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A Distributed Time-Varying Optimization Algorithm For Networked
Lagrangian Agents Generating Continuous Control Torques
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Abstract—1In this paper, the distributed time-varying opti-
mization problem is investigated for networked Lagrangian
systems with parametric uncertainties. Due to the usage of the
signum function in the control torque design, there might exist
chattering while implementing the distributed time-varying
optimization algorithms for networked Lagrangian agents in the
existing works. To this end, we design a distributed optimization
algorithm that is capable of generating continuous control
torques and achieving exact optimum tracking. A simulation
is presented to validate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

In distributed optimization of networked systems, each
member has a local cost function, and the objective is
to cooperatively minimize the sum of all the local cost
functions. There are a number of distributed optimization
algorithms proposed in the literature (e.g., [1] and the ref-
erences therein). Such results consider the cases where the
agents have time-invariant local cost functions. However, the
cost functions might be time-varying in practical applications
(e.g., the economic dispatch problem [2]), and then the
optimal point is changing over time and forming an optimal
trajectory. Therefore, it is of great importance to investigate
the distributed time-varying optimization problem.

In the literature, there are extensive distributed discrete-
time algorithms (e.g. [3]-[5]) that solve the time-varying op-
timization problem. There usually exist bounded convergence
errors to the optimal trajectory by using the discrete-time
algorithms. There is another body of literature on distributed
continuous-time optimization algorithms for time-varying
cost functions. These distributed continuous-time optimiza-
tion algorithms have various applications in practice. One
important application lies in the coordination of a team of
robots, where each robot’s dynamics are described by differ-
ential equations. The distributed time-varying optimization
problem is solved with exact optimum tracking for networked
single-integrator agents [2], [6]-[8], double-integrator agents
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[9], and agents with nonlinear dynamics [10]. In reality,
a broad class of robots can be modeled by Lagrangian
dynamics, for example, the planar elbow manipulator and
autonomous vehicles [11]. The Lagrangian dynamics are
more complicated than single and double integrators, and are
different from and cannot be included as special cases by the
model considered in [10]. The complexity of the dynamics
creates more challenges to solve the distributed optimization
problem, especially the one with time-varying cost functions.

The works [12]-[14] focus on solving the distributed time-
invariant optimization problem for networked Lagrangian
agents. The idea behind these results is to introduce dis-
tributed observers at a higher level, where the agents com-
municate their observer states with their neighbors such that
the observer states reach consensus on the desired trajectory.
Then control algorithms are designed for the agents to track
the observer states. The case considered in this paper is
different from the ones in [12]-[14]. We consider the dis-
tributed optimization problem with time-varying cost func-
tions in quadratic form, and design a distributed algorithm
for Lagrangian agents to achieve exact optimum tracking. In
the proposed algorithm, reference systems are constructed
by using the mixture of physical and reference states, and
the adaptive controllers are designed so that the physical
velocities can track the reference states, and hence physical
positions track the optimal trajectory.

The structure of the proposed algorithm is inspired by [15],
[16], where the consensus and/or leader-following tracking
of networked systems are addressed. However, the problem
considered in this paper is more complex and challenging,
and includes the consensus and leader-following tracking of
networked agents as special cases. The proposed algorithm
has a similar structure as in our previous work [17], and
hence, it inherits some features from the one in [17]. It is
worth noting that the algorithm in [17] generates control
torque directly from the signum function and would cause
chattering during implementation, which is undesirable for
physical implementation. Although the proposed algorithm
in the current paper also utilizes the signum function, the
control torque is generated from a term that is essentially
the integral of the signum function, and the resulting control
torque is continuous. The continuity of the control torques
is particularly beneficial for physical control systems for
enhancing the reliability and safety (e.g., the motors of the
system are subject to much mild actions when generating
continuous torques while an abrupt action is often involved
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the signum function with its continuous time-invariant or
-varying approximation functions [18], [19], and such a
method is referred to as the approximation method. How-
ever, the approximation method as an engineering practice
might compromise between the alleviation of chattering and
theoretical rigor. Our result ensures both the theoretical rigor
and continuity of the control torques.

