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Abstract—Human mobility data is useful for various applica-
tions in urban planning, transportation, and public health, but
collecting and sharing real-world trajectories can be challenging
due to privacy and data quality issues. To address these problems,
recent research focuses on generating synthetic trajectories,
mainly using generative adversarial networks (GANs) trained
by real-world trajectories. In this paper, we hypothesize that
by explicitly capturing the modality of transportation (e.g.,
walking, biking, driving), we can generate not only more diverse
and representative trajectories for different modalities but also
more realistic trajectories that preserve the geographical density,
trajectory, and transition level properties by capturing both
cross-modality and modality-specific patterns. Towards this end,
we propose a Clustering-based Sequence Generative Adversarial
Network (CSGAN)' that simultaneously clusters the trajectories
based on their modalities and learns the essential properties of
real-world trajectories to generate realistic and representative
synthetic trajectories. To measure the effectiveness of generated
trajectories, in addition to typical density and trajectory level
statistics, we define several new metrics for a comprehensive
evaluation, including modality distribution and transition prob-
abilities both globally and within each modality. Our extensive
experiments with real-world datasets show the superiority of our
model in various metrics over state-of-the-art models.

Index Terms—Generative Adversarial Networks, Clustering,
Reinforcement Learning, Synthetic Trajectory Generation

I. INTRODUCTION

The recent growth in location-based technology, such as
mobile devices and sensors equipped with GPS, has led to an
unprecedented increase in the availability of human mobility
data. This data, often represented as a series of ordered points,
reflects the physical-behavioral trace of an individual’s move-
ment. Understanding the mobility patterns of a population
has significant implications for a wide range of applications,
including transportation, epidemiological modeling, and public
health. For instance, pandemic risk evaluation via mobility
data during COVID-19 can help understand, estimate, and
mitigate the disease spread. In addition, analyzing individ-
ual movements can provide insight into traffic or public
transportation systems and help address traffic congestion
and urban planning. Recommendation systems also rely on
population flow data to identify effective advertising locations.
Despite the value of mobility data, obtaining and sharing

Uhttps://github.com/Emory-AIMS/CSGAN

large-scale real-world trajectories can be challenging due to
privacy and commercial concerns [1]. Moreover, most publicly
available trajectory datasets only contain a small portion of
the population which can lead to biased observations. As a
result, generating synthetic, realistic trajectories has become a
valuable and important research problem to either scale up or
protect the privacy of the original trajectory data so that they
can be used for downstream tasks.

To address the synthetic trajectory generation task, existing
methods can be mainly categorized into 1) earlier Markov-
based models [2], which rely on simplified mobility assump-
tions; 2) deep predictive models [3], which can learn more
complex sequential patterns; and 3) more recent state-of-the-
art generative adversarial network (GAN)-based models [4]
which can generate more realistic trajectories based on the
generator-discriminator adversarial game. To better generate
trajectories that are represented as discrete location sequences
in contrast to grid-based data such as images, [4] proposes
a recurrent neural network (RNN)-based sequence GAN and
leverages reinforcement learning (policy gradient) and Monte
Carlo search to generate discrete sequences. Followup works
such as [5] extend sequence GAN and attempt to capture the
mobility regularity via incorporating the urban structure.

While these GAN-based models generate sequences that
preserve the spatiotemporal statistics of the original trajecto-
ries to some level (e.g., global density statistics such as the vis-
iting probability of a location or trajectory-level statistics such
as average daily travel distance per trajectory), they do not
consider important semantic information such as the modality
of the trajectories. Real-world trajectories always consist of
various modalities, including transportation modalities, such
as walking, biking, or driving, or more implicit moving
purposes, e.g., shopping, going to work, or sightseeing. While
there are common mobility regularity and transition patterns
shared across these modalities, there are also modality-specific
characteristics and patterns. For example, trajectories of dif-
ferent transportation modalities may have different average
speeds, accumulative distances, number of distinct visits, and
sequential transition patterns (e.g., transitions on pedestrian-
only streets for walking trajectories). Without considering this
information explicitly, the resulting trajectories 1) may not
capture the modality distributions and may not be diverse
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and representative of the different modalities, and 2) may not
capture the modality-specific characteristics and may generate
unrealistic trajectories that do not correspond to the real-world
modality or moving behaviors.
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Fig. 1: Proposed

Contributions. Towards this end, we hypothesize that by
explicitly capturing the modality in the trajectories (e.g., walk-
ing, biking, driving) and learning from both cross-modality
and modality-specific patterns, we can generate 1) more di-
verse and representative trajectories, and 2) more realistic
trajectories across all modalities. Existing approaches that
do not consider modality only learn global patterns but not
modality-specific patterns. A naive approach that trains an
independent GAN for each modality will also not work
well since it will miss the cross-modality patterns. Thus,
we propose a Clustering-based Sequence Generative Adver-
sarial Network (CSGAN) that simultaneously clusters the
trajectories based on their modalities and learns both cross-
modality and modality-specific properties to generate realistic
and representative synthetic trajectories. The key contributions
are summarized as follows:

1) We propose a novel modality-aware Clustering-based
Sequence Generative Adversarial Network (CSGAN) to
generate realistic human mobility data. As shown in
Figure 1, we first cluster the real (training) trajectories
into k clusters based on a variety of features that capture
their modality. A sequence GAN is then trained where
the generator generates synthetic trajectories, and the
discriminator is inspired by the semi-supervised GAN
and trained to classify a real trajectory into one of the
k clusters (modalities) and a generated trajectory into
the (k + 1)-st ("fake") class. A reinforcement learning
framework is used to train the network where we design
a reward function to reward the generator for generating
a trajectory that can be classified into any one of the k
modalities (real classes).

