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DeepComboSAD: Spectro-Temporal Correlation
Based Speech Activity Detection for
Naturalistic Audio Streams
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Abstract—Speech activity detection (SAD) serves as a crucial
front-end system to several downstream Speech and Language
Technology (SLT) tasks such as speaker diarization, speaker iden-
tification, and speech recognition. Recent years have seen deep
learning (DL)-based SAD systems designed to improve robustness
against static background noise and interfering speakers. How-
ever, SAD performance can be severely limited for conversations
recorded in naturalistic environments due to dynamic acoustic
scenarios and previously unseen non-speech artifacts. In this letter,
we propose an end-to-end deep learning framework designed to be
robust to time-varying noise profiles observed in naturalistic audio.
We develop a novel SAD solution for the UTDallas Fearless Steps
Apollo corpus based on NASA’s Apollo missions. The proposed
system leverages spectro-temporal correlations with a threshold
optimization mechanism to adjust to acoustic variabilities across
multiple channels and missions. This system is trained and eval-
uated on the Fearless Steps Challenge (FSC) corpus (a subset of
the Apollo corpus). Experimental results indicate a high degree
of adaptability to out-of-domain data, achieving a relative De-
tection Cost Function (DCF) performance improvement of over
50% compared to the previous FSC baselines and state-of-the-art
(SOTA) SAD systems. The proposed model also outperforms the
most recent DL-based SOTA systems from FSC Phase-4. Abla-
tion analysis is conducted to confirm the efficacy of the proposed
spectro-temporal features.

Index Terms—TFearless steps challenge (FSC), NASA Apollo
missions audio, spectro-temporal correlations, speech activity
detection (SAD).

I. INTRODUCTION

N recent years, there has been an increased use of spoken

language in human-machine interactive systems, encom-
passing a broad spectrum of speech and language technology
(SLT) tasks. Speech recorded in naturalistic scenarios often
includes environmental distortions, overlapping speech from
other speakers, and extended periods of silence. To optimize
the performance of deep learning (DL)-driven SLT solutions,
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it is imperative that these systems accurately identify active
speech regions across entire audio streams. Thus, most speech
processing pipelines use speech activity detection (SAD) as a
core front-end scheme to extract speech regions.

SAD is a two-step process; i) feature extraction, followed
by ii) binary classification employed to differentiate between
speech and non-speech segments. Several supervised and unsu-
pervised SAD solutions have been proposed over the years. Ini-
tial SAD mechanisms employed threshold-based classification
on time-domain acoustic features such as energy, zero-crossing
rate, and frame-wise pitch estimations [1], [2]. Robustness to
environmental distortions was later pursued by leveraging sta-
tistical modeling techniques to temporal, spectral, and cepstral
speech features [3], [4]. Subsequently, gaussian mixture models
(GMM) and similar cluster schemes emerged as effective strate-
gies to model log-energy distributions in speech features [5],
[6], [7]. In alignment with this, Combo-SAD [8] was designed
to linearly transform spectro-temporal features into a 1-dim
feature space through principal component analysis (PCA),
followed by GMM classification. This letter was extended by
TO-Combo-SAD [9] which employed a threshold optimization
strategy to mitigate speech density variability issues in Apollo
audio streams. To address noisy speech profiles, unsupervised
strategies including rVAD and GammatoneSAD [10], [11] also
incorporated speech enhancement mechanisms prior to classifi-
cation.

Recent advancements in DL have introduced convolutional
neural networks (CNN) and recurrent neural networks (RNN)
for spatial and temporal modeling in SAD design [12], [13], [14],
[15]. Spatio-temporal modeling capabilities of time-distributed
feed-forward (FFN) CNNs have demonstrated promising out-
comes [12], [13]. These approaches, although showcasing supe-
rior performance under in-domain (IN) noisy conditions, have
exhibited limitations when applied to naturalistic data with
unseen acoustic characteristics [16], [17], [18], [19], [20], [21].
The CRSS-UTDallas Fearless Steps (FS) Apollo audio is such
a +150k-hr collection of time-synchronized multi-speaker com-
munications recorded in varying noise types. The FS Challenge
(FSC) corpora [22], [23], [24] utilize this data, incorporating
audio with out-of-domain (OOD) characteristics in FSC Phases
3 & 4 (referred to as “FSC-P#” throughout this letter for brevity).
Consequently, datasets released for FSC-P3 & FSC-P4 have mo-
tivated generalizable system development. Drawing inspiration
from ‘Combo-SAD’ & ‘TO-Combo-SAD’ system designs [8],
[9], this letter introduces the ‘DeepComboSAD’ model. This
framework seeks to attain generalizability through learnable
spectro-temporal filters and threshold optimization.
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Fig. 1. Overview diagram of the DeepComboSAD end-to-end process.

