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Abstract—This article is devoted to the distributed
continuous-time optimization problems with time-varying
objective functions and time-varying constraints. Different
from most studied distributed optimization problems with
time-invariant objective functions and constraints, the op-
timal solutions in this article are time varying and form
a trajectory. First, for the case where there exist only
time-varying nonlinear inequality constraints, we present
a distributed control algorithm that consists of a sliding-
mode consensus part and a Hessian-based optimization
part coupled with the log-barrier penalty functions. The
algorithm can guarantee the asymptotical tracking of the
optimal solution with a zero tracking error. Second, we ex-
tend the previous result to the case where there exist not
only time-varying nonlinear inequality constraints but also
linear equality constraints. An extended algorithm is pre-
sented, where quadratic penalty functions are introduced
to account for the equality constraints and an adaptive con-
trol gain is designed to remove the restriction on knowing
the upper bounds on certain information. The asymptotical
convergence of the extended algorithm to the vicinity of
the optimal solution is studied under suitable assumptions.
The effectiveness of the proposed algorithms is illustrated
in simulation. In addition, one proposed algorithm is ap-
plied to a multirobot multitarget navigation problem with
experimental demonstration on a multicrazyflie platform to
validate the theoretical results.

Index Terms—Continuous-time optimization, distributed
time-varying optimization, multirobot multitarget naviga-
tion, time-varying constraints.

I. INTRODUCTION

A. Background

Distributed optimization algorithms allow for decomposing

certain optimization problems into smaller, more manageable

subproblems that can be solved in parallel. Therefore, they are

widely used to solve large-scale optimization problems such

as optimization of network flows [1], big-data analysis [2],
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design of sensor networks [3], multirobot teams [4], and resource

allocation [5]. There has been significant attention on distributed

convex optimization problems, where the goal is to coopera-

tively seek the optimal solution that minimizes the sum of private

convex objective functions available to each individual agent. In

this context, discrete-time distributed optimization algorithms

have been studied extensively (see, e.g., [6], [7], and references

therein).

There exists another body of literature on distributed

continuous-time optimization algorithms (see, e.g., [8]–[15]).

The distributed continuous-time optimization algorithms have

applications in coordinated control of multiagent teams. For

example, multiple physical robots modeled by continuous-time

dynamics might need to track a team optimal trajectory. Note that

most studies in the literature focus on stationary optimization

problems in which both the objective functions and constraints

do not explicitly depend on time. However, in many applications,

the local performance objectives or engineering constraints may

evolve in time, reflecting the fact that the optimal solution could

be changing over time and create a trajectory (see, e.g., [16]–

[19]), which makes the design and analysis much more complex.

Moreover, in practical optimization problems, constraints are

sometimes inevitable. In this article, we are interested in the

distributed continuous-time algorithms for time-varying con-

strained optimization problems.

B. Related Works

There are just a few works in the literature addressing the

distributed continuous-time optimization problem with time-

varying objective functions [20], [21], [22], [23], [24], [25],

[26]. Specifically, [20] and [21] solve the distributed continuous-

time time-varying optimization problems with convex set con-

straints. However, [20] and [21] are limited to solve, respec-

tively, optimization problems with quadratic objective func-

tions and linear programming optimization problems. More-

over, both [20] and [21] can only achieve bounded tracking

errors to the optimal solutions. The work [22] addresses a

Nash equilibrium seeking problem for noncooperative games

where the Nash equilibrium under consideration can be time

varying. However, [22] does not consider state constraints in

the game problems. Distributed time-varying resource allocation

problems are studied in [23] and [24], where time-varying ob-

jective functions or time-varying loads are considered. However,

both [23] and [24] do not consider nonlinear inequality state
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constraints. Recently, the second-order optimization methods

are proven to work well in centralized time-varying optimiza-

tion problems (see, e.g., [18], [19], and [27]). However, their

use in distributed settings has been prohibited as they require

global information of the network to compute the inverse of the

global Hessian matrix. The works [25] and [26] solve the dis-

tributed time-varying optimization problems using second-order

optimization methods. However, the algorithm in [26] and the

consensus-based algorithm in [25] (Section III-B) are limited to

the unconstrained problem with local objective functions that

have identical Hessians. While the estimator-based algorithm

in [25] (Section III-C) can deal with certain objective functions

with nonidentical Hessians, it relies on the distributed average

tracking techniques [28] and hence poses restrictive assumptions

that the time derivatives of the Hessians and the time derivatives

of the gradients of the local objective functions exist and be

bounded. In addition, because the estimator-based algorithm has

to estimate the Hessian inverse of the global objective function,

it necessitates the communication of certain virtual variables

between neighbors with increased computation costs. While it

is possible to convert the constrained optimization problem to an

unconstrained one using penalty methods, the resulting penal-

ized objective functions would not have identical Hessians due

to the involvement of the nonuniform local constraint functions

(even if the original objective functions would), and they might

not satisfy the restrictive assumptions mentioned above. As a re-

sult, the algorithms in [25] and [26] cannot be applied to address

the distributed time-varying constrained optimization problem

(see Remark 4 for a more detailed comparison). For distributed

time-varying optimization algorithms in discrete-time settings,

the readers are referred to [29] and [30]. It is worth mentioning

that in the literature on discrete-time time-varying optimization

algorithms, all the works can only achieve bounded tracking

errors, which are usually related to the sampling rate or step

size. The continuous-time and discrete-time algorithms serve in

different application domains. In this article, we focus on the

continuous-time algorithms, which have applications especially

in motion coordination.

C. Contributions

This article aims to develop distributed algorithms to solve

the continuous-time optimization problems with private time-

varying objective functions and private time-varying constraints.

In this article, the distributed time-varying optimization prob-

lems are deformed as a consensus subproblem and a minimiza-

tion subproblem on the team objective function. First, for the

case where there exist only time-varying inequality constraints,

we develop a sliding-mode method with a Hessian-dependent

gain for all the agents to achieve consensus on the states. Mean-

while, a Hessian-based (second-order) optimization method

coupled with the log-barrier penalty functions is proposed to

track the local time-varying optimal solution. Although [27]

and [31] also use log-barrier penalty functions to address the

inequality constraints, to the best of our knowledge, our article

is the first to leverage the log-barrier penalty functions to the

distributed time-varying optimization problems. To implement

the algorithm, each agent just needs its own state and the relative

states between itself and its neighbors. When the agents’ states

are their positions, the algorithm can be implemented based on

purely local sensing (e.g., absolute and relative positions) with-

out the need for communicating virtual variables. The asymptot-

ical convergence to the optimal solution is established based on

nonsmooth analysis, Lyapunov theory, and convex optimization

theory. To the best of our knowledge, this is the first article in

the literature on distributed continuous-time optimization with

time-varying inequality constraints that guarantee zero tracking

errors. Furthermore, we extend the previous result with the

following improvements. We add quadratic penalty functions

to account for equality constraints to make the algorithm be

applicable to more general problems and we present an adaptive

control gain design under which the restriction on knowing the

upper bounds on certain prior information is removed. And the

asymptotical convergence of the extended algorithm to the vicin-

ity of the optimal solution is studied under suitable assumptions.

Both numerical simulation and real experimental results are

presented to illustrate the effectiveness of the theoretical results.

Some preliminary results of this article (Section III: Dis-

tributed time-varying optimization with nonlinear inequality

constraints) are presented in [32]. This article extends [32] by

considering not only time-varying nonlinear inequality con-

straints but also linear equality constraints. In addition, an adap-

tive control gain is designed to remove the restriction on knowing

the upper bounds on certain information. It is worthwhile to

mention that additional numerical examples and experimental

results are also presented in the current article.

This article is organized as follows. In Section II, we present

notation, preliminaries on graph theory, and nonsmooth analysis.

We present the main results on the distributed continuous-time

algorithms for the time-varying constrained optimization prob-

lems in Sections III and IV. Some numerical examples and exper-

imental results are presented in Sections V and VI, respectively.

Conclusions are drawn in Section VII.

II. PRELIMINARIES

A. Notation

Let R,Rn, and R
n×m denote the sets of real numbers, real

vectors of dimension n, and real matrices of size n×m, re-

spectively. Let R>0 represent the set of positive real num-

bers. The cardinality of a set S is denoted by |S|. Let 1n

(respectively 0n) denote the vector of n ones (respectively n
zeros), and In denote the n× n identity matrix. For a matrix

A ∈ R
m×n, [A]k• ∈ R

1×n is the kth row of A, and AT (re-

spectively A−1) is the transpose (respectively inverse) of A.

For a square matrix A ∈ R
n×n, λ̄min(A) represents a positive

value that is smaller than all the eigenvalues of A. For a vector

h = [h1, . . . , hn]
T ∈ R

n, diag(h) ∈ R
n×n represents the diag-

onal matrix with the elements in the main diagonal being the

elements of h, ‖h‖p represents the p-norm of the vector h,

B(h, δ) represents the open ball of radius δ centered at h, and

sgn(h) = [sgn(h1), . . . , sgn(hn)]
T , where sgn(hi) denotes the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 06,2024 at 01:28:33 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: DISTRIBUTED CONTINUOUS-TIME ALGORITHMS FOR TIME-VARYING CONSTRAINED CONVEX OPTIMIZATION 3933

signum function defined as

sgn(hi) =

⎧

⎨

⎩

−1 if hi < 0,
0 if hi = 0,
1 if hi > 0.

For vectors h ∈ R
n and c ∈ R

n, h � c (respectively h ≺ c)
means that hi ≤ ci (respectively hi < ci) for all i ∈ [1, n]. The

Lebesgue measure of N is denoted by µ(N). Let B(h, δ) be

the open ball of radius δ centered at h. Let ⊗ denote the

Kronecker product and co the convex closure. Let ∇f(h, t)
and ∇2f(h, t) denote, respectively, gradient and Hessian of

function f(h, t) with respect to the vector h. Let ∂f(h, t)/∂t
represent the partial derivative of function f(h, t) with respect

to t. Let ḟ(h, t) be the time derivative of f(h, t). That is,

ḟ(h, t) = ∇f(h, t)ḣ+ ∂f(h, t)/∂t.