2) To have a comprehensive evaluation of the generated
trajectories, we propose three metrics to measure how
well the synthetic trajectories capture the modality dis-
tribution of the real trajectories. In addition to the typical
metrics that measure how well the trajectories preserve
density and trajectory-level statistics, we introduce sev-
eral new metrics for a comprehensive evaluation includ-
ing modality distribution and transition probabilities.

3) We conduct comprehensive experimental analysis on
two real-world datasets with different mobility charac-
teristics to validate the effectiveness of CSGAN. Our
results show that CSGAN achieves superior results
compared to state-of-the-art methods in preserving the
statistical properties of the original trajectories both
globally and within each modality. It also outperforms
existing methods for downstream predictive tasks using
the generator.

II. RELATED WORK
A. Synthetic Trajectory Generation

The generation of human trajectories, under the category
of sequence data, has been a long-standing research problem.
Earlier network-based moving object generators [6] use real
road networks and allow users to specify core characteristics,
e.g., maximum speed and the maximum capacity of connec-
tions, of the generated data. The generator’s behavior can be
controlled by re-defining the functionality of selected object
classes. However, such methods fail to capture the trajectories’
underlying sequential information. Markov models are widely
used to capture sequential information, including first-order
MC [2], which constructs a transitional matrix to capture the
first-order transition probability from one location to another;
HMM [7], which utilizes the discrete emission probability;
and I0-HMM [8], which combines transition and emission
models to maximize the likelihood of observed sequences.
Compared with the Markov model-based methods with sim-
plifying assumptions, recent research resorts to model-free or
deep learning methods to better capture the underlying corre-
lations among sequence data. Deep predictive models treat the
trajectory generation problem as a next location prediction task
given historically visited locations. For example, [3] applies
Gated Recurrent Units (GRU) to predict the next location given
historically visited locations.

More recently, Generative Adversarial Networks (GAN)-
based methods are being used and show superior performance
than deep predictive models thanks to their dual generator-
discriminator architecture. [9] proposes a generative model for
location trajectories that can capture high-order geographic
and semantic features of human mobility, such as density
statistics. It uses location-based representation instead of tem-
poral representation of trajectories, and the generator and the
discriminator use Convolutional Neural Networks (CNNs),
hence can not sufficiently model the sequential transitions of
the trajectories. [10] presents an end-to-end LSTM-TrajGAN
model to generate synthetic trajectory data, which captures the
sequential information via LSTM. To better learn the sequence
information for trajectories represented as discrete sequences,
SeqGAN [4] proposes a reinforcement learning framework
that treats the output of the discriminator as a reward sent
back to the generator. [5] extends SeqGAN by leveraging
the self-attention networks as the backbone of the generator
and incorporating prior knowledge of human mobility pat-
terns via the urban structure (derived from both the original
training trajectories and external information such as Points
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of Interest (POIs)) during the generation process. Instead
of generating a discrete sequence of visits for regular time
intervals, DeltaGAN [11] further extends SeqGAN to generate
continuous time points and time-conditioned locations to better
capture temporal irregularity in human mobility by leveraging
spatiotemporal point process. While these works preserve the
spatiotemporal statistics to some level, none of them consider
modality information in real-life trajectories explicitly.

We focus on generating location sequences for regular time
intervals in this paper and propose a novel framework that
explicitly models the modality in trajectories. We show that it
outperforms the state-of-the-art methods [4] [5] for generating
sequences of locations, and the generated trajectories are
both more representative in modalities and more realistic by
capturing both cross-modality and modality-specific patterns.
We note that our clustering-based framework is general and
can be integrated with the extended frameworks that incorpo-
rate additional external data and generate irregular sequences,
which can be interesting for future work.

B. Trajectory Clustering

Trajectory clustering is an effective method for analyzing
trajectory data to detect groups of similar trajectories, e.g.,
consistently moving together or having similar transportation
modalities or moving purposes. Existing trajectory clustering
methods can be classified as: unsupervised, supervised, and
semi-supervised [12]. Unsupervised methods aim to derive
the hidden correlation among unlabeled trajectory data and
include traditional methods such as density clustering [13] and
hierarchical clustering [14], and more recent deep learning
or auto-encoder based methods [15]. Our framework uses
unsupervised clustering to cluster the training trajectories into
different modalities and can leverage any existing clustering
methods. In this paper, we experimented with several basic
clustering methods based on different features derived from the
trajectories to demonstrate the feasibility and advantage of our
proposed framework; it would be interesting for future work
to incorporate more advanced mobility behavior clustering
methods with additional context information such as POIs.

III. PRELIMINARIES

A. Problem Definition

Definition 1: Individual spatiotemporal trajectory. 1t is de-
fined as a list of visiting records Y = [y1, Y2, Y3, .o, Yis -vs Yn)s
where y; denotes the ¢-th visit of the trajectory, which is a tuple
(ti,x;), t; denotes the timestamp of the i-th visit, z; denotes
the user’s location of the i-th visit, which can be a geographical
coordinate (lat,lon) or a region identification (ID).