II. SYSTEM FORMULATION

The proposed system overview is depicted in Fig. 1.
Similar to Combo-SAD, the proposed framework extracts
voicing measures and spectral features from time-domain
(Section II-A1) and STFT-domain (Section II-A2) for a given
utterance. These inputs are processed through convolutional
attention layers to derive “Deep-Combo” features which then aid
in estimating speech activity. The goal is to achieve robustness
against adverse distortions induced during speech capture by
learning from temporal, complex-spectral, and time-frequency
(TF) context using self-attention mechanisms.

A. Deep-Combo Feature Extraction

We initially processes a mono audio segment z(t) € R**M by
splitting into z ¢ (n) € R™>T frames to extract spectro-temporal
features. Here, ‘M’, “T”, ‘n’, ‘N’ represent segment length
(4.82 sec), no. of frames in a segment, frame index, & window
size (32 ms with 12 ms skip rate) respectively.

1) Temporal Features: Voicing measures such as energy,
harmonicity, clarity, and linear predictive coding (LPC) are
usually obtained from normalized auto-correlations in time [25],
[26], [27]. We compute such correlations across time samples
within each frame. r,,(n, k) € R¥*T, The normalized auto-
correlation matrix is computed in (1) as:

272 (@ 0wl - (@ GHRwi+R) -
> o w()w(i+k)

where ‘w(j)’ is square root of the Hanning window, & ‘k’ is
auto-correlation lag index. For each frame in x¢(n), the first
‘L’ positive and negative auto-correlation lags are considered
since normalizing with a window function mitigates the impact
of strong correlation peaks, thus obviating need for low-pass
filtering. [28]. In addition, the frame-wise auditory features
i) Log-energies e(n) € R™7T (to measure signal loudness), ii)
peak-to-valley ratio p(n) € R (to detect abrupt peaks/drops
in power), and iii) first-order difference d(n) € R**7 (to assist
with detecting unvoiced speech frames by preserving high-
frequency content), are also computed.

xlemporal(n) = [rmw(n; k‘), e(”)v p(n)a d(n)] 2

The temporal input feature set Ziemporal(n) € REA3) x T g
formed by concatenating above mentioned auditory features
with the auto-correlation matrix (detailed in (2)).

2) Spectral Features: The short-time fourier transform
(STFT) of input ‘z(t)’ is initially computed to produce a
complex-valued spectrogram. Here, 1-dim convolutional layers
performa 256-point DFT operation using square root of Hanning
window on frames after zero padding. Most SAD systems over-
look phase information in spectral feature extraction, which is
suitable for utterances degraded by static noise. However, recent
speech enhancement efforts have emphasized the importance
of phase-sensitive information for speech severely degraded

by dynamic noise [29]. Hence, we employ complex-valued
Authorized licensed use limited to: Univ of Texas at Dall
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Fig. 2. Schematic representation of the proposed DeepComboSAD network.
Three input features with dedicated convolutional processing modules (left)
are: temporal (yellow), spectral (blue), and complex-spectral (blue-orange).
RNN-GRU decoder (green) followed by Linear Projection layers generate SAD
estimates from stacked spectro-temporal feature embedding inputs.

spectrogram as a core spectral feature input.
Xt(na f) = [X(TL, f)a X(n_lv f)a X(n_Nd+la f)}T (3)

Inter-frame & intra-frame correlations similar to (1) are com-
puted in spectral domain by defining an N¢-dim speech vector
Xt (n, f) (depicted in (3)) with freq. bin index “f”.

&1 (n, f) = LayerNorm(Xy (n, f)X¢(n, /)7). @)

Xt (n, f)is used to compute a ‘N; x N;’-dim complex correla-
tion matrix ®(n, f) as shown in (4).

Unlike conventional correlation operations, layer normaliza-
tion with learnable affine transformations normalize the inter
& intra-frame correlations, thereby mitigating computational
problems during prolonged silences in recordings. These
complex-valued correlations are converted to real-valued
vectors by concatenating real and imaginary values along the
feature dimension, and for efficiency, we only retain the lower
half of the frequencies, reducing memory and computational
demands. Similar correlation computations across frequency
dimensions yield the ‘Ny x N’ time-varying correlation
matrix ®x(n, f), capturing impact of dominant speech formant
regions, as described in (5) below,

Pr(n, f) = LayerNorm(X¢(n, f)X¢(n, f)H) )

where X¢(n, f) is a Ny-dim speech vector which consists of
the current and past /Ny —1 frequency bin information.