B. Graph Theory

An undirected graph is denoted by G = (V, E ,A), where

V = {1, . . ., n} is the node set, E ⊆ V × V is the edge set, and

A = [aij ] ∈ R
n×n is the weighted adjacency matrix with entries

aij , i, j ∈ V . For an undirected graph, an edge (j, i) implies that

node i and node j are able to share data with each other, and

aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here, aij = aji.
Let Ni = {j ∈ V : (j, i) ∈ E} denote the set of neighbors of

node i. A path is a sequence of nodes connected by edges. An

undirected graph is connected if for every pair of nodes there is a

path connecting them. The Laplacian matrix L = [lij ] ∈ R
n×n

associated with A is defined as lii =
∑n

j=1,j 
=i aij and lij =

−aij , where i 
= j. The incidence matrix D = [dij ] ∈ R
n×|E|

associated with G is defined as dik = −1 if the kth edge leaves

node i, dik = 1 if it enters node i, and dik = 0 otherwise. For the

incidence matrix of an undirected graph, the orientation of the

edges is assigned arbitrarily. Note that for an undirected graph,

L1n = 0n, LT = L, and L = DDT .

C. Nonsmooth Analysis

In this subsection, we recall some important definitions of the

nonsmooth systems that will be exploited in our main result.

Definition 1: (Filippov Solution) [33] Consider the vector

differential equation

ẋ = f(x, t) (1)

where f : R
d × R → R

d is Lebesgue measurable and locally

essentially bounded. A vector function x(·) is called a Filippov

solution of (1) on [t0, t1], if x(·) is absolutely continuous on

[t0, t1] and for almost all t ∈ [t0, t1], ẋ(t) ∈ K[f ](x, t), where

K[f ](x, t) :=
⋂

δ>0

⋂

µ(N)=0 cof(B(x, δ)−N, t) is the Filip-

pov set-valued map of f(x, t) and
⋂

µ(N)=0 denotes the inter-

section over all sets N of Lebesgue measure zero.

Definition 2: (Clarke’s Generalized Gradient) [33] Consider

a locally Lipschitz continuous function V (x) : R
d → R, the

generalized gradient of the functionV at x is given by ∂V (x) :=
co{lim∇V (xi)|xi → x, xi 
∈ ΩV }, where ΩV is the set of

Lebesgue measure zero where the gradient of V is not defined.

Definition 3: (Chain Rule) [33] Let x(·) be a Filippov solu-

tion of ẋ = f(x, t) and V (x) : R
d → R be a locally Lipschitz

continuous function. Then for almost all t

d

dt
V [x(t)] ∈ ˙̃V

where
˙̃V is the set-valued Lie derivative defined as

˙̃V :=
⋂

ξ∈∂V ξTK[f ].

III. DISTRIBUTED TIME-VARYING OPTIMIZATION WITH

NONLINEAR INEQUALITY CONSTRAINTS

Consider a network consisting of n agents. Each agent is

regarded as a node in an undirected graph, and each agent can

only interact with its local neighbors in the network. Suppose that

each agent satisfies the following continuous-time dynamics:

ẋi(t) = ui(t) (2)

where xi(t) ∈ R
m is the state of agent i, and ui(t) ∈ R

m is the

control input of agent i. In this section, we study the distributed

time-varying optimization problem with time-varying nonlinear

inequality constraints. The goal is to design ui(t) using only

local information and interaction, such that all the agents work

together to find the optimal trajectory y∗(t) ∈ R
m which is

defined as

y∗(t) = argmin

n
∑

i=1

fi[y(t), t]

s.t. gi[y(t), t] � 0qi , i ∈ V (3)

where fi[y(t), t] : R
m × R>0 → R are the local objective func-

tions, and gi[y(t), t] : R
m × R>0 → R

qi are the local inequality

constraint functions. It is assumed that fi[y(t), t] and gi[y(t), t]
are known only to agent i. We assume that the minimizer y∗(t)
is unique for each t (see Assumption 2).

If the underlying network is connected, the above problem (3)

is equivalent to the problem that all the agents reach consensus

while optimizing the team objective function
∑n

i=1 fi[xi(t), t]
under constraints, more formally,

x∗(t) ∈ R
m∗n = argmin

n
∑

i=1

fi[xi(t), t]

s.t. gi[xi(t), t] � 0qi , xi(t) = xj(t), ∀i, j ∈ V (4)

where x(t) ∈ R
m∗n is the stack of all the agents’ states. Here,

the goal is that each statexi(t), ∀i ∈ V , converges to the optimal

solution y∗(t), i.e.,

lim
t→∞

[xi(t)− y∗(t)] = 0m. (5)

Remark 1: (Examples of applications) This architecture of

the distributed time-varying constrained optimization problem

(3) with networked agents finds broad applications in dis-

tributed cooperative control problems, including multirobot nav-

igation [16], [17] and resource allocation of power network [19].

For example, in a motion coordination case, knowing only their

own and their neighbors’ positions, multiple unmanned aerial

vehicles (UAVs) might need to dock at a moving location without

collision such that the total team performance is optimized. Here,

the constraints can denote that the UAVs need to be located in

safe areas.
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For notational simplicity, we will remove the time index t
from the variables xi(t) and ui(t) in most remaining parts of

this article and only keep it in some places when necessary.

Lemma 1: [34] Let f(r) : Rm → R be a continuously dif-

ferentiable convex function with respect to r. The function f(r)
is minimized at r∗ if and only if ∇f(r∗) = 0.

We make the following assumptions which are all standard in

the literature and are used in recent works like [25], [26], and

[27].

Assumption 1: (Graph connectivity) The graph G is fixed,

undirected, and connected.

Assumption 2: (Convexity) Assume the following.

1) All the objective functions fi(xi, t) and the inequality

constraint functions gi(xi, t) are twice continuously dif-

ferentiable with respect to xi and continuously differen-

tiable with respect to t.
2) All the objective functions fi(xi, t) are uniformly

strongly convex in xi, for all t ≥ 0.

3) All the constraint functions gi(xi, t) are uniformly convex

in xi, for all t ≥ 0.

4) The optimal solution exists and such that is unique.

Assumption 3: (Slater’s condition) For all t ≥ 0, there exists

at least one y such that gi(y, t) ≺ 0qi for all i ∈ V . Therefore,

the Slater’s condition holds for all time.

By Assumption 3, the interior of the feasible region is

nonempty for all t ≥ 0 and the optimal solution y∗(t) in (3) at

each t ≥ 0 can be characterized using the Karush–Kuhn–Tucker

(KKT) conditions.

A. Distributed Algorithm Design

In this subsection, we derive our distributed control algorithm

for the time-varying constrained optimization problem in (4).

We design the following controller for agent i:

ui = − β
[

∇2L̃i(xi, t)
]−1 ∑

j∈Ni

sgn(xi − xj) + φi(t)

φi(t) = −
[

∇2L̃i(xi, t)
]−1

[

∇L̃i(xi, t) +
∂

∂t
∇L̃i(xi, t)

]

(6)

where β ∈ R>0 is a fixed control gain, and L̃i(xi, t) is a penal-

ized objective function of agent i, defined as follows:

L̃i(xi, t) = fi(xi, t)−
1

ρi(t)

qi
∑

j=1

log[σi(t)− gij(xi, t)] (7)

where gij(xi, t) : R
m × R>0 → R denotes the jth component

of function gi(xi, t), ρi(t) ∈ R>0 is time-varying barrier param-

eter, and σi(t) ∈ R>0 is a time-varying slack function satisfying

ρi(t) = ai1e
ai2t, σi(t) = ai3e

−ai4t, ai1, ai2, ai3, ai4 ∈ R>0.
(8)

Note that the domain of the penalized objective function

L̃i(xi, t) isDi = {xi ∈ R
m | gi(xi, t) ≺ σi(t)1qi}. This would

require that the dynamical system (2) with controller (6) is

initialized at a point inside Di(0), i.e., xi(0) ∈ Di(0). It is

worthwhile to mention that the introduction of σi(t) is to enlarge

the initial feasible set. To make the algorithm (6) work, the initial

states xi(0) need to satisfy

gij [xi(0), 0] < σi(0), ∀i ∈ V, j = 1, . . . , qi. (9)

We will prove that the dynamical system (2) is well defined

under controller (6), initial condition (9), and certain other

assumptions (see Lemma 2).

Remark 2 (Roles of terms in (6)): In this article, the

time-varying optimization problem (4) is deformed as a con-

sensus subproblem and a minimization subproblem on the

team objective function. We develop a distributed sliding-

mode control law to address the consensus part. That is,

the role of term −β
[

∇2L̃i(xi, t)
]−1

∑

j∈Ni
sgn(xi − xj) in

(6) is to drive all the agents to reach a consensus on states
(

limt→∞ ‖xi(t)−
1
n

∑n
j=1 xj(t)‖2 = 0

)

. Here, the Hessian-

dependent gain β[∇2L̃i(xi, t)]
−1 is introduced to guarantee the

convergence of our algorithm under nonidentical ∇2L̃i(xi, t).
While the second term, φi(t) ∈ R

m, is an auxiliary variable

playing a role in minimizing the penalized objective function

L̃i(xi, t) given by (7). Note that we use the log-barrier penalty

functions [see the second term in (7)] to incorporate the in-

equality constraints into the penalized objective function. As

shown in (6), we use the second-order/Hessian information of

the penalized objective function to achieve the optimization goal.

