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Distributed Continuous-Time Algorithms for
Time-Varying Constrained Convex Optimization

Shan Sun @, Jie Xu

Abstract—This article is devoted to the distributed
continuous-time optimization problems with time-varying
objective functions and time-varying constraints. Different
from most studied distributed optimization problems with
time-invariant objective functions and constraints, the op-
timal solutions in this article are time varying and form
a trajectory. First, for the case where there exist only
time-varying nonlinear inequality constraints, we present
a distributed control algorithm that consists of a sliding-
mode consensus part and a Hessian-based optimization
part coupled with the log-barrier penalty functions. The
algorithm can guarantee the asymptotical tracking of the
optimal solution with a zero tracking error. Second, we ex-
tend the previous result to the case where there exist not
only time-varying nonlinear inequality constraints but also
linear equality constraints. An extended algorithm is pre-
sented, where quadratic penalty functions are introduced
to account for the equality constraints and an adaptive con-
trol gain is designed to remove the restriction on knowing
the upper bounds on certain information. The asymptotical
convergence of the extended algorithm to the vicinity of
the optimal solution is studied under suitable assumptions.
The effectiveness of the proposed algorithms is illustrated
in simulation. In addition, one proposed algorithm is ap-
plied to a multirobot multitarget navigation problem with
experimental demonstration on a multicrazyflie platform to
validate the theoretical results.

Index Terms—Continuous-time optimization, distributed
time-varying optimization, multirobot multitarget naviga-
tion, time-varying constraints.

I. INTRODUCTION
A. Background

Distributed optimization algorithms allow for decomposing
certain optimization problems into smaller, more manageable
subproblems that can be solved in parallel. Therefore, they are
widely used to solve large-scale optimization problems such
as optimization of network flows [1], big-data analysis [2],
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design of sensor networks [3], multirobot teams [4], and resource
allocation [5]. There has been significant attention on distributed
convex optimization problems, where the goal is to coopera-
tively seek the optimal solution that minimizes the sum of private
convex objective functions available to each individual agent. In
this context, discrete-time distributed optimization algorithms
have been studied extensively (see, e.g., [6], [7], and references
therein).

There exists another body of literature on distributed
continuous-time optimization algorithms (see, e.g., [8]-[15]).
The distributed continuous-time optimization algorithms have
applications in coordinated control of multiagent teams. For
example, multiple physical robots modeled by continuous-time
dynamics might need to track a team optimal trajectory. Note that
most studies in the literature focus on stationary optimization
problems in which both the objective functions and constraints
donotexplicitly depend on time. However, in many applications,
the local performance objectives or engineering constraints may
evolve in time, reflecting the fact that the optimal solution could
be changing over time and create a trajectory (see, e.g., [16]—
[19]), which makes the design and analysis much more complex.
Moreover, in practical optimization problems, constraints are
sometimes inevitable. In this article, we are interested in the
distributed continuous-time algorithms for time-varying con-
strained optimization problems.

B. Related Works

There are just a few works in the literature addressing the
distributed continuous-time optimization problem with time-
varying objective functions [20], [21], [22], [23], [24], [25],
[26]. Specifically, [20] and [21] solve the distributed continuous-
time time-varying optimization problems with convex set con-
straints. However, [20] and [21] are limited to solve, respec-
tively, optimization problems with quadratic objective func-
tions and linear programming optimization problems. More-
over, both [20] and [21] can only achieve bounded tracking
errors to the optimal solutions. The work [22] addresses a
Nash equilibrium seeking problem for noncooperative games
where the Nash equilibrium under consideration can be time
varying. However, [22] does not consider state constraints in
the game problems. Distributed time-varying resource allocation
problems are studied in [23] and [24], where time-varying ob-
jective functions or time-varying loads are considered. However,
both [23] and [24] do not consider nonlinear inequality state
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constraints. Recently, the second-order optimization methods
are proven to work well in centralized time-varying optimiza-
tion problems (see, e.g., [18], [19], and [27]). However, their
use in distributed settings has been prohibited as they require
global information of the network to compute the inverse of the
global Hessian matrix. The works [25] and [26] solve the dis-
tributed time-varying optimization problems using second-order
optimization methods. However, the algorithm in [26] and the
consensus-based algorithm in [25] (Section III-B) are limited to
the unconstrained problem with local objective functions that
have identical Hessians. While the estimator-based algorithm
in [25] (Section III-C) can deal with certain objective functions
with nonidentical Hessians, it relies on the distributed average
tracking techniques [28] and hence poses restrictive assumptions
that the time derivatives of the Hessians and the time derivatives
of the gradients of the local objective functions exist and be
bounded. In addition, because the estimator-based algorithm has
to estimate the Hessian inverse of the global objective function,
it necessitates the communication of certain virtual variables
between neighbors with increased computation costs. While it
is possible to convert the constrained optimization problem to an
unconstrained one using penalty methods, the resulting penal-
ized objective functions would not have identical Hessians due
to the involvement of the nonuniform local constraint functions
(even if the original objective functions would), and they might
not satisfy the restrictive assumptions mentioned above. As a re-
sult, the algorithms in [25] and [26] cannot be applied to address
the distributed time-varying constrained optimization problem
(see Remark 4 for a more detailed comparison). For distributed
time-varying optimization algorithms in discrete-time settings,
the readers are referred to [29] and [30]. It is worth mentioning
that in the literature on discrete-time time-varying optimization
algorithms, all the works can only achieve bounded tracking
errors, which are usually related to the sampling rate or step
size. The continuous-time and discrete-time algorithms serve in
different application domains. In this article, we focus on the
continuous-time algorithms, which have applications especially
in motion coordination.

C. Contributions

This article aims to develop distributed algorithms to solve
the continuous-time optimization problems with private time-
varying objective functions and private time-varying constraints.
In this article, the distributed time-varying optimization prob-
lems are deformed as a consensus subproblem and a minimiza-
tion subproblem on the team objective function. First, for the
case where there exist only time-varying inequality constraints,
we develop a sliding-mode method with a Hessian-dependent
gain for all the agents to achieve consensus on the states. Mean-
while, a Hessian-based (second-order) optimization method
coupled with the log-barrier penalty functions is proposed to
track the local time-varying optimal solution. Although [27]
and [31] also use log-barrier penalty functions to address the
inequality constraints, to the best of our knowledge, our article
is the first to leverage the log-barrier penalty functions to the

distributed time-varying optimization problems. To implement
the algorithm, each agent just needs its own state and the relative
states between itself and its neighbors. When the agents’ states
are their positions, the algorithm can be implemented based on
purely local sensing (e.g., absolute and relative positions) with-
out the need for communicating virtual variables. The asymptot-
ical convergence to the optimal solution is established based on
nonsmooth analysis, Lyapunov theory, and convex optimization
theory. To the best of our knowledge, this is the first article in
the literature on distributed continuous-time optimization with
time-varying inequality constraints that guarantee zero tracking
errors. Furthermore, we extend the previous result with the
following improvements. We add quadratic penalty functions
to account for equality constraints to make the algorithm be
applicable to more general problems and we present an adaptive
control gain design under which the restriction on knowing the
upper bounds on certain prior information is removed. And the
asymptotical convergence of the extended algorithm to the vicin-
ity of the optimal solution is studied under suitable assumptions.
Both numerical simulation and real experimental results are
presented to illustrate the effectiveness of the theoretical results.

Some preliminary results of this article (Section III: Dis-
tributed time-varying optimization with nonlinear inequality
constraints) are presented in [32]. This article extends [32] by
considering not only time-varying nonlinear inequality con-
straints but also linear equality constraints. In addition, an adap-
tive control gain is designed to remove the restriction on knowing
the upper bounds on certain information. It is worthwhile to
mention that additional numerical examples and experimental
results are also presented in the current article.

This article is organized as follows. In Section II, we present
notation, preliminaries on graph theory, and nonsmooth analysis.
We present the main results on the distributed continuous-time
algorithms for the time-varying constrained optimization prob-
lems in Sections III and I'V. Some numerical examples and exper-
imental results are presented in Sections V and VI, respectively.
Conclusions are drawn in Section VII.