Based on the above notation, the synthetic trajectory gener-
ation process with regular time intervals is defined as follows:

Definition 2: Synthetic trajectory generation. Given that
each visit of the trajectory lasts for a regular time interval, the
generation of each synthetic trajectory with a #-parameterized
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generator can be expressed as the continuous generation of the
location of each visit:

n

po(Y) = Hpe(fﬁi\fcl,i%i“& i)
i=1

()]

where py denotes the probability distribution of the generator,
Z; denotes the generated user’s location of the i-th visit, Y
denotes the generated trajectory with regular time intervals.

B. Preliminaries

Generative Adversarial Network. It consists of 6-
parameterized generator Gy and a ¢-parameterized discrimina-
tor Dy to play a "Two Player Game". The generator generates
a batch of trajectories, and these, along with real trajectories,
are provided to the discriminator and classified as real or
fake. The generator is trained to fool the discriminator in
terms of being unable to distinguish the generated trajectories
from the real ones (minimizing the classification accuracy of
the discriminator). In contrast, the discriminator is trained to
classify the real trajectories as real and generated trajectories
as fake (maximizing classification accuracy). Formally, the
min-max optimization objective can be expressed as:

minmax By v, [109(Do(Y) [+ By, 5 llog(1=Do(¥))

(©))
where p; denotes the probability distribution of the real
trajectories.

IV. PROPOSED FRAMEWORK
A. Overview

Our proposed CSGAN framework, as illustrated in Figure
1, comprises three main components: a clustering component
(Section IV-B), a generator (Section IV-C), and a discriminator
(Section IV-D). The clustering component groups the real
(training) trajectories into k clusters based on their modalities.
The generator generates synthetic trajectories, which are as-
signed as the {k+1}-st fake class. The discriminator functions
as a multi-class classifier, taking all the real-life and synthetic
trajectories from the generator as input. The discriminator is
trained to classify a real trajectory into its associated cluster
(one of the k real classes or modalities) and a generated
trajectory into the (k + 1)-st ("fake") class. The output of the
discriminator goes through a semi-supervised reward function
and is sent back to optimize the generator so that the generator
is rewarded for generating a trajectory that is classified into
any one of the k real classes. We explain each component in
detail in the following subsections.

B. Modality-based Clustering

To capture the different transportation modalities in real-life
trajectories, we leverage clustering to group similar trajectories
into k clusters. We can leverage a variety of clustering meth-
ods based on different features such as 1) the raw location
sequences, 2) derived features, 3) explicit annotations, and
4) additional context information such as POIs associated
with the locations. We present and evaluate two clustering
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methods based on derived features and explicit annotations
in this paper as a demonstration of transportation modality.
When POI information is available, we can leverage more
advanced methods to cluster the trajectories into different
moving behaviors or purposes.

Derived feature-based clustering. Intuitively, the most deter-
mining feature of transportation modality is the moving speed.
Hence, we first cluster the trajectories based on their average
moving speed directly computed from the trajectories based on
consecutive locations and time elapsed. We then incorporate
additional derived features, such as accumulative daily travel
distance and the number of distinct visits, which may further
help recognize the modality. Given the derived features, we
apply the K-means Clustering algorithm [16] using Euclidean
distance metric.

Explicit annotations-based clustering. For some collected
trajectories (such as the PeopleFlow dataset collected in
Japan), there may be explicit annotations for the transportation
mode for each visit (e.g., walking, running, car). For an indi-
vidual trajectory Y = [y1, Y2, Y3, .-, Yi, -, Yn] @S a sequence of
visits, we have an annotation or explicit feature at each visit y;.
In this way, trajectory Y can be represented as a feature vector
[f1s f2, f3y ey fiy ey fn] With f; denoting the modality of the
i-th visit. We use the Jaccard distance as the distance metric,
as each element in the feature vector represents a categorical
modality, to conduct clustering.

We note that based on the above clustering strategies, each
cluster may not be strictly corresponding to a single modality;
instead, it may contain trajectories of mixed modalities. The
focus of this work is not on the detection or classification
of transportation modes but on generating more realistic tra-
jectories by clustering trajectories with similar modalities or
characteristics.

C. Generator

We leverage Recurrent Neural networks (RNNs) as the
backbone of our generator GG to generate synthetic trajectories
while capturing the sequential transition patterns. Assuming
that the location visits have regular time intervals (the con-
secutive locations can be the same, indicating the person
is not moving in that interval), Gy is tasked to generate
a sequence of location visits. It first generates the starting
location by randomly selecting from the entire probability
distribution of the locations. Then, the selection of the next
location Z; is based on the previously generated locations
21, %9, T3, ...,2;—1. Gg consists of an embedding function
e(+) to map the sequence of previously generated locations
into embedding representations, a mapping function g(-) to
map the embedded sequence into hidden states, and finally,
a predicting function z(-) to map the hidden states to the
probability distribution of locations, which can be written as:

G9(£17@27£3’ ""‘i.ifl)
Z(g(e('%17£27£‘37 71‘271)))

After obtaining the embedding representations, the proposed
function g(-), which is the Gated Recurrent Unit (GRU), maps

(23| 1, T2, T3,y oy Tim1)

3
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the embedding representations of the previously generated

locations to a sequence of hidden states hq, hs, hs, ..., h;—1, h;,
which can be written as:
hi = g(hi—1,e(Zi-1)) “4)

Finally, the predicting function z(-) maps h; into the output
probability distribution of locations with a softmax output
layer to determine the most probable next location, which can
be expressed as:

(&)

P(iiﬁl,iﬁmis, -~~,55i—1) = Z(hz)
D. Discriminator

Given that we cluster the entire real trajectories into k
clusters, each trajectory is assigned a distinct modality or
label corresponding to one of the & clusters. For the synthetic
trajectories from the generator, we assign them the (k + 1)-st
label denoting the fake class. Our proposed discriminator D
functions as a multi-class classifier that aims to distinguish
1) whether a trajectory is real or fake and 2) given it is real,
the specific class out of the £ real classes it belongs to. More
specifically, given a trajectory generated from the generator,
Dy aims to classify it into the (k + 1)-st fake class; given a
trajectory from the real ones, Dy aims to classify it into the
specific modality it belongs to among the k real classes.