Remark 3 (Use of log-barrier function in (7)): In this article,

we convert the considered constrained optimization problem

into an unconstrained one using the penalty functions. Multiple

penalty functions might be useful to address the inequality con-

straints, for example, {max[0, gij(xi, t)]}
2 and the log-barrier

function used in (7). In this article, we aim to leverage the

Hessian information to solve the time-varying optimization

problem. Therefore, we need a smooth and differentiable penalty

function. That is why we choose log-barrier penalty functions

to address the inequality constraints. While log-barrier penalty

functions are not novel in its use for optimization problems

with inequality constraints [27], [31], [34], to the best of our

knowledge, our article is the first to leverage its use to the

distributed time-varying optimization settings.

In addition, we have

∇L̃i(xi, t) = ∇fi(xi, t) +

qi
∑

j=1

∇gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]

(10)

∂

∂t
∇L̃i(xi, t) =

∂

∂t
∇fi(xi, t) +

qi
∑

j=1

∂∇gij(xi, t)/∂t

ρi(t)[σi(t)− gij(xi, t)]

−

qi
∑

j=1

ρ̇i(t)∇gij(xi, t)

ρ2i (t)[σi(t)− gij(xi, t)]
,

−

qi
∑

j=1

σ̇i(t)∇gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]2
,

+

qi
∑

j=1

∇gij(xi, t)∂gij(xi, t)/∂t

ρi(t)[σi(t)− gij(xi, t)]2
(11)
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∇2L̃i(xi, t) = ∇2fi(xi, t) +

qi
∑

j=1

∇2gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]

+

qi
∑

j=1

∇gij(xi, t)∇gij(xi, t)
T

ρi(t)[σi(t)− gij(xi, t)]2
(12)

where ∂
∂t
∇fi(xi, t),

∂
∂t
∇gij(xi, t), and ∂

∂t
gij(xi, t) are, respec-

tively, the partial derivatives of ∇fi(xi, t), ∇gij(xi, t), and

gij(xi, t) with respect to t.
Also, for notational simplicity, we will remove the time index

t from the auxiliary variable φi(t) in most remaining parts of

this article and only keep it in some places when necessary.

Remark 4: (Heterogeneity in the Hessian and comparison

with previous model) In this article, we convert the considered

constrained optimization problem into an unconstrained one

using the log-barrier penalty functions. It is worth noting that the

proposed algorithm (6) is not a simple extension of the existing

distributed time-varying unconstrained optimization algorithms

in [25] and [26]. Especially, to apply the algorithm in [26]

and the consensus-based algorithm in [25] (Section III-B), it is

required that the Hessians of all the local objective functions be

identical. In contrast, in our context with the penalized objective

functions, the Hessians of them are nonuniform due to the

involvement of the nonuniform local constraint functions even

if the original objective functions have identical Hessians. The

estimator-based algorithm in [25] (Section III-C) can deal with

certain objective functions with nonidentical Hessians. How-

ever, it not only necessitates the communication of certain virtual

variables between neighbors with increased computation costs

but requires that the time derivatives of the Hessians and the time

derivatives of the gradients of the objective functions exist and be

bounded. Unfortunately, due to the complexity of the penalized

objective functions in the considered constrained problem, such

a requirement might be no longer guaranteed to hold, and, hence,

the result therein might not be applicable to our problem. In this

article, we introduce a novel algorithm with a Hessian-dependent

gain to account for the complexity caused by the penalized

objective functions, where only the partial derivatives of the

gradients of the penalized objective functions with respect to

time t are preassumed to be bounded (see Assumptions 4 and 5).

Note that in [25] and [26], the partial derivatives of the gradients

of the objective functions with respect to time t are also required

to be bounded. In this article, we do not preassume that the

Hessians and gradients of the penalized objective functions are

bounded; however, we will prove that the Hessians and gradients

of the penalized objective functions are bounded automatically

under our proposed algorithms. The novel algorithm design, in

turn, introduces new challenges in theoretical analysis, which

will be addressed in the following.

Remark 5: (Relevance to robotic applications) In algorithm

(6), each agent just needs its own information and the relative

states between itself and its neighbors. In some robotic applica-

tions, the agents’ states are their spatial positions. As a result,

the relative positions can be obtained by local sensing and the

communication necessity might be eliminated.

B. Convergence Analysis

In this subsection, the asymptotical convergence of the system

(2) under the controller (6) to the optimal solution in (3) is

established. To establish our results, we require the following

assumptions.

Assumption 4: (Bounds about objective functions) If all local

states xi are bounded, then there exists a constant ᾱ such that

supt∈[0,∞) ‖
∂
∂t
∇fi(xi, t)‖2 ≤ ᾱ for all i ∈ V and t ≥ 0.

Assumption 5: (Bounds about the inequality constraint func-

tions) If all local states xi are bounded, then there exist con-

stants β̄ and γ̄ such that supt∈[0,∞) ‖
∂
∂t
∇gij(xi, t)‖2 ≤ β̄ and

supt∈[0,∞) ‖
∂
∂t
gij(xi, t)‖2 ≤ γ̄, for all i ∈ V, j = 1, . . . , qi and

t ≥ 0.

Remark 6: (Bounds rationality analysis) In Assumption 4,

we assume that all ‖ ∂
∂t
∇fi(xi, t)‖2 are bounded under bounded

xi. The assumption holds for an important class of situations.

For example, consider the normal quadratic objective functions

‖cixi + hi(xi, t)‖
2
2. As long as ∂

∂t
hi(xi, t) (e.g., sin(t), t) are

bounded under bounded xi, ‖
∂
∂t
∇fi(xi, t)‖2 will be bounded.

In Assumption 5, we assume that all ‖ ∂
∂t
∇gij(xi, t)‖2 and

‖ ∂
∂t
gij(xi, t)‖2 are bounded under bounded xi. The assumption

holds for an important class of situations. The boundedness of

‖ ∂
∂t
∇gij(xi, t)‖2 and ‖ ∂

∂t
gij(xi, t)‖2 holds for most commonly

used boundary constraint functions, e.g., xi ≤ b(t) or x2
i ≤ b(t)

under bounded ḃ(t).
Remark 7: (Nonsmooth analysis) With the piecewise-

differentiable signum function involved in algorithm (6), the so-

lution should be investigated in the sense of Filippov. However,

since the signum function is measurable and locally essentially

bounded, the Filippov solutions of the proposed system dynam-

ics always exist [35]. To avoid symbol redundancy, we do not

use the differential inclusions in the proofs when the Lyapunov

candidates are continuously differentiable due to the following

reason: if the Lyapunov function candidates are continuously

differentiable, the set-valued Lie derivative of them is a singleton

at the discontinuous points and the proof still holds without

employing the nonsmooth analysis [36].

In this article, we convert the considered constrained opti-

mization problem into an unconstrained optimization problem

using the log-barrier penalty functions. That the log-barrier

penalty function involved in (7) is always well defined under

our proposed algorithm is important. This is described in the

next lemma.

Lemma 2: Suppose that Assumptions 2 and 3 and the initial

condition (9) hold. For the system (2) under the controller

(6), each xi(t) belongs to the set Di = {xi ∈ R
m | gi(xi, t) ≺

σi(t)1qi} for all t ≥ 0. That is, (7) is always well defined.

Proof: Assumption 3 ensures the existence of initial condition

(9). Moreover, the time derivative of ∇L̃i(xi, t) is given by

∇̇L̃i(xi, t) =
∂

∂xi

∇L̃i(xi, t)× ẋi +
∂

∂t
∇L̃i(xi, t)

= ∇2L̃i(xi, t)ẋi +
∂

∂t
∇L̃i(xi, t). (13)
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Here, Assumption 2 ensures the existence of the Hessians of

the penalized functions L̃i(xi, t), i.e., ∇2L̃i(xi, t). Substituting

the solution of (2) with (6) into (13) leads to

∇̇L̃i(xi, t) = −β
∑

j∈Ni

sgn(xi − xj)−∇L̃i(xi, t). (14)

Then we can use the input-to-state stability [37] to ana-

lyze the system (14) by treating the term −β
∑

j∈Ni
sgn(xi −

xj) as the input and ∇L̃i(xi, t) as the state. Since the term

−β
∑

j∈Ni
sgn(xi − xj) is always smaller thannβ, it is obvious

that each ∇L̃i(xi, t) remains bounded for all t ≥ 0. Note that

(10) implies that ∇L̃i(xi, t) is unbounded at the boundary of

Di. Therefore, it follows from initial condition (9) that each xi

is in the setDi = {xi ∈ R
m | gi(xi, t) ≺ σi(t)1qi} for all t ≥ 0.

That is, (7) is always well defined. �

In the following, in Lemma 3, we prove that the eventual states

of the agents satisfy the optimal requirement shown in Lemma

1, i.e., limt→∞

∑n
i=1 ∇L̃i(xi, t) = 0m. The goal of problem

(4) is that all the agents’ states reach consensus on the optimal

trajectory, and thus in Lemma 4, we prove that consensus can be

achieved in finite time if all φi in the controller (6) are bounded,

i.e., there exists a time T2 such that ‖xi(t)−
1
n

∑n
j=1 xj(t)‖ =

0 for all t > T2 if allφi are bounded. Then in Lemma 5, we prove

that all φi associated with the system (2) under the controller (6)

are indeed bounded. Finally, in Theorem 1, we present that the

goal in (5) can be achieved, i.e., limt→∞ ‖xi(t)− y∗(t)‖2 = 0
for all i ∈ V .

Lemma 3: Suppose that Assumptions 1, 2, and 3 hold, the gain

condition (8) and the initial condition (9) hold. For the system

(2) under the controller (6), the summation of all ∇L̃i(xi, t)
exponentially converges to 0m.

