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Abstract—Human mobility data is useful for various applica-
tions in urban planning, transportation, and public health, but
collecting and sharing real-world trajectories can be challenging
due to privacy and data quality issues. To address these problems,
recent research focuses on generating synthetic trajectories,
mainly using generative adversarial networks (GANs) trained
by real-world trajectories. In this paper, we hypothesize that
by explicitly capturing the modality of transportation (e.g.,
walking, biking, driving), we can generate not only more diverse
and representative trajectories for different modalities but also
more realistic trajectories that preserve the geographical density,
trajectory, and transition level properties by capturing both
cross-modality and modality-specific patterns. Towards this end,
we propose a Clustering-based Sequence Generative Adversarial
Network (CSGAN)1 that simultaneously clusters the trajectories
based on their modalities and learns the essential properties of
real-world trajectories to generate realistic and representative
synthetic trajectories. To measure the effectiveness of generated
trajectories, in addition to typical density and trajectory level
statistics, we define several new metrics for a comprehensive
evaluation, including modality distribution and transition prob-
abilities both globally and within each modality. Our extensive
experiments with real-world datasets show the superiority of our
model in various metrics over state-of-the-art models.

Index Terms—Generative Adversarial Networks, Clustering,
Reinforcement Learning, Synthetic Trajectory Generation

I. INTRODUCTION

The recent growth in location-based technology, such as

mobile devices and sensors equipped with GPS, has led to an

unprecedented increase in the availability of human mobility

data. This data, often represented as a series of ordered points,

reflects the physical–behavioral trace of an individual’s move-

ment. Understanding the mobility patterns of a population

has significant implications for a wide range of applications,

including transportation, epidemiological modeling, and public

health. For instance, pandemic risk evaluation via mobility

data during COVID-19 can help understand, estimate, and

mitigate the disease spread. In addition, analyzing individ-

ual movements can provide insight into traffic or public

transportation systems and help address traffic congestion

and urban planning. Recommendation systems also rely on

population flow data to identify effective advertising locations.

Despite the value of mobility data, obtaining and sharing

1https://github.com/Emory-AIMS/CSGAN

large-scale real-world trajectories can be challenging due to

privacy and commercial concerns [1]. Moreover, most publicly

available trajectory datasets only contain a small portion of

the population which can lead to biased observations. As a

result, generating synthetic, realistic trajectories has become a

valuable and important research problem to either scale up or

protect the privacy of the original trajectory data so that they

can be used for downstream tasks.

To address the synthetic trajectory generation task, existing

methods can be mainly categorized into 1) earlier Markov-

based models [2], which rely on simplified mobility assump-

tions; 2) deep predictive models [3], which can learn more

complex sequential patterns; and 3) more recent state-of-the-

art generative adversarial network (GAN)-based models [4]

which can generate more realistic trajectories based on the

generator-discriminator adversarial game. To better generate

trajectories that are represented as discrete location sequences

in contrast to grid-based data such as images, [4] proposes

a recurrent neural network (RNN)-based sequence GAN and

leverages reinforcement learning (policy gradient) and Monte

Carlo search to generate discrete sequences. Followup works

such as [5] extend sequence GAN and attempt to capture the

mobility regularity via incorporating the urban structure.

While these GAN-based models generate sequences that

preserve the spatiotemporal statistics of the original trajecto-

ries to some level (e.g., global density statistics such as the vis-

iting probability of a location or trajectory-level statistics such

as average daily travel distance per trajectory), they do not

consider important semantic information such as the modality

of the trajectories. Real-world trajectories always consist of

various modalities, including transportation modalities, such

as walking, biking, or driving, or more implicit moving

purposes, e.g., shopping, going to work, or sightseeing. While

there are common mobility regularity and transition patterns

shared across these modalities, there are also modality-specific

characteristics and patterns. For example, trajectories of dif-

ferent transportation modalities may have different average

speeds, accumulative distances, number of distinct visits, and

sequential transition patterns (e.g., transitions on pedestrian-

only streets for walking trajectories). Without considering this

information explicitly, the resulting trajectories 1) may not

capture the modality distributions and may not be diverse
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and representative of the different modalities, and 2) may not

capture the modality-specific characteristics and may generate

unrealistic trajectories that do not correspond to the real-world

modality or moving behaviors.

Fig. 1: Proposed CSGAN framework

Contributions. Towards this end, we hypothesize that by

explicitly capturing the modality in the trajectories (e.g., walk-

ing, biking, driving) and learning from both cross-modality

and modality-specific patterns, we can generate 1) more di-

verse and representative trajectories, and 2) more realistic

trajectories across all modalities. Existing approaches that

do not consider modality only learn global patterns but not

modality-specific patterns. A naive approach that trains an

independent GAN for each modality will also not work

well since it will miss the cross-modality patterns. Thus,

we propose a Clustering-based Sequence Generative Adver-

sarial Network (CSGAN) that simultaneously clusters the

trajectories based on their modalities and learns both cross-

modality and modality-specific properties to generate realistic

and representative synthetic trajectories. The key contributions

are summarized as follows:

1) We propose a novel modality-aware Clustering-based

Sequence Generative Adversarial Network (CSGAN) to

generate realistic human mobility data. As shown in

Figure 1, we first cluster the real (training) trajectories

into k clusters based on a variety of features that capture

their modality. A sequence GAN is then trained where

the generator generates synthetic trajectories, and the

discriminator is inspired by the semi-supervised GAN

and trained to classify a real trajectory into one of the

k clusters (modalities) and a generated trajectory into

the (k + 1)-st ("fake") class. A reinforcement learning

framework is used to train the network where we design

a reward function to reward the generator for generating

a trajectory that can be classified into any one of the k

modalities (real classes).