To capture the complete sequence information, we leverage
a bidirectional GRU to comprehensively evaluate the input
trajectory, followed by dense layers to output the probability
of being classified into each class, which can be written as:

pp(Y) = Dy(Y) = za(ga(ea(Y))) (6)

where pp(Y) denotes the output probability distribution of
k+1 classes corresponding to input trajectory Y, e4(-) denotes
an embedding function, g4(-) denotes a mapping function, and
zq(+) denotes a predicting function.

Given an input trajectory, similar to our proposed generator
Gy, our discriminator D, first consists of an embedding func-
tion e4(-), which takes the locations of the input trajectory Y’
and outputs the embedded representations. Then, D leverages
a function g4(-), a bidirectional GRU, to map the embedding
representations of the locations to the hidden state. Finally,
the predicting function z(-), which consists of a stack of
fully connected layers, maps the hidden state into the output
probability distribution of the k + 1 classes to determine the
most probable class.

E. Model Training

Reinforcement Learning-based Training for Diverse
Modality. The traditional training algorithm of GANs via gra-
dient back-propagation does not perform well due to the dis-
crete nature of the generator’s output [5]. Thus, we adopt the
reinforcement learning approach [4] to address this issue. More
specifically, we treat our proposed generator as the agent, the
group of currently generated locations as the state, generating
the next location based on the previously generated locations
as the action, and the probability of "fooling" the discriminator
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as the reward. Our generator Gy(Z;|Z1, &2, 23, ..., &4—1) aims
to maximize its expected end reward.

To support the generation of diverse trajectories of different
modalities, we propose a novel reward function based on the
output of the discriminator. According to Equation 6, the
output of the discriminator is the probability distribution of
k+1 classes (k real class and the (k+ 1)-st fake class) given
an input trajectory Y. Thus, the summation of the probability
for a generated trajectory Y corresponding to the & real classes
represents the probability of "fooling" the discriminator and
thus should be treated as the reward, which can be written as:

Ro(¥) = 3 ph(¥)

ceC,.

@)

where Rp(Y') denotes the reward gained from the generated
trajectory Y based on the output of the discriminator, C.
denotes the group of k real classes, and pi)(f’) denotes the
probability of the trajectory Y being classified into class ¢
by the discriminator. In other words, the generator is being
rewarded not for a particular modality but being rewarded
as long as it generates a trajectory that looks like any real
modalities. Alternatively, as future work, we can also create a
conditioned generator where we can input a desired modality
and then use the output probability corresponding to the
desired class (modality) by the discriminator as the reward
to generate trajectories corresponding to specific modalities.

For the discriminator, since the objective is to minimize the
multi-class classification loss by classifying the real trajecto-
ries into one of the k real classes and generated trajectories
as fake, we have:

ming —By ~p,(r) 108 (05 (V)] = By s, ) [l09(1 = Yeee, 95 (Y))]

®)
where p7(Y’) denotes the probability of the discriminator to
classify the trajectory Y into its associated class c¢; given a
real trajectory, C,. denotes the group of k real clusters, and

p%(Y') denotes the probability of the discriminator to classify
the generated trajectory Y into cluster c.

Model Pre-training. Due to the complicated nature of human
mobility data, training a powerful generator with a large num-
ber of parameters is time-consuming. Thus, to accelerate the
training process and improve the overall model’s performance,
we perform model pre-training on both the generator and the
discriminator following the previous work [5]. We pre-train
the generator with a part of the real trajectories via maximum
likelihood estimation (MLE) by minimizing the negative log-
likelihood loss between the generated and real ones. To pre-
train the discriminator, we mix a batch of real trajectories with
a batch (of the same size) of generated trajectories produced
by the pre-trained generator for each pre-training epoch and
try to minimize the negative log-likelihood loss between the
predicted labels and the ground-truth labels (one of the k
clusters for the real trajectory and the (k + 1)-st cluster for
the generated trajectory). Our entire CSGAN algorithm is
illustrated in Algorithm 1.
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Algorithm 1: CSGAN for Modality-Aware Synthetic
Trajectory Generation

Data: Real set of trajectories Y, noise distribution P,
number of clusters (modalities) k, batch size b, total
number of iterations 7', number of iterations 7T to
train the generator and T'p to train the discriminator

Initialize parameters of the generator Gy and the

discriminator D;

Perform clustering on Y and obtain &k centroids;

Pre-train Gy via MLE using a subset of Y;

Pre-train D, via minimizing the negative log-likelihood loss;

fort=1:T7T do

fort=1:Tg do

Use Gg to generate b synthetic trajectories

{Gg(zi,)}?:l from Py;

Assign them to "fake" (the (k + 1) — st class);
Compute the reward of the b generated trajectories
via Equation 7 and update 6 via policy gradient;

end

fort=1:Tp do

Sample b real trajectories {Yi}i’:l from Y;

Obtain their cluster labels w.r.t to the k& centroids;

Use G to generate b synthetic trajectories

{Gg(zi)}?zl from Pz and assign them the fake
label;

Update Dy w.r.t the NLL via Equation 8

end

end

V. EVALUATION

We conduct comprehensive experiments® utilizing real-
world datasets and aim to answer the following questions:

RQ1. With the modality-aware clustering-based generation,
how effective is CSGAN in generating realistic synthetic
trajectories compared with the state-of-the-art approaches?