II. PRELIMINARIES
A. Notations

Throughout this paper, let R and R>( denote the sets of all
real numbers and all nonnegative real numbers, respectively.
For a set S, |S| denotes the cardinality of S, and for a real
number x € R, |z| denotes the absolute value of x. The
transpose of matrix A is denoted by A”. For a given vector
o= [z1,...,2]" € RP, define [jz||, = 37, |z, [lz, =
V0> + - +zp? and ||z|| = max;—1,., |z;|. For a
symmetric matrix A € RP*?, let A\q(A),---,A\p(A) denote
its eigenvalues. Let ® and co denote the Kronecker product
and the convex closure, respectively. Let diag{A1,..., Ay},
where A; € R™"*™, represent the block diagonal matrix with
the i-th block in the main diagonal being A;. For a vector
r € RP, define sgn(z) = [sgn(z1),...,sgn(z,)]T where
sgn(z;) = 1if z; > 0, sgn(z;) = 0if z; = 0, and sgn(x;) =
—1if x; < 0. Let 0 and 1 denote the zero and all-ones
vectors/matrices with appropriate dimensions, respectively.
I, € R™"™*" denotes the identity matrix. For a time-varying
signal z, let the k-th derivative of  be denoted by z(*),
where k is a non-negative integer, and in particular, (9 = z.
For a time-varying function f : R? x R>o — R, its gradient,
denoted by Vf(¢,t) € R? with ¢ € RP and t € Ry, is
the partial derivative of f(gq,t) with respect to ¢, and its
Hessian, denoted by H(q,t) € RP*P, is the partial derivative
of the gradient V f (¢, ¢) with respect to ¢. Define £, = {x |

SUp;> lz(t)|l oo < oo} and Ly = {x ‘ ,/fooo zT(t)z(t)dt <

oo}. A continuous function w : [0,a) — [0,00) is said to
belong to class K if it is strictly increasing and < (0) = 0.

B. Graph Theory

For a multi-agent system consisting of N agents, the
interaction topology can be modeled by an undirected graph
G={V,&E}, where V={1,...,N} and £ CV x V denote
the node set and edge set, respectively. An edge denoted by
(i,7) € €, means that agent 7 and j can obtain information
from each other. In an undirected graph, the edges (i, )
and (j,4) are equivalent. It is assumed that (i,7) ¢ £. The
neighbor set of node 7 is denoted by NV; = {j € V| (j,4) €
&}. The adjacency matrix A = [a;;] € RY*N of the graph
G is defined such that a;; = 1 if (j,i) € £ and a;; = 0
otherwise. For an undirected graph, a;; = a;;. The Laplacian
matrix L = [L;;] € RY*Y associated with the adjacency
matrix A is defined as L;; = ZjeM a;; and L;; = —ay
for i # j. By arbitrarily assigning an orientation for every
edge, let B = [B;;] € RV*I€l denote the incidence matrix
associated with graph G, where B;; = —1 if edge e; leaves
node ¢, B;; = 1 if it enters node ¢, and B;; = 0 otherwise.

An undirected path between node ¢; and i is a sequence

of edges of the form (iy,42), (i2,%3), ..., (ik—1,%x), Where

i, € V. A connected graph means that there exists an

undirected path between any pair of nodes in V.
Assumption 1: The graph G is connected.

C. Agents’ Dynamics

In this paper, we consider N Lagrangian systems, whose
dynamics are given by [11]

M;(q:)di + Ci(gis 4i)di + 9i(qi) = i,
where ¢; € RP is the generalized position (or configuration),
M;(q;) € RP*P is the inertia matrix, C;(g;,¢;) € RP*P
is the Coriolis and centrifugal matrix, ¢;(¢;) € RP is the
gravitational torque, and 7; € RP is the exerted control
torque. Three well-known properties associated with the
dynamics (1) are listed as follows [11], [20].

Property 1: The inertial matrix M;(g;) is symmetric and
uniformly positive definite, and there exist positive con-
stants ks and kg such that |Ci(gi, ¢:)lls < ke lldill, and
l9:(a0)ly < kg, Vi € V.

Property 2: The Coriolis and centrifugal matrix C;(g;, ;)
can be suitably chosen such that the matrix M;(g;) —
2C;(¢;, ¢;) is skew-symmetric.

