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Abstract— In this paper, the distributed time-varying opti-
mization problem is investigated for networked Lagrangian
systems with parametric uncertainties. Due to the usage of the
signum function in the control torque design, there might exist
chattering while implementing the distributed time-varying
optimization algorithms for networked Lagrangian agents in the
existing works. To this end, we design a distributed optimization
algorithm that is capable of generating continuous control
torques and achieving exact optimum tracking. A simulation
is presented to validate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

In distributed optimization of networked systems, each

member has a local cost function, and the objective is

to cooperatively minimize the sum of all the local cost

functions. There are a number of distributed optimization

algorithms proposed in the literature (e.g., [1] and the ref-

erences therein). Such results consider the cases where the

agents have time-invariant local cost functions. However, the

cost functions might be time-varying in practical applications

(e.g., the economic dispatch problem [2]), and then the

optimal point is changing over time and forming an optimal

trajectory. Therefore, it is of great importance to investigate

the distributed time-varying optimization problem.

In the literature, there are extensive distributed discrete-

time algorithms (e.g. [3]–[5]) that solve the time-varying op-

timization problem. There usually exist bounded convergence

errors to the optimal trajectory by using the discrete-time

algorithms. There is another body of literature on distributed

continuous-time optimization algorithms for time-varying

cost functions. These distributed continuous-time optimiza-

tion algorithms have various applications in practice. One

important application lies in the coordination of a team of

robots, where each robot’s dynamics are described by differ-

ential equations. The distributed time-varying optimization

problem is solved with exact optimum tracking for networked

single-integrator agents [2], [6]–[8], double-integrator agents
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[9], and agents with nonlinear dynamics [10]. In reality,

a broad class of robots can be modeled by Lagrangian

dynamics, for example, the planar elbow manipulator and

autonomous vehicles [11]. The Lagrangian dynamics are

more complicated than single and double integrators, and are

different from and cannot be included as special cases by the

model considered in [10]. The complexity of the dynamics

creates more challenges to solve the distributed optimization

problem, especially the one with time-varying cost functions.

The works [12]–[14] focus on solving the distributed time-

invariant optimization problem for networked Lagrangian

agents. The idea behind these results is to introduce dis-

tributed observers at a higher level, where the agents com-

municate their observer states with their neighbors such that

the observer states reach consensus on the desired trajectory.

Then control algorithms are designed for the agents to track

the observer states. The case considered in this paper is

different from the ones in [12]–[14]. We consider the dis-

tributed optimization problem with time-varying cost func-

tions in quadratic form, and design a distributed algorithm

for Lagrangian agents to achieve exact optimum tracking. In

the proposed algorithm, reference systems are constructed

by using the mixture of physical and reference states, and

the adaptive controllers are designed so that the physical

velocities can track the reference states, and hence physical

positions track the optimal trajectory.

The structure of the proposed algorithm is inspired by [15],

[16], where the consensus and/or leader-following tracking

of networked systems are addressed. However, the problem

considered in this paper is more complex and challenging,

and includes the consensus and leader-following tracking of

networked agents as special cases. The proposed algorithm

has a similar structure as in our previous work [17], and

hence, it inherits some features from the one in [17]. It is

worth noting that the algorithm in [17] generates control

torque directly from the signum function and would cause

chattering during implementation, which is undesirable for

physical implementation. Although the proposed algorithm

in the current paper also utilizes the signum function, the

control torque is generated from a term that is essentially

the integral of the signum function, and the resulting control

torque is continuous. The continuity of the control torques

is particularly beneficial for physical control systems for

enhancing the reliability and safety (e.g., the motors of the

system are subject to much mild actions when generating

continuous torques while an abrupt action is often involved

with chattering/discontinuous torques). In order to generate

continuous control torques for the agents, one might replace
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the signum function with its continuous time-invariant or

-varying approximation functions [18], [19], and such a

method is referred to as the approximation method. How-

ever, the approximation method as an engineering practice

might compromise between the alleviation of chattering and

theoretical rigor. Our result ensures both the theoretical rigor

and continuity of the control torques.

II. PRELIMINARIES

A. Notations

Throughout this paper, let R and R≥0 denote the sets of all

real numbers and all nonnegative real numbers, respectively.