Proof: It follows from Assumption 2 that all fi(xi, t) are

strongly convex in xi. Also it follows from Assumption 2 that all

gij(xi, t) are convex in xi. From gain condition (8), we know

that ρi(t) and σi(t) are always positive. Then it follows from

initial condition (9) that L̃i(xi, t) given by (7) must be con-

tinuously differentiable and strongly convex in xi if xi is in set

Di = {xi ∈ R
m | gi(xi, t) ≺ σi(t)1qi}. Note that Assumptions

2 and 3 and initial condition (9) hold. Lemma 2 has indicated

that this is indeed the case. Therefore, each L̃i(xi, t) must be

continuously differentiable and strongly convex in xi based

on our algorithm. Consider the following Lyapunov function

candidate:

W1 =
1

2

[

n
∑

i=1

∇L̃i(xi, t)

]T [

n
∑

i=1

∇L̃i(xi, t)

]

. (15)

Note that the Lyapunov candidate W1 is continuously differ-

entiable. Based on the statements in Remark 7, we do not need

to employ nonsmooth analysis in the stability analysis. Then we

have

Ẇ1(t) =

[

n
∑

i=1

∇L̃i(xi, t)

]T

×

[

n
∑

i=1

∇2L̃i(xi, t)ẋi +
∂

∂t
∇L̃i(xi, t)

]

. (16)

Substituting the solution of (2) with (6) into (16) leads to

Ẇ1(t)=

[

n
∑

i=1

∇L̃i(xi, t)

]T
⎛

⎝

n
∑

i=1

∇2L̃i(xi, t)

⎧

⎨

⎩

[

∇2L̃i(xi, t)
]−1

×β
∑

j∈Ni

sgn(xj − xi) + φi

⎫

⎬

⎭

+
∂

∂t
∇L̃i(xi, t)

⎞

⎠ .

Since the network is undirected (Assumption 1), we have
∑n

i=1 β
∑

j∈Ni
sgn(xj − xi) = 0m for all t ≥ 0. It follows

that

Ẇ1(t) =

[

n
∑

i=1

∇L̃i(xi, t)

]T [

−
n
∑

i=1

∇L̃i(xi, t)

]

= −2W1(t)

which indicates that W1(t) = e−2tW1(0) for all t ≥ 0. It can

be concluded that W1(t) exponentially converges to zero, and,

thus,
∑n

i=1 ∇L̃i(xi, t) exponentially converges to 0m. �

Lemma 4: Suppose that Assumptions 1–3 hold, the gain

condition (8) and the initial condition (9) hold. For the sys-

tem (2) under the controller (6), if1 there exists a constant

φ̄ such that supt∈[0,∞) ‖φi(t)‖2 ≤ φ̄, ∀i ∈ V and β satisfies

that

β ≥
2φ̄mn2|E|

mini∈V

{

λ̄min

[

(

∇2L̃i

)−1
]} + ǫ1 (17)

where ǫ > 0 is a constant, all the statesxi will achieve consensus

in finite time, i.e., there exists a time T2 such that ‖xi(t)−
xj(t)‖2 = 0, for all i, j ∈ V and for all t > T2.

Proof: Define
[

∇2L̃(x, t)
]−1

= diag

{

[

∇2L̃1(x1, t)
]−1

, . . . ,

[

∇2L̃n(xn

, t)

]−1}

, x =
[

xT
1 , . . . , x

T
n

]T
, and Φ =

[

φT
1 , . . . , φ

T
n

]T
.

Consider the Lyapunov candidate

W2(t) = ‖
(

DT ⊗ Im
)

x‖1. (18)

The solution of (2) with (6) can be written in compact form as

ẋ = −β
[

∇2L̃(x, t)
]−1

(D ⊗ Im)sgn
[(

DT ⊗ Im
)

x
]

+Φ.

(19)

It is obvious that W2(t) is locally Lipschitz continuous but

nonsmooth at some points. Then according to Definition 2, the

generalized gradient of W2(t) is given by

∂W2(t) =
(

DT ⊗ Im
)T {

SGN
[(

DT ⊗ Im
)

x
]}

(20)

1Here mini∈V{λ̄min[(∇
2L̃i)

−1]} denotes the smallest value in the

set [̄λmin[(∇
2L̃1)

−1], λ̄min[(∇
2L̃2)

−1], . . . , λ̄min[(∇
2L̃n)

−1]], where

λ̄min[(∇
2L̃i)

−1] is defined in Section II-A.
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where SGN(·) 2 is the multivalued function defined as (see [36],

(20)])

SGN(z) =

⎧

⎨

⎩

1 if z > 0,
[−1, 1] if z = 0,
−1 if z < 0.

(21)

Then based on Definition 3, the set-valued Lie derivative of

W2(t) is given by

˙̃W2(t) =
⋂

ξ∈SGN[(DT⊗Im)x]

ξT
(

DT ⊗ Im
)

K[f ] (22)

where K[f ] = Φ− β
[

∇2L̃(x, t)
]−1

(D ⊗ Im)SGN
[(

DT ⊗

Im
)

x
]

is the set-valued Filippov map of the dynamical system

(19).

Since there is an intersection operation on the right side of

(22), it follows that as long as
˙̃W2(t) is not empty and there exists

ξ ∈ SGN[(DT ⊗ Im)x] such that ξT (DT ⊗ Im)f̃ < 0, ∀f̃ ∈

K[f ], then the result of
˙̃W2(t) falls into the negative half-plane

of the real axis. Arbitrarily choose η ∈ SGN[(DT ⊗ Im)x].
Choose ξk = sgn[(DT ⊗ Im)k•x] if sgn[(DT ⊗ Im)k•x] 
= 0
and ξk = ηk if sgn[(DT ⊗ Im)k•x] = 0, where ξk and ηk denote

the kth element in vectors ξ and η, respectively. If
˙̃W2(t) 
= ∅,

suppose that ã ∈ ˙̃W2(t). It follows that

ã = − β

{

ξT
(

DT ⊗ Im
)

[

∇2L̃(x, t)
]−1

(D ⊗ Im)η

}

+ ξT
(

DT ⊗ Im
)

Φ

≤ − β

{

ξT
(

DT ⊗ Im
)

[

∇2L̃(x, t)
]−1

(D ⊗ Im)ξ

}

+ ξT
(

DT ⊗ Im
)

Φ

≤ − βλ̄min

[

(

∇2L̃
)−1

]

‖(D ⊗ Im)ξ‖22 + 2φ̄mn2|E|.

(23)

If there exists an edge (i2, j2) ∈ E such that xi2 
= xj2 , then

‖(D ⊗ Im)ξ‖ ≥ 1. It follows that

ã ≤ −βλ̄min

[

(

∇2L̃
)−1

]

+ 2φ̄mn2|E|. (24)

Sinceβ ≥ 2φ̄mn2|E|

mini∈V {̄λmin[(∇2L̃i)−1]}
+ ǫ = 2φ̄mn2|E|

λ̄min[(∇2L̃)−1]
+ ǫ, it fol-

lows that if there exists an edge (i2, j2) ∈ E such that xi2 
= xj2 ,

then ã ≤ −ǫ. Thus, we can conclude that
˙̃W2(t) ≤ −ǫ if there

exists an edge (i2, j2) ∈ E such that xi2(t) 
= xj2(t). Based on

the Lebesgue’s theory for the Riemann integrability, a function

on a compact interval is Riemann integrable if and only if it

is bounded and the set of its discontinuous points has measure

zero [38]. Therefore, although the time derivative Ẇ2(t) here

is discontinuous at some time points, it is Riemann integrable.

2With the piecewise-differentiable signum function involved in algorithm
(6), the solution of (2) with (6) should be replaced by inclusions at a point
of discontinuity.

Then, we have

W2(t)−W2(0) =

∫ t

0

Ẇ2(τ)dτ ≤ −ǫt

where t > 0, if there exists an edge (i2, j2) ∈ E such that xi2 
=
xj2 . It follows that

W2(t) ≤ W2(0)− ǫt (25)

if there exists an edge (i2, j2) ∈ E such that xi2 
= xj2 . Based

on the definition of W2(t) in (18), we have

W2(t) = ‖(DT ⊗ Im)x‖1

=
1

2

n
∑

i=1

∑

j∈Ni

‖xi − xj‖1. (26)

That is, only ifxi(t) = xj(t) holds for all edges (i, j) ∈ E , we

haveW2(t) = 0. Then it follows from (25) thatW2(t) converges

to zero in finite time and the convergence time is smaller than or

equal to W2(0)/ǫ. Also W2(t) → 0 implies that ‖xi − xj‖1 →
0 for all i ∈ V and j ∈ Ni. Because the network is undirected

and connected (see Assumption 1), it follows that all agents

reach a consensus in finite time. That is, there exists a time T2

such that ‖xi(t)−
1
n

∑n
j=1 xj(t)‖2 = 0 for all i ∈ V and for all

t > T2. �

Lemma 5: Suppose that Assumptions 1–5 hold, the gain

condition (8) and the initial condition (9) hold. For the system (2)

under the controller (6), all φi remain bounded. That is, there

exists a constant φ̄ such that supt∈[0,∞) ‖φi(t)‖2 ≤ φ̄, for all

i ∈ V .

Proof: To begin with, we prove that each xik associated with

the system (2) under the controller (6) remains in a bounded

region, which in turn guarantees that all φi are bounded. Here,

xik ∈ R denotes the kth element in xi. Note that Assumptions

2 and 3, the initial condition (9), and the gain condition (8) hold.