Property 3: The dynamics (1) depend linearly on an
unknown constant parameter vector ¥; € R™, that is,
Mi(qi)z + Ci(ai, 4i)y + 9i(a:) = Yi(ai, di, y, x)J; holds for
any x,y € RP, where Y;(q;, ¢;,y, x) is the regressor matrix.

1€V, (1

III. PROBLEM STATEMENT

In the distributed time-varying optimization problem, each
Lagrangian agent aims to cooperatively track the optimal
trajectory ¢*(t) € RP determined by the group objective
function, which is defined as

N
(0 = orgmin { 3 la(o).11} o)
q(t) i=1
where fi[q(t),t] : R x R>g — R is the local cost function
associated with agent 4. It is assumed that ¢* € L,
which can be satisfied in most applications in practice. It is
assumed that f;[q(t),?] is known only to agent i. Note that
N .

Yoimq fila(t),t] = 22 filai(t), 1] if qi(t) = q;(t) = q(t)
for all 4,j € V, and hence to find ¢*(¢) defined in (2) is
equivalent to find the optimal solution

N
arg min . { Zfi[%‘(t)at]}y

{ai®),....,an )} =
{q1 (1), qn (t
Vi # 7,

Subject to ¢;(t) = g;(¢)

where ¢; (t) = ¢;(t) = ¢*(t) Vi # j. In this paper, the goal
is to design the control torques 7;, ¢ € V), for the agents (1)
such that each agent’s physical position ¢;(¢) is capable of
tracking ¢*(t), i.e., lim;_,o0[q; (t) — ¢*(¢)] = 0p, Vi € V. We
make the following assumption on the cost functions.

Assumption 2: Each cost function f;(g;,t), i € V, is
twice continuously differentiable both in ¢; € R and ¢, and
strongly convex in ¢; and uniformly in ¢. That is, the Hessian
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H;(q;,t) is always positive definite and there exists a positive
constant m such that \;[H;(¢;,t)] > m Vj € {1,...,p},
Vi € V holds uniformly in ¢. In addition, each H;(q;, ) is
upper-bounded, i.e., | H;(g;, )|, < m Vie V.

Lemma 1: [21] Let f(x) : R» — R be a continuously
differentiable convex function with respect to x. The function
f(z) is minimized at z* if and only if Vf(z*) = 0,.

IV. MAIN RESULTS
A. Algorithm
For each agent ¢ € V), define

Fi(gi,t) = H (¢, 1) [%vfi(Qiat) + Vfilai, t)|.  (3)

Note that Fi(qi, t) is a function of ¢;, ¢;, ¢; and ¢, denoted
by F;(qi, ¢i, di,t). Construct a reference for each agent i as

== lalg — ;) + B¢ — d) + (i — 7)) — s
JEN;

—7 ) sen

JEN;

@G — ¢+ G —dq;+7i—7) + @i, 4

where «, 3, and ~y are positive constants to be determined,
and ; is defined as

i = —Fi(q;,t) —
Define

Fi(qﬂ ) ﬁ(‘]za%ﬂ"zvt) (5)

8i = qi — T (6)

The adaptive controller for the system (1) is given by
= —Kisi + Yi(gi, dirri, 74)0i, (7
1§i = —T5Y " (qiy Giy 7, 75) S (8)

where K; and I'; are symmetric positive definite matrices,
and 191 is the estimate of 9J;.

Remark 1: In brief, each agent has a virtual reference
system (i.e., (4)) driven by both the physical states and
the reference states to generate a reference signal tracking
the optimal velocity, and the agents’ control inputs (i.e.,
(7)) are designed to track their local reference signals and
hence the optimal trajectory. Such an algorithmic structure
results in strong coupling between the agents’ dynamics
and the reference systems. It is of great benefit since only
one virtual variable is to be communicated, which is more
efficient than the distributed observer method (see [10] for
example). The structure of the proposed algorithm is inspired
by [15], [16], where special cases of the distributed time-
varying optimization problem, e.g., consensus and/or leader-
following tracking, are investigated for networked systems.
Similar structure is applied in [17] to solve the distributed
time-varying optimization of networked Lagrangian systems.
The constructed reference system in [17] is with first-order
dynamics, for which the control torques are directly gener-
ated from of the signum function. Hence, there might exist
the chattering during implementation, which is undesirable
for physical implementation. While the signum function
exists in (4), the control torque 7; is generated from r; and 7-;,

which are obtained by integrating i*; and hence continuous
and differentiable. Compare with [17], the higher-order of the
reference system (4) helps smooth out the chattering during
the control torque generation. Hence, the proposed algorithm
for Lagrangian agents is chattering-free.