For a set S , |S| denotes the cardinality of S , and for a real

number x ∈ R, |x| denotes the absolute value of x. The

transpose of matrix A is denoted by AT . For a given vector

x = [x1, . . . , xp]
T ∈ R

p, define ‖x‖1 =
∑p

i=1 |xi|, ‖x‖2 =√
|x1|2 + · · ·+ |xp|2, and ‖x‖∞ = maxi=1,...,p |xi|. For a

symmetric matrix A ∈ R
p×p, let λ1(A), · · · , λp(A) denote

its eigenvalues. Let ⊗ and co denote the Kronecker product

and the convex closure, respectively. Let diag{A1, . . . , Ap},

where Ai ∈ R
n×m, represent the block diagonal matrix with

the i-th block in the main diagonal being Ai. For a vector

x ∈ R
p, define sgn(x) = [sgn(x1), . . . , sgn(xp)]

T where

sgn(xi) = 1 if xi > 0, sgn(xi) = 0 if xi = 0, and sgn(xi) =
−1 if xi < 0. Let 0 and 1 denote the zero and all-ones

vectors/matrices with appropriate dimensions, respectively.

In ∈ R
n×n denotes the identity matrix. For a time-varying

signal x, let the k-th derivative of x be denoted by x(k),

where k is a non-negative integer, and in particular, x(0) = x.

For a time-varying function f : Rp×R≥0 → R, its gradient,

denoted by ∇f(q, t) ∈ R
p with q ∈ R

p and t ∈ R≥0, is

the partial derivative of f(q, t) with respect to q, and its

Hessian, denoted by H(q, t) ∈ R
p×p, is the partial derivative

of the gradient ∇f(q, t) with respect to q. Define L∞ = {x
∣∣

supt≥0 ‖x(t)‖∞ < ∞} and L2 = {x
∣∣
√∫∞

0
xT (t)x(t)dt <

∞}. A continuous function ̟ : [0, a) → [0,∞) is said to

belong to class K if it is strictly increasing and ̟(0) = 0.

B. Graph Theory

For a multi-agent system consisting of N agents, the

interaction topology can be modeled by an undirected graph

G = {V, E}, where V = {1, . . . , N} and E ⊆ V × V denote

the node set and edge set, respectively. An edge denoted by

(i, j) ∈ E , means that agent i and j can obtain information

from each other. In an undirected graph, the edges (i, j)
and (j, i) are equivalent. It is assumed that (i, i) /∈ E . The

neighbor set of node i is denoted by Ni = {j ∈ V | (j, i) ∈
E}. The adjacency matrix A = [aij ] ∈ R

N×N of the graph

G is defined such that aij = 1 if (j, i) ∈ E and aij = 0
otherwise. For an undirected graph, aij = aji. The Laplacian

matrix L = [Lij ] ∈ R
N×N associated with the adjacency

matrix A is defined as Lii =
∑

j∈Ni
aij and Lij = −aij

for i 6= j. By arbitrarily assigning an orientation for every

edge, let B = [Bij ] ∈ R
N×|E| denote the incidence matrix

associated with graph G, where Bij = −1 if edge ej leaves

node i, Bij = 1 if it enters node i, and Bij = 0 otherwise.

An undirected path between node i1 and ik is a sequence

of edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where

ik ∈ V . A connected graph means that there exists an

undirected path between any pair of nodes in V .

Assumption 1: The graph G is connected.

C. Agents’ Dynamics

In this paper, we consider N Lagrangian systems, whose

dynamics are given by [11]

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i ∈ V, (1)

where qi ∈ R
p is the generalized position (or configuration),

Mi(qi) ∈ R
p×p is the inertia matrix, Ci(qi, q̇i) ∈ R

p×p

is the Coriolis and centrifugal matrix, gi(qi) ∈ R
p is the

gravitational torque, and τi ∈ R
p is the exerted control

torque. Three well-known properties associated with the

dynamics (1) are listed as follows [11], [20].

Property 1: The inertial matrix Mi(qi) is symmetric and

uniformly positive definite, and there exist positive con-

stants kC̄ and kḡ such that ‖Ci(qi, q̇i)‖2 ≤ kC̄ ‖q̇i‖2 and

‖gi(qi)‖2 ≤ kḡ , ∀i ∈ V .

Property 2: The Coriolis and centrifugal matrix Ci(qi, q̇i)
can be suitably chosen such that the matrix Ṁi(qi) −
2Ci(qi, q̇i) is skew-symmetric.