2) To have a comprehensive evaluation of the generated

trajectories, we propose three metrics to measure how

well the synthetic trajectories capture the modality dis-

tribution of the real trajectories. In addition to the typical

metrics that measure how well the trajectories preserve

density and trajectory-level statistics, we introduce sev-

eral new metrics for a comprehensive evaluation includ-

ing modality distribution and transition probabilities.

3) We conduct comprehensive experimental analysis on

two real-world datasets with different mobility charac-

teristics to validate the effectiveness of CSGAN. Our

results show that CSGAN achieves superior results

compared to state-of-the-art methods in preserving the

statistical properties of the original trajectories both

globally and within each modality. It also outperforms

existing methods for downstream predictive tasks using

the generator.

II. RELATED WORK

A. Synthetic Trajectory Generation

The generation of human trajectories, under the category

of sequence data, has been a long-standing research problem.

Earlier network-based moving object generators [6] use real

road networks and allow users to specify core characteristics,

e.g., maximum speed and the maximum capacity of connec-

tions, of the generated data. The generator’s behavior can be

controlled by re-defining the functionality of selected object

classes. However, such methods fail to capture the trajectories’

underlying sequential information. Markov models are widely

used to capture sequential information, including first-order

MC [2], which constructs a transitional matrix to capture the

first-order transition probability from one location to another;

HMM [7], which utilizes the discrete emission probability;

and IO-HMM [8], which combines transition and emission

models to maximize the likelihood of observed sequences.

Compared with the Markov model-based methods with sim-

plifying assumptions, recent research resorts to model-free or

deep learning methods to better capture the underlying corre-

lations among sequence data. Deep predictive models treat the

trajectory generation problem as a next location prediction task

given historically visited locations. For example, [3] applies

Gated Recurrent Units (GRU) to predict the next location given

historically visited locations.

More recently, Generative Adversarial Networks (GAN)-

based methods are being used and show superior performance

than deep predictive models thanks to their dual generator-

discriminator architecture. [9] proposes a generative model for

location trajectories that can capture high-order geographic

and semantic features of human mobility, such as density

statistics. It uses location-based representation instead of tem-

poral representation of trajectories, and the generator and the

discriminator use Convolutional Neural Networks (CNNs),

hence can not sufficiently model the sequential transitions of

the trajectories. [10] presents an end-to-end LSTM-TrajGAN

model to generate synthetic trajectory data, which captures the

sequential information via LSTM. To better learn the sequence

information for trajectories represented as discrete sequences,

SeqGAN [4] proposes a reinforcement learning framework

that treats the output of the discriminator as a reward sent

back to the generator. [5] extends SeqGAN by leveraging

the self-attention networks as the backbone of the generator

and incorporating prior knowledge of human mobility pat-

terns via the urban structure (derived from both the original

training trajectories and external information such as Points
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of Interest (POIs)) during the generation process. Instead

of generating a discrete sequence of visits for regular time

intervals, DeltaGAN [11] further extends SeqGAN to generate

continuous time points and time-conditioned locations to better

capture temporal irregularity in human mobility by leveraging

spatiotemporal point process. While these works preserve the

spatiotemporal statistics to some level, none of them consider

modality information in real-life trajectories explicitly.

We focus on generating location sequences for regular time

intervals in this paper and propose a novel framework that

explicitly models the modality in trajectories. We show that it

outperforms the state-of-the-art methods [4] [5] for generating

sequences of locations, and the generated trajectories are

both more representative in modalities and more realistic by

capturing both cross-modality and modality-specific patterns.

We note that our clustering-based framework is general and

can be integrated with the extended frameworks that incorpo-

rate additional external data and generate irregular sequences,

which can be interesting for future work.

B. Trajectory Clustering

Trajectory clustering is an effective method for analyzing

trajectory data to detect groups of similar trajectories, e.g.,

consistently moving together or having similar transportation

modalities or moving purposes. Existing trajectory clustering

methods can be classified as: unsupervised, supervised, and

semi-supervised [12]. Unsupervised methods aim to derive

the hidden correlation among unlabeled trajectory data and

include traditional methods such as density clustering [13] and

hierarchical clustering [14], and more recent deep learning

or auto-encoder based methods [15]. Our framework uses

unsupervised clustering to cluster the training trajectories into

different modalities and can leverage any existing clustering

methods. In this paper, we experimented with several basic

clustering methods based on different features derived from the

trajectories to demonstrate the feasibility and advantage of our

proposed framework; it would be interesting for future work

to incorporate more advanced mobility behavior clustering

methods with additional context information such as POIs.

III. PRELIMINARIES

A. Problem Definition

Definition 1: Individual spatiotemporal trajectory. It is de-

fined as a list of visiting records Y = [y1, y2, y3, ..., yi, ..., yn],
where yi denotes the i-th visit of the trajectory, which is a tuple

(ti, xi), ti denotes the timestamp of the i-th visit, xi denotes

the user’s location of the i-th visit, which can be a geographical

coordinate (lat, lon) or a region identification (ID).

Based on the above notation, the synthetic trajectory gener-

ation process with regular time intervals is defined as follows:

Definition 2: Synthetic trajectory generation. Given that

each visit of the trajectory lasts for a regular time interval, the

generation of each synthetic trajectory with a θ-parameterized

generator can be expressed as the continuous generation of the

location of each visit:

pθ(Ŷ ) =
n
∏

i=1

pθ(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) (1)

where pθ denotes the probability distribution of the generator,

x̂i denotes the generated user’s location of the i-th visit, Ŷ

denotes the generated trajectory with regular time intervals.