B. Convergence Analysis

Assumption 3: For any ¢ € V, the gradient of the cost
function f;(g;,t) can be written as Vf;(q;,t) = H(t)q; +
gi(t), where H(t) is a matrix-valued function and g;(t)
is a time-varying function. In addition, there exist positive
1 ) t)||2 < H and
SUPsefo.00) l08 (]|, SGVI=1,2, Yk =0,...,3, Vi € V.

Remark 2: In practice, Assumptions 2 and 3 can be
satisfied in many applications. For instance, the distributed
average tracking of networked systems, which has found
several applications in region following formation control
[22] and coordinated path planning [23], can be recasted
as a time-varying optimization problem by constructing cost
functions as fi(qi,t) = |lgi — gi(t)||3, i € V, where g;(t) is
a smooth function denoting agent 7’s local reference signal.
Assumptions 2 and 3 are satisfied under the boundedness
assumption of g;(t), g;(t), gi(t), and gfg) (t).

Define w; = r;. By using (6), the reference system (4) can
be rewritten as a perturbed third-order dynamics

G =rit+si ©))
hzwi (10)
Wi ==Y lalai = g;) + B(ri —rj +si — 55)
JEN;
+o(w; —wj)] —ri — 8 —w; — Z sgn(g; — g;
JEN;
—&-ri—rj—I—si—sj—i-wi—wj)—f—goi. (11

Remark 3: From Assumption 3, it follows that ¢; =

7D1Qz - D2qz Drz G’L? where Dl =D +D -+ D,
Dz—D+2DG—gz+gz+gz,D H-Y(t)H(t) + I,
and §; = H~'(t)[g:(t) + g:(t)]. From Assumption 2, it

follows that D, <1+ X%

1Bl < £(1+38 4 22
29 29 (3 + 3H + 2 ) := G. In addition, it follows from
the deﬁmtlons of Dy and Dy that ||Iy ®D1H2 < d1 and
|[In ® Dal|, < da, where dy := 1 +3H +4H + 2H and
dy:=1+32 21

Proposition 1: Consider a group of N agents, and their
interaction is described by the graph G. Each agent’s dy-
namics are given by (9)-(11). Suppose thE(lt )Assumptions 1-3

2d 2d

hold, and let o > 7, 5 > max{ 2 Aa(L] O /\2(1L) + 2a},
and v > (N - 1)G, where dy and G are given in Remark 3.
The following statements hold.

1) It holds that ¢; — ¢* € Lo Vi eV if s; € L, Vi € V.

2) It holds that ¢;(t) — ¢*(¢t) Vie Vast - oo if s; = 0

Vi€V ast— oo.

Proof:  The proof is divided into three steps. In Step 1, it

will be proved that g; — +; Z;VZI 4 € LoosTi— % Z;VZI r; €

=d Dl < £(1+ 1),
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Loo andwi—szl% € Lo if 8, € Log Vi €V,
and that ¢; — —Zj 1G5, Ti — —Ej 17 and w; —
Nz_le ast—0if s, = 0VieVast— 0. Since
the r1ght hand of (11) is discontinuous, then the solution
is investigated in terms of differential inclusions by using
nonsmooth analysis. Since the signum function is measurable
and locally essentially bounded, by [24], it is concluded that
the Filippov solutions' [25] always exist and are abuslutely
continuous. Let ¢, v, w, s and ¢ be the column stack vector
of ¢;, ri, wi, s; and p;, © € V, respectively. Define z =
(M®I,)q, y = (M®Ip,)r, and z = (M ®I,)w, where M =
Iy — 117 Define X = [z7,y", 27]". It then holds that
X eae K[F](X), Where a.e. denotes “almost everywhere”
and F = [FI, FI FT|" with F, = y+(M®1,)s, F, = =,
and F, = —(L®I Yoz +By+az) — [(BL+ M)®1I,]s—
y—2—=(BeL)sgn[(BT @ L) (x+y+z+s)] +(M®1,)p.