Then using a similar analysis to that in Lemma 3, we have each

L̃i(xi, t) is continuously differentiable and strongly convex in

xik. Assume that there exists xik such that xik → +∞ or xik →
−∞ with the fastest speed among all the elements in xi. Then

due to the strong convexity and the continuous differentiability

of L̃i(xi, t), we have ∇xik
L̃i(xi, t) → +∞ as xik → +∞ and

∇xik
L̃i(xi, t) → −∞ asxik → −∞. Note that Assumptions 1–

3, the initial condition (9), and the gain condition (8) hold. Then

it follows from Lemma 3 that it is impossible that all xik go to

infinity at the same time. Without loss of generality, let us assume

that xi1k → +∞, where i1 = argmaxj∈V(xjk). It follows that

−β
∑

j∈Ni1
sgn(xi1k − xjk) ≤ 0 when xi1k → +∞. There-

fore, from (14), it is clear that ∇̇xi1k
L̃i1(xi1 , t) must be negative

when xi1k → +∞. Similarly, assume that xi2k → −∞, where

i2 = argminj∈V(xjk). It follows that −β
∑

j∈Ni2
sgn(xi2k −

xjk) ≥ 0 when xi2k → −∞. Therefore, ∇̇xi2k
L̃i2(xi2 , t) must

be positive when xi2k → −∞. The decreasing ∇xik
L̃i(xi, t)

when xik → +∞ and increasing ∇xik
L̃i(xi, t) when xik →

−∞ will result in a bounded ∇xik
L̃i(xi, t) and, thus, a bounded

xik, which contradicts with the unbounded xi assumption.

Hence, all xi must be bounded.
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Then, we will prove that all ∇L̃i(xi, t) are bounded for all

time. It follows from Lemma 3 that
∑n

i=1 ∇L̃i(xi, t) is always

bounded. Since all xi are bounded, we have all ∇fi(xi, t) and

∇gij(xi, t)must be bounded. Then using an argument similar to

[27], Lemma 2], all 1
σi(t)−gij(xi,t)

are bounded. Therefore, each

∇L̃i(xi, t) is always bounded for all t ≥ 0 and for all i ∈ V .

Next, we will prove that all [∇2L̃i(xi, t)]
−1 are bounded

for all time. Since all L̃i(xi, t) are continuous differentiable

and strongly convex in its corresponding xi, then based on the

statements in [34, Sec. 9.1.2], we know that all ∇2L̃i(xi, t)
satisfy

m(t)In ≤ ∇2L̃i(xi, t) ≤ M(t)In

with m(t),M(t) ∈ R>0, which implies that all [∇2L̃i(xi, t)]
−1

are bounded and positive definite for all t ≥ 0.

At last, given that all∇L̃i(xi, t) and∇2L̃i(xi, t) are bounded

for all time, under Assumptions 4 and 5, it is easy to see that all
∂
∂t
∇L̃i(xi, t) remain bounded for all t ≥ 0.

Since [∇2L̃i(xi, t)]
−1, ∇L̃i(xi, t), and ∂

∂t
∇L̃i(xi, t) are

bounded for all i ∈ V and for all t ≥ 0, we can get the conclusion

that φi(t) is bounded for all i ∈ V and for all t ≥ 0. �

Theorem 1: Suppose that Assumptions 1–3 hold, the initial

condition (9) and the gain conditions (8) and (17) hold. For the

system (2) under the controller (6), all the states xi will converge

to the optimal solution y∗(t) in (3) eventually.

Proof: Define

ỹ(t)∗ ∈ R
m = argmin

n
∑

i=1

L̃i[y(t), t] (27)

where L̃i[y(t), t] is each agent’s penalized objective function

defined by (7). Note that Assumptions 1–5, initial condition

(9), and gain condition (8) hold. It follows from Lemma 5 that

all φi associated with the system (2) under the controller (6)

are bounded for all t ≥ 0, which in turn implies that xi(t) =
xj(t), ∀i, j ∈ V in finite time according to Lemma 4. Moreover,

based on Lemma 3, we know that limt→∞

∑n
i=1 ∇L̃i(xi, t) =

0m. Using a similar analysis to that in Lemma 3, we have that

each L̃i(xi, t) is continuously differentiable and strongly convex

in xi. Based on Lemma 1, we have

n
∑

i=1

∇L̃i[ỹ
∗(t), t] = 0m. (28)

Then it follows that all xi will converge to the optimal solution

ỹ∗(t) in (27), i.e., limt→∞ xi(t) = ỹ∗(t), ∀i ∈ V .

Define

ŷ∗(t) ∈ R
m = argmin

n
∑

i=1

fi[y(t), t]

s.t. gij [y(t), t] ≤ σi(t), ∀i ∈ V, j = 1, . . . , qi. (29)

The Lagrangian function of problem (29) can be written as

Lag =
n
∑

i=1

fi[y(t), t] +
n
∑

i=1

qi
∑

j=1

λij(t) {gij [y(t), t]− σi(t)}

(30)

where λij(t) > 0 are the Lagrangian multipliers. The corre-

sponding dual function of problem (29) is

g[λij(t)]

= sup
y(t)

⎛

⎝x

n
∑

i=1

fi[y(t), t]+

n
∑

i=1

qi
∑

j=1

λij(t) {gij [y(t), t]−σi(t)}

⎞

⎠.

(31)

It follows from (10) and (28) that

n
∑

i=1

∇L̃i [ỹ
∗(t), t]

=

n
∑

i=1

∇fi [ỹ
∗(t), t] +

n
∑

i=1

qi
∑

j=1

∇gij [ỹ
∗(t), t]

ρi(t){σi(t)− gij [ỹ∗(t), t]}

= 0m. (32)

Define λ̃ij(t) =
1

ρi(t){σi(t)−gij [ỹ∗(t),t]} . We see that ỹ∗(t) min-

imizes the Lagrangian function defined in (30), for λij(t) =
λ̃ij(t). Therefore, the dual function (31) at point λ̃ij(t) is

g
[

λ̃ij(t)
]

=
n
∑

i=1

fi[ỹ
∗(t), t] +

n
∑

i=1

qi
∑

j=1

λ
∗
ij(t){gij [ỹ

∗(t), t]− σi(t)}

=

n
∑

i=1

fi[ỹ
∗(t), t]−

n
∑

i=1

qi
∑

j=1

1

ρi(t)

≤
n
∑

i=1

fi[ŷ
∗(t), t]. (33)

The last inequality in (33) holds since the dual function

provides a lower bound to the solution of the primal problem

(29).

It follows that
∣

∣

∣

∣

∣

n
∑

i=1

fi[ŷ
∗(t), t]−

n
∑

i=1

fi[ỹ
∗(t), t]

∣

∣

∣

∣

∣

≤
n
∑

j=1

qj
∑

k=1

ρ−1
j (t). (34)

Note that y∗(t) ∈ R
m is the optimal solution of problem (3).

Then we can use the perturbation and sensitivity analysis in [34,

Sec. 5.9] to analyze problem (29) by treating (29) as a perturbed

version of the problem (3) after including the slack variables

σi(t) in the constraints. Under Assumption 3, the optimal solu-

tion y∗(t) can be characterized using the KKT conditions for all

t ≥ 0. Then we have
∣

∣

∣

∣

∣

n
∑

i=1

fi[ŷ
∗(t), t]−

n
∑

i=1

fi[y
∗(t), t]

∣

∣

∣

∣

∣

≤
n
∑

j=1

qj
∑

k=1

λ
∗
jk(t)σj(t).

(35)

Hence, because limt→∞ ρi(t) = ∞ and limt→∞ σi(t) = 0 for

all i ∈ V , we have

lim
t→∞

∣

∣

∣

∣

∣

n
∑

i=1

fi[y
∗(t), t]−

n
∑

i=1

fi[ỹ
∗(t), t]

∣

∣

∣

∣

∣

= 0. (36)
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Since we assume that the optimal solution y∗(t) is unique, it

follows that limt→∞ xi(t) = y∗(t), ∀i ∈ V . �

Remark 8: (Application in unconstrained optimization prob-

lems) As a byproduct, the algorithm (6) can also be used

for distributed unconstrained optimization problems with much

more relaxed assumptions on the objective functions (e.g., those

with nonidentical Hessians) than those in [25]. In particular,

it is applicable to objective functions that are strongly convex

and twice continuously differentiable with respect to xi and

whose partial gradients with respect to time, i.e.,
∂∇fi(xi,t)

∂t
, are

bounded.

IV. DISTRIBUTED TIME-VARYING OPTIMIZATION WITH

NONLINEAR INEQUALITY AND LINEAR EQUALITY

CONSTRAINTS

In this section, we extend the results in Section III-A to take

into account both time-varying nonlinear inequality and linear

equality constraints. The goal is to design ui(t) using only local

information and local interaction for system (2), such that all the

agents work together to find the optimal trajectory r∗(t) ∈ R
m

defined as

r∗(t) = argmin

n
∑

i=1

fi[r(t), t],

s.t. gi[r(t), t] � 0qi , Ai(t)r(t) = bi(t), ∀i ∈ V (37)

where Ai(t) ∈ R
pi×m and bi(t) ∈ R

pi are the local equality

constraint functions. It is assumed thatAi(t) and bi(t) are known

only to agent i and are continuously differentiable with respect to

t. Here the goal is that each state xi(t) converges to the optimal

solution r∗(t), i.e.,

lim
t→∞

[xi(t)− r∗(t)] = 0m. (38)

We need an additional assumption.

Assumption 6: (Full rank condition) The number of the equal-

ity constraints is less than the dimension of the agents’ states,

i.e., pi < m, and rank(Ai) = pi, for all i ∈ V . And for all t ≥ 0,

there exists at least one r such that Ai(t)r = bi(t) for all i ∈ V .

Assumption 6 ensures that the system of equations

Ai(t)xi(t) = bi(t) is consistent and has infinitely many solu-

tions at each t ≥ 0. We assume that the optimal solution r∗(t)
in (37) is unique for all t ≥ 0. For notational simplicity, we will

remove the time index t from the variables Ai(t) and bi(t) in

most remaining parts of this article and only keep it in some

places when necessary.