B. Preliminaries

Generative Adversarial Network. It consists of θ-

parameterized generator Gθ and a φ-parameterized discrimina-

tor Dφ to play a "Two Player Game". The generator generates

a batch of trajectories, and these, along with real trajectories,

are provided to the discriminator and classified as real or

fake. The generator is trained to fool the discriminator in

terms of being unable to distinguish the generated trajectories

from the real ones (minimizing the classification accuracy of

the discriminator). In contrast, the discriminator is trained to

classify the real trajectories as real and generated trajectories

as fake (maximizing classification accuracy). Formally, the

min-max optimization objective can be expressed as:

min
Gθ

max
Dφ

EY∼pd(Y )[log(Dφ(Y ))]+E
Ŷ∼Gθ(Ŷ )[log(1−Dφ(Ŷ ))]

(2)

where pd denotes the probability distribution of the real

trajectories.

IV. PROPOSED FRAMEWORK

A. Overview

Our proposed CSGAN framework, as illustrated in Figure

1, comprises three main components: a clustering component

(Section IV-B), a generator (Section IV-C), and a discriminator

(Section IV-D). The clustering component groups the real

(training) trajectories into k clusters based on their modalities.

The generator generates synthetic trajectories, which are as-

signed as the {k+1}-st fake class. The discriminator functions

as a multi-class classifier, taking all the real-life and synthetic

trajectories from the generator as input. The discriminator is

trained to classify a real trajectory into its associated cluster

(one of the k real classes or modalities) and a generated

trajectory into the (k+ 1)-st ("fake") class. The output of the

discriminator goes through a semi-supervised reward function

and is sent back to optimize the generator so that the generator

is rewarded for generating a trajectory that is classified into

any one of the k real classes. We explain each component in

detail in the following subsections.

B. Modality-based Clustering

To capture the different transportation modalities in real-life

trajectories, we leverage clustering to group similar trajectories

into k clusters. We can leverage a variety of clustering meth-

ods based on different features such as 1) the raw location

sequences, 2) derived features, 3) explicit annotations, and

4) additional context information such as POIs associated

with the locations. We present and evaluate two clustering
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methods based on derived features and explicit annotations

in this paper as a demonstration of transportation modality.

When POI information is available, we can leverage more

advanced methods to cluster the trajectories into different

moving behaviors or purposes.

Derived feature-based clustering. Intuitively, the most deter-

mining feature of transportation modality is the moving speed.

Hence, we first cluster the trajectories based on their average

moving speed directly computed from the trajectories based on

consecutive locations and time elapsed. We then incorporate

additional derived features, such as accumulative daily travel

distance and the number of distinct visits, which may further

help recognize the modality. Given the derived features, we

apply the K-means Clustering algorithm [16] using Euclidean

distance metric.

Explicit annotations-based clustering. For some collected

trajectories (such as the PeopleFlow dataset collected in

Japan), there may be explicit annotations for the transportation

mode for each visit (e.g., walking, running, car). For an indi-

vidual trajectory Y = [y1, y2, y3, ..., yi, ..., yn] as a sequence of

visits, we have an annotation or explicit feature at each visit yi.

In this way, trajectory Y can be represented as a feature vector

[f1, f2, f3, ..., fi, ..., fn] with fi denoting the modality of the

i-th visit. We use the Jaccard distance as the distance metric,

as each element in the feature vector represents a categorical

modality, to conduct clustering.

We note that based on the above clustering strategies, each

cluster may not be strictly corresponding to a single modality;

instead, it may contain trajectories of mixed modalities. The

focus of this work is not on the detection or classification

of transportation modes but on generating more realistic tra-

jectories by clustering trajectories with similar modalities or

characteristics.

C. Generator

We leverage Recurrent Neural networks (RNNs) as the

backbone of our generator Gθ to generate synthetic trajectories

while capturing the sequential transition patterns. Assuming

that the location visits have regular time intervals (the con-

secutive locations can be the same, indicating the person

is not moving in that interval), Gθ is tasked to generate

a sequence of location visits. It first generates the starting

location by randomly selecting from the entire probability

distribution of the locations. Then, the selection of the next

location x̂i is based on the previously generated locations

x̂1, x̂2, x̂3, ..., x̂i−1. Gθ consists of an embedding function

e(·) to map the sequence of previously generated locations

into embedding representations, a mapping function g(·) to

map the embedded sequence into hidden states, and finally,

a predicting function z(·) to map the hidden states to the

probability distribution of locations, which can be written as:

p(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) = Gθ(x̂1, x̂2, x̂3, ..., x̂i−1)

= z(g(e(x̂1, x̂2, x̂3, ..., x̂i−1)))
(3)

After obtaining the embedding representations, the proposed

function g(·), which is the Gated Recurrent Unit (GRU), maps

the embedding representations of the previously generated

locations to a sequence of hidden states h1, h2, h3, ..., hi−1, hi,

which can be written as:

hi = g(hi−1, e(x̂i−1)) (4)

Finally, the predicting function z(·) maps hi into the output

probability distribution of locations with a softmax output

layer to determine the most probable next location, which can

be expressed as:

p(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) = z(hi) (5)

D. Discriminator

Given that we cluster the entire real trajectories into k

clusters, each trajectory is assigned a distinct modality or

label corresponding to one of the k clusters. For the synthetic

trajectories from the generator, we assign them the (k+ 1)-st

label denoting the fake class. Our proposed discriminator Dφ

functions as a multi-class classifier that aims to distinguish

1) whether a trajectory is real or fake and 2) given it is real,

the specific class out of the k real classes it belongs to. More

specifically, given a trajectory generated from the generator,

Dφ aims to classify it into the (k + 1)-st fake class; given a

trajectory from the real ones, Dφ aims to classify it into the

specific modality it belongs to among the k real classes.