Consider the Lyapunov function candidate V' = %X TpPX,
where P = [P;;],4,7 = 1,2,3, P11 = (a+8)(L&L,)+Iny,
P12 = P21 = (Oé+l€)(L®Ip)—|—INp, P22 = (ﬁ—FH)(L@
I )+INp7 and P35 = P31 = Pys = P3o = P33 = INp Note
that V' is positive definite if « > 0 and 8 > 2’\N((LL))a The
set-valued Lie derivative [25] of V is

V=K[-azT(L® L)z — (8- 2a)y" (L& L,)y
— a2l (L®I,)2 + Uy + Us + Us],
where Uy = amT(L®Ip)s—|—(B—2a)yT(L®Ip)s—ﬁzT(L®
I)s—(z+y+2)T(M®Dy)s, Uy = —(z+y+2)T [(In®

)T
Dy)z+(IN®@D2)y+(In®D)z], Us = —y(z+y+2)" (B®
L)sen[(BT @ I,) (x+y+z+s ]+(m+y+z)T<M®Ip)G

and G = [GT,...,G%]".
Note that, for any & € {z,y,z}, it holds that
E(L ® 1,)s NL)VNB €], 5], and that

<

E'(M @ D3)s < do/Npli€ll,|lsll..- Then, it holds
that —(z + y + 2)7(M ® Dsy)s < do/Np(|lzll; +
lwll + 121 ) sl = doy/NB | X1, s]l.... Hence, for any
Uy € K[U3). it holds that U, < A (L)v/Np [1s]l . [ 1],
8 — 20yl + Blelly] + dav/NpIXI, sl
ko || X|l5 I8, where k1 = max{a, 8 — 2, 8} and ky
max {ky NpAn (L)V/3, dy Npv/3}. For any Uy € K[Ua], it
holds that Uz < (|||, + [lyll, + ||Z||2)( [In @ D1ll, ||, +
1 @ Dally llylly + [1Tv @ D5 ||zll;) < 2d: || X][5. Note
that Us = —y(z +y+ 2+ s)T(B® I)sgn[(BT @ I,,) (z +
y+z+s8)]+@+y+z2+9)T(M®I)G+ s (B
I)sen[(BT®1,) (z+y+z+s)| —sT (M®1I,)G. It holds that
K[=v(z4y+z+s)T (BoI,)sgn|[(BT®L,) (z+y+z+s)]]| =
{ — v ||(BT @ L,)(z+y+z+s)|, }. It also holds that

sT(Bo1I,)sgn[(BT®1,) (z+y+z+s)] —sT(M®I,)G <
vll I, (B IL,)sen[(B" @ I, ><x+y+z+s)]H
Islly 1M & L[l 1G]l < YN?p sl + 2NDG Is]lo, =

A +

_|_

'Consider the vector differential equation & = f(z,t), where f :
R? x R — R? is measurable and locally essentially bounded. A vector
function z(-) is called a Filippov solution on [to,t1] if () is absolutely
continuous on [to, ¢1] and for almost all ¢ € [to,t1], & € K[f](z,t), where
Klfl,t) == Naso Nur)= OE]‘(B(QE7 A) — A, t) is the Filippov set-
valued map of f(z,t) and ﬂ _o denotes the intersection over all sets
N of Lebesgue measure Zero

ks |[s]lo» where ks = yN?p+2NpG. Note that (z+y+ 2+
s)"(M®1,)G < (N-1)G||(B" @ L)z +y+z+5s),.
Hence, for any U; € K[Us], it holds that Uz <
[y = (N=-DG] (BT @ L)z +y + 2+ )|, + ks ||l -
where G is given in Remark 3. Therefore, it follows that
V < —[ado(L) = 2di] ||z3 = [(8 — 20)X2(L) — 2d4] |lyl3
2
— [ada(L) = 2du] ||2[|5 + k2 [| X [l 8]l o + &3 lIs]]
2 2
< A1 =2n) |X I3 = 22 [ X5
+ k2 (| X |5 I8llog + K3 [I8]l o »