RQ2. How do different clustering strategies impact CSGAN?

RQ3. How does CSGAN perform on the downstream task,
e.g., next location prediction, compared to the state-of-the-art
approaches?

A. Experimental Setup

Data. We experiment on two real-world datasets with different
characteristics (open GeoLife Dataset [17] and semi-open
PeopleFlow Dataset [18]) to verify the effectiveness of our
proposed model.

o GeoLife Dataset: This GPS trajectory dataset was col-
lected in the (Microsoft Research Asia) Geolife project
by 182 users over three years (from April 2007 to August
2012). We select a portion of the entire GeoLife data for
evaluation (2756 daily trajectories in 2008 from 6:00 am
to 8:00 pm with 15 minutes as the time interval, i.e.,
each trajectory has 56 visiting locations). Transportation
modes are only available for a limited portion of visits
and thus are not leveraged as explicit annotations.
PeopleFlow Dataset: This data is based on 2008
Tokyo Metropolitan Area PT Data (provided by Tokyo

2Implementation is available at https:/github.com/Emory-AIMS/CSGAN
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TABLE I: GeoLife and PeopleFlow datasets
Characteristics GeoLife PeopleFlow
Number of Trajectories 2756 6183
Period 1 year (2008) 1 year (2008)

Visit Interval

Average Speed (km/h)

Average Accumulated Distance (km)
Average Distinct Visits

every 15 minutes
5.324+5.744
8.401+£9.340
7.713+£4.558

every 15 minutes
13.59248.303
27.662+26.494
7.123+3.895

Metropolitan Circle Transportation Planning Council) and
is lent by the University of Tokyo CSIS. We select
a portion of the entire PeopleFlow data via the same
processing technique as GeoLife, resulting in 6183 tra-
jectories. Transportation mode for each visit is available
and thus leveraged as an explicit annotation.

We show the dataset characteristics in Table I, and a de-
tailed view of the distribution of average speed, accumulative
distance, and the number of distinct visits per trajectory in
each dataset in Figure 2.

Comparison Methods. We compare CSGAN with the state-
of-the-art methods SeqGAN and MoveSim as well as a
Cluster-wise SeqGAN.

o SeqGAN [4]: it utilizes reinforcement learning and Monte
Carlo search to generate discrete sequences of trajecto-
ries.

MoveSim [5]: it extends SeqGAN, utilizes self-attention
networks as the generator, and incorporates additional
urban structures to regularize the generation via mobility
regularity. We note that the original work includes three
kinds of urban structures: the physical distance between
all location pairs, functional similarity between locations
based on the correlation between the POI distribution,
and historical transitions between locations. The first and
the third can be directly computed from the training
trajectories, while the second POI information is an
ancillary attribute unavailable from the datasets. Thus, we
implement MoveSim without the second urban structure
for a fair comparison.

Cluster-wise SeqGAN: we also implement a cluster-wise
SeqGAN to consider modality, which conducts clustering
on the real trajectories and then trains an individual
SeqGAN model on each cluster. While SeqGAN and
MoveSim represent the approaches that learn global
patterns without considering modality, Cluster-wise Seq-
GAN represents the approaches that learn only modality-
specific patterns.
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For all the methods, we also perform clustering on the
original and generated trajectories and evaluate how the cluster
(modality) distributions match (see Evaluation Metrics later in
this section). We experiment with different clustering strategies
using different sets of features, including 1) a single derived
feature of average speed (dubbed with "-S"), 2) multiple
derived features including average speed, travel distance, and
distinct visits (dubbed with "-M") for the GeoLife dataset, and
3) explicit per-visit annotations of transportation modes that
are available for the PeopleFlow dataset (dubbed with "-E").

Implementation Details. Our CSGAN model leverages clus-
tering to divide real trajectories into k clusters. To determine
the optimal k for each dataset, we leverage an extended
elbow method [19]. For clustering based on the single feature
average speed, we set k = 4 for the GeoLife Dataset (likely
corresponding to walking, biking, bus, and car) and k& = 6 for
PeopleFlow Dataset (due to mixed transportation modes, e.g.,
walking and bus). For clustering based on multiple derived
features, we set k = 7 for the GeoLife Dataset. Finally, for
clustering based on the explicit annotations, we set k = 4 for
the PeopleFlow Dataset.

The generator and discriminator are configured with the
embedding size and hidden dimension of 32 and 64, respec-
tively. The generator is pre-trained for 150 epochs, and the
discriminator is pre-trained for 75 epochs. A dropout of 0.2
is applied, and adversarial training lasts for 75 epochs, with a
learning rate of 1e~2 and batch size of 32.

Evaluation Metrics. We evaluate the quality of the synthetic
trajectories by verifying whether the various statistical prop-
erties at the geographical, individual trajectory, transition, and
modality levels are preserved.

1) Geographical density-based statistics:

o P(r): Probability of a trajectory visiting location 7.
o P(r,t): Probability of a trajectory visiting location r at
time ¢.