To capture the complete sequence information, we leverage

a bidirectional GRU to comprehensively evaluate the input

trajectory, followed by dense layers to output the probability

of being classified into each class, which can be written as:

pD(Y ) = Dφ(Y ) = zd(gd(ed(Y ))) (6)

where pD(Y ) denotes the output probability distribution of

k+1 classes corresponding to input trajectory Y , ed(·) denotes

an embedding function, gd(·) denotes a mapping function, and

zd(·) denotes a predicting function.

Given an input trajectory, similar to our proposed generator

Gθ, our discriminator Dφ first consists of an embedding func-

tion ed(·), which takes the locations of the input trajectory Y

and outputs the embedded representations. Then, Dφ leverages

a function gd(·), a bidirectional GRU, to map the embedding

representations of the locations to the hidden state. Finally,

the predicting function z(·), which consists of a stack of

fully connected layers, maps the hidden state into the output

probability distribution of the k + 1 classes to determine the

most probable class.

E. Model Training

Reinforcement Learning-based Training for Diverse

Modality. The traditional training algorithm of GANs via gra-

dient back-propagation does not perform well due to the dis-

crete nature of the generator’s output [5]. Thus, we adopt the

reinforcement learning approach [4] to address this issue. More

specifically, we treat our proposed generator as the agent, the

group of currently generated locations as the state, generating

the next location based on the previously generated locations

as the action, and the probability of "fooling" the discriminator
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as the reward. Our generator Gθ(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) aims

to maximize its expected end reward.

To support the generation of diverse trajectories of different

modalities, we propose a novel reward function based on the

output of the discriminator. According to Equation 6, the

output of the discriminator is the probability distribution of

k+1 classes (k real class and the (k+1)-st fake class) given

an input trajectory Y . Thus, the summation of the probability

for a generated trajectory Ŷ corresponding to the k real classes

represents the probability of "fooling" the discriminator and

thus should be treated as the reward, which can be written as:

RD(Ŷ ) =
∑

c∈Cr

pcD(Ŷ ) (7)

where RD(Ŷ ) denotes the reward gained from the generated

trajectory Ŷ based on the output of the discriminator, Cr

denotes the group of k real classes, and pcD(Ŷ ) denotes the

probability of the trajectory Ŷ being classified into class c

by the discriminator. In other words, the generator is being

rewarded not for a particular modality but being rewarded

as long as it generates a trajectory that looks like any real

modalities. Alternatively, as future work, we can also create a

conditioned generator where we can input a desired modality

and then use the output probability corresponding to the

desired class (modality) by the discriminator as the reward

to generate trajectories corresponding to specific modalities.

For the discriminator, since the objective is to minimize the

multi-class classification loss by classifying the real trajecto-

ries into one of the k real classes and generated trajectories

as fake, we have:

minφ −EY∼pd(Y )[log(p
ct
D(Y ))]− E

Ŷ∼Gθ(Ŷ )[log(1−
∑

c∈Cr
pcD(Ŷ ))]

(8)

where pctD(Y ) denotes the probability of the discriminator to

classify the trajectory Y into its associated class ct given a

real trajectory, Cr denotes the group of k real clusters, and

pcD(Ŷ ) denotes the probability of the discriminator to classify

the generated trajectory Ŷ into cluster c.

Model Pre-training. Due to the complicated nature of human

mobility data, training a powerful generator with a large num-

ber of parameters is time-consuming. Thus, to accelerate the

training process and improve the overall model’s performance,

we perform model pre-training on both the generator and the

discriminator following the previous work [5]. We pre-train

the generator with a part of the real trajectories via maximum

likelihood estimation (MLE) by minimizing the negative log-

likelihood loss between the generated and real ones. To pre-

train the discriminator, we mix a batch of real trajectories with

a batch (of the same size) of generated trajectories produced

by the pre-trained generator for each pre-training epoch and

try to minimize the negative log-likelihood loss between the

predicted labels and the ground-truth labels (one of the k

clusters for the real trajectory and the (k + 1)-st cluster for

the generated trajectory). Our entire CSGAN algorithm is

illustrated in Algorithm 1.

Algorithm 1: CSGAN for Modality-Aware Synthetic

Trajectory Generation

Data: Real set of trajectories Y, noise distribution PZ,
number of clusters (modalities) k, batch size b, total
number of iterations T , number of iterations TG to
train the generator and TD to train the discriminator

Initialize parameters of the generator Gθ and the
discriminator Dφ;
Perform clustering on Y and obtain k centroids;
Pre-train Gθ via MLE using a subset of Y;
Pre-train Dφ via minimizing the negative log-likelihood loss;
for t = 1 : T do

for t = 1 : TG do
Use Gθ to generate b synthetic trajectories
{Gθ(zi)}

b
i=1 from PZ;

Assign them to "fake" (the (k + 1)− st class);
Compute the reward of the b generated trajectories

via Equation 7 and update θ via policy gradient;
end
for t = 1 : TD do

Sample b real trajectories {Yi}
b
i=1 from Y;

Obtain their cluster labels w.r.t to the k centroids;
Use Gθ to generate b synthetic trajectories
{Gθ(zi)}

b
i=1 from PZ and assign them the fake

label;
Update Dφ w.r.t the NLL via Equation 8

end
end

V. EVALUATION

We conduct comprehensive experiments2 utilizing real-

world datasets and aim to answer the following questions:

RQ1. With the modality-aware clustering-based generation,

how effective is CSGAN in generating realistic synthetic

trajectories compared with the state-of-the-art approaches?