Property 3: The dynamics (1) depend linearly on an

unknown constant parameter vector ϑi ∈ R
m, that is,

Mi(qi)x+ Ci(qi, q̇i)y + gi(qi) = Yi(qi, q̇i, y, x)ϑi holds for

any x, y ∈ R
p, where Yi(qi, q̇i, y, x) is the regressor matrix.

III. PROBLEM STATEMENT

In the distributed time-varying optimization problem, each

Lagrangian agent aims to cooperatively track the optimal

trajectory q∗(t) ∈ R
p determined by the group objective

function, which is defined as

q∗(t) = argmin
q(t)

{ N∑

i=1

fi[q(t), t]

}
, (2)

where fi[q(t), t] : R
d × R≥0 → R is the local cost function

associated with agent i. It is assumed that q∗ ∈ L∞,

which can be satisfied in most applications in practice. It is

assumed that fi[q(t), t] is known only to agent i. Note that∑N

i=1 fi[q(t), t] =
∑N

i=1 fi[qi(t), t] if qi(t) = qj(t) = q(t)
for all i, j ∈ V , and hence to find q∗(t) defined in (2) is

equivalent to find the optimal solution

{q∗1(t), . . . , q∗N (t)} = argmin
{q1(t),...,qN (t)}

{
N∑

i=1

fi[qi(t), t]

}
,

Subject to qi(t) = qj(t) ∀i 6= j,

where q∗i (t) = q∗j (t) = q∗(t) ∀i 6= j. In this paper, the goal

is to design the control torques τi, i ∈ V , for the agents (1)

such that each agent’s physical position qi(t) is capable of

tracking q∗(t), i.e., limt→∞[qi(t)− q∗(t)] = 0p, ∀i ∈ V . We

make the following assumption on the cost functions.

Assumption 2: Each cost function fi(qi, t), i ∈ V , is

twice continuously differentiable both in qi ∈ R
p and t, and

strongly convex in qi and uniformly in t. That is, the Hessian
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Hi(qi, t) is always positive definite and there exists a positive

constant m such that λj [Hi(qi, t)] ≥ m ∀j ∈ {1, . . . , p},

∀i ∈ V holds uniformly in t. In addition, each Hi(qi, t) is

upper-bounded, i.e., ‖Hi(qi, t)‖2 ≤ m̄ ∀i ∈ V .

Lemma 1: [21] Let f(x) : Rp → R be a continuously

differentiable convex function with respect to x. The function

f(x) is minimized at x∗ if and only if ∇f(x∗) = 0p.

IV. MAIN RESULTS

A. Algorithm

For each agent i ∈ V , define

Fi(qi, t) = H−1
i (qi, t)

[ ∂

∂ t
∇fi(qi, t) +∇fi(qi, t)

]
. (3)

Note that F̈i(qi, t) is a function of qi, q̇i, q̈i and t, denoted

by F̃i(qi, q̇i, q̈i, t). Construct a reference for each agent i as

r̈i = −
∑

j∈Ni

[α(qi − qj) + β(q̇i − q̇j) + α(ṙi − ṙj)]− q̇i

− ṙi − γ
∑

j∈Ni

sgn(qi − qj + q̇i − q̇j + ṙi − ṙj) + ϕi, (4)

where α, β, and γ are positive constants to be determined,

and ϕi is defined as

ϕi = −Fi(qi, t)− Ḟi(qi, t)− F̃i(qi, q̇i, ṙi, t). (5)

Define

si = q̇i − ri. (6)

The adaptive controller for the system (1) is given by

τi = −Kisi + Yi(qi, q̇i, ri, ṙi)ϑ̂i, (7)

˙̂
ϑi = −ΓiY

T
i (qi, q̇i, ri, ṙi)si, (8)

where Ki and Γi are symmetric positive definite matrices,

and ϑ̂i is the estimate of ϑi.

Remark 1: In brief, each agent has a virtual reference

system (i.e., (4)) driven by both the physical states and

the reference states to generate a reference signal tracking

the optimal velocity, and the agents’ control inputs (i.e.,

(7)) are designed to track their local reference signals and

hence the optimal trajectory. Such an algorithmic structure

results in strong coupling between the agents’ dynamics

and the reference systems. It is of great benefit since only

one virtual variable is to be communicated, which is more

efficient than the distributed observer method (see [10] for

example). The structure of the proposed algorithm is inspired

by [15], [16], where special cases of the distributed time-

varying optimization problem, e.g., consensus and/or leader-

following tracking, are investigated for networked systems.