A. Distributed Algorithm Design

In this subsection, we derive a distributed control algorithm

such that (38) holds. In addition, in algorithm (6), it is required

that the upper bounds on auxiliary variable φi be known in

advance such that the control gain β can be chosen to satisfy

(17). To remove this restriction, we introduce an adaptive gain

design in the algorithm.

We design the following controller for agent i:

ui = −wi(t)
[

∇2L̂i(xi, t)
]−1 ∑

j∈Ni

sgn(xi − xj) + φi

(39a)

φi = −
[

∇2L̂i(xi, t)
]−1

[

∇L̂i(xi, t) +
∂

∂t
∇L̂i(xi, t)

]

(39b)

ṡi(t) =
∑

j∈Ni

sgn(‖xi − xj‖1) (39c)

wi(t) = zi(t) + si(t) (39d)

żi(t) = −α
∑

j∈Ni

sgn[wi(t)− wj(t)]. (39e)

In (39a) and (39b), wi(t) ∈ R is a dynamic gain, and L̂i(xi, t)
is the penalized objective function of agent i given by

L̂i(xi, t) = fi(xi, t)−
1

ρi(t)

qi
∑

j=1

log[σi(t)− gij(xi, t)]

+
κi

2
‖Aixi − bi‖

2
2 (40)

where κi ∈ R>0 is a constant gain. Note that (40) includes

the local log-barrier penalty functions and the local quadratic

penalty functions to account for, respectively, the inequality

and equality constraints in (37). In (39c), the gain si(t) ∈ R

is adapted according to the state differences between agent i
and its neighbors. The dynamic gain wi(t) is the output of a

distributed average tracking estimator given by (39d) and (39e),

whereα ∈ R>0 is a constant gain, zi(t) ∈ R is the internal state,

and si(t) is the reference signal associated with agent i. In the

next subsection, we will show that the dynamic gain wi(t) can

help all the agents achieve consensus without knowing certain

prior information. In addition, we have

∇L̂i(xi, t) = ∇fi(xi, t) +

qi
∑

j=1

∇gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]

+ κiA
T
i (Aixi − bi) (41)

∂

∂t
∇L̂i(xi, t) =

∂

∂t
∇fi(xi, t) +

qi
∑

j=1

∂∇gij(xi, t)/∂t

ρi(t)[σi(t)− gij(xi, t)]

−

qi
∑

j=1

ρ̇i(t)∇gij(xi, t)

ρ2i (t)[σi(t)− gij(xi, t)]

−

qi
∑

j=1

σ̇i(t)∇gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]2

+

qi
∑

j=1

∇gij(xi, t)∂gij(xi, t)/∂t

ρi(t)[σi(t)− gij(xi, t)]2

+ 2κiA
T
i Ȧixi − κiȦibi − κiAiḃi (42)
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∇2L̂i(xi, t) = ∇2fi(xi, t) +

qi
∑

j=1

∇2gij(xi, t)

ρi(t)[σi(t)− gij(xi, t)]

+

qi
∑

j=1

∇gij(xi, t)∇gij(xi, t)
T

ρi(t)[σi(t)− gij(xi, t)]2
+ κiA

T
i Ai.

(43)

To make algorithm (39) work, the gain α and the initial internal

states si(0) and zi(0) need to satisfy

α > n (44)

si(0) > 0, ∀i ∈ V (45)

zi(0) = 0, ∀i ∈ V. (46)

Remark 9: (Reason for adaptive control gains) In algorithm

(6), it is required that the bounds on the auxiliary variables φi

be known in advance such that the control gain β can be chosen

to satisfy (17). However, these bounds might not be obtained

or estimated accurately in certain circumstances. Therefore, in

algorithm (39), adaptive control gains are designed to remove the

need for using the information of these bounds. The tradeoff is

that the virtual variablewi(t) need to be communicated between

neighbors to implement algorithm (39).

Remark 10: (Distributed algorithms) Algorithm (39) is dis-

tributed since each agent only needs its own information and

information received from its neighbors. Take agent i as an

example. Agent i uses it own information: xi(t), wi(t), si(t),
zi(t), and Hessian and gradient information of its penalized

objective function. It is worthwhile to mention that agent i only

needs to know its own penalty parameters:ρi(t),σi(t), andκi(t).
Moreover, agent i needs to know information received from it

neighbors: xj(t) and wj(t), j ∈ Ni. While a common control

gain α is needed for all the agents, α is a constant and only

required to be larger than n. The work [39] provides an answer

about how to estimate n in a distributed way.

The estimator given by (39d) and (39e) guarantees that the

gains wi(t) for all agents become uniform after a finite time as

shown in the following lemma.

Lemma 6: Suppose that Assumption 1, the gain condition

(44), and the initial condition (46) hold. For system (2) under

the controller (39), all wi(t) will converge to 1
n

∑n
j=1 sj(t) in

finite time. That is, there exists a time T0 such that wi(t) =
1
n

∑n
i=j sj(t) for all i ∈ V , and t ≥ T0.

Proof: The proof is evident based on [28], Th. 1]. �

In the following, for notational simplicity, we will remove the

time index t from si(t), zi(t), and wi(t) in most remaining parts

of this article and only keep it in some places when necessary.

B. Convergence Analysis

In this subsection, the asymptotical convergence of the system

(2) under the controller (39) to the vicinity of the optimal solution

in (37) is established. Note that in the case where there only

exist nonlinear inequality constraints, algorithm (6) is capable

of tracking the optimal solution in (3) with a zero tracking error.

Since we use the quadratic penalty functions to account for the

equality constraints, the larger the penalty weight κ, the better

the approximation xi to a solution of the original problem (37).

We need an additional assumption.

Assumption 7: (Bounds about equality constraint functions)

The time derivatives of the local constraint parameters are

bounded. That is, there exist constants ā and b̄ such that

supt∈[0,∞) ‖Ȧi(t)‖2 ≤ ā and supt∈[0,∞) ‖ḃi(t)‖2 ≤ b̄, for all

i ∈ V , and for all t ≥ 0.

In the following, we give the main results on the distributed

continuous-time optimization with time-varying nonlinear in-

equality and linear equality constraints.

Theorem 2: Suppose that Assumptions 1 to 7 hold, the initial

conditions (9), (45), and (46) hold, and the gain conditions (8)

and (44) hold. For system (2) under controller (39), all the states

xi will converge to the vicinity of the optimal solution r∗(t) in

(37) eventually, i.e., limt→∞ xi(t) = ¯̄r∗(t), for all i ∈ V , where

supt ‖¯̄r
∗(t)− r∗(t)‖ ≤ ε and ε is a constant.

Proof: We first show that (40) is always well defined under

our proposed algorithm (39). The time derivative of ∇L̂i(xi, t)
is given by

∇̇L̂i(xi, t) = ∇2L̂i(xi, t)ẋi +
∂

∂t
∇L̂i(xi, t). (47)

Substituting the solution of (2) with (39) into (47) leads to

∇̇L̂i(xi, t) = −wi

∑

j∈Ni

sgn(xi − xj)−∇L̂i(xi, t). (48)

Then using a similar analysis to that in Lemma 2, we have that

each ∇L̂i(xi, t) must remain bounded for all time, and, thus,

each xi is in the set Di = {xi ∈ R
m | gi(xi, t) ≺ σi(t)1qi} for

all t ≥ 0. That is, (41) is well defined for all t ≥ 0.

Then we show that the agents’ states under controller (39)

satisfy the optimal requirement shown in Lemma 1 eventually. It

follows from Assumption 2 that all fi(xi, t) are strongly convex

in xi. Also it follows from Assumption 2 that all gij(xi, t)
are convex in xi. From gain condition (8), we know that ρi(t)
and σi(t) are always positive. In addition, from Assumption 6,

we know that AT
i Ai must be positive semidefinite. Note that

κi is a positive constant. Therefore, from initial condition (9),

we know that L̂i(xi, t) given by (40) must be continuously

differentiable and strongly convex in xi if xi is in the set

Di = {xi ∈ R
m | gi(xi, t) ≺ σi(t)1qi}. The above analysis has

indicated that this is indeed the case. Therefore, each L̂i(xi, t)
must be continuously differentiable and strongly convex in xi

based on our algorithm (39). Consider the Lyapunov function

candidate

W3 =
1

2

[

n
∑

i=1

∇L̂i(xi, t)

]T [

n
∑

i=1

∇L̂i(xi, t)

]

. (49)

Similarly, based on the statements in Remark 7, there is no need

to employ the nonsmooth analysis. Then we have

Ẇ3(t) =

[

n
∑

i=1

∇L̂i(xi, t)

]T

×

[

n
∑

i=1

∇2L̂i(xi, t)ẋi +
∂

∂t
∇L̂i(xi, t)

]

. (50)
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Substituting the solution of (2) with (39) into (50) leads to

Ẇ3(t)=

[

n
∑

i=1

∇L̂i(xi, t)

]T
⎛

⎝

n
∑

i=1

∇2L̂i(xi, t)

⎧

⎨

⎩

[

∇2L̂i(xi, t)
]−1

×wi

∑

j∈Ni

sgn(xj − xi) + φi

⎫

⎬

⎭

+
∂

∂t
∇L̂i(xi, t)

⎞

⎠ .