2) Individual trajectory level statistics:

o P(d): Probability of the accumulated distance of a tra-
jectory being d.

o P(v): Probability of the number of distinct visits of a
trajectory being v.

Following previous work, we compute the Jensen-Shannon
Divergence (JSD) between the probability distribution of the
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real trajectories and that of generated trajectories for each of
the above distributions, which can be written as:

Pre+Pge7L)_ H(Pre)+H(Pgen)

2 2 ©)
where P, and P,., are the two probability distributions for
real and generated trajectories, respectively, and H is the
Shannon information. The lower the divergence, the better the
generated trajectories preserving the original distributions.

3) Transition statistics:

JSD(Prc||Pyen) = H(

e P(r1,72): Probability of a trajectory transitioning from
location r; to location 7. While a main goal of the
synthetic trajectory generation is to learn and preserve the
sequential information, most existing works do not evalu-
ate how the sequential transition probability is preserved.
Given the entire Q regions, we build the transitional
matrix P € R@*@ for both real and synthetic trajectories,
where the element corresponding to row r; and column
ro of the matrix denotes the transition probability from
location 7 to location r5. Then we take the Frobenius
norm of the difference between the two transition matri-
ces:

Q@
2
1Pe = Pyllr = | >0 D7 Prr2) = Py(ra, )]

ri=1ro=1
(10)
where P, and P, denote the transition matrix of the real
and generated trajectories, respectively. The lower the
norm, the better the transition is preserved.

4) Modality level statistics:

o P(c9): Proportion of trajectories within each cluster ¢;
based on the centroids from the real trajectories. In other
words, for generated trajectories, we assign each of them
to the nearest centroid from the real trajectories and form
k clusters. Then, we compute the JSD between the cluster
distributions from real and generated trajectories.

o P(c}): The difference between this one and the above is
that we perform clustering on the generated trajectories
separately and find a set of synthetic centroids (which
might be different from those from the real trajectories).
P(cl) denotes the proportion of trajectories within each
cluster using the corresponding centroid in real and syn-
thetic trajectories, respectively. The centroids are matched
and ordered as explained below. We also compute the JSD
between the two distributions.

o C: Cluster centroids or modality representatives. Given
the vector of k centroids from real trajectories and
generated trajectories, we compute the minimum accumu-
lated pair-wise distance among all permutations (closest
match). The lower the value, the better the generated
trajectories preserve the modality representatives.

B. RQI: Effectiveness Comparison with the Baselines

Global Comparison. We show the evaluation metrics for
different methods for the overall dataset in Table II. We

154

first dive into the results with clustering based on average
speed. CSGAN performs consistently the best over all the
metrics on both datasets. More specifically, on GeoLife data,
for geographical and trajectory statistics, CSGAN exceeds the
baselines on average 33% in P(r), 19% in P(r,t), 25% in
P(d), and 15% in P(v); for transitional probability, CSGAN
outperforms the baselines on average 53% in P(rq,r3); for
modality patterns, CSGAN excels over the baselines on aver-
age 49% in P(c), 76% in P(c}), and 53% in C. Similarly, on
PeopleFlow data, CSGAN excels over the baselines on average
20% in P(r), 9% in P(r,t), 48% in P(d), and 46% in P(v);
49% in P(ry,72); 56% in P(c?), 59% in P(c}), and 53% in
C.

As expected, the highest performance gain is observed for
the modality-level metrics, which demonstrates the power of
CSGAN in capturing and representing the modalities in the
generated trajectories. Moreover, we also observe a significant
performance gain on the transitional probability metrics. The
explanation is intuitive: given a trajectory with a specific
modality, e.g., walking, a user cannot travel a large distance,
and thus, there is a limited number of potential destinations. By
our modality-aware generation, the modality-specific transition
can be better learned and preserved.

Modality-specific Comparison. In addition to the overall
comparison, we also show the comparison for each modality
to verify whether the trajectories within each modality are
realistic. Table III shows the results. On both GeoLife and Peo-
pleFlow data, CSGAN consistently outperforms the baselines
over all the metrics for each modality. For instance, in cluster
2 of GeoLife, CSGAN excels over the baselines on average
29% in P(r), 16% in P(r,t), 57% in P(d), 44% in P(v),
and 62% in P(ry,r2). In cluster 1 of PeopleFlow, CSGAN
shows improvements of 19% in P(r), 15% in P(r,t), 36% in
P(d), 25% in P(v), and 30% in P(ry,72). This verifies that
CSGAN learns not only global patterns but also modality-
specific patterns across all modalities.

Baseline Comparison. Comparing the baseline approaches
with each other, SeqGAN outperforms MoveSim for most
metrics. This can be due to two reasons: 1) most of the
performance gain of MoveSim, as reported in the original
work, may be due to the auxiliary POI information (which
we did not use for a fair comparison), 2) MoveSim may
require a large training dataset due to its more complex
model architecture and the training data in our experiments
is smaller than that used in the original MoveSim work (1
year vs. 5 years). Cluster-wise SeqGAN, while achieving the
best performance for preserving the distinctive visits P(v),
does not perform as well as SeqGAN in general because it
only learns from each modality without learning from the
patterns shared among different modalities. In summary, this
verifies that by capturing both the global and modality-specific
patterns, CSGAN is able to generate trajectories that are both
1) more diverse and representative as reflected in the modality
metrics, and 2) more realistic as reflected in the trajectory and
transitional metrics.
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TABLE II: Global comparison with baselines on GeoLife and PeopleFlow data with different clustering techniques. The table
shows the average statistics of 5 experiments. The best performance is in boldface. The second-best is underlined.