RQ2. How do different clustering strategies impact CSGAN?

RQ3. How does CSGAN perform on the downstream task,

e.g., next location prediction, compared to the state-of-the-art

approaches?

A. Experimental Setup

Data. We experiment on two real-world datasets with different

characteristics (open GeoLife Dataset [17] and semi-open

PeopleFlow Dataset [18]) to verify the effectiveness of our

proposed model.

• GeoLife Dataset: This GPS trajectory dataset was col-

lected in the (Microsoft Research Asia) Geolife project

by 182 users over three years (from April 2007 to August

2012). We select a portion of the entire GeoLife data for

evaluation (2756 daily trajectories in 2008 from 6:00 am

to 8:00 pm with 15 minutes as the time interval, i.e.,

each trajectory has 56 visiting locations). Transportation

modes are only available for a limited portion of visits

and thus are not leveraged as explicit annotations.

• PeopleFlow Dataset: This data is based on 2008

Tokyo Metropolitan Area PT Data (provided by Tokyo

2Implementation is available at https://github.com/Emory-AIMS/CSGAN
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Fig. 2: Dataset comparison (GeoLife and Peopleflow)
TABLE I: GeoLife and PeopleFlow datasets

Characteristics GeoLife PeopleFlow

Number of Trajectories 2756 6183
Period 1 year (2008) 1 year (2008)
Visit Interval every 15 minutes every 15 minutes
Average Speed (km/h) 5.324±5.744 13.592±8.303
Average Accumulated Distance (km) 8.401±9.340 27.662±26.494
Average Distinct Visits 7.713±4.558 7.123±3.895

Metropolitan Circle Transportation Planning Council) and

is lent by the University of Tokyo CSIS. We select

a portion of the entire PeopleFlow data via the same

processing technique as GeoLife, resulting in 6183 tra-

jectories. Transportation mode for each visit is available

and thus leveraged as an explicit annotation.

We show the dataset characteristics in Table I, and a de-

tailed view of the distribution of average speed, accumulative

distance, and the number of distinct visits per trajectory in

each dataset in Figure 2.

Comparison Methods. We compare CSGAN with the state-

of-the-art methods SeqGAN and MoveSim as well as a

Cluster-wise SeqGAN.

• SeqGAN [4]: it utilizes reinforcement learning and Monte

Carlo search to generate discrete sequences of trajecto-

ries.

• MoveSim [5]: it extends SeqGAN, utilizes self-attention

networks as the generator, and incorporates additional

urban structures to regularize the generation via mobility

regularity. We note that the original work includes three

kinds of urban structures: the physical distance between

all location pairs, functional similarity between locations

based on the correlation between the POI distribution,

and historical transitions between locations. The first and

the third can be directly computed from the training

trajectories, while the second POI information is an

ancillary attribute unavailable from the datasets. Thus, we

implement MoveSim without the second urban structure

for a fair comparison.

• Cluster-wise SeqGAN: we also implement a cluster-wise

SeqGAN to consider modality, which conducts clustering

on the real trajectories and then trains an individual

SeqGAN model on each cluster. While SeqGAN and

MoveSim represent the approaches that learn global

patterns without considering modality, Cluster-wise Seq-

GAN represents the approaches that learn only modality-

specific patterns.

For all the methods, we also perform clustering on the

original and generated trajectories and evaluate how the cluster

(modality) distributions match (see Evaluation Metrics later in

this section). We experiment with different clustering strategies

using different sets of features, including 1) a single derived

feature of average speed (dubbed with "-S"), 2) multiple

derived features including average speed, travel distance, and

distinct visits (dubbed with "-M") for the GeoLife dataset, and

3) explicit per-visit annotations of transportation modes that

are available for the PeopleFlow dataset (dubbed with "-E").

Implementation Details. Our CSGAN model leverages clus-

tering to divide real trajectories into k clusters. To determine

the optimal k for each dataset, we leverage an extended

elbow method [19]. For clustering based on the single feature

average speed, we set k = 4 for the GeoLife Dataset (likely

corresponding to walking, biking, bus, and car) and k = 6 for

PeopleFlow Dataset (due to mixed transportation modes, e.g.,

walking and bus). For clustering based on multiple derived

features, we set k = 7 for the GeoLife Dataset. Finally, for

clustering based on the explicit annotations, we set k = 4 for

the PeopleFlow Dataset.

The generator and discriminator are configured with the

embedding size and hidden dimension of 32 and 64, respec-

tively. The generator is pre-trained for 150 epochs, and the

discriminator is pre-trained for 75 epochs. A dropout of 0.2

is applied, and adversarial training lasts for 75 epochs, with a

learning rate of 1e−2 and batch size of 32.

Evaluation Metrics. We evaluate the quality of the synthetic

trajectories by verifying whether the various statistical prop-

erties at the geographical, individual trajectory, transition, and

modality levels are preserved.

1) Geographical density-based statistics:

• P (r): Probability of a trajectory visiting location r.

• P (r, t): Probability of a trajectory visiting location r at

time t.

2) Individual trajectory level statistics:

• P (d): Probability of the accumulated distance of a tra-

jectory being d.

• P (v): Probability of the number of distinct visits of a

trajectory being v.