Similar structure is applied in [17] to solve the distributed

time-varying optimization of networked Lagrangian systems.

The constructed reference system in [17] is with first-order

dynamics, for which the control torques are directly gener-

ated from of the signum function. Hence, there might exist

the chattering during implementation, which is undesirable

for physical implementation. While the signum function

exists in (4), the control torque τi is generated from ri and ṙi,

which are obtained by integrating r̈i and hence continuous

and differentiable. Compare with [17], the higher-order of the

reference system (4) helps smooth out the chattering during

the control torque generation. Hence, the proposed algorithm

for Lagrangian agents is chattering-free.

B. Convergence Analysis

Assumption 3: For any i ∈ V , the gradient of the cost

function fi(qi, t) can be written as ∇fi(qi, t) = H(t)qi +
gi(t), where H(t) is a matrix-valued function and gi(t)
is a time-varying function. In addition, there exist positive

constants H̄ and ḡ such that supt∈[0,∞)

∥∥H(l)(t)
∥∥
2
≤ H̄ and

supt∈[0,∞)

∥∥g(k)i (t)
∥∥
2
≤ ḡ ∀l = 1, 2, ∀k = 0, . . . , 3, ∀i ∈ V .

Remark 2: In practice, Assumptions 2 and 3 can be

satisfied in many applications. For instance, the distributed

average tracking of networked systems, which has found

several applications in region following formation control

[22] and coordinated path planning [23], can be recasted

as a time-varying optimization problem by constructing cost

functions as fi(qi, t) = ‖qi − gi(t)‖22, i ∈ V , where gi(t) is

a smooth function denoting agent i’s local reference signal.

Assumptions 2 and 3 are satisfied under the boundedness

assumption of gi(t), ġi(t), g̈i(t), and g
(3)
i (t).

Define ωi = ṙi. By using (6), the reference system (4) can

be rewritten as a perturbed third-order dynamics

q̇i = ri + si (9)

ṙi = ωi (10)

ω̇i = −
∑

j∈Ni

[α(qi − qj) + β(ri − rj + si − sj)

+ α(ωi − ωj)]− ri − si − ωi − γ
∑

j∈Ni

sgn(qi − qj

+ ri − rj + si − sj + ωi − ωj) + ϕi. (11)

Remark 3: From Assumption 3, it follows that ϕi =
−D1qi − D2q̇i − Dṙi − Gi, where D1 = D + Ḋ + D̈,

D2 = D + 2Ḋ, Gi = g̃i + ˙̃gi + ¨̃gi, D = H−1(t)Ḣ(t) + Ip
and g̃i = H−1(t)[gi(t) + ġi(t)]. From Assumption 2, it

follows that ‖D‖2 ≤ 1 + H̄
m

:= d, ‖Ḋ‖2 ≤ H̄
m

(
1 + H̄

m

)
,

‖D̈‖2 ≤ H̄
m

(
1 + 3 H̄

m
+ H̄2

m2

)
, and for any i ∈ V , ‖Gi‖2 ≤

2ḡ
m

(
3 + 3 H̄

m
+ 2 H̄2

m2

)
:= Ḡ. In addition, it follows from

the definitions of D1 and D2 that ‖IN ⊗D1‖2 ≤ d1 and

‖IN ⊗D2‖2 ≤ d2, where d1 := 1 + 3 H̄
m

+ 4 H̄2

m2 + 2 H̄3

m3 and

d2 := 1 + 3 H̄
m

+ 2 H̄2

m2 .

Proposition 1: Consider a group of N agents, and their

interaction is described by the graph G. Each agent’s dy-

namics are given by (9)-(11). Suppose that Assumptions 1-3

hold, and let α > 2d1

λ2(L) , β > max{ 2λN (L)
λ2(L) α, 2d1

λ2(L) + 2α},

and γ > (N − 1)Ḡ, where d1 and Ḡ are given in Remark 3.

The following statements hold.

1) It holds that qi − q∗ ∈ L∞ ∀i ∈ V if si ∈ L∞ ∀i ∈ V .

2) It holds that qi(t) → q∗(t) ∀i ∈ V as t → ∞ if si → 0

∀i ∈ V as t → ∞.