where 7 € (0,1), A\, = min{aXs(L) — 2d1,(B —
2a)A2(L) — 2d;}. Note that the term —2/\mn||X||§ +
>

k2HX||2|| S|l + ksllsll,, is non-positive if [|X][,

OO’\/; [s[..}. Note that p(r) =
,,A v/} is a class K function. It holds that

V< An@=20) XI5 YIXI > p(lls]o)-

It then follows from [26, Theorem 4.19] and the property of

the input-to-state stability [26, p. 175] that x € Lo, y € Lo

and z € L, if s € L, and that z(t) — 0, y(¢) — 0 and
()%Oastﬁooﬁs()HOastﬁoo

In Step 2, it will proved that Z 1 Vfilgi,t) € Lo if
$; € Lo ViEV, andthatzl 1 Vfilgi,t) > 0ast — oo if
s; =+ 0VieVast— oo. Define S, = Ef\il[ri + Fi(gi, t)]
and S, El Llwi + Fi(gi,t)]. From Assumption 1, the
definition of ¢; in (5), and (9)-(11), 1t holds that S, = S,,
and S, =-8.—-8, — Zle s; + ZZ 1 D$;. Define Sw =

-y  Ds; and S =[S, ST] It then holds that
S ASS—l—DZl 1 Si» where Ag =[0,1; -1, -1]® I, and
D = [D;I, + D + D]. Note that S = AgS is a standard
exponentially stable linear time-invariant (LTI) system. Note
that D is a bounded matrix. It then follows from the property
of the input-to-state stability [26, p. 175] that S € L. if
5i€ L VieVand S - 0ast —ooif s; = 0VieV
as t — oo. By the definitions of S and S, it holds that
S, €L and S, € L if s; € Lo VeeV,and S, — 0
and S, v 0ast—o0ifs; >0Viec) ast— oo.

Define x = S~ | Vfi(gi, t). Tt holds that y = —x +
H(t)S, + H(t) Ziil s;. Note that x = —x is a standard
exponentially stable LTI system. Hence, the Step 2 is proved
by following from the property of the input-to-state stability
[26, p. 175] and Assumptions 2 and 3.

In Step 3, the two statements will be proved by
using the results obtained in Steps 1 and 2. Since
the function Z;\le fi(g,t) is strongly convex in ¢
by Assumptlon 2, it then follows from Assumptlon 3 that

Nm|q—q* ||2_[ZJ 1 V(g 1) - Zj Ve 0] (@

qr) = [Z]=1 Viiat) — Z] 1 Vfilay, )] (@ —
@) + (S5 Ve D) = Y V@ 0T@ — o).
where ¢ = Z;V 1¢j- Then, it holds that

Nmllg—q"[ly < || 52 1Vfg(q7 £) =501 Vg )], +

HZJ 1 Vfig,t) — ZJ 1V filg*,t) H2 From Assumption
2 and Mean Value theorem, there exists a positive constant
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N _ N
MNsuch that || 3270, ij(]%,t) — Y Vil ), <
> j=1 M llg; —ql|. Since 37—, Vf(g*,t) = 0, then it can
be shown that || — ¢*||, < oo, and hence ¢; — ¢* € L
Vi € V. This completes the proof of the first statement.
Recall from Steps 1 and 2 that if s; — 0 Vi € V as
t — oo, it holds that ¢; — & 327 1 ¢; — O Vi € V and
SN Vfi(gi,t) — 0 as t — oco. Then, it holds that
¢i(t) — ¢*(t) Vi € V as t — oo. This completes the proof
of the second statement. |

Theorem 1: Suppose that Assumptions 1-3 hold, and let

An (L
a> /\3”&), B > max{ 2/\5(5:))&, /\3[&) +2a}, and v > (N —

1)G, where d; and G are given in Remark 3. Using the
controller (7)-(8) with r; and r; generated by the reference
system (4) for the networked Lagrangian system (1) solves
the distributed time-varying optimization problem, that is,
qi(t) = ¢*(t) Vi € V as t — 0.