Notice that Assumption 1, the initial condition (46), and the

gain condition (44) hold, it follows from Lemma 6 thatwi = wj ,

for all i, j ∈ V and for all t ≥ T0. Since the network is undirected

(Assumption 1), we have
∑n

i=1 wi

∑

j∈Ni
sgn(xj − xi) = 0m

for all t ≥ T0. Then for all t ≥ T0, we have

Ẇ3(t) =

[

n
∑

i=1

∇L̂i(xi, t)

]T [

−
n
∑

i=1

∇L̂i(xi, t)

]

= −2W3(t)

indicating that W3(t) = e−2(t−T0)W3(T0) for all t ≥ T0. The

time derivative of ∇L̂i(xi, t) is given by (47). It follows that

each ∇L̂i(xi, t) is bounded at all time. Therefore, W3(T0) is

bounded. Then it can be concluded that W3(t) exponentially

converges to zero, and, thus,
∑n

i=1 ∇L̂i(xi, t) exponentially

converges to 0m.

Next, we show that all xi remain bounded under algorithm

(39). Based on (39c)–(39e), the time derivative of wi(t) is given

by

ẇi(t) = żi(t) + ṡi(t)

= − α
∑

j∈Ni

sgn[wi(t)− wj(t)]

+
∑

j∈Ni

sgn(‖xi(t)− xj(t)‖1).

It follows that ẇmin(t)must be nonnegative, wherewmin(t) is

defined as mini wi(t). The reason is that sgn[wmin(t)− wj(t)]
must be nonpositive. Note thatwi(0) = zi(0) + si(0). It follows

from (45) and (46) that wi(0) > 0, ∀i ∈ V , which in turn guar-

antees that wmin(t) and thus all wi(t) are positive for all t ≥ 0.

Then similar to the proof in Lemma 5, we have that all xi remain

bounded for all t ≥ 0. Given the above results and Assumption

7, using similar analysis to that in Lemma 5, it is easy to prove

that each φi(t) is bounded for all the time.

Next, we show that all the agents reach a consensus

in finite time. Consider any edge (i, j) ∈ E . Let 0 < tij11 <

tij12 < tij21 < tij22 < · · · denote the contiguous switching times

such that xi 
= xj during the time interval
[

tijk1, t
ij
k2

]

and

xi = xj during the time interval
[

tijk2, t
ij
k+1,1

)

, k = 1, 2, . . ..

From the dynamics of si in (39c), it is easy to see that

si(∞) =
∑

j∈Ni

∑∞
k=1

(

tijk2 − tijk1

)

+ si(0). It follows from

Lemma 6 that wi(t) = wj(t) =
1
n

∑n
k=1 sk(t) for all i, j ∈

V and for all t ≥ T0. If for all edges,
∑∞

k=1

(

tijk2 − tijk1

)

<

∞, ∀(i, j) ∈ E , it is clear that tijk2 − tijk1 → 0 as k → ∞.

Since the graph is connected (Assumption 1), it follows

that consensus can be achieved eventually. If there exists an

edge (i, j) such that
∑∞

k=1

(

tijk2 − tijk1

)

= ∞, then we have

si(∞) = ∞ and wi(∞) = wj(∞) = ∞ for all i, j ∈ V . Then

there must exist a time T1 > T0 such that wi(T1) = wj(T1) >
2φ̄mn2|E|

mini∈V {̄λmin[(∇2L̂i)−1]}
for all i, j ∈ V and all t ≥ T1. Then sim-

ilar to the proof of Lemma 4, we have that all agents reach a

consensus in finite time, i.e., there exists a time T2 such that

‖xi(t)− xj(t)‖2 = 0 for all t > T2.

Now, we show that all the agents with the system (2) under the

controller (39) converge to the vicinity of the optimal solution

r∗(t) in (37). Define

r̃∗(t) ∈ R
m = argmin

n
∑

i=1

L̂i[r(t), t]

where L̂i[r(t), t] is each agent’s penalized objective function

defined by (40). Summarizing the above analysis and similar

to the analysis in Theorem 1, it follows from Lemma 1 that all

xi converge to the optimal solution r̃∗(t), i.e., limt→∞ xi(t) =
r̃∗(t), ∀i ∈ V .

Define

r̂∗(t) ∈ R
m = argmin

n
∑

i=1

fi[r(t), t] +
κi

2
‖Air(t)− bi‖

2
2

s.t. gij [r(t), t] ≤ σi(t), ∀i ∈ V, j = 1, . . . , qi.

Similar to the analysis in Theorem 1, we know that
∣

∣

∣

∣

∣

n
∑

i=1

{

fi[r̂
∗(t), t] +

κi

2
‖Air̂

∗(t)− bi‖
2
2

}

−
n
∑

i=1

{

fi[r̃
∗(t), t] +

κi

2
‖Air̃

∗(t)− bi‖
2
2

}

∣

∣

∣

∣

∣

≤
n
∑

j=1

qj
∑

k=1

ρ−1
j (t).

Define

¯̄r(t)∗ ∈ R
m = argmin

n
∑

i=1

fi[r(t), t] +
κi

2
‖Air(t)− bi‖

2
2

s.t. gij(xi, t) ≤ 0, ∀i ∈ V, j = 1, . . . , qi. (51)

Then based on [34, Sec. 5.9], we have
∣

∣

∣

∣

∣

n
∑

i=1

{

fi[r̂
∗(t), t] +

κi

2
‖Air̂

∗(t)− bi‖
2
2

}

−
n
∑

i=1

{

fi[¯̄r
∗(t), t] +

κi

2
‖Ai ¯̄r

∗(t)− bi‖
2
2

}

∣

∣

∣

∣

∣

≤
n
∑

j=1

qj
∑

k=1

λ
∗
jk(t)σj(t)

whereλjk(t) are the Lagrangian multipliers corresponding to the

inequality constraint defined in (51), and λ
∗
jk(t) are the optimal

Lagrangian multipliers. Hence, because limt→∞ ρi(t) = ∞ and
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Fig. 1. Undirected graph.

limt→∞ σi(t) = 0 for all i ∈ V , we have

lim
t→∞

∣

∣

∣

∣

∣

n
∑

i=1

{

fi[¯̄r
∗(t), t] +

κi

2
‖Ai ¯̄r

∗(t)− bi‖
2
2

}

−
n
∑

i=1

{

fi[r̃
∗(t), t] +

κi

2
‖Air̃

∗(t)− bi‖
2
2

}

∣

∣

∣

∣

∣

= 0

which indicates that limt→∞ xi(t) = ¯̄r∗(t), ∀i ∈ V . Then based

on the standard quadratic penalty theory [34], ¯̄r∗(t) is in the

neighborhood of the optimal solution r∗(t) ∈ R
m in (37),

i.e., limt→∞ xi(t) = ¯̄r∗(t), for all i ∈ V , where supt ‖¯̄r
∗(t)−

r∗(t)‖ ≤ ε with ε being a constant. And the larger the penalty

parameters κi, the smaller of ε. The conclusion of the theorem

then follows by combining the above statements. �

V. NUMERICAL SIMULATION RESULTS

In this section, the proposed distributed time-varying con-

strained optimization algorithms are illustrated through two

simulation cases. In both cases, we consider a network with

n = 12 and m = 2. The network topology is shown by the

undirected graph in Fig. 1. Let xi = [xp
i , y

p
i ]

T ∈ R
2 denote the

states of each agent. Agent i is assigned a local objective function

fi =
1
2 [x

p
i (t) + i sin(t)]

2
+ 3

2 [y
p
i (t)− i cos(t)]

2
, i ∈ V .

First, we show the simulation result using algorithm

(6). Assume that agent j is assigned a constraint function

ypj (t)− xp
j (t)− cos(t) ≤ 0, for all j ∈ [1, 2, . . . , 6], and agent

k is assigned a constraint function xp
k(t)y

p
k(t)− 5t ≤ 0, for

all k ∈ [7, 8, . . . , 12]. All the initial states xp
i (0) and ypi (0) are

generated randomly from the range [−5, 5]. We choose β = 15,

ρi(t) = 10 exp(0.05t) and σi(t) = 30 exp(−t) for all i ∈ V .

Therefore, the initial condition (9) and the gain condition (8) are

satisfied. The state trajectories of the agents are shown in Fig. 2.

We can see that all the agents track the optimal trajectory even-

tually which is consistent with Theorem 1. The constraint result

is shown in Fig. 3. In our simulation, agents 1–6 are assigned the

constraint function ypi (t)− xp
i (t)− cos(t) ≤ 0, i ∈ [1, . . . , 6];

so all ypi (t)− xp
i (t)− cos(t)− σi(t), i ∈ [1, . . . , 6] always

remain negative. Agents 7–12 are assigned the constraint

function xp
i (t)y

p
i (t)− 5t ≤ 0, i ∈ [7, . . . , 12], and, thus,

all xp
i (t)y

p
i (t)− 5t− σi(t), i ∈ [7, . . . , 12] always remain

negative.

We then show the simulation result using algorithm (39).

Assume that agent j is assigned a constraint function ypj (t)−
xp
j (t)− cos(t) ≤ 0, for all j ∈ [1, . . . , 6], and agent k is as-

signed a constraint function ypk(t) + xp
k(t)− t− 3 = 0, for all

k ∈ [7, . . . , 12]. The initial states xp
i (0) and ypi (0), i ∈ V are

Fig. 2. State trajectories of all the agents with system (2) under con-
troller (6). The red dashed line is the optimal solution and the other solid
lines are the trajectories of all agents’ states.

Fig. 3. Plots of the constraint results with system (2) under
controller (6).

generated randomly from the range [−5, 5]. We choose κ =
12, α = 15, ρi(t) = 10 exp(0.05t), σi(t) = 30 exp(−t), and

zi(0) = 0, si(0) = 5 for all i ∈ V . Therefore, initial condition

(9), the initial conditions (45), and (46) and the gain conditions

(8) and (44) are satisfied. The state trajectories of the agents

are shown in Fig. 4. We can see that all the agents converge

to the vicinity of the optimal trajectory eventually which is

consistent with Theorem 2. The constraint results are shown

in Fig. 5. In our simulation, agents 1–6 are assigned the con-

straint function ypi (t)− xp
i (t)− cos(t) ≤ 0, i ∈ [1, . . . , 6], and

thus all ypi (t)− xp
i (t)− cos(t)− σi(t), i ∈ [1, . . . , 6] always

remain negative. Moreover, all the equality constraint functions

ypi (t) + xp
i (t)− t− 3, i ∈ [7, . . . , 12] converge to the neigh-

borhood of the zero line eventually.