Proof: The proof is divided into three steps. In Step 1, it

will be proved that qi− 1
N

∑N

j=1 qj ∈ L∞, ri− 1
N

∑N

j=1 rj ∈
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L∞ and ωi − 1
N

∑N

j=1 ωj ∈ L∞ if si ∈ L∞ ∀i ∈ V ,

and that qi → 1
N

∑N

j=1 qj , ri → 1
N

∑N

j=1 rj and ωi →
1
N

∑N

j=1 ωj as t → 0 if si → 0 ∀i ∈ V as t → 0. Since

the right hand of (11) is discontinuous, then the solution

is investigated in terms of differential inclusions by using

nonsmooth analysis. Since the signum function is measurable

and locally essentially bounded, by [24], it is concluded that

the Filippov solutions1 [25] always exist and are abuslutely

continuous. Let q, v, ω, s and ϕ be the column stack vector

of qi, ri, ωi, si and ϕi, i ∈ V , respectively. Define x =
(M⊗Ip)q, y = (M⊗Ip)r, and z = (M⊗Ip)ω, where M =
IN − 1

N
11

T . Define X = [xT , yT , zT ]T . It then holds that

Ẋ ∈a.e. K[F ](X), where a.e. denotes “almost everywhere”

and F =
[
FT

x ,FT
y ,FT

z

]T
with Fx = y+(M⊗Ip)s, Fy = z,

and Fz = −(L⊗ Ip)
(
αx+βy+αz

)
−
[
(βL+M)⊗ Ip

]
s−

y−z−γ(B⊗Ip)sgn
[
(BT ⊗Ip)

(
x+y+z+s

)]
+(M⊗Ip)ϕ.

Consider the Lyapunov function candidate V = 1
2X

TPX ,

where P = [Pij ], i, j = 1, 2, 3, P11 = (α+β)(L⊗Ip)+INp,

P12 = P21 = (α + κ)(L ⊗ Ip) + INp, P22 = (β + κ)(L ⊗
Ip)+ INp, and P13 = P31 = P23 = P32 = P33 = INp. Note

that V is positive definite if α > 0 and β > 2λN (L)
λ2(L) α. The

set-valued Lie derivative [25] of V is

˙̃
V = K

[
− αxT (L⊗ Ip)x− (β − 2α)yT (L⊗ Ip)y

− αzT (L⊗ Ip)z + U1 + U2 + U3

]
,

where U1 = αxT (L⊗Ip)s+(β−2α)yT (L⊗Ip)s−βzT (L⊗
Ip)s− (x+y+z)T

(
M ⊗D2

)
s, U2 = −(x+y+z)T

[
(IN ⊗

D1)x+(IN⊗D2)y+(IN⊗D)z
]
, U3 = −γ(x+y+z)T (B⊗

Ip)sgn
[
(BT ⊗ Ip)

(
x+y+z+s

)]
+(x+y+z)T (M ⊗ Ip)G

and G =
[
GT

1 , . . . , G
T
N

]T
.

Note that, for any ξ ∈ {x, y, z}, it holds that

ξT (L ⊗ Ip)s ≤ λN (L)
√
Np ‖ξ‖1 ‖s‖∞, and that

ξT (M ⊗ D2)s ≤ d2
√
Np ‖ξ‖1 ‖s‖∞. Then, it holds

that −(x + y + z)T
(
M ⊗ D2

)
s ≤ d2

√
Np

(
‖x‖1 +

‖y‖1 + ‖z‖1
)
‖s‖∞ = d2

√
Np ‖X‖1 ‖s‖∞. Hence, for any

Ũ1 ∈ K[U1], it holds that Ũ1 ≤ λN (L)
√
Np ‖s‖∞

[
α ‖x‖1+

(β − 2α) ‖y‖1 + β ‖z‖1
]

+ d2
√
Np ‖X‖1 ‖s‖∞ ≤

k2 ‖X‖2 ‖s‖∞, where k1 = max{α, β − 2α, β} and k2 =

max
{
k1NpλN (L)

√
3, d2Np

√
3
}

. For any Ũ2 ∈ K[U2], it

holds that Ũ2 ≤ (‖x‖2+ ‖y‖2+ ‖z‖2)
(
‖IN ⊗D1‖2 ‖x‖2+

‖IN ⊗D2‖2 ‖y‖2 + ‖IN ⊗D‖2 ‖z‖2
)
≤ 2d1 ‖X‖22. Note

that U3 = −γ(x+ y + z + s)T (B ⊗ Ip)sgn
[
(BT ⊗ Ip)

(
x+

y + z + s
)]