GeoLife

Geographical density-based statistics  Individual trajectory level statistics ~ Transition statistics Modality level statistics
Methods P(r) P(r,t) P(d) P(v) P(r1, 12) P(c?) P(c)) C
SeqGAN-S 0.407 0.478 0.208 0.288 0.100 0.162 0.220 18.682
Cluster-wise SeqGAN-S  0.506 0.562 0.313 0.234 0.082 0.402 0.298 83.441
Movesim-S 0.522 0.579 0.263 0.390 0.116 0.303 0.209 7.934
CSGAN-S 0.319 0.439 0.195 0.258 0.047 0.147 0.058 17.128
SeqGAN-M 0.407 0.478 0.208 0.288 0.100 0.678 0.111 48.384
Movesim-M 0.522 0.579 0.263 0.390 0.116 0.341 0.134 59.993
CSGAN-M 0.289 0.354 0.098 0.120 0.032 0.197 0.065 41.055

PeopleFlow

SeqGAN-S 0.378 0.437 0.368 0.275 0.092 0.406 0.167 29.694
Cluster-wise SeqGAN-S  0.344 0.406 0.363 0.317 0.105 0.311 0.194 31.046
Movesim-S 0.344 0.396 0.524 0.602 0.100 0.289 0.151 23.420
CSGAN-S 0.284 0.376 0.218 0.215 0.050 0.146 0.070 13.136
SeqGAN-E 0.378 0.437 0.368 0.275 0.092 0.117 0.250 5.000
Movesim-E 0.344 0.396 0.524 0.602 0.100 0.338 0.401 3.000
CSGAN-E 0.288 0.380 0.244 0.216 0.040 0.083 0.144 3.000

TABLE III: Modality-specific comparison with baselines on GeoLife and PeopleFlow data with clustering based on the derived
global feature average speed. The table shows the average statistics of 5 experiments. The best performance is in boldface.
The second-best is underlined.

GeoLife
Geographical density-based statistics  Individual trajectory level statistics ~ Transition statistics
Cluster Centroid Speed  Proportion ~ Method P(r) P(r,t) P(d) P(v) P(rl, 12)
Cluster_1 ~ 2.498 55% SeqGAN-S 0.505 0.555 0.297 0.432 0.191
Cluster-wise SeqGAN-S  0.607 0.633 0.496 0.276 0.135
CSGAN-S 0.403 0.487 0.237 0.402 0.058
Cluster 2 7.314 34% SeqGAN-S 0.507 0.589 0.225 0.169 0.075
Cluster-wise SeqGAN-S  0.563 0.626 0.336 0.252 0.140
CSGAN-S 0.382 0.509 0.120 0.118 0.041
Cluster 3 14.784 10% SeqGAN-S 0.540 0.597 0.293 0.210 0.097
Cluster-wise SeqGAN-S  0.700 0.721 0.477 0.335 0.248
CSGAN-S 0.507 0.586 0.319 0.229 0.092
Cluster_4  30.747 1% SeqGAN-S 0.650 0.672 0.459 0.358 0.358
Cluster-wise SeqGAN-S  0.487 0.560 0.705 0.423 0.335
CSGAN-S 0.632 0.660 0.446 0.333 0.328
PeopleFlow
Cluster_1  4.497 27% SeqGAN-S 0.460 0.482 0.576 0.597 0.160
Cluster-wise SeqGAN-S  0.364 0.408 0.548 0.407 0.104
CSGAN-S 0.334 0.379 0.360 0.374 0.092
Cluster_2  9.141 21% SeqGAN-S 0.512 0.558 0.411 0.347 0.155
Cluster-wise SeqGAN-S  0.424 0.475 0.454 0.339 0.093
CSGAN-S 0.361 0.438 0.243 0.215 0.080
Cluster 3 14.590 20% SeqGAN-S 0.553 0.614 0.382 0.251 0.109
Cluster-wise SeqGAN-S  0.492 0.557 0.492 0.368 0.124
CSGAN-S 0.433 0.521 0.264 0.162 0.072
Cluster_ 4  19.924 17% SeqGAN-S 0.585 0.648 0.460 0.338 0.165
Cluster-wise SeqGAN-S  0.511 0.586 0.442 0.265 0.129
CSGAN-S 0.451 0.556 0.258 0.146 0.073
Cluster 5  25.868 11% SeqGAN-S 0.564 0.639 0.432 0.273 0.122
Cluster-wise SeqGAN-S  0.540 0.622 0.546 0.321 0.135
CSGAN-S 0.471 0.587 0.325 0.181 0.087
Cluster_6  34.627 4% SeqGAN-S 0.576 0.654 0.461 0.220 0.114
Cluster-wise SeqGAN-S  0.628 0.673 0.716 0.396 0.267
CSGAN-S 0.553 0.646 0.455 0.184 0.093

TABLE IV: Comparison with baselines on GeoLife and PeopleFlow data on the task of next location prediction. The best
performance is in boldface.