Following previous work, we compute the Jensen-Shannon

Divergence (JSD) between the probability distribution of the
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real trajectories and that of generated trajectories for each of

the above distributions, which can be written as:

JSD(Pre||Pgen) = H(
Pre + Pgen

2
)−

H(Pre) +H(Pgen)

2
(9)

where Pre and Pgen are the two probability distributions for

real and generated trajectories, respectively, and H is the

Shannon information. The lower the divergence, the better the

generated trajectories preserving the original distributions.

3) Transition statistics:

• P (r1, r2): Probability of a trajectory transitioning from

location r1 to location r2. While a main goal of the

synthetic trajectory generation is to learn and preserve the

sequential information, most existing works do not evalu-

ate how the sequential transition probability is preserved.

Given the entire Q regions, we build the transitional

matrix P ∈ R
Q∗Q for both real and synthetic trajectories,

where the element corresponding to row r1 and column

r2 of the matrix denotes the transition probability from

location r1 to location r2. Then we take the Frobenius

norm of the difference between the two transition matri-

ces:

||Pr − Pg||F =

√

√

√

√

Q
∑

r1=1

Q
∑

r2=1

|Pr(r1, r2)− Pg(r1, r2)|
2

(10)

where Pr and Pg denote the transition matrix of the real

and generated trajectories, respectively. The lower the

norm, the better the transition is preserved.

4) Modality level statistics:

• P (c0i ): Proportion of trajectories within each cluster ci
based on the centroids from the real trajectories. In other

words, for generated trajectories, we assign each of them

to the nearest centroid from the real trajectories and form

k clusters. Then, we compute the JSD between the cluster

distributions from real and generated trajectories.

• P (c1i ): The difference between this one and the above is

that we perform clustering on the generated trajectories

separately and find a set of synthetic centroids (which

might be different from those from the real trajectories).

P (c1i ) denotes the proportion of trajectories within each

cluster using the corresponding centroid in real and syn-

thetic trajectories, respectively. The centroids are matched

and ordered as explained below. We also compute the JSD

between the two distributions.

• C: Cluster centroids or modality representatives. Given

the vector of k centroids from real trajectories and

generated trajectories, we compute the minimum accumu-

lated pair-wise distance among all permutations (closest

match). The lower the value, the better the generated

trajectories preserve the modality representatives.

B. RQ1: Effectiveness Comparison with the Baselines

Global Comparison. We show the evaluation metrics for

different methods for the overall dataset in Table II. We

first dive into the results with clustering based on average

speed. CSGAN performs consistently the best over all the

metrics on both datasets. More specifically, on GeoLife data,

for geographical and trajectory statistics, CSGAN exceeds the

baselines on average 33% in P (r), 19% in P (r, t), 25% in

P (d), and 15% in P (v); for transitional probability, CSGAN

outperforms the baselines on average 53% in P (r1, r2); for

modality patterns, CSGAN excels over the baselines on aver-

age 49% in P (c0i ), 76% in P (c1i ), and 53% in C. Similarly, on

PeopleFlow data, CSGAN excels over the baselines on average

20% in P (r), 9% in P (r, t), 48% in P (d), and 46% in P (v);
49% in P (r1, r2); 56% in P (c0i ), 59% in P (c1i ), and 53% in

C.

As expected, the highest performance gain is observed for

the modality-level metrics, which demonstrates the power of

CSGAN in capturing and representing the modalities in the

generated trajectories. Moreover, we also observe a significant

performance gain on the transitional probability metrics. The

explanation is intuitive: given a trajectory with a specific

modality, e.g., walking, a user cannot travel a large distance,

and thus, there is a limited number of potential destinations. By

our modality-aware generation, the modality-specific transition

can be better learned and preserved.

Modality-specific Comparison. In addition to the overall

comparison, we also show the comparison for each modality

to verify whether the trajectories within each modality are

realistic. Table III shows the results. On both GeoLife and Peo-

pleFlow data, CSGAN consistently outperforms the baselines

over all the metrics for each modality. For instance, in cluster

2 of GeoLife, CSGAN excels over the baselines on average

29% in P (r), 16% in P (r, t), 57% in P (d), 44% in P (v),
and 62% in P (r1, r2). In cluster 1 of PeopleFlow, CSGAN

shows improvements of 19% in P (r), 15% in P (r, t), 36% in

P (d), 25% in P (v), and 30% in P (r1, r2). This verifies that

CSGAN learns not only global patterns but also modality-

specific patterns across all modalities.

Baseline Comparison. Comparing the baseline approaches

with each other, SeqGAN outperforms MoveSim for most

metrics. This can be due to two reasons: 1) most of the

performance gain of MoveSim, as reported in the original

work, may be due to the auxiliary POI information (which

we did not use for a fair comparison), 2) MoveSim may

require a large training dataset due to its more complex

model architecture and the training data in our experiments

is smaller than that used in the original MoveSim work (1

year vs. 5 years). Cluster-wise SeqGAN, while achieving the

best performance for preserving the distinctive visits P (v),
does not perform as well as SeqGAN in general because it

only learns from each modality without learning from the

patterns shared among different modalities. In summary, this

verifies that by capturing both the global and modality-specific

patterns, CSGAN is able to generate trajectories that are both

1) more diverse and representative as reflected in the modality

metrics, and 2) more realistic as reflected in the trajectory and

transitional metrics.
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TABLE II: Global comparison with baselines on GeoLife and PeopleFlow data with different clustering techniques. The table

shows the average statistics of 5 experiments. The best performance is in boldface. The second-best is underlined.