Il. PRELIMINARIES
A. Notation

Let R, R"™, and R™™ denote the sets of real numbers, real
vectors of dimension n, and real matrices of size n X m, re-
spectively. Let R<( represent the set of positive real num-
bers. The cardinality of a set S is denoted by |S|. Let 1,
(respectively 0,,) denote the vector of n ones (respectively n
zeros), and I,, denote the n X n identity matrix. For a matrix
A e R™™, [Alye € RV is the kth row of A, and AT (re-
spectively A1) is the transpose (respectively inverse) of A.
For a square matrix A € R™"™, X.in(A) represents a positive
value that is smaller than all the eigenvalues of A. For a vector
h = [h,...,h,)T € R", diag(h) € R™*" represents the diag-
onal matrix with the elements in the main diagonal being the
elements of h, |||, represents the p-norm of the vector h,
B(h, d) represents the open ball of radius ¢ centered at h, and
sgn(h) = [sgn(h1),...,sgn(hy)]T, where sgn(h;) denotes the
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signum function defined as

—1ifh; <0,
sgn(h;) =< 0 ifh, =0,
1 ifh; > 0.

For vectors h € R™ and c € R", h <X ¢ (respectively h < ¢)
means that h; < ¢; (respectively h; < ¢;) for all i € [1,n]. The
Lebesgue measure of N is denoted by p(N). Let B(h,d) be
the open ball of radius ¢ centered at h. Let ® denote the
Kronecker product and ¢o the convex closure. Let V f(h,t)
and V2f(h,t) denote, respectively, gradient and Hessian of
function f(h,t) with respect to the vector h. Let 0f(h,t)/0t
represent the partial derivative of function f(h,t) with respect
to t. Let f(h,t) be the time derivative of f(h,t). That is,
f(hyt) =V f(h,t)h+ 0f(h,t)/0t.

B. Graph Theory

An undirected graph is denoted by G = (V, &, A), where
V ={1,...,n}is the node set, &€ C V x V is the edge set, and
A = [a;;] € R™*" is the weighted adjacency matrix with entries
a;j, 1,7 € V.Foran undirected graph, an edge (j, ¢) implies that
node ¢ and node j are able to share data with each other, and
a;; =1 1if (j,i) € € and a;; = 0 otherwise. Here, a;; = aj;.
Let N; ={j € V: (j,i) € £} denote the set of neighbors of
node 7. A path is a sequence of nodes connected by edges. An
undirected graph is connected if for every pair of nodes there is a
path connecting them. The Laplacian matrix £ = [l;;] € R™*"
associated with A is defined as l;; = >°7_, ;. a;j and l;; =
—a;;, where i # j. The incidence matrix D = [d;;] € R™*I¢l
associated with G is defined as d;; = —1 if the kth edge leaves
node 7, d;;; = 1ifitenters node 7, and d;;, = 0 otherwise. For the
incidence matrix of an undirected graph, the orientation of the
edges is assigned arbitrarily. Note that for an undirected graph,
L1, =0,, LT =L, and £ = DDT.

C. Nonsmooth Analysis

In this subsection, we recall some important definitions of the
nonsmooth systems that will be exploited in our main result.

Definition 1: (Filippov Solution) [33] Consider the vector
differential equation

&= f(z,1) (D

where f:R? x R — R? is Lebesgue measurable and locally
essentially bounded. A vector function z(+) is called a Filippov
solution of (1) on [t,¢1], if (-) is absolutely continuous on
[to, t1] and for almost all ¢ € [to, 1], ©(t) € K[f](x,t), where
K[f](2,t) == Ns=0 Nyu(nv)=o COf (B(z,6) — N, ) is the Filip-
pov set-valued map of f(z,t) and [,y denotes the inter-
section over all sets [NV of Lebesgue measure zero.

Definition 2: (Clarke’s Generalized Gradient) [33] Consider
a locally Lipschitz continuous function V(z) : R — R, the
generalized gradient of the function V at z is given by OV (z) :=
co{lim VV (z;)|x; = z,2; & Qv }, where Qy is the set of
Lebesgue measure zero where the gradient of V' is not defined.

Definition 3: (Chain Rule) [33] Let z(-) be a Filippov solu-
tion of # = f(x,t) and V(x) : R — R be a locally Lipschitz

continuous function. Then for almost all ¢

d <
SVIr)] € V

where f/ is the set-valued Lie derivative defined as f/ =

ﬂgeav gTK[f]

[lI. DISTRIBUTED TIME-VARYING OPTIMIZATION WITH
NONLINEAR INEQUALITY CONSTRAINTS

Consider a network consisting of n agents. Each agent is
regarded as a node in an undirected graph, and each agent can
only interact with its local neighbors in the network. Suppose that
each agent satisfies the following continuous-time dynamics:

i‘i (t) = U; (t) (2)

where z;(t) € R™ is the state of agent ¢, and u;(t) € R™ is the
control input of agent 7. In this section, we study the distributed
time-varying optimization problem with time-varying nonlinear
inequality constraints. The goal is to design wu;(¢) using only
local information and interaction, such that all the agents work
together to find the optimal trajectory y*(t) € R™ which is
defined as

y*(t) = argmin Z fily(0),1]

st gi[y(t),t] 2 0g,, i€V (3)

where f;[y(t),t] : R™ x Rs — R are the local objective func-
tions, and g; [y(t),t] : R™ x Rsg — R% are thelocal inequality
constraint functions. It is assumed that f;[y(¢), t] and g;[y(¢), ]
are known only to agent i. We assume that the minimizer y*(¢)
is unique for each ¢ (see Assumption 2).

If the underlying network is connected, the above problem (3)
is equivalent to the problem that all the agents reach consensus
while optimizing the team objective function Y- ; fi[z;(t), ]
under constraints, more formally,

2'(t) € R™" = argmin Y _ filwi(t), 1]

i=1
zi(t) =x;(t), Vi, jeV 4
where z(t) € R™*" is the stack of all the agents’ states. Here,

the goal is that each state z;; (¢), Vi € V), converges to the optimal
solution y*(t), i.e.,

lim [;(t) — " ()] = O )

t—o00

s.t. gi[zi(t),t] < 0g,,

Remark 1: (Examples of applications) This architecture of
the distributed time-varying constrained optimization problem
(3) with networked agents finds broad applications in dis-
tributed cooperative control problems, including multirobot nav-
igation [16], [17] and resource allocation of power network [19].
For example, in a motion coordination case, knowing only their
own and their neighbors’ positions, multiple unmanned aerial
vehicles (UAVs) might need to dock at a moving location without
collision such that the total team performance is optimized. Here,
the constraints can denote that the UAVs need to be located in
safe areas.
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For notational simplicity, we will remove the time index ¢
from the variables x;(¢) and u;(t) in most remaining parts of
this article and only keep it in some places when necessary.

Lemma 1: [34] Let f(r) : R™ — R be a continuously dif-
ferentiable convex function with respect to . The function f ()
is minimized at »* if and only if V f(r*) = 0.

We make the following assumptions which are all standard in
the literature and are used in recent works like [25], [26], and
[27].

Assumption 1: (Graph connectivity) The graph G is fixed,
undirected, and connected.

Assumption 2: (Convexity) Assume the following.

1) All the objective functions f;(x;,t) and the inequality
constraint functions g;(x;,t) are twice continuously dif-
ferentiable with respect to x; and continuously differen-
tiable with respect to ¢.

2) All the objective functions f;(z;,t) are uniformly
strongly convex in z;, for all £ > 0.

3) Allthe constraint functions g; (x;, t) are uniformly convex
in z;, forall t > 0.

4) The optimal solution exists and such that is unique.

Assumption 3: (Slater’s condition) For all ¢ > 0, there exists
at least one y such that g;(y,t) < 0, for all ¢ € V. Therefore,
the Slater’s condition holds for all time.

By Assumption 3, the interior of the feasible region is
nonempty for all ¢ > 0 and the optimal solution y*(¢) in (3) at
each? > 0 can be characterized using the Karush—Kuhn-Tucker
(KKT) conditions.

A. Distributed Algorithm Design

In this subsection, we derive our distributed control algorithm
for the time-varying constrained optimization problem in (4).
We design the following controller for agent i:

:_5[v2L it } > sgn(zi — ;) + ¢ilt)

JEN;

_ [VQf,i(xi,t)}_l {VL (4, t) + %VLi(xi,t)
(6)

where 3 € R is a fixed control gain, and L;(x;, t) is a penal-
ized objective function of agent ¢, defined as follows:

Z log[o;(t

where g;;(x;,t) : R™ x R59 — R denotes the jth component
of function g; (z;, t), pi(t) € Rsq is time-varying barrier param-
eter, and 0;(t) € R~ is a time-varying slack function satisfying

¢i(t) =

Ei(xu ) fz Tyt gij($i7t)] @)

pi(t) = a;e™', o;(t) = ae” ', ai1, ai, @iz, aa € Rso.
®)

Note that the domain of the penalized objective function
Li(zi,t)is Dy = {x; € R™ | gi(zi,t) < 04(t)1,, }. This would
require that the dynamical system (2) with controller (6) is
initialized at a point inside D;(0), i.e., z;(0) € D;(0). It is
worthwhile to mention that the introduction of o; (¢) is to enlarge

the initial feasible set. To make the algorithm (6) work, the initial
states x;(0) need to satisfy

Gij [33‘1(0)7 0] < Ui(O),

We will prove that the dynamical system (2) is well defined
under controller (6), initial condition (9), and certain other
assumptions (see Lemma 2).