+ (x + y + z + s)T (M ⊗ Ip)G + γsT (B ⊗
Ip)sgn

[
(BT⊗Ip)

(
x+y+z+s

)]
−sT (M⊗Ip)G. It holds that

K
[
−γ(x+y+z+s)T (B⊗Ip)sgn

[
(BT⊗Ip)

(
x+y+z+s

)]]
={

− γ
∥∥(BT ⊗ Ip)(x+ y + z + s)

∥∥
1

}
. It also holds that

γsT (B⊗Ip)sgn
[
(BT ⊗Ip)

(
x+y+z+s

)]
−sT (M⊗Ip)G ≤

γ ‖s‖1
∥∥(B ⊗ Ip)sgn

[
(BT ⊗ Ip)(x+ y + z + s)

]∥∥
∞

+
‖s‖1 ‖M ⊗ Ip‖∞ ‖G‖∞ ≤ γN2p ‖s‖∞ + 2NpḠ ‖s‖∞ =

1Consider the vector differential equation ẋ = f(x, t), where f :
R
d × R → R

d is measurable and locally essentially bounded. A vector
function x(·) is called a Filippov solution on [t0, t1] if x(·) is absolutely
continuous on [t0, t1] and for almost all t ∈ [t0, t1], ẋ ∈ K[f ](x, t), where
K[f ](x, t) :=

⋂
Λ>0

⋂
µ(N )=0 cof(B(x,Λ)−N , t) is the Filippov set-

valued map of f(x, t) and
⋂

µ(N )=0 denotes the intersection over all sets

N of Lebesgue measure zero.

k3 ‖s‖∞, where k3 = γN2p+2NpḠ. Note that (x+y+z+
s)T (M ⊗ Ip)G ≤ (N − 1)Ḡ

∥∥(BT ⊗ Ip)(x+ y + z + s)
∥∥
1
.

Hence, for any Ũ3 ∈ K[U3], it holds that Ũ3 ≤
−[γ − (N − 1)Ḡ]

∥∥(BT ⊗ Ip)(x+ y + z + s)
∥∥
1
+ k3 ‖s‖∞,

where Ḡ is given in Remark 3. Therefore, it follows that

V̇ ≤ −[αλ2(L)− 2d1] ‖x‖22 − [(β − 2α)λ2(L)− 2d1] ‖y‖22
− [αλ2(L)− 2d1] ‖z‖22 + k2 ‖X‖2 ‖s‖∞ + k3 ‖s‖∞

≤ −λm(1− 2η) ‖X‖22 − 2λmη ‖X‖22
+ k2 ‖X‖2 ‖s‖∞ + k3 ‖s‖∞ ,

where η ∈
(
0, 1

2

)
, λm = min{αλ2(L) − 2d1, (β −

2α)λ2(L) − 2d1}. Note that the term −2λmη ‖X‖22 +
k2 ‖X‖2 ‖s‖∞ + k3 ‖s‖∞ is non-positive if ‖X‖2 ≥
max{ k2

ηλm

‖s‖∞ ,
√

k3

ηλm

√
‖s‖∞}. Note that ρ(r) =

max{ k2

ηλm

r,
√

k3

ηλm

√
r} is a class K function. It holds that

V̇ ≤ −λm(1− 2η) ‖X‖22 ∀ ‖X‖2 ≥ ρ(‖s‖∞).

It then follows from [26, Theorem 4.19] and the property of

the input-to-state stability [26, p. 175] that x ∈ L∞, y ∈ L∞

and z ∈ L∞ if s ∈ L∞, and that x(t) → 0, y(t) → 0 and

z(t) → 0 as t → ∞ if s(t) → 0 as t → ∞.

In Step 2, it will proved that
∑N

i=1 ∇fi(qi, t) ∈ L∞ if

si ∈ L∞ ∀i ∈ V , and that
∑N

i=1 ∇fi(qi, t) → 0 as t → ∞ if

si → 0 ∀i ∈ V as t → ∞. Define Sr =
∑N

i=1[ri+Fi(qi, t)]

and Sω =
∑N

i=1[ωi + Ḟi(qi, t)]. From Assumption 1, the

definition of ϕi in (5), and (9)-(11), it holds that Ṡr = Sω

and Ṡω = −Sr − Sω −∑N

i=1 si +
∑N

i=1 Dṡi. Define S̃ω =

Sω − ∑N

i=1 Dsi and S =
[
ST
r , S̃

T
ω

]T
. It then holds that

Ṡ = ASS+ D̃
∑N

i=1 si, where AS = [0, 1;−1,−1]⊗ Ip and

D̃ = [D; Ip + D + Ḋ]. Note that Ṡ = ASS is a standard

exponentially stable linear time-invariant (LTI) system. Note

that D̃ is a bounded matrix. It then follows from the property

of the input-to-state stability [26, p. 175] that S ∈ L∞ if

si ∈ L∞ ∀i ∈ V and S → 0 as t → ∞ if si → 0 ∀i ∈ V
as t → ∞. By the definitions of S and S̃ω , it holds that

