameters are selected as: « = 0.85, v =2, k = 0.15 and
ks = kg = 5. The inertia matrix of the simulated rigid
body is J = diag([4,4,10]) ke-m?. The attitude motion
of this simulated rigid body is stabilized by a control
torque 7 given by: 7 = —1/2vex(K.R — RTK,.), where
K, = diag([0.1,0.2,0.3]T). The disturbance torque acting
on the rigid body is selected as

74 = [0.2sin(0.27t); 0.1sin(0.47t); 0.5cos(0.17¢) | (N - m).

The initial attitude and angular velocity of the rigid
body for this simulation, are selected as follows: Ry =
exp(([m,0,0]T)*), Qo = [1,0.5,0] Trad/s. Four inertial vec-
tors are considered to be measured at a constant rate by
body-fixed sensors with an additive uniform random noise
of 0.05 xrand(3,4) m. The angular velocity measurement is
assumed to have random noise of 0.05 x rand(3,1) rad/s.

The simulation results are illustrated in Fig. 1, 2 and
3. As can be observed from these results, the stability
and convergence of attitude state and disturbance torque
estimation errors to a neighborhood of (Q,Q,5) = (I,0,0)
agree with the analytically-shown properties of the ESO
scheme designed in the previous section.
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Fig. 1. Attitude estimation error
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Fig. 2. Angular velocity estimation error
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Fig. 3. Disturbance torque estimation error

7. CONCLUSION AND FUTURE WORK

This work provides a new design of an extended state ob-
server (ESO) to estimate attitude states and an unknown
torque affecting the attitude dynamics of a rigid body.
The finite-time stability of this ESO is established using
Propositions 1 and 2, which are based on the concept of
geometric homogeneity. The ESO is proved to be AGFTS
with noise-free measurements and a constant disturbance
torque. Furthermore, when the disturbance torque changes
with time or states, the ESO is proved to be AG-FTISS for
certain ranges of observer design parameters. Numerical
simulation results support the theoretical results and show
the robustness of the proposed FTS-ESO as an estimation
scheme for states and disturbance inputs. Continuing work
will look into ESO design for coupled translational and
rotational motion of rigid bodies.
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