Remark 2 (Roles of terms in (6)): In this article, the
time-varying optimization problem (4) is deformed as a con-
sensus subproblem and a minimization subproblem on the
team objective function. We develop a distributed sliding-
mode control law to address the consensus part. That is,

VieV,j=1,....¢. (9

- -1
the role of term —/j {V2Li(xi,t)} > jen, sen(zi — ;) in
(6) is to drive all the agents to reach a consensus on states
(limHoo |lzs(t) — + Szt = O) Here, the Hessian-

dependent gain B[V2L;(x;,t)] ! is introduced to guarantee the
convergence of our algorithm under nonidentical VQL(xi, t).
While the second term, ¢;(t) € R™, is an auxiliary variable
playing a role in minimizing the penalized objective function
Ei(mi, t) given by (7). Note that we use the log-barrier penalty
functions [see the second term in (7)] to incorporate the in-
equality constraints into the penalized objective function. As
shown in (6), we use the second-order/Hessian information of
the penalized objective function to achieve the optimization goal.

Remark 3 (Use of log-barrier function in (7)): In this article,
we convert the considered constrained optimization problem
into an unconstrained one using the penalty functions. Multiple
penalty functions might be useful to address the inequality con-
straints, for example, {max|0, g;;(x;,t)]}* and the log-barrier
function used in (7). In this article, we aim to leverage the
Hessian information to solve the time-varying optimization
problem. Therefore, we need a smooth and differentiable penalty
function. That is why we choose log-barrier penalty functions
to address the inequality constraints. While log-barrier penalty
functions are not novel in its use for optimization problems
with inequality constraints [27], [31], [34], to the best of our
knowledge, our article is the first to leverage its use to the
distributed time-varying optimization settings.

In addition, we have

va xq,t +Z

VQZJ Zi, t)
— Gij (4, t)]
(10)

(xu t) =

o, N i OV ygij(z,t)/0t
atsz( lvt) + Z pi(t)[gi(t) — gij(l'i,t)]

Jj=1

0
EVL (x»“ ) =

Pz( )Vg”(.%'“ )
Zp?(t)[ @ — g (w0 D)

R Gi(t)Vgij (x4, 1)
; pi(®)[oi(t) = gij (@i, )]

Vgl] 891](1‘1) )/6t
+Z i O[0s () — g5 (@i, O

(1)
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i 24 (.
:vzfi(l‘i,t)"‘z \Y gz](xut)

v Ll(l‘“t) = pl(t)[di(t) — gzj(xmt)]

+Z ng] xzv vg’bj( )T

i (@ D (12)

where %Vfi(xi7 t), %Vgij (x4,t),and %gij (x;,t) are, respec-
tively, the partial derivatives of V f;(z;,t), Vg;;(z;,t), and
gij(x;,t) with respect to .

Also, for notational simplicity, we will remove the time index
t from the auxiliary variable ¢;(¢) in most remaining parts of
this article and only keep it in some places when necessary.

Remark 4: (Heterogeneity in the Hessian and comparison
with previous model) In this article, we convert the considered
constrained optimization problem into an unconstrained one
using the log-barrier penalty functions. Itis worth noting that the
proposed algorithm (6) is not a simple extension of the existing
distributed time-varying unconstrained optimization algorithms
in [25] and [26]. Especially, to apply the algorithm in [26]
and the consensus-based algorithm in [25] (Section III-B), it is
required that the Hessians of all the local objective functions be
identical. In contrast, in our context with the penalized objective
functions, the Hessians of them are nonuniform due to the
involvement of the nonuniform local constraint functions even
if the original objective functions have identical Hessians. The
estimator-based algorithm in [25] (Section III-C) can deal with
certain objective functions with nonidentical Hessians. How-
ever, it not only necessitates the communication of certain virtual
variables between neighbors with increased computation costs
but requires that the time derivatives of the Hessians and the time
derivatives of the gradients of the objective functions exist and be
bounded. Unfortunately, due to the complexity of the penalized
objective functions in the considered constrained problem, such
arequirement might be no longer guaranteed to hold, and, hence,
the result therein might not be applicable to our problem. In this
article, we introduce anovel algorithm with a Hessian-dependent
gain to account for the complexity caused by the penalized
objective functions, where only the partial derivatives of the
gradients of the penalized objective functions with respect to
time ¢ are preassumed to be bounded (see Assumptions 4 and 5).
Note that in [25] and [26], the partial derivatives of the gradients
of the objective functions with respect to time ¢ are also required
to be bounded. In this article, we do not preassume that the
Hessians and gradients of the penalized objective functions are
bounded; however, we will prove that the Hessians and gradients
of the penalized objective functions are bounded automatically
under our proposed algorithms. The novel algorithm design, in
turn, introduces new challenges in theoretical analysis, which
will be addressed in the following.

Remark 5: (Relevance to robotic applications) In algorithm
(6), each agent just needs its own information and the relative
states between itself and its neighbors. In some robotic applica-
tions, the agents’ states are their spatial positions. As a result,
the relative positions can be obtained by local sensing and the
communication necessity might be eliminated.

B. Convergence Analysis

In this subsection, the asymptotical convergence of the system
(2) under the controller (6) to the optimal solution in (3) is
established. To establish our results, we require the following
assumptions.

Assumption 4: (Bounds about objective functions) If all local
states x; are bounded, then there exists a constant & such that
SUPye(0,00) H%Vfi(xi,t)ﬂg < aforalli € Vandt > 0.

Assumption 5: (Bounds about the inequality constraint func-
tions) If all local states x; are bounded, then there exist con-
stants 3 and 7 such that sup,c(o ) | % Vgij (i, )]|l2 < B and
SUD;e(0,00) H%gij(xi7t)H2 <A forallieV, j=1,...
t>0.

Remark 6: (Bounds rationality analysis) In Assumption 4,
we assume that all || %V fi(x;,t)||2 are bounded under bounded
x;. The assumption holds for an important class of situations.
For example, consider the normal quadratic objective functions
lleizi + hi(zi,t)||3. As long as 2-hi(z;,t) (e.g., sin(t),t) are
bounded under bounded ;, || 2V f;(z;,t)||> will be bounded.
In Assumption 5, we assume that all || %Vgij(xi, t)||2 and
|| % gij(xi,t)||2 are bounded under bounded ;. The assumption
holds for an important class of situations. The boundedness of
12V gij(xi,t)||2 and || 2 gij (2, )| holds for most commonly
used boundary constraint functions, e.g., z; < b(t) or x? < b(t)
under bounded b(t).

Remark 7: (Nonsmooth analysis) With the piecewise-
differentiable signum function involved in algorithm (6), the so-
lution should be investigated in the sense of Filippov. However,
since the signum function is measurable and locally essentially
bounded, the Filippov solutions of the proposed system dynam-
ics always exist [35]. To avoid symbol redundancy, we do not
use the differential inclusions in the proofs when the Lyapunov
candidates are continuously differentiable due to the following
reason: if the Lyapunov function candidates are continuously
differentiable, the set-valued Lie derivative of them is a singleton
at the discontinuous points and the proof still holds without
employing the nonsmooth analysis [36].

In this article, we convert the considered constrained opti-
mization problem into an unconstrained optimization problem
using the log-barrier penalty functions. That the log-barrier
penalty function involved in (7) is always well defined under
our proposed algorithm is important. This is described in the
next lemma.

Lemma 2: Suppose that Assumptions 2 and 3 and the initial
condition (9) hold. For the system (2) under the controller
(6), each x;(t) belongs to the set D; = {z; € R™ | g;(x;,t) <
0;(t)1,, } forall t > 0. That is, (7) is always well defined.