The DeepComboSAD network (detailed in Fig. 2) individ-
ually processes inputs from the “Deep-Combo” feature set
[Ztemporal (), @1 (n, ), ®r(n, f)]. This spectro-temporal fea-
ture extraction approach paired with nonlinear modeling capa-
bilities of DL systems seeks to enhance SAD performance for
adverse noise distortions in naturalistic settings.

B. DeepComboSAD Network

The DeepComboSAD network is formulated using recurrent
(RNN) and feed-forward networks (FFN) that incorporate ded-
icated feature-processing convolutional modules as detailed in
the schematic representation (Fig. 2). Though the RNN & FFN
layers are shared by temporal, complex-spectral, & spectral
modules, separate convolutional layers are used to consolidate
information across the Deep-Combo features.

The temporal convolution module utilizes 1-dim convolu-
tional layers with (kernel, stride, padding) set to (5,1,2), fol-
lowed by a 1-dim batch normalization & leaky rectified linear
unit (ReLU) non-linearity. Three temporal convolution modules

are stacked se uentiall}‘/J to extract salient temtporal information
TC from IEEE Xplore. Restrictions apply.
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TABLE 1
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DCF PERFORMANCE (%) OF SAD SYSTEMS ON THE FSC-P4 DEvV, EVAL SETS, AND EVAL SUB-SETS

SAD Systems Dev % DCF | | Eval % DCF | | A1l (IN) | A1l (OOD-C) | A0§ (OOD-M) | A13 (OOD-M)
rVAD 13.19 16.68 15.99 17.49 11.99 24.03
Combo-SAD 8.25 11.24 4.32 19.69 11.00 17.11
TO-Combo-SAD 13.77 15.63 11.16 17.71 21.17 18.52

CCLCNNTTTTTTTTTTTTTT 101377 11897 868 [T 15247777 1085 T e T
U-Net-SpecAug 3.77 7.89 4.86 9.19 10.38 11.68
ACAM-logMel 5.82 10.49 8.87 13.92 12.04 7.35
ACAM-MRCG 4.69 9.21 7.55 12.48 10.14 7.2
STAM-logMel 278 571 3.84 7.94 4.33 9.0
TFMR-MelFB 2.01 4.28 230 2.72 5.09 12.09
CRNN-fusion - 4.12 2.34 3.34 6.74 7.69
STRE-logMel - 3.72 2.07 2.39 6.97 7.22
DeepComboSAD 1.77 3.42 1.96 3.43 3.79 7.34

Systems above the dashed line are unsupervised, whereas those below are supervised. For this study, COMBO-SAD and U-Net-SpecAug serve as the unsupervised and

supervised baseline models, respectively. Abbreviations of domain types for each eval sub-set: IN (in-domain), OOD (out-of-domain), OOD-C (sourced from an unseen

apollo-11 channel), and OOD-M (originating from a different apollo mission).

Underlined values indicate baseline system results, and boldface indicates proposed system results.”

across frames. Output filters are set to 256 except for the last
module configured to 128. The spectral & complex-spectral con-
volution module architecture is identical, comprising of 2-dim
convolutional layers with (kernel, stride, padding) configured
to ((5 x5), (2x 1), (0x2)), followed by a time-frequency
self-attention (TF-SA) network [30], [31], [32], batch normal-
ization, & leaky ReLU. TF-SA layer computes a 2-dim attention
map, enabling the network to model speech energy distributions
along time and frequency dimensions. Correlation features for-
mulated in (4) and (5) are transformed through five sequential
complex-spectral/spectral convolutional modules. Output filters
for the complex-spectral modules with ®1 input are set to
{56,84,84,112,112,128}, while filters for spectral modules
processing @ are configured to {30, 45, 45, 60, 60, 128}.