Sr ∈ L∞ and Sω ∈ L∞ if si ∈ L∞ ∀i ∈ V , and Sr → 0

and Sω → 0 as t → ∞ if si → 0 ∀i ∈ V as t → ∞.

Define χ =
∑N

i=1 ∇fi(qi, t). It holds that χ̇ = −χ +

H(t)Sr + H(t)
∑N

i=1 si. Note that χ̇ = −χ is a standard

exponentially stable LTI system. Hence, the Step 2 is proved

by following from the property of the input-to-state stability

[26, p. 175] and Assumptions 2 and 3.

In Step 3, the two statements will be proved by

using the results obtained in Steps 1 and 2. Since

the function
∑N

j=1 fj(q, t) is strongly convex in q
by Assumption 2, it then follows from Assumption 3 that

Nm ‖q̄ − q∗‖22 ≤ [
∑N

j=1 ∇fj(q̄, t)−
∑N

j=1 ∇fj(q
∗, t)]T (q̄−

q∗) = [
∑N

j=1 ∇fj(q̄, t) − ∑N

j=1 ∇fj(qj , t)]
T (q̄ −

q∗) + [
∑N

j=1 ∇fj(qj , t) − ∑N

j=1 ∇fj(q
∗, t)]T (q̄ − q∗),

where q̄ = 1
N

∑N

j=1 qj . Then, it holds that

Nm ‖q̄ − q∗‖2 ≤
∥∥∑N

j=1 ∇fj(q̄, t)−
∑N

j=1 ∇fj(qj , t)
∥∥
2
+∥∥∑N

j=1 ∇fj(qj , t)−
∑N

j=1 ∇fj(q
∗, t)

∥∥
2
. From Assumption

2 and Mean Value theorem, there exists a positive constant
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M such that
∥∥∑N

j=1 ∇fj(q̄, t) − ∑N

j=1 ∇fj(qj , t)
∥∥
2

≤∑N

j=1 M ‖qj − q̄‖. Since
∑N

j=1 ∇fj(q
∗, t) = 0, then it can

be shown that ‖q̄ − q∗‖2 < ∞, and hence qi − q∗ ∈ L∞

∀i ∈ V . This completes the proof of the first statement.

Recall from Steps 1 and 2 that if si → 0 ∀i ∈ V as

t → ∞, it holds that qi − 1
N

∑N

j=1 qj → 0 ∀i ∈ V and∑N

j=1 ∇fi(qi, t) → 0 as t → ∞. Then, it holds that

qi(t) → q∗(t) ∀i ∈ V as t → ∞. This completes the proof

of the second statement. �

Theorem 1: Suppose that Assumptions 1-3 hold, and let

α > 2d1

λ2(L) , β > max{ 2λN (L)
λ2(L) α, 2d1

λ2(L) +2α}, and γ > (N −
1)Ḡ, where d1 and Ḡ are given in Remark 3. Using the

controller (7)-(8) with ri and ṙi generated by the reference

system (4) for the networked Lagrangian system (1) solves

the distributed time-varying optimization problem, that is,

qi(t) → q∗(t) ∀i ∈ V as t → ∞.