VI. APPLICATION TO MULTIROBOT MULTITARGET NAVIGATION

PROBLEM IN CLUSTERED ENVIRONMENT

The introduced framework, distributed continuous-time time-

varying constrained optimization, is of great significance in

motion coordination. In this section, we apply the proposed

optimization algorithm (6) to a class of the motion coordination
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Fig. 4. State trajectories of all the agents with system (2) under con-
troller (39). The red dashed line is the optimal solution and the other
solid lines are the trajectories of all agents’ states.

Fig. 5. Plots of the constraint results with system (2) under
controller (39).

Fig. 6. Multirobot multitarget navigation problem.

problems: the multirobot multitarget navigation problem. As

shown in Fig. 6, let us consider a closed and convex workspace

W ∈ R
2. Consider the scenario where there are n disk-shaped

robots (blue quadrotors) with center positions xi, i ∈ [1, . . . , n]
and radius ri > 0, i ∈ [1, . . . , n] and k moving targets (red

triangles) in an unknown space having obstacles inside. The

objective here is to have the robots stay close while simultane-

ously ensuring that each independent moving target stays in the

Fig. 7. Information flow in our multirobot multitarget navigation experi-
ments.

Fig. 8. Communication topology between crazyflies.

detection range of at least one robot. Assume that the workspace

is populated with Q nonintersecting spherical obstacles (black

circles), where the center and radius of the ith obstacle are

denoted by oi ∈ W and roi > 0, respectively. Since there are

unknown obstacles in the environment, we have to guarantee no

collisions during the tracking process.

We define the so-called collision-free local workspace around

xi as [27]

LF (xi) =
{

p ∈ W : aj(xi)
T p− bj(xi) ≤ 0, j = 1, . . . , Q

}

(52)

where

aj(xi) = oj − xi, θj(xi) =
1

2
−

roj
2 − r2i

2‖oj − xi‖2
,

bj(xi) = (oj − xi)
T

[

θjoj + (1− θj)xi + ri
xi − oj
‖xi − oj‖

]

.

(53)

In order to have the robots stay close while simultaneously

ensuring that each target stays in the sensing range of at least

one robot, one method is to let all the robots assemble in the

geometric center of all the targets with deviation vectors intro-

duced to each robot. We tackle the navigation task by solving

the following optimization problem with nonlinear inequality

constraints:

min
n
∑

i

fi = ‖xi − Ti(t)‖
2
2

s.t. xi = xk ∀i, k ∈ V,

aj(xi)
Txi − bj(xi) ≤ 0, ∀i ∈ V, j ∈ [1, . . . , qi] (54)
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Fig. 9. Simulation result with Crazyswarm simulator. (a) Initial positions of all the crazyflies (blue circles) and all the targets (red stars). (b)–(e)
Trajectories of all the crazyflies up to time instances 25, 50, 75, and 100 s. The positions of all the crazyflies and all the targets at each time instance
are represented by blue circles (crazyflies) and red stars (targets). (f) Geometric center trajectory of all the crazyflies (blue line) and the geometric
center trajectory of all the targets (red line).

where Ti(t) is the geometric center of all the moving targets

that robot i can sense and qi is the number of obstacles that

robot i can sense. Note that a robot might not be able to sense

all the Q obstacles in the workspace, but it is safe enough

to stay in the collision-free area determined by the nearby

obstacles. Since aj(xi) and bj(xi) depend on the position

of robot i, the above optimization problem has an implicit

dependence on time through xi. However, it is very hard to

directly address the inequality constraints in (54) due to the

complexity of aj(xi) and bj(xi) given by (53). Therefore, here,

we treat aj(xi) and bj(xi) as aj(t) and bj(t). Based on (7),

the corresponding penalized objective function is defined as

L̃i = fi(xi, t)−
1

ρi(t)

∑qi
j=1 log{σi(t)− aj(t)

Txi + bj(t)}. If

the communication topology between the robots is undirected

and connected, problem (54) satisfies all the Assumptions 1–

5 in Theorem 1. Therefore, for robots with single-integrator

dynamics defined by (2), the proposed constrained optimization

algorithm (6) can be applied to reach on agreement at the

geometric center of the targets and spread the robots in a desired

formation about this center. Therefore, we introduce an offset

vector δi for each robot i and replace xi in algorithms (6) with

xi − δi. Here, δi − δj defines the desired relative position from

robot j to robot i in the formation.

Our proposed algorithm is tested in the experiment with

five Crazyflies 2.1 quadrotors [41] in an indoor environment.

The experimental setup is shown in Fig. 7. We consider five

quadrotors moving in 2-D space controlled by velocity com-

mands [vxi , v
y
i ]. Therefore, all the Crazyflies follow the single-

integrator dynamics given by (2). We use the Vicon positioning

system [42] coupled with the extended Kalman filter to estimate

their positions [xp
i , y

p
i ]. Here, the control system is divided into

two parts, namely, high level and low level. The high-level

control involves the setup of the network topology, calculation

of the targets’ positions and velocities, capture of the obstacles’

positions, implementation of the distributed constrained opti-

mization algorithm, and generation of the velocity commands

[vxi , v
y
i ]. The low-level control is responsible for achieving the

velocity commands (by using the Mellinger controller [40]).

The host computer is used to run the high-level controller

because the crazyflies used in the experiments do not have

sufficient computation capability to run the controller in real

time. However, it should be noted that the restrictions of a

distributed environment are fully considered and the defined

distributed network topology is emulated. Five nodes under the

robotics operating system are established to control the five

crazyflies in parallel. The communication topology between the

crazyflies is shown in Fig. 8.

In our experiment, a 5× 5 m2 area is used to implement

the experiment. To simplify the experiment, we assume that

each crazyflies is only assigned one target moving in the en-

vironment. Note that our algorithm still works for multiple

targets since we only care about the geometric center of all the

targets that the crazyflie can sense. The obstacles are located

at o1 = [−2.1 m,−0.5 m] and o2 = [1.8 m, 1.6 m] with radius

r01 = 0.9 m, and r02 = 0.7 m. Each crazyflie is able to sense an

obstacle if any point of the obstacle falls into the circle with the

center being the crazyflie position and the radius being 1.0 m.

The offset vectors are chosen as

δ1 = [0.2 sin(0.2π) m,−0.2 cos(0.2π) m]T ,

δ2 = [−0.2 sin(0.2π) m,−0.2 cos(0.2π) m]T ,
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Fig. 10. Experimental result with crazyflies. (a) Initial positions of all the crazyflies (blue circles) and all the targets (red stars). (b)–(e) Trajectories
of all the crazyflies up to time instances 25, 50, 75, and 100 s. The positions of all the crazyflies and all the targets at each time instance are
represented by blue circles (crazyflies) and red stars (targets). (f) Geometric center trajectory of all the crazyflies (blue line) and the geometric
center trajectory of all the targets (red line).

δ3 = [−0.2 cos(0.1π) m, 0.2 sin(0.1π) m]T ,

δ4 = [0 m, 0.2 m]T ,

δ5 = [0.2 cos(0.1π) m, 0.2 sin(0.1π) m]T .

The initial positions of the five crazyflies are chosen as x1(0)
= [−0.4 m, 0.4 m], x2(0) = [−1.1 m, 0.4 m], x3(0) = [−1.1
m, 1.1 m], x4(0) = [−0.4 m, 1.1 m], and x5(0) =
[0.3 m, 1.1 m]. We choose ρi(t) = 125 exp(0.01t), σi(t) = exp
(−t), and β = 5. The trajectories of the crazyflies in the

Crazyswarm simulator [41] and in the experiment are,

respectively, shown in Figs. 9 and 10. In both figures, the

black circles are obstacles and the blue lines are the trajectories

of the crazyflies. Subplots (a)–(e) show the trajectories of all

the crazyflies up to time instances 0, 25, 50, 75, and 100 s. In

addition, five snapshots at 0, 25, 50 s, 75, and 100 s denoted

by the red stars (targets) and blue circles (crazyflies) are

shown in subplots (a)–(e). It is obvious that all the crazyflies

assemble together and avoid obstacles successfully both in the

Crazyswarm simulator and real experiment. Subplot (f) shows

the trajectories of the geometric center of all the crazyflies

(blue line) and all the targets (red line). In the Crazyswarm

simulator, the geometric center of all crazyflies are able to

track the geometric center of all the targets with zero tracking

error which are consistent with Theorem 1. In our experimental

result, the crazyflies tremble slightly in flight and the geometric

center of all crazyflies are able to track the geometric center

of all the targets with small tracking error (about 0.001 m).

It is worthwhile to mention that the trembling phenomena

and tracking error in the experiment might stem from the

time-delay of communication with the Vicon system and failure

of achieving the velocity commands accurately.

VII. CONCLUSION

In this article, we have studied the distributed continuous-time

constrained optimization problem with time-varying objective

functions and time-varying constraints. The goal is for a set of

networked agents to cooperatively track the time-varying opti-

mal solution that minimizes the summation of all the local time-

varying objective functions subject to all the local time-varying

constraints, where each agent has only local information and

local interaction. We have proposed distributed sliding-mode al-

gorithms built on the Hessian-based optimization methodology.

We have shown that asymptotical convergence to the optimal

solution or its vicinity is guaranteed under some reasonable as-

sumptions. Both numerical simulation results and experimental

results are given to illustrate the theoretical algorithm.
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