Encoded context from the spectro-temporal modules is then
concatenated feature-wise to produce a 384-dim speech em-
bedding per frame. This embedding is processed through a
three-layered uni-directional gated recurrent unit (GRU) with a
256 hidden size. RNN-GRU analyzes frame-wise similarities to
produce 256-dim contextual embedding outputs. The FFN block
transforms RNN-GRU outputs to frame-wise speech presence
probabilities for each successive segment (as shown in Fig. 2).
Two linear layers followed by ReLU and Dropout (p = 0.3)
form the initial FFN block. To achieve training stability, layer
normalization and ReLU are employed in the last FFN layer.
Finally, the proposed network is trained in an end-to-end man-
ner on 400-frame segments. Unlike traditional cross-entropy
loss, weighted mean squared loss (Lwwmse) addresses speech
density variations in the data, & offsets the imbalance between
speech/non-speech samples [24]. The proposed weighted mean
squared loss is computed as follows:

D
Lwwise = Y  (z; — yi)? (6)
i=1

where a; = 1.5 if y; is speech, else a; = 1, using which, we
generate frame-wise {0,1} decisions. The last three modules,
in tandem with the loss function, seek to discern a relationship
between frame-wise speech density and contextual embeddings.
This process learns an optimal scaling factor for the speech pres-
ence probability outputs against a static threshold, culminating
in the threshold optimization strategy.

III. EXPERIMENTAL SETUP

A. Dataset

FSC-P4 data was curated to evaluate system robustness for
seen and unseen acoustic conditions. To achieve this, audio from
5 main Apollo-11 (Al1) channels [16] were reserved for Train
(70-hr) & Dev (20-hr) sets, as well as the Eval in-domain (IN)
sub-set. out-of-domain (OOD) Eval sub-set audio was sourced
from an unseen AI/ channel, Apollo-8 (A08), & Apollo-13
(A13) missions audio [22], [23], [24]. FSC-P4 comprises a 35-hr
Eval set with equally weighted IN & OOD speech.

B. Baseline Comparison Systems

The proposed system is benchmarked against ten unsuper-
vised & supervised systems (See Table I). The unsupervised
systems i) Combo-SAD [8], ii) TO-Combo-SAD [9], & iii)
rVAD [10] have previously exhibited strong performance on
All audio [16], [22]. Supervised DL-based systems iv) CL-
CNN, a convolutional network trained with curriculum learn-
ing strategy [33], & v) U-Net-SpecAug [18], employing a
U-Net architecture with Specaugment [34], were specifically
designed for prior FSC datasets [23], [24]. To contrast the
efficacy of our TF attention modules, SAD DL architectures
utilizing attention mechanisms are also considered. These in-
clude vi) ACAM [35], utilizing temporal attention with MRCG
(multiresolution cochleagram) features, & vii) STAM [36],
processing log-Mel-Spectrogram (logMel) features through se-
quential spectral & temporal attention modules. Finally, the
top-3 performers from FSC-P4, namely viii) TFMR-MelFB,
with Mel-filterbank features and four-layered Transformer [30],
ix) CRNN-fusion [20], a convolutional recurrent model with
fused inputs from 1-dim & 2-dim convolutional modules, &
x) STRF-logMel [21], a CNN decoder with adaptable spectro-
temporal filters, are also included. DCF scores for ix) and x) are
derived from FSC-P4 system submissions data [37], [38].

C. Training and Evaluation Procedure

Unsupervised system thresholds were determined using a
greedy search. Except for ACAM & STAM, DL systems were
trained on 400-frame segments with a 200-frame overlap for
50 epochs, utilizing the ADAM optimizer, 32 batch size, and a
scheduler reducing the learning rate of 1e — 4 after three epochs

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 26,2023 at 02:08:11 UTC from IEEE Xplore. Restrictions apply.
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Fig. 3. DET curve computed over FSC-P4 Eval (IN & OOD) set includes
rVad (green), TO-Combo-SAD (gold), Combo-SAD (blue), CL-CNN (light
blue), U-Net-SpecAug (black), and DeepComboSAD (dashed red).

without improvement. Attention-frame selection and training
procedure for ACAM & STAM adhered to the implementation
detailed in [35], [36]. The optimal layer count & kernel sizes
were determined using Dev set DCF scores. DL systems typi-
cally converged around the 32" epoch. Best threshold values for
systems were ascertained by analyzing the ROC curve on Dev
set. DeepComboSAD decisions were calculated with threshold
0 = 0.123. All SAD systems were evaluated with the NIST-
defined DCF measure [39] with 0.25 sec collar.