Proof: Assumption 3 ensures the existence of initial condition
(9). Moreover, the time derivative of VL, (z;,t) is given by

,q; and

V(i t) = 5 VLi(ait) i+ o VL)

= V2L—(xi,t)fvi + %Vﬂi(:ﬂi,t). (13)
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Here, Assumption 2 ensures the existellce of the Hessians of
the penalized functions L;(x;,t),i.e., V2L;(x;, t). Substituting
the solution of (2) with (6) into (13) leads to

i(xi,t) = =0 Z sgn(x; — x;) —-VIL; (24,1).
FEN;

(14)

Then we can use the input-to-state stability [37] to ana-
lyze the system (14) by treating the term —3 3., sgn(z; —
;) as the input and VL;(x;,t) as the state. Since the term

=B en; sgn(z; — x;) is always smaller than n3, it is obvious
that each VL, (z;, t) remains bounded for all ¢ > 0. Note that
(10) implies that YV L;(z;,t) is unbounded at the boundary of
D;. Therefore, it follows from initial condition (9) that each z;
isintheset D; = {z; € R™ | g;(z;,t) < 0;(t)1,, } forallt > 0.
That is, (7) is always well defined. O

In the following, in Lemma 3, we prove that the eventual states
of the agents satisfy the optimal requirement shown in Lemma
1, ie., limy oo S0 VLi(24,t) = 0,,. The goal of problem
(4) is that all the agents’ states reach consensus on the optimal
trajectory, and thus in Lemma 4, we prove that consensus can be
achieved in finite time if all ¢, in the controller (6) are bounded,
i.e., there exists a time 75 such that [|z;(¢) — 1 >zl =
Oforallt > T, ifall ¢; are bounded. Then in Lemma 5, we prove
that all ¢; associated with the system (2) under the controller (6)
are indeed bounded. Finally, in Theorem 1, we present that the
goal in (5) can be achieved, i.e., lim;_,o ||2;(2) — y*(t)[]2 =0
foralli € V.

Lemma 3: Suppose that Assumptions 1,2, and 3 hold, the gain
condition (8) and the initial condition (9) hold. For the system
(2) under the controller (6), the summation of all Vﬂi(mi, t)
exponentially converges to 0,

Proof: 1t follows from Assumption 2 that all f;(z;,t) are
strongly convex in z;. Also it follows from Assumption 2 that all
9ij(z,t) are convex in x;. From gain condition (8), we know
that p;(t) and o;(t) are always positive. Then it follows from
initial condition (9) that L(a:i,t) given by (7) must be con-
tinuously differentiable and strongly convex in z; if x; is in set
D; = {x; € R™| g;(z;,t) < 0;(t)1,, }. Note that Assumptions
2 and 3 and initial condition (9) hold. Lemma 2 has indicated
that this is indeed the case. Therefore, each L; i(x;,t) must be
continuously differentiable and strongly convex in x; based
on our algorithm. Consider the following Lyapunov function
candidate:

Note that the Lyapunov candidate 17 is continuously differ-
entiable. Based on the statements in Remark 7, we do not need
to employ nonsmooth analysis in the stability analysis. Then we
have

" T
-z ix“]

= ot

Z VQii(xi,t)i‘i + GVINzl(.%‘l,t)‘| . (16)

Substituting the solution of (2) with (6) into (16) leads to

livii(xi,t)] ZVQ (4,1) {VQ i(i, )}

-1

+ 8VL (z4,1)

i)+ b B

X Z sgn(z

JEN;

Since the network is undirected (Assumption 1), we have
doic1 B jen, sen(wj — ;) = 0y, for all £ > 0. It follows
that

n T n
Z [~/ JJZ, ‘| l—ZVii($i,t)] :—2W1(t)

which indicates that Wy (t) = e~ 2!Wy(0) for all ¢ > 0. It can
be concluded that W (¢) exponentially converges to zero, and,
thus, 3" | V L;(z;,t) exponentially converges to 0,,,. O

Lemma 4: Suppose that Assumptions 1-3 hold, the gain
condition (8) and the initial condition (9) hold. For the sys-
tem (2) under the controller (6), if' there exists a constant
& such that sup,c(g ) [|6i(t)]|l2 < &, Wi € V and § satisfies
that

2¢mn2|€|

mlnley{ min [(v L) 1]}

where ¢ > 0 is a constant, all the states x; will achieve consensus
in finite time, i.e., there exists a time 75 such that ||z;(t) —
x;(t)]|]2 =0, forallé,j € V and for all t > T.

Proof: Define

[VQE(x,t)r - diag{ [v%l(xl,t)}*l . [VQLn(xn
-1

,1) , x:[xlT,...,xT}T, and <I>:[

n

B> + € (17)

L

Consider the Lyapunov candidate

Wa(t) = || (DT & In) 1. (18)

The solution of (2) with (6) can be written in compact form as

i=—p {VQﬁ(x, t)} - (D ® Iy,)sen [(P" ® I,,) ] + @.
(19)

It is obvious that W5 (t) is locally Lipschitz continuous but
nonsmooth at some points. Then according to Definition 2, the
generalized gradient of W5 (¢) is given by
(D" & 1,,)" {SGN (D7 &1 1,,) o]}

OWa(t) = (20)

lHere Hliniey{imin[(vzi
§et [Amiq[(v2L1)71]7Amin[(v2L2)71]7---
Jmin[(V2L;) 1] is defined in Section TI-A.

i) 1]} denotes the smallest value in the
yAmin[(V2Lyp)71]],  where
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where SGN(-) 2 is the multivalued function defined as (see [36],
20D

1 if z >0,
SGN(z) =< [-1,1] if z =0, (21)
-1 if z <0.

Then based on Definition 3, the set-valued Lie derivative of
Wo(t) is given by

Wa(t) = N

£eSGN[(DT® 1,y )]

¢" (" @ 1,,) K[f] (22)

where  K[f] = ® — 3[V2L(z,t)] (D ® I,,)SGN[(DT @
1, m)az} is the set-valued Filippov map of the dynamical system

(19).

Since there is an intersection operation on the right side of
(22), it follows that as long as Wa (t) is not empty and there exists
¢ € SGN[(DT @ I,,,)x] such that ¢7(DT @ I,,,)f <0, Vf €

K[f], then the result of W5 (¢) falls into the negative half-plane
of the real axis. Arbitrarily choose 1 € SGN[(DT @ I,,)z].
Choose &5, = sgn[(DT @ I,)re] if sgn[(DT @ I,,)kex] # 0
and &, = g if sgn[(DT @ I,,,)e] = 0, where &, and 17, denote

the kth element in vectors & and 1), respectively. If Wa(t) # 0,
suppose that @ € W(t). It follows that

i= —8{& (0" o 1) [VLw0] 0 L)

+¢T (DT @ 1) ®

IN

_ 3 {gT (D” @ 1,,) [VQE(x, t)] T pe Im)g}

+M (D" e 1,)

IN

= Bhin | (VL) | 1D & 1)l + 22l
(23)

If there exists an edge (i, j2) € £ such that z;, # x;,, then
(D & I,,)&|| > 1. It follows that

_ -1 _
a < _ﬂ)‘min |:<V2L> :l + 2¢mn2|€| (24)
i 2¢mn|€| _ _ 2¢mn?E] T
Since g > o e (VI +e= T (VD) ] + ¢, it fol

lows that if there exists an edge (42, j2) € € suchthat x;, # x;,,

then @ < —e. Thus, we can conclude that W (t) < —e if there
exists an edge (i2,j2) € & such that x;,(t) # xj, (). Based on
the Lebesgue’s theory for the Riemann integrability, a function
on a compact interval is Riemann integrable if and only if it
is bounded and the set of its discontinuous points has measure
zero [38]. Therefore, although the time derivative Wg (t) here
is discontinuous at some time points, it is Riemann integrable.

2With the piecewise-differentiable signum function involved in algorithm
(6), the solution of (2) with (6) should be replaced by inclusions at a point
of discontinuity.

Then, we have
t
Wa(t) — Wa(0) = / Wa(r)dr < —et
0

where ¢ > 0, if there exists an edge (i2, j2) € € such that z;, #
x;,. It follows that
Wa(t) < Wa(0) — et (25)

if there exists an edge (iz, j2) € € such that z;, # z;,. Based
on the definition of W5(t) in (18), we have

Wa(t) = (DT ® L)z

S i -l

i=1 jeN;

(26)

Thatis, only if z; () = x;(t) holds for all edges (7, j) € £, we
have W5 (t) = 0. Then it follows from (25) that W5 (t) converges
to zero in finite time and the convergence time is smaller than or
equal to W(0) /e. Also W(t) — 0 implies that ||z; — ;1 —
0 foralli € V and j € NV;. Because the network is undirected
and connected (see Assumption 1), it follows that all agents
reach a consensus in finite time. That is, there exists a time 75
such that [|z;(t) — & >7_, ;(t)[|2 = O foralli € V and for all
t>Ts. O

Lemma 5: Suppose that Assumptions 1-5 hold, the gain
condition (8) and the initial condition (9) hold. For the system (2)
under the controller (6), all ¢; remain bounded. That is, there
exists a constant ¢ such that sup;co ) [|¢i(t)[l2 < ¢, for all
1e V.