Proof:  For any ¢ € V, define Lyapunov function can-
didate W; = $s7M;(qi)s; + 2A0TT T AY; with AY; =
0; — V. By using Property 2, the derivative of W; is given
as W; = fsiTKisi < 0. Then, it holds that s; € L, N Ly
and ﬁi € Lo Vi € V. Then, it follows from Proposition
1 that q; — ¢* € Lo Vi € V. Since ¢* € L, then it
holds that ¢; € L., Vi € V. It follows from the definition
of F;(gi,t) and Assumptions 2 and 3 that F;(q;,t) € Lo
Vi € V. Recall from Step 2 in the proof of Proposition 1 that
Z;V:l[rj + Fj(gj,t)] € L. Then, Z;V:N“j € L. Since
$i € Loo Vi €V, then it holds that r; — & Y27 1) € Lo
Vi € V. Then, it holds that r; € L, Vi € V. Then, by (6), it
holds that ¢; € L., Vi € V. From the definition of F,;(qi, t)
and Assumptions 2 and 3, it holds that Fi(qi,t) € Lo
Vi € V, and hence Z;V=1 wj € L. Recall from Step 1 that
wi— % YN wj € Lo Vi €V if 5; € Lo Vi € V. Hence,
w; € Lo Vi € V. Then, it follows from (10) that 7; € Lo
Vi € V. Substituting (7) into (1) and using Property 3 yield
that M;(q;)5: + Ci(qi, 4i)si = —Kisi + Yi(qi, Gis 74, 70) AV,
Then by using Property 1, it holds that §; € Lo, Vi € V.
It can thus be shown that each s;, ¢ € V, is uniformly
continuous. Using Barbalat’s lemma [26, p. 175], we obtain
that s;(t) — 0 Vi € V as t — oo. Then, from Proposition
1, it follows that ¢; — + > 1 ¢; — O Vi € V and
Z;-V:l Vfi(g;,t) — 0 as t — oo. Hence, it follows from
Lemma 1 that ¢;(t) — ¢*(t) Vi € V as t — co. [ |

Remark 4: In the literature, there is another approach
used to generate continuous control inputs for the agents,
which is replacing the signum function with its continuous
time-invariant or -varying approximation [18], [19]. Such
a method has been applied in [9] to address the time-
varying optimization problem for networked single- and
double-integrator agents. There usually exist approximation
errors, and hence non-zero optimum tracking errors, while
using time-invariant approximation function. Although the
approximation errors, and hence the optimum tracking errors,
converge to zero when using time-varying approximation
functions, the effectiveness of alleviating the chattering is-
sue might be weakened as time proceeds. In addition, the

implementation of such a method requires exact values of
the function arguments, while the proposed algorithm only
needs the signs of the function arguments, which is with
hight error allowance and computational efficiently.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide an example to illustrate the
results in this paper. Consider a group of N = 10 planar
manipulators with two revolute joints modeled by (1) [11,
pp- 259-262], and the interaction is characterized as a ring
topology. Each agent ¢ € V has a local cost function
fi(gist) = [qi1—0.1isin(¢)]?+[gqi2—0.1i cos(t)]?, and denote
by ¢* = [¢i,¢3]" the optimal trajectory that minimizes
the sum of all the local cost functions 21121 fi(g,t). In the
simulation, we select I'; = 0.8]5 and K; = 401, Vi € V),
a =1, 8 = 4 and v = 10. The position trajectories
and control torques are presented in Fig. 1 and Fig. 2,
respectively. From Fig. 1, it shows that all the agents track the
optimal trajectory, i.e., ¢;(t) — ¢*(t) Vi € V. The distributed
time-varying optimization algorithm proposed in [17] can
also be used for the Lagrangian agents to track the optimal
trajectory, and the agents’ control torques are presented in
Fig. 3, which shows the chattering exists. Compared with
Fig. 3, one can see from Fig. 2 that the control torques are
smooth and chattering-free.

Time(s)

Fig. 1. The position trajectories of Lagrangian agents (1) by using the
distributed time-varying optimization algorithm in Section IV-A.

VI. CONCLUSION

The distributed time-varying optimization problem has
been solved for networked Lagrangian agents with para-
metric uncertainties. A algorithm has been proposed to
solve the optimization problem, and the agents are able
to generate continuous control torques and achieve exact
optimum tracking. A example has been presented to illustrate
the effectiveness of the proposed algorithm.
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