GeoLife
Geographical density-based statistics Individual trajectory level statistics Transition statistics Modality level statistics

Methods P(r) P(r,t) P(d) P(v) P(r1, r2) P(c0i ) P(c1i ) C

SeqGAN-S 0.407 0.478 0.208 0.288 0.100 0.162 0.220 18.682
Cluster-wise SeqGAN-S 0.506 0.562 0.313 0.234 0.082 0.402 0.298 83.441
Movesim-S 0.522 0.579 0.263 0.390 0.116 0.303 0.209 7.934
CSGAN-S 0.319 0.439 0.195 0.258 0.047 0.147 0.058 17.128

SeqGAN-M 0.407 0.478 0.208 0.288 0.100 0.678 0.111 48.384
Movesim-M 0.522 0.579 0.263 0.390 0.116 0.341 0.134 59.993
CSGAN-M 0.289 0.354 0.098 0.120 0.032 0.197 0.065 41.055

PeopleFlow
SeqGAN-S 0.378 0.437 0.368 0.275 0.092 0.406 0.167 29.694
Cluster-wise SeqGAN-S 0.344 0.406 0.363 0.317 0.105 0.311 0.194 31.046
Movesim-S 0.344 0.396 0.524 0.602 0.100 0.289 0.151 23.420
CSGAN-S 0.284 0.376 0.218 0.215 0.050 0.146 0.070 13.136

SeqGAN-E 0.378 0.437 0.368 0.275 0.092 0.117 0.250 5.000
Movesim-E 0.344 0.396 0.524 0.602 0.100 0.338 0.401 3.000
CSGAN-E 0.288 0.380 0.244 0.216 0.040 0.083 0.144 3.000

TABLE III: Modality-specific comparison with baselines on GeoLife and PeopleFlow data with clustering based on the derived

global feature average speed. The table shows the average statistics of 5 experiments. The best performance is in boldface.

The second-best is underlined.

GeoLife

Geographical density-based statistics Individual trajectory level statistics Transition statistics

Cluster Centroid Speed Proportion Method P(r) P(r,t) P(d) P(v) P(r1, r2)

Cluster_1 2.498 55% SeqGAN-S 0.505 0.555 0.297 0.432 0.191
Cluster-wise SeqGAN-S 0.607 0.633 0.496 0.276 0.135
CSGAN-S 0.403 0.487 0.237 0.402 0.058

Cluster_2 7.314 34% SeqGAN-S 0.507 0.589 0.225 0.169 0.075
Cluster-wise SeqGAN-S 0.563 0.626 0.336 0.252 0.140
CSGAN-S 0.382 0.509 0.120 0.118 0.041

Cluster_3 14.784 10% SeqGAN-S 0.540 0.597 0.293 0.210 0.097
Cluster-wise SeqGAN-S 0.700 0.721 0.477 0.335 0.248
CSGAN-S 0.507 0.586 0.319 0.229 0.092

Cluster_4 30.747 1% SeqGAN-S 0.650 0.672 0.459 0.358 0.358
Cluster-wise SeqGAN-S 0.487 0.560 0.705 0.423 0.335
CSGAN-S 0.632 0.660 0.446 0.333 0.328

PeopleFlow

Cluster_1 4.497 27% SeqGAN-S 0.460 0.482 0.576 0.597 0.160
Cluster-wise SeqGAN-S 0.364 0.408 0.548 0.407 0.104
CSGAN-S 0.334 0.379 0.360 0.374 0.092

Cluster_2 9.141 21% SeqGAN-S 0.512 0.558 0.411 0.347 0.155
Cluster-wise SeqGAN-S 0.424 0.475 0.454 0.339 0.093
CSGAN-S 0.361 0.438 0.243 0.215 0.080

Cluster_3 14.590 20% SeqGAN-S 0.553 0.614 0.382 0.251 0.109
Cluster-wise SeqGAN-S 0.492 0.557 0.492 0.368 0.124
CSGAN-S 0.433 0.521 0.264 0.162 0.072

Cluster_4 19.924 17% SeqGAN-S 0.585 0.648 0.460 0.338 0.165
Cluster-wise SeqGAN-S 0.511 0.586 0.442 0.265 0.129
CSGAN-S 0.451 0.556 0.258 0.146 0.073

Cluster_5 25.868 11% SeqGAN-S 0.564 0.639 0.432 0.273 0.122
Cluster-wise SeqGAN-S 0.540 0.622 0.546 0.321 0.135
CSGAN-S 0.471 0.587 0.325 0.181 0.087

Cluster_6 34.627 4% SeqGAN-S 0.576 0.654 0.461 0.220 0.114
Cluster-wise SeqGAN-S 0.628 0.673 0.716 0.396 0.267
CSGAN-S 0.553 0.646 0.455 0.184 0.093

TABLE IV: Comparison with baselines on GeoLife and PeopleFlow data on the task of next location prediction. The best

performance is in boldface.