Proof: To begin with, we prove that each x;; associated with
the system (2) under the controller (6) remains in a bounded
region, which in turn guarantees that all ¢; are bounded. Here,
z;r € R denotes the kth element in x;. Note that Assumptions
2 and 3, the initial condition (9), and the gain condition (8) hold.
Then using a similar analysis to that in Lemma 3, we have each
L; (z4,1) is continuously differentiable and strongly convex in
;1. Assume that there exists x;; such that x;;, — +ooorx;, —
—oo with the fastest speed among all the elements in x;. Then
due to the strong convexity and the continuous differentiability
of lz,(xl, t), we have V,, L(xz, t) — +o0 as x;; — +oo and
Vzikii(xi,t) — —ooas x;; — —oo. Note that Assumptions 1—-
3, the initial condition (9), and the gain condition (8) hold. Then
it follows from Lemma 3 that it is impossible that all x;; go to
infinity at the same time. Without loss of generality, let us assume
that x;,;, — +o00, where iy = argmaxjev(xjk). It follows that
-0 ZjeMl sgn(x;, kx — xj%) <0 when x;,, — +o00. There-

fore, from (14), it is clear that V% . Li, (;,, t) must be negative
when x;,, — +o00. Similarly, assume that x;,, — —oo, where
iy = argmin;cy, (). It follows that —3 Zj€M2 sgn(Ti,k —
xj) > 0 when x;,;, — —oo. Therefore, inzkiiz (x4,,t) must
be positive when x;,;, — —oc. The decreasing Vwikf/i(asi,t)
when x;; — 400 and increasing V., L;(x;,t) when x;x —
—oo will result in a bounded V,,, L; (x;, t) and, thus, a bounded
Z;r, which contradicts with the unbounded x; assumption.
Hence, all x; must be bounded.
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Then, we will prove that all VL;(x;,t) are bounded for all
time. It follows from Lemma 3 that 7" | V L;(z;,t) is always
bounded. Since all z; are bounded, we have all V f;(z;,t) and
Vgi;(2;,t) must be bounded. Then using an argument similar to
[27], Lemma 2], all W are bounded. Therefore, each

V Li(x;,t) is always bounded for all ¢ > 0 and for all i € V.

Next, we will prove that all [V2L,(z;,t)]"" are bounded
for all time. Since all L; i(x;,t) are continuous differentiable
and strongly convex in its corresponding x;, then based on the
statements in [34, Sec. 9.1.2], we know that all sz/i(:vi,t)
satisfy

m(t)l, < V2Li(x;,t) < M(t)I,

with m(t), M (t) € R, which implies that all [V2L; (z;, )]~
are bounded and positive definite for all ¢ > 0.

Atlast, given that all \” (z4,t) and V2L, (2, t) are bounded
for all time, under Assumptions 4 and 5, it is easy to see that all
%Vﬂi(xi, t) remain bounded for all ¢ > 0.

Since [V2L;(x;,t)]Y, VL;(xi,t), and 2V L;(x;,t) are
bounded forallz € ¥V and for allt > 0, wecan get the conclusion
that ¢;(¢) is bounded for all i € V and for all ¢ > 0. O

Theorem 1: Suppose that Assumptions 1-3 hold, the initial
condition (9) and the gain conditions (8) and (17) hold. For the
system (2) under the controller (6), all the states x; will converge
to the optimal solution y*(¢) in (3) eventually.

Proof: Define

gt)" e R™ = argminZL[y(t),ﬂ

i=1

27)

where L;[y(t), ] is each agent’s penalized objective function
defined by (7). Note that Assumptions 1-5, initial condition
(9), and gain condition (8) hold. It follows from Lemma 5 that
all ¢; associated with the system (2) under the controller (6)
are bounded for all ¢ > 0, which in turn implies that x;(t) =
x;(t), Vi, € Vin finite time according to Lemma 4. Moreover,
based on Lemma 3, we know that lim; ,o, 327 | VL;(x,t) =
0,,. Using a similar analysis to that in Lemma 3, we have that
each L;(z;, t) is continuously differentiable and strongly convex
in ;. Based on Lemma 1, we have

> VL[ (), t] = Op,.
=1

Then it follows that all x; will converge to the optimal solution
g*(t) in (27), i.e., lims o 2;(t) = §*(t), Vi € V.
Define

(28)

g'(t) e R™ = argminz fily(t), ]

i=1

S.t. gij[y(t),t] < O’i(t), VieV,j=1,...,q. (29)

The Lagrangian function of problem (29) can be written as

Lag:z;fi[ +z;z;)‘w ) {9i5ly (), 1] — 0i(t)}
i= i=1j (30)

where A;;(t) > 0 are the Lagrangian multipliers. The corre-
sponding dual function of problem (29) is

gz (2)]
= SL(lg IZfi[ +ZZM )19iily(t), t]—oi(t)}
) " 31

It follows from (10) and (28) that

> VL [ (t),t
i=1
= vai [5°(t)

=0,,.

= v!]u () ]
*ZZ O{oa(t) — g (70, 1)

11_]1

(32)

Define 4;;(t) = pi(t){ai(t)_lgij Gy e see that g (t) min-
imizes the Lagrangian function defined in (30), for X,;(t) =

%i;(t). Therefore, the dual function (31) at point 4;;(t) is

g [ (1]

= A0+ Y0 YR ol (0.1 - ou(0)

i (1)

;

(33)

The last inequality in (33) holds since the dual function
provides a lower bound to the solution of the primal problem
(29).

It follows that

> hilor ).t - < ZZ (). (34)
=1 j=1k=1

Note that y*(t) € R™ is the optimal solution of problem (3).
Then we can use the perturbation and sensitivity analysis in [34,
Sec. 5.9] to analyze problem (29) by treating (29) as a perturbed
version of the problem (3) after including the slack variables
o;(t) in the constraints. Under Assumption 3, the optimal solu-
tion y*(¢) can be characterized using the KKT conditions for all
t > 0. Then we have

S ATRUNII D 9) SESRUMI

j=1k=1
(35
oo and limy_,., 0;(t) = 0 for

Hence, because lim;_, p;(t) =
all7 € V, we have

> Al (o).

lim =0.
t—00

(36)

=3 Al 0.1
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Since we assume that the optimal solution y*(¢) is unique, it
follows that lim;_,, ;(t) = y*(t), Vi € V. O

Remark 8: (Application in unconstrained optimization prob-
lems) As a byproduct, the algorithm (6) can also be used
for distributed unconstrained optimization problems with much
more relaxed assumptions on the objective functions (e.g., those
with nonidentical Hessians) than those in [25]. In particular,
it is applicable to objective functions that are strongly convex
and twice continuously differentiable with respect to x; and
whose partial gradients with respect to time, i.e., %&“’t), are
bounded.

IV. DISTRIBUTED TIME-VARYING OPTIMIZATION WITH
NONLINEAR INEQUALITY AND LINEAR EQUALITY
CONSTRAINTS

In this section, we extend the results in Section III-A to take
into account both time-varying nonlinear inequality and linear
equality constraints. The goal is to design u;(¢) using only local
information and local interaction for system (2), such that all the
agents work together to find the optimal trajectory 7*(¢) € R™
defined as

r(t) =

argmin Z filr(t),t
i=1

st gi[r(t),t] 2 04,, Ai(t)r(t) =bi(t), YieV (37)
where A;(t) € RPi*™ and b;(t) € RP are the local equality
constraint functions. Itis assumed that A;(¢) and b; (¢) are known
only to agent 7 and are continuously differentiable with respect to
t. Here the goal is that each state x;(¢) converges to the optimal

solution r*(t), i.e.,

lim [2;(¢) — 7" ()] = Opn.

t—00

(38)

We need an additional assumption.

Assumption 6: (Full rank condition) The number of the equal-
ity constraints is less than the dimension of the agents’ states,
i.e.,p; < m,andrank(A;) = p;,foralli € V. Andforallt > 0,
there exists at least one 7 such that A;(¢)r = b;(¢) forall i € V.