IV. RESULTS AND DISCUSSION

Overall DCF performance for proposed and comparative sys-
tems is summarized in Table I. We report an absolute 7.8%
reduction in DCF (Eval) over the unsupervised, & 4.47% over
the supervised baseline system, with far superior performance
demonstrated over rVad, TO-Combo-SAD, & CL-CNN. ACAM
and STAM, designed for noise resilience, excel for OOD data but
under perform significantly for in-domain (IN) audio, lagging
behind DeepComboSAD by an absolute 6.8 and 2.3% DCF.
ACAM fares better with MRCG than with logMel features,
while STAM-logMel’s superior results can likely be attributed
to the added spectral attention module. TFMR-MelFB and
CRNN-fusion models perform relatively better, with 20% and
17% relative DCF degradation compared to DeepComboSAD.
STRF-logMel exhibits similar performance for both IN & OOD
data, akin to DeepComboSAD, given their use of learnable
filters. Nonetheless, the logMel features in STRF don’t explicitly
capture temporal or phase-sensitive contexts, as confirmed by the
ablation analysis (Section IV-A). Temporal & complex-spectral
context incorporated in an end-to-end manner results in Deep-
ComboSAD’s 8% relative improvement over STRF-logMel. In
the OOD Eval sub-sets, DeepComboSAD delivers SOTA re-
sults for A0S (OOD-M) & All (IN). Although some systems
show slight enhancements for A1/ (OOD-C) & A13 (OOD-M),
their consistency across other sub-sets is lacking. A DET curve
analysis for the Eval set (Fig. 3) highlights this DeepComboSAD
robustness, with consistent performance across all thresholds. A
relatively constant slope for Eval DET curves is also observed
for DeepComboSAD. Additionally, predictions from DeepCom-
boSAD trained with WMSE-loss skew towards a lower FNR as
compared to other systems. This suggests a preference towards

speech dotection &% ORRSGd I R0158:58
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TABLE IT
ABLATION ANALYSIS FOR DEEPCOMBOSAD NETWORK, INCLUDING
COMPARISONS WITH LOG-MEL-SPECTROGRAM (LOGMEL) FEATURES

Sub-Systems Dev % DCF | | Eval % DCF |
TF (logMel) 2.61 7.22
T 1.81 6.59
F 1.51 5.43
TF 1.84 5.59
T-F 1.47 6.05
T-TF 1.52 4.24
F-TF 141 5.13
T-F-TF (logMel) 1.81 6.08
T-F-TF (Ours) 1.77 3.42

Abbreviation T denotes time-domain feature & their associated temporal
convolutional (conv) module. F signifies complex-spectral feature & their
conv module. TF represents spectral feature & their conv module. TF
(logMel) implies the use of logMel features with spectral conv module.
Any abbreviation containing a ’-” suggests the employment of multiple
features or modules. All models adopt a consistent decoder framework
(GRU + FFN + layernorm) & WMSE loss.

Indented values indicate baseline ablation result, while boldface indicates
proposed system result. Underlined values depict the best performing sub-
systems for Dev & Eval sets.”

A. Ablation Analysis

An ablation study was performed to evaluate the impact
of different feature combinations within the DeepComboSAD
network. This also includes a comparison using log-Mel-
Spectrograms (logMel). All DCF results are shown in Table II.
Notably, the (Dev & Eval) performance dropped considerably
using only the TF (logMel) compared to other combinations.
When comparing 7-F-TF features (logMel & Ours), the pro-
posed network benefits significantly from learnable TF filters, re-
sulting in better generalization. Although the learnable features
perform similarly on Dev (IN) set, 7-TF domain combination
yields vastly improved Eval results. While 7-F, T-TF, and F-TF
display variations in IN & OOD results, they collectively achieve
Eval set performance that exceeds their individual contributions.
This showcases the high degree of non-mutual information
captured by the Deep-Combo features.

V. CONCLUSION

In this letter, we proposed a novel spectro-temporal
correlation-based speech activity detector that leverages tem-
poral features extracted from inter-frame & intra-frame correla-
tions, combined with real and complex-valued spectral features
to achieve robustness in dynamically varying naturalistic speech
environments. We benchmarked our system’s efficacy over the
FSC-P4 dataset, demonstrating superior performance compared
to all previously established state-of-the-art SAD solutions. The
DCF, DET curve, & ablation analyses detailed in this research
demonstrate that DeepComboSAD i) effectively extracts robust
features from time-domain signals through its learnable filters,
ii) is highly adaptable to time-varying acoustic characteristics,
iii) sustains a notably low false negative rate under unseen noise
profiles & iv) demonstrates consistent performance across both
in-domain & out-of-domain scenarios. For our future work, we
aim to extend this proposed letter by developing a jointly mod-
eled SAD and speaker diarization system that employs temporal
and complex-spectral schemes. This system is intended to be
deployed in a pipeline to generate diarized transcripts for the
ssions.
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