GeoLife
Model Accuracy@1 Accuracy@2 Accuracy@3 Accuracy@4 Accuracy@5 Accuracy@6 Accuracy@7 Accuracy@8

SeqGAN 0.842 0.913 0.934 0.944 0.951 0.956 0.959 0.963
Movesim 0.612 0.641 0.653 0.662 0.665 0.670 0.673 0.678
CSGAN 0.880 0.930 0.944 0.954 0.960 0.964 0.967 0.970

Peopleflow
SeqGAN 0.831 0.882 0.905 0.916 0.927 0.932 0.937 0.941
Movesim 0.815 0.822 0.826 0.831 0.835 0.839 0.841 0.843
CSGAN 0.888 0.912 0.921 0.927 0.933 0.936 0.940 0.942
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(a) Real (b) CSGAN (c) SeqGAN (d) Movesim

Fig. 3: Population density (GeoLife (upper four) and Peopleflow (lower four))

Fig. 4: Absolute distance to origin (GeoLife (left) and People-

Flow (right))
Dataset Comparison. Comparing the GeoLife and People-

Flow Datasets, GeoLife is less diverse in modality compared to

PeopleFlow, as shown in Figure 2. This difference contributes

to the different orders of performance in Table II and Table

III. For Geolife, SeqGAN outperforms Cluster-wise SeqGAN

since the modality is less diverse, and hence it is more

important to learn from the global patterns. In contrast, for

PeopleFlow, which is more diverse in modality, SeqGAN tends

to perform less satisfying and is surpassed by the Cluster-wise

SeqGAN, which explicitly learns modality-specific patterns

within each cluster.

C. RQ1: Visualization

We show several visualizations to illustrate how the methods

compare with each other in preserving the patterns in the

original trajectories.

Population Density. We plot the population density (the

aggregate density from 6:00 am to 8:00 pm) for GeoLife

and PeopleFlow data. Figure 3 shows the density on the map

(divided into grids) using real and generated trajectories for

both datasets. We can see that CSGAN best mimics the real

data by capturing both the overall distribution and the outliers.

Places with high density and low density are both captured by

our model. In contrast, the baseline models fail to capture

such information and tend to lose both the overall distribution

(GeoLife) and outliers (PeopleFlow).

Absolute Distance to Origin. We plot the absolute distance

to the starting point from 6:00 am to 8:00 pm for every 15

minutes using the real and synthetic trajectories in Figure

4. We can see that CSGAN can better capture the moving

behaviors: for GeoLife data, people tend to be far away from

their starting location till 1:00 pm and then stay around the

same region till 8:00 pm. For PeopleFlow data, people tend

to be away from the starting point from 6:00 am to 4:00 pm

and then return to the origin (typically their home), which is

reflected by the downward trend of the blue curve. In both

cases, CSGAN (red) closely follows the trend of the real data

(blue), while both SeqGAN and MoveSim deviate from the

trends. Moving behaviors in rush hours are also better captured

by CSGAN.

D. RQ2: Impact of Different Clustering Methods

Next, we explore the impact of different clustering tech-

niques on the performance of CSGAN against baselines. In

Table II, methods with "-S" denotes clustering based on a

single feature (average speed); methods with "-M" denotes

clustering based on multiple features (average speed, accu-

mulative distance, the number of distinct visits); and methods

with "-E" denotes clustering based on explicit annotations for

each visit (transportation mode) provided by the PeopleFlow

dataset. Figure 5 shows the proportion of trajectories within

each cluster via these clustering methods, respectively. For

example, PeopleFlow demonstrates several clusters of both

single and mixed modalities: (Walking, bus, subway), Car,

Bicycle, (Walking, subway).

Table II shows that CSGAN with different clustering meth-

ods consistently outperforms the baselines. Moreover, we find

that with more sophisticated clustering techniques or features,

as shown by switching from a single feature (average speed)

to multiple features, CSGAN tends to be more powerful. For

the PeopleFlow dataset, the explicit annotation offers some

performance gain in some metrics, at the same time, also

verifies that clustering based on the trajectories alone without

the annotations indeed captures the modality well.

E. RQ3: Next Location Prediction

To further verify the utility of our CSGAN model, we

study the next location prediction as a downstream task using

the trained generator from CSGAN and baseline methods.

We leverage the metric: accuracy@k, which denotes whether

the ground-truth next location exists in the top k predicted

locations given the predicted probability distribution of the

entire Q locations from the generator. We set k from 1 (the
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(a) Single feature (GeoLife) (b) Single feature (PeopleFlow) (c) Multiple features (GeoLife) (d) Explicit features (PeopleFlow)

Fig. 5: The proportion of trajectories in each cluster. The x-axis denotes the proportion of trajectories, and the y-axis denotes

the feature of each cluster’s centroid. (a) and (b) are based on clustering via average speed. (c) is based on average speed,

accumulative distance, and number of distinct visits (from left to right), and (d) is based on transportation modes vector.

ground-truth location is exactly the predicted next location) to

8. The test data is selected from the real trajectories.

We report the next location prediction results in Table IV.

CSGAN consistently outperforms SeqGAN and MoveSim on

both datasets, exceeding the best baseline by 5% on GeoLife

and 7% on PeopleFlow when k = 1. More importantly, as

k gets smaller, the advantage of CSGAN is more obvious.

This further verifies the benefit of CSGAN in learning the

sequential patterns from the data by capturing the modality.

VI. CONCLUSION

We proposed a novel and general framework, the modality-

aware Clustering-based Sequence Generative Adversarial Net-

work (CSGAN), which can generate representative and re-

alistic synthetic trajectories by capturing real-world modali-

ties. CSGAN leverages clustering and adopts semi-supervised

losses to capture real-life modality patterns in a GAN setting

and a novel reward function for training the network via rein-

forcement learning. To comprehensively evaluate the quality

of the synthetic trajectories, we introduce several new metrics

to measure how the synthetic trajectories preserve transitional

and modality properties in addition to the typical density

and trajectory level properties. Experiments on two real-world

datasets demonstrate the consistent and superior performance

of CSGAN. Our future works include incorporating clustering

methods for moving behaviors, integrating the framework with

other methods that consider additional contextual information,

such as POIs, temporal irregularity of the trajectories, and

indoor movement, and extending the framework to model co-

movements via multi-agent reinforcement learning.
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