Assumption 6 ensures that the system of equations
A;(t)x;(t) = b;(t) is consistent and has infinitely many solu-
tions at each ¢ > 0. We assume that the optimal solution 7*(¢)
in (37) is unique for all ¢ > 0. For notational simplicity, we will
remove the time index ¢ from the variables A;(¢) and b;(¢) in
most remaining parts of this article and only keep it in some
places when necessary.

A. Distributed Algorithm Design

In this subsection, we derive a distributed control algorithm
such that (38) holds. In addition, in algorithm (6), it is required
that the upper bounds on auxiliary variable ¢; be known in
advance such that the control gain § can be chosen to satisfy
(17). To remove this restriction, we introduce an adaptive gain
design in the algorithm.

We design the following controller for agent ¢:

u; = —w;(t) [ (@i, t } Z sgn(z; —x;) + ¢;
JEN;
(39a)
5 - 0

¢ = — [V Li(xi,t)} [VL (i,t) + 5V Li(ai, )
(39b)
si(t) =Y sen([las — ;1) (39¢)

JEN;

=—a Z sgnfw; (t) — w;(t)]. (39%)

JEN;

In (39a) and (39b), w;(t) € R is a dynamic gain, and I:l(xz, t)
is the penalized objective function of agent ¢ given by

Z log[o;(t

b3

Iii(xu ) fl Ti,t gij(xivt)]

+ E’HAZ-:@ - (40)
where x; € R-( is a constant gain. Note that (40) includes
the local log-barrier penalty functions and the local quadratic
penalty functions to account for, respectively, the inequality
and equality constraints in (37). In (39c), the gain s,;(t) € R
is adapted according to the state differences between agent @
and its neighbors. The dynamic gain w;(t) is the output of a
distributed average tracking estimator given by (39d) and (39e),
where o € R+ ¢ isaconstant gain, z;(¢) € R is the internal state,
and s;(t) is the reference signal associated with agent 4. In the
next subsection, we will show that the dynamic gain w;(¢) can
help all the agents achieve consensus without knowing certain
prior information. In addition, we have

sz -Tw +Z

+ ri AT (Ajz; — by)

V%%J
— Gij (4, t)]

(xh t) =

(41)

R 9 2 OV gij(wi,t) /0t
= VLi(zi,t) = avf’?(x“t) + ; pi(t)[oi(t) — gij(xi,t)]
ng (m17 )

— Gij (w4,1)]

ngl

. L d-(t)Vgij(a;i,t)
2 pi(t)]oi(t) = gij(wi, t)]?

agm (xm )/3t
glj (.77“ t)]z

j=1
Vgij(x

+

ZZ ool

+ 2I€iAi Azmz —

riAib; — ki Agb; (42)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 06,2024 at 01:28:33 UTC from IEEE Xplore. Restrictions apply.



3940

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 7, JULY 2023

V g” xi,t)

Vzﬁi(l‘u ) — Gij (l’z,t)}

vfz Tyt +Z

ng](xm )Vg”( )
*Zm(t)[ A(8) — i@, D)2

(43)

To make algorithm (39) work, the gain « and the initial internal
states $;(0) and z;(0) need to satisfy

a>n (44)
si(0)>0, VieV (45)
%(0) =0, VieV. (46)

Remark 9: (Reason for adaptive control gains) In algorithm
(6), it is required that the bounds on the auxiliary variables ¢;
be known in advance such that the control gain 3 can be chosen
to satisfy (17). However, these bounds might not be obtained
or estimated accurately in certain circumstances. Therefore, in
algorithm (39), adaptive control gains are designed to remove the
need for using the information of these bounds. The tradeoff is
that the virtual variable w; (¢) need to be communicated between
neighbors to implement algorithm (39).

Remark 10: (Distributed algorithms) Algorithm (39) is dis-
tributed since each agent only needs its own information and
information received from its neighbors. Take agent ¢ as an
example. Agent ¢ uses it own information: x;(t), w;(t), s;(t),
z;(t), and Hessian and gradient information of its penalized
objective function. It is worthwhile to mention that agent ¢ only
needs to know its own penalty parameters: p; (t), o5 (t), and k;(t).
Moreover, agent ¢ needs to know information received from it
neighbors: z;(t) and w;(t), j € N;. While a common control
gain « is needed for all the agents, « is a constant and only
required to be larger than n. The work [39] provides an answer
about how to estimate n in a distributed way.

The estimator given by (39d) and (39e) guarantees that the
gains w; (t) for all agents become uniform after a finite time as
shown in the following lemma.

Lemma 6: Suppose that Assumption 1, the gain condition
(44), and the initial condition (46) hold. For system (2) under
the controller (39), all w;(t) will converge to + 3" i=185(t) in
finite time. That is, there exists a time Tp such that w;(t) =
%Z?:j s;j(t) forall: € V, and t > T.

Proof: The proof is evident based on [28], Th. 1]. O

In the following, for notational simplicity, we will remove the
time index ¢ from s;(t), z;(t), and w;(¢) in most remaining parts
of this article and only keep it in some places when necessary.

B. Convergence Analysis

In this subsection, the asymptotical convergence of the system
(2) under the controller (39) to the vicinity of the optimal solution
in (37) is established. Note that in the case where there only
exist nonlinear inequality constraints, algorithm (6) is capable
of tracking the optimal solution in (3) with a zero tracking error.
Since we use the quadratic penalty functions to account for the
equality constraints, the larger the penalty weight «, the better

the approximation x; to a solution of the original problem (37).
We need an additional assumption.

Assumption 7: (Bounds about equality constraint functions)
The time derivatives of the local constraint parameters are
bounded. Th.at is, there exist constants a and b such that
SUD;e(0,00) [|[Ai(t)[l2 < @ and sup,c(g ) [|6s(£)]|2 < b, for all
1€V, and forall ¢t > 0.

In the following, we give the main results on the distributed
continuous-time optimization with time-varying nonlinear in-
equality and linear equality constraints.

Theorem 2: Suppose that Assumptions 1 to 7 hold, the initial
conditions (9), (45), and (46) hold, and the gain conditions (8)
and (44) hold. For system (2) under controller (39), all the states
x; will converge to the vicinity of the optimal solution 7*(t) in
(37) eventually, i.e., lim;_,, z;(t) = 7*(t), for all ¢ € V, where
sup, ||7*(t) — r*(t)|| < € and ¢ is a constant.

Proof: We first show that (40) is always well defined under
our proposed algorithm (39). The time derivative of V L;(x;, t)
is given by

VIA/Z(I'“ t) = V2f/i($i, t)i'i + %Vi/z(xm t). (47)
Substituting the solution of (2) with (39) into (47) leads to
ViLi(wi,t) = —w; > sgn(x; — x;) — VLi(w:,1).  (48)

JEN;

Then using a similar analysis to that in Lemma 2, we have that
each VL (24,t) must remain bounded for all time, and, thus,
each z; is in the set D; = {z; € R™ | gi(z;,t) < 0:(t)1, } for
all t > 0. That is, (41) is well defined for all t > 0.

Then we show that the agents’ states under controller (39)
satisfy the optimal requirement shown in Lemma 1 eventually. It
follows from Assumption 2 that all f;(z;,t) are strongly convex
in x;. Also it follows from Assumption 2 that all g;;(z;,?)
are convex in z;. From gain condition (8), we know that p; (¢)
and o;(t) are always positive. In addition, from Assumption 6,
we know that AT A; must be positive semidefinite. Note that
k; 1s a positive constant. Therefore, from initial condition (9),
we know that L;(x;,¢) given by (40) must be continuously
differentiable and strongly convex in x; if x; is in the set

; ={z; € R™ | g;(x;,t) < 0i(t)1g, }. The above analysis has
1nd1cated that this is indeed the case. Therefore, each L; i(24,1)
must be continuously differentiable and strongly convex in x;
based on our algorithm (39). Consider the Lyapunov function
candidate

n T n
i=1 i=1

Similarly, based on the statements in Remark 7, there is no need
to employ the nonsmooth analysis. Then we have

[

Z VQI:Z' (xi, t).fi + %Vﬁl(azl, t)‘| . (50)
i=1
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Substituting the solution of (2) with (39) into (50) leads to

iﬁ

T . 1
(s, )1 > Vi Li(wi,t) { (VA Li(at)
i=1

+§VL (z4,1)

X W Z sgn(x;

JEN;