GeoLife
Model Accuracy @1 Accuracy @2 Accuracy @3 Accuracy @4 Accuracy @5 Accuracy @6 Accuracy @7 Accuracy @8
SeqGAN  0.842 0913 0.934 0.944 0.951 0.956 0.959 0.963
Movesim ~ 0.612 0.641 0.653 0.662 0.665 0.670 0.673 0.678
CSGAN  0.880 0.930 0.944 0.954 0.960 0.964 0.967 0.970
Peopleflow
SeqGAN  0.831 0.882 0.905 0.916 0.927 0.932 0.937 0.941
Movesim  0.815 0.822 0.826 0.831 0.835 0.839 0.841 0.843
CSGAN  0.888 0.912 0.921 0.927 0.933 0.936 0.940 0.942
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Dataset Comparison. Comparing the GeoLife and People-
Flow Datasets, GeoLife is less diverse in modality compared to
PeopleFlow, as shown in Figure 2. This difference contributes
to the different orders of performance in Table II and Table
III. For Geolife, SeqGAN outperforms Cluster-wise SeqGAN
since the modality is less diverse, and hence it is more
important to learn from the global patterns. In contrast, for
PeopleFlow, which is more diverse in modality, SeqGAN tends
to perform less satisfying and is surpassed by the Cluster-wise
SeqGAN, which explicitly learns modality-specific patterns
within each cluster.

C. RQI: Visualization

We show several visualizations to illustrate how the methods
compare with each other in preserving the patterns in the
original trajectories.

Population Density. We plot the population density (the
aggregate density from 6:00 am to 8:00 pm) for GeoLife
and PeopleFlow data. Figure 3 shows the density on the map
(divided into grids) using real and generated trajectories for
both datasets. We can see that CSGAN best mimics the real
data by capturing both the overall distribution and the outliers.
Places with high density and low density are both captured by
our model. In contrast, the baseline models fail to capture
such information and tend to lose both the overall distribution
(GeoLife) and outliers (PeopleFlow).

Absolute Distance to Origin. We plot the absolute distance
to the starting point from 6:00 am to 8:00 pm for every 15
minutes using the real and synthetic trajectories in Figure
4. We can see that CSGAN can better capture the moving
behaviors: for GeoLife data, people tend to be far away from
their starting location till 1:00 pm and then stay around the
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same region till 8:00 pm. For PeopleFlow data, people tend
to be away from the starting point from 6:00 am to 4:00 pm
and then return to the origin (typically their home), which is
reflected by the downward trend of the blue curve. In both
cases, CSGAN (red) closely follows the trend of the real data
(blue), while both SeqGAN and MoveSim deviate from the
trends. Moving behaviors in rush hours are also better captured
by CSGAN.

D. RQ2: Impact of Different Clustering Methods

Next, we explore the impact of different clustering tech-
niques on the performance of CSGAN against baselines. In
Table II, methods with "-S" denotes clustering based on a
single feature (average speed); methods with "-M" denotes
clustering based on multiple features (average speed, accu-
mulative distance, the number of distinct visits); and methods
with "-E" denotes clustering based on explicit annotations for
each visit (transportation mode) provided by the PeopleFlow
dataset. Figure 5 shows the proportion of trajectories within
each cluster via these clustering methods, respectively. For
example, PeopleFlow demonstrates several clusters of both
single and mixed modalities: (Walking, bus, subway), Car,
Bicycle, (Walking, subway).

Table II shows that CSGAN with different clustering meth-
ods consistently outperforms the baselines. Moreover, we find
that with more sophisticated clustering techniques or features,
as shown by switching from a single feature (average speed)
to multiple features, CSGAN tends to be more powerful. For
the PeopleFlow dataset, the explicit annotation offers some
performance gain in some metrics, at the same time, also
verifies that clustering based on the trajectories alone without
the annotations indeed captures the modality well.

E. RQ3: Next Location Prediction

To further verify the utility of our CSGAN model, we
study the next location prediction as a downstream task using
the trained generator from CSGAN and baseline methods.
We leverage the metric: accuracy@Fk, which denotes whether
the ground-truth next location exists in the top k predicted
locations given the predicted probability distribution of the
entire () locations from the generator. We set & from 1 (the
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Fig. 5: The proportion of trajectories in each cluster. The x-axis denotes the proportion of trajectories, and the y-axis denotes
the feature of each cluster’s centroid. (a) and (b) are based on clustering via average speed. (c) is based on average speed,
accumulative distance, and number of distinct visits (from left to right), and (d) is based on transportation modes vector.

ground-truth location is exactly the predicted next location) to
8. The test data is selected from the real trajectories.

We report the next location prediction results in Table IV.
CSGAN consistently outperforms SeqGAN and MoveSim on
both datasets, exceeding the best baseline by 5% on GeoLife
and 7% on PeopleFlow when £ = 1. More importantly, as
k gets smaller, the advantage of CSGAN is more obvious.
This further verifies the benefit of CSGAN in learning the
sequential patterns from the data by capturing the modality.

VI. CONCLUSION

We proposed a novel and general framework, the modality-
aware Clustering-based Sequence Generative Adversarial Net-
work (CSGAN), which can generate representative and re-
alistic synthetic trajectories by capturing real-world modali-
ties. CSGAN leverages clustering and adopts semi-supervised
losses to capture real-life modality patterns in a GAN setting
and a novel reward function for training the network via rein-
forcement learning. To comprehensively evaluate the quality
of the synthetic trajectories, we introduce several new metrics
to measure how the synthetic trajectories preserve transitional
and modality properties in addition to the typical density
and trajectory level properties. Experiments on two real-world
datasets demonstrate the consistent and superior performance
of CSGAN. Our future works include incorporating clustering
methods for moving behaviors, integrating the framework with
other methods that consider additional contextual information,
such as POIs, temporal irregularity of the trajectories, and
indoor movement, and extending the framework to model co-
movements via multi-agent reinforcement learning.
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