Proof: For any i ∈ V , define Lyapunov function can-

didate Wi = 1
2s

T
i Mi(qi)si +

1
2∆ϑT

i Γ
−1
i ∆ϑi with ∆ϑi =

ϑ̂i − ϑi. By using Property 2, the derivative of Wi is given

as Ẇi = −sTi Kisi ≤ 0. Then, it holds that si ∈ L∞ ∩ L2

and ϑ̂i ∈ L∞ ∀i ∈ V . Then, it follows from Proposition

1 that qi − q∗ ∈ L∞ ∀i ∈ V . Since q∗ ∈ L∞, then it

holds that qi ∈ L∞ ∀i ∈ V . It follows from the definition

of Fi(qi, t) and Assumptions 2 and 3 that Fi(qi, t) ∈ L∞

∀i ∈ V . Recall from Step 2 in the proof of Proposition 1 that∑N

j=1[rj + Fj(qj , t)] ∈ L∞. Then,
∑N

j=1 rj ∈ L∞. Since

si ∈ L∞ ∀i ∈ V , then it holds that ri − 1
N

∑N

j=1 rj ∈ L∞

∀i ∈ V . Then, it holds that ri ∈ L∞ ∀i ∈ V . Then, by (6), it

holds that q̇i ∈ L∞ ∀i ∈ V . From the definition of Ḟi(qi, t)
and Assumptions 2 and 3, it holds that Ḟi(qi, t) ∈ L∞

∀i ∈ V , and hence
∑N

j=1 ωj ∈ L∞. Recall from Step 1 that

ωi − 1
N

∑N

j=1 ωj ∈ L∞ ∀i ∈ V if si ∈ L∞ ∀i ∈ V . Hence,

ωi ∈ L∞ ∀i ∈ V . Then, it follows from (10) that ṙi ∈ L∞

∀i ∈ V . Substituting (7) into (1) and using Property 3 yield

that Mi(qi)ṡi +Ci(qi, q̇i)si = −Kisi +Yi(qi, q̇i, ri, ṙi)∆ϑi.

Then by using Property 1, it holds that ṡi ∈ L∞ ∀i ∈ V .

It can thus be shown that each si, i ∈ V , is uniformly

continuous. Using Barbalat’s lemma [26, p. 175], we obtain

that si(t) → 0 ∀i ∈ V as t → ∞. Then, from Proposition

1, it follows that qi − 1
N

∑N

j=1 qj → 0 ∀i ∈ V and∑N

j=1 ∇fj(qj , t) → 0 as t → ∞. Hence, it follows from

Lemma 1 that qi(t) → q∗(t) ∀i ∈ V as t → ∞. �

Remark 4: In the literature, there is another approach

used to generate continuous control inputs for the agents,

which is replacing the signum function with its continuous

time-invariant or -varying approximation [18], [19]. Such

a method has been applied in [9] to address the time-

varying optimization problem for networked single- and

double-integrator agents. There usually exist approximation

errors, and hence non-zero optimum tracking errors, while

using time-invariant approximation function. Although the

approximation errors, and hence the optimum tracking errors,

converge to zero when using time-varying approximation

functions, the effectiveness of alleviating the chattering is-

sue might be weakened as time proceeds. In addition, the

implementation of such a method requires exact values of

the function arguments, while the proposed algorithm only

needs the signs of the function arguments, which is with

hight error allowance and computational efficiently.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide an example to illustrate the

results in this paper. Consider a group of N = 10 planar

manipulators with two revolute joints modeled by (1) [11,

pp. 259-262], and the interaction is characterized as a ring

topology. Each agent i ∈ V has a local cost function

fi(qi, t) = [qi1−0.1i sin(t)]2+[qi2−0.1i cos(t)]2, and denote

by q∗ =
[
q∗1 , q

∗
2

]T
the optimal trajectory that minimizes

the sum of all the local cost functions
∑10

i=1 fi(q, t). In the

simulation, we select Γi = 0.8I5 and Ki = 40I2 ∀i ∈ V ,

α = 1, β = 4 and γ = 10. The position trajectories

and control torques are presented in Fig. 1 and Fig. 2,

respectively. From Fig. 1, it shows that all the agents track the

optimal trajectory, i.e., qi(t) → q∗(t) ∀i ∈ V . The distributed

time-varying optimization algorithm proposed in [17] can

also be used for the Lagrangian agents to track the optimal

trajectory, and the agents’ control torques are presented in

Fig. 3, which shows the chattering exists. Compared with

Fig. 3, one can see from Fig. 2 that the control torques are

smooth and chattering-free.
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2
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Fig. 1. The position trajectories of Lagrangian agents (1) by using the
distributed time-varying optimization algorithm in Section IV-A.

VI. CONCLUSION

The distributed time-varying optimization problem has

been solved for networked Lagrangian agents with para-

metric uncertainties. A algorithm has been proposed to

solve the optimization problem, and the agents are able

to generate continuous control torques and achieve exact

optimum tracking. A example has been presented to illustrate

the effectiveness of the proposed algorithm.
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