— ) + ¢

Notice that Assumption 1, the initial condition (46), and the
gain condition (44) hold, it follows from Lemma 6 that w; = wy,
foralli, j € Vandforallt > Tj. Since the network is undirected
(Assumption 1), we have Y i, w; Yo, sgn(z; — ;) = Oy,
for all t > T}. Then for all t > Tj, we have

n T n
> Vii(a, t)] [ > VLi(xs, t)] = —2W;(t)

indicating that W3 (t) = e~ 2(t=To)WW5(Ty) for all t > Ty. The
time derivative of Vﬁi(xi, t) is given by (47). It follows that
each Vﬁi(xi, t) is bounded at all time. Therefore, W3(Tp) is
bounded. Then it can be concluded that W3(t) exponentially
converges to zero, and, thus, >"7 | Vf,i(xi,t) exponentially
converges to 0,

Next, we show that all z; remain bounded under algorithm
(39). Based on (39¢)—(39¢), the time derivative of w;(t) is given
by

w;(1) (t) + si(t)
= _O‘Z sgnfw; () — w;(t)]
JEN;
+ ) sen(l|zi(t) — z;(8)]1)
JEN;

It follows that iy, (t) must be nonnegative, where wmin (t) is
defined as min; w; (¢). The reason is that sgn[wmin () — w; (t)]
must be nonpositive. Note that w; (0) = z;(0) + s;(0). It follows
from (45) and (46) that w,;(0) > 0, Vi € V, which in turn guar-
antees that Wiy (¢) and thus all w; (¢) are positive for all ¢ > 0.
Then similar to the proof in Lemma 5, we have that all z; remain
bounded for all £ > 0. Given the above results and Assumption
7, using similar analysis to that in Lemma 5, it is easy to prove
that each ¢, (¢) is bounded for all the time.

Next, we show that all the agents reach a consensus
in finite time. Consider any edge (i,j) € €. Let 0 <7} <
t, < t¥ <t < --- denote the contiguous switching times

such that x; # x; during the time interval {tzjl,t;é] and
x; = x; during the time interval [tiQ,t;CJH 1), k=1,2,...
From the dynamics of s; in (39c), it is easy to see that
DN, Dohet (tij — tij> + s;(0). It follows from
Lemma 6 that w;(t) = w;(t) = £ 31 si(t
V and for all t > T;. If for all edges, > ,_; (t;jQ - t;jl)

0o, Y(i,j) €&, it is clear that t;ﬁg - t?l — 0 as k — oo.
Since the graph is connected (Assumption 1), it follows
that consensus can be achieved eventually. If there exists an

si(00) =

) for all 4,j €

edge (i,j) such that > o, (th - tfcjl) = o0, then we have
s5i(00) = oo and w;(00) = w;(oc0) = oo for all 4, j € V. Then
there must exist a time 7 > Tp such that w; (T7) = w;(T7) >

—— {iﬁf’w[‘(g' 7oy foralld, j € Vandall ¢ > 7). Then sim-
ilar to the proof of Lemma 4, we have that all agents reach a
consensus in finite time, i.e., there exists a time 75 such that
lzi(t) — x;(t)||2 = O forall t > Tb.

Now, we show that all the agents with the system (2) under the
controller (39) converge to the vicinity of the optimal solution

r*(t) in (37). Define

7(t) e R™ = argminz ii[r(t)a t]

i=1

where L;[r(t),t] is each agent’s penalized objective function
defined by (40). Summarizing the above analysis and similar
to the analysis in Theorem 1, it follows from Lemma 1 that all
x; converge to the optimal solution 7*(t), i.e., lim;_,o x;(t) =
7(t), Vi € V.

Define

7(t) € R™ = argmin 3 filr (1), 1) bl

i=1

S.t. gij[T(t),t] < O'i(t), VieV,j=1,...,q.

+ Sl ()

Similar to the analysis in Theorem 1, we know that

n

> {F @0+ il @ - bl

=1

—znj{fz (1),

qj

<2 250

j=1k=1

+ SHlAF(8) - b3}

Define

()" eR™ = argminz filr(®), ] + bil|3

i=1

S.t.gij($i7t) <0, VieV,j=1,...,q.

SlAir(t) -

(51)
Then based on [34, Sec. 5.9], we have

n

S-{AlF .0+ S (0) - b3 |

i=1

—i{fz ),t

n

<33 0oy

j=1k=1

SAF @) - bill3}

where A j;, (¢) are the Lagrangian multipliers corresponding to the
inequality constraint defined in (51), and A%, (t) are the optimal
Lagrangian multipliers. Hence, because lim; ., p;(t) = oo and
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ot
Fig. 1. Undirected graph.

lim; o 0;(t) = 0 for all ¢ € )V, we have

lim
t—00

> (£l @08+ S1A7 @O —bl3}

n

p> (A @0+ S 147 (1) - bl }| =0

which indicates that lim,_,, ;(t) = 7*(¢), Vi € V. Then based
on the standard quadratic penalty theory [34], 7*(¢) is in the
neighborhood of the optimal solution r*(¢) € R™ in (37),
ie., limy oo () = 7*(¢), for all 4 € V, where sup, ||7*(t) —
r*(t)|| < e with € being a constant. And the larger the penalty
parameters k;, the smaller of €. The conclusion of the theorem
then follows by combining the above statements. 0

V. NUMERICAL SIMULATION RESULTS

In this section, the proposed distributed time-varying con-
strained optimization algorithms are illustrated through two
simulation cases. In both cases, we consider a network with
n =12 and m = 2. The network topology is shown by the
undirected graph in Fig. 1. Let z; = [z7,"]" € R2 denote the
states of each agent. Agent ¢ is assigned a local objective function
fi =L aP(t) +isin(t)]” + 2 [yP(t) —icos(t)], i € V.

First, we show the simulation result using algorithm
(6). Assume that agent j is assigned a constraint function
Y5 (t) — xf(t) — cos(t) <0, forall j € [1,2,...,6], and agent
k is assigned a constraint function z% (¢)y} (t) — 5t <0, for
all k € [7,8,...,12]. All the initial states 2% (0) and y?(0) are
generated randomly from the range [—5, 5]. We choose 8 = 15,
pi(t) = 10exp(0.05¢) and o;(t) = 30exp(—t) for all i € V.
Therefore, the initial condition (9) and the gain condition (8) are
satisfied. The state trajectories of the agents are shown in Fig. 2.
We can see that all the agents track the optimal trajectory even-
tually which is consistent with Theorem 1. The constraint result
is shown in Fig. 3. In our simulation, agents 1-6 are assigned the
constraint function y? (t) — z¥(t) — cos(t) <0, i € [1,...,6];
so all y?(t) — 2 (t) — cos(t) — oy(t), i €[1,...,6] always
remain negative. Agents 7-12 are assigned the constraint
function 2(t)y?(t) —5t <0, ie[7,...,12], and, thus,
all 2P(t)y?(t) — 5t — oy(t), i €[7,...,12] always remain
negative.

We then show the simulation result using algorithm (39).
Assume that agent j is assigned a constraint function yg' (t) —
2l (t) — cos(t) <0, for all j € [l,...,6], and agent k is as-
signed a constraint function yj (t) 4+ % (t) —t — 3 = 0, for all
k € [7,...,12]. The initial states 2¥(0) and y?(0), i € V are

t
(b)

Fig. 2. State trajectories of all the agents with system (2) under con-
troller (6). The red dashed line is the optimal solution and the other solid
lines are the trajectories of all agents’ states.
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Fig. 3. Plots of the constraint results with system (2) under
controller (6).

generated randomly from the range [—5,5]. We choose k =
12, = 15, p;(t) = 10exp(0.05¢t), o;(t) = 30exp(—t), and
2;(0) =0, s;(0) = 5 for all ¢ € V. Therefore, initial condition
(9), the initial conditions (45), and (46) and the gain conditions
(8) and (44) are satisfied. The state trajectories of the agents
are shown in Fig. 4. We can see that all the agents converge
to the vicinity of the optimal trajectory eventually which is
consistent with Theorem 2. The constraint results are shown
in Fig. 5. In our simulation, agents 1-6 are assigned the con-
straint function y? (t) — 2¥(t) — cos(t) < 0,7 € [1,...,6], and
thus all y?(¢) — 2¥(t) — cos(t) — o;(t), i € [1,...,6] always
remain negative. Moreover, all the equality constraint functions
yl(t) +af(t) —t—3, i € [7,...,12] converge to the neigh-
borhood of the zero line eventually.

VI. APPLICATION TO MULTIROBOT MULTITARGET NAVIGATION
PROBLEM IN CLUSTERED ENVIRONMENT

The introduced framework, distributed continuous-time time-
varying constrained optimization, is of great significance in
motion coordination. In this section, we apply the proposed
optimization algorithm (6) to a class of the motion coordination
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Fig. 4. State trajectories of all the agents with system (2) under con-  Fig. 7. Information flow in our multirobot multitarget navigation experi-
troller (39). The red dashed line is the optimal solution and the other  ments.
solid lines are the trajectories of all agents’ states.
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Fig. 5. Plots of the constraint results with system (2) under
controller (39).

>
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Fig. 6. Multirobot multitarget navigation problem.

problems: the multirobot multitarget navigation problem. As
shown in Fig. 6, let us consider a closed and convex workspace
W € R2. Consider the scenario where there are n disk-shaped
robots (blue quadrotors) with center positions ;,i € [1,...,n]
and radius 7; > 0,7 € [1,...,n] and k moving targets (red
triangles) in an unknown space having obstacles inside. The
objective here is to have the robots stay close while simultane-
ously ensuring that each independent moving target stays in the

detection range of at least one robot. Assume that the workspace
is populated with ) nonintersecting spherical obstacles (black
circles), where the center and radius of the ith obstacle are
denoted by o; € W and r{ > 0, respectively. Since there are
unknown obstacles in the environment, we have to guarantee no
collisions during the tracking process.

We define the so-called collision-free local workspace around
x; as [27]

LE(z;)={peW:aj(z;)"p—bj(z;) <0,j=1,...,Q}
(52)
where
_ R
aj(zi) = 05 — xi, O(x;) = 57 W7
Xr; — 04
by(w:) = (05 =@)" |80, + (1= )i + iy
i Jj
(53)

In order to have the robots stay close while simultaneously
ensuring that each target stays in the sensing range of at least
one robot, one method is to let all the robots assemble in the
geometric center of all the targets with deviation vectors intro-
duced to each robot. We tackle the navigation task by solving
the following optimization problem with nonlinear inequality
constraints:

n
min Y f; = ||z -
i

st. x; =z Vi,keY,

T3
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Simulation result with Crazyswarm simulator. (a) Initial positions of all the crazyflies (blue circles) and all the targets (red stars). (b)—(e)

Trajectories of all the crazyflies up to time instances 25, 50, 75, and 100 s. The positions of all the crazyflies and all the targets at each time instance
are represented by blue circles (crazyflies) and red stars (targets). (f) Geometric center trajectory of all the crazyflies (blue line) and the geometric

center trajectory of all the targets (red line).

where T;(t) is the geometric center of all the moving targets
that robot ¢ can sense and ¢; is the number of obstacles that
robot ¢ can sense. Note that a robot might not be able to sense
all the Q) obstacles in the workspace, but it is safe enough
to stay in the collision-free area determined by the nearby
obstacles. Since a;(x;) and bj(x;) depend on the position
of robot 7, the above optimization problem has an implicit
dependence on time through x;. However, it is very hard to
directly address the inequality constraints in (54) due to the
complexity of a;(x;) and b;(z;) given by (53). Therefore, here,
we treat a;(x;) and b;(z;) as a;(t) and b;(¢). Based on (7),
the corresponding penalized objective function is defined as
Li= filws,t) — 215 50 log{ou(t) — a;(t)7w; + by(1)). If
the communication topology between the robots is undirected
and connected, problem (54) satisfies all the Assumptions 1—
5 in Theorem 1. Therefore, for robots with single-integrator
dynamics defined by (2), the proposed constrained optimization
algorithm (6) can be applied to reach on agreement at the
geometric center of the targets and spread the robots in a desired
formation about this center. Therefore, we introduce an offset
vector ¢; for each robot ¢ and replace z; in algorithms (6) with
x; — 0;. Here, ; — 0; defines the desired relative position from
robot j to robot ¢ in the formation.

Our proposed algorithm is tested in the experiment with
five Crazyflies 2.1 quadrotors [41] in an indoor environment.
The experimental setup is shown in Fig. 7. We consider five
quadrotors moving in 2-D space controlled by velocity com-
mands [v7, v}]. Therefore, all the Crazyflies follow the single-
integrator dynamics given by (2). We use the Vicon positioning
system [42] coupled with the extended Kalman filter to estimate
their positions [z%, y¥]. Here, the control system is divided into

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on

two parts, namely, high level and low level. The high-level
control involves the setup of the network topology, calculation
of the targets’ positions and velocities, capture of the obstacles’
positions, implementation of the distributed constrained opti-
mization algorithm, and generation of the velocity commands
[vF,v?]. The low-level control is responsible for achieving the
velocity commands (by using the Mellinger controller [40]).

The host computer is used to run the high-level controller
because the crazyflies used in the experiments do not have
sufficient computation capability to run the controller in real
time. However, it should be noted that the restrictions of a
distributed environment are fully considered and the defined
distributed network topology is emulated. Five nodes under the
robotics operating system are established to control the five
crazyflies in parallel. The communication topology between the
crazyflies is shown in Fig. 8.

In our experiment, a 5 X 5 m“ area is used to implement
the experiment. To simplify the experiment, we assume that
each crazyflies is only assigned one target moving in the en-
vironment. Note that our algorithm still works for multiple
targets since we only care about the geometric center of all the
targets that the crazyflie can sense. The obstacles are located
at o = [—2.1m, —0.5 m] and 0 = [1.8 m, 1.6 m] with radius
7Y = 0.9 m, and 7 = 0.7 m. Each crazyflie is able to sense an
obstacle if any point of the obstacle falls into the circle with the
center being the crazyflie position and the radius being 1.0 m.
The offset vectors are chosen as

2

d1 = [0.2sin(0.27) m, —0.2 cos(0.27) m]T,
89 = [~0.2sin(0.27) m, —0.2 cos(0.27) m]”,
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Experimental result with crazyflies. (a) Initial positions of all the crazyflies (blue circles) and all the targets (red stars). (b)—(e) Trajectories

of all the crazyflies up to time instances 25, 50, 75, and 100 s. The positions of all the crazyflies and all the targets at each time instance are
represented by blue circles (crazyflies) and red stars (targets). (f) Geometric center trajectory of all the crazyflies (blue line) and the geometric

center trajectory of all the targets (red line).

63 = [~0.2 cos(0.17) m,0.2sin(0.17) m] 7,
64 =[0m,0.2m|T,
85 = [0.2 cos(0.17) m, 0.2 sin(0.17) m]” .

The initial positions of the five crazyflies are chosen as x1(0)
=[-04m,04m], z2(0) = [-1.1m,0.4m], z3(0) = [-1.1
m,1.1 m], a4(0)=[-04 m,1.1 m], and x5(0)=
[0.3 m, 1.1 m]. We choose p;(t) = 125exp(0.01t), 0;(t) = exp
(—t), and S =>5. The trajectories of the crazyflies in the
Crazyswarm simulator [41] and in the experiment are,
respectively, shown in Figs. 9 and 10. In both figures, the
black circles are obstacles and the blue lines are the trajectories
of the crazyflies. Subplots (a)—(e) show the trajectories of all
the crazyflies up to time instances 0, 25, 50, 75, and 100 s. In
addition, five snapshots at 0, 25, 50 s, 75, and 100 s denoted
by the red stars (targets) and blue circles (crazyflies) are
shown in subplots (a)—(e). It is obvious that all the crazyflies
assemble together and avoid obstacles successfully both in the
Crazyswarm simulator and real experiment. Subplot (f) shows
the trajectories of the geometric center of all the crazyflies
(blue line) and all the targets (red line). In the Crazyswarm
simulator, the geometric center of all crazyflies are able to
track the geometric center of all the targets with zero tracking
error which are consistent with Theorem 1. In our experimental
result, the crazyflies tremble slightly in flight and the geometric
center of all crazyflies are able to track the geometric center
of all the targets with small tracking error (about 0.001 m).
It is worthwhile to mention that the trembling phenomena
and tracking error in the experiment might stem from the
time-delay of communication with the Vicon system and failure
of achieving the velocity commands accurately.

VII. CONCLUSION

In this article, we have studied the distributed continuous-time
constrained optimization problem with time-varying objective
functions and time-varying constraints. The goal is for a set of
networked agents to cooperatively track the time-varying opti-
mal solution that minimizes the summation of all the local time-
varying objective functions subject to all the local time-varying
constraints, where each agent has only local information and
local interaction. We have proposed distributed sliding-mode al-
gorithms built on the Hessian-based optimization methodology.
We have shown that asymptotical convergence to the optimal
solution or its vicinity is guaranteed under some reasonable as-
sumptions. Both numerical simulation results and experimental
results are given to illustrate the theoretical algorithm.
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