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Abstract— This paper investigates the optimal resource allo-
cation problem for networked double-integrator systems with
time-varying cost functions and resources. Due to the coex-
istence of challenges caused by non-identical Hessians and
more complicated agents’ dynamics, the extension from existing
related results on single-integrator agents is nontrivial. A
distributed algorithm is proposed to address the time-varying
resource allocation problem and achieve the exact optimum
tracking. Finally, an example is provided to illustrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

In optimal resource allocation problem, a certain amount

of resources must be distributed among a group of agents

while minimizing the sum of all the agents’ local cost

functions. This problem can be found in various fields

of research including power systems [1], [2], distributed

computer systems [3], sensor networks [4], robot networks

[5], and economic systems [6]. Recently, a number of dis-

tributed algorithms (see, for example, [2], [7]–[10]) have

been established to address the optimal resource allocation

problem by using local information and communication.

These distributed approaches are addressing the problem

with time-invariant cost functions and fixed amounts of

resources to be distributed. In practical applications (e.g.,

the economic dispatch problem), however, the cost functions

and/or the amount of resources to be distributed might be

time varying, and hence the optimal solutions are trajectories

changing over time instead of fixed points. It is meaningful

and closer to the practical applications to investigate the

optimal time-varying resource allocation problem.

In the literature, there are a few results on the distributed

optimal time-varying resource allocation problem. The works

[11] and [12] establish discrete-time distributed approaches

to solve the constrained time-varying optimization problem,

and there are usually nonzero tracking errors between the

local decision variables and the optimal ones. There is

another body of literature that devotes to derive continuous-

time distributed algorithms to solve the resource allocation

problem, and the established results can be used for robotic

systems to accomplish certain tasks. The works [13] and [14]
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propose continuous-time algorithms to solve the resource

allocation problem with time-invariant cost functions and

time-varying resources. When implementing the results in

[13], there exist non-zero tracking errors, and the results

in [14] suit for quadratic cost functions. In [15]–[17], the

optimal time-varying resource allocation problem is solved

for the case where both the cost functions and the resource

vectors are time varying. Specifically, in [15], [16], it is

assumed that the cost functions have identical Hessians,

and in [17], the case of non-identical time-varying diagonal

Hessians is addressed.

Notice the fact that a broad class of vehicles can be mod-

eled by double-integrator dynamics. Moreover, the results

about the time-varying resource allocation problem men-

tioned above essentially assume single-integrator dynamics

for the agents. These results cannot be directly applied to

double-integrator agents. To this end, in this paper, the opti-

mal time-varying resource allocation problem is investigated

for networked double-integrator systems. First, a centralized

approach is established, where a central virtual system is

constructed to track the optimal Lagrange multiplier, and

the central state information is used to design control inputs

for each agent to track its own optimal decision trajectory.

To remove the requirement of a central node, a distributed

resource allocation algorithm only using local information

and communication is proposed to achieve exact optimal-

decision tracking. Specifically, each agent has a virtual

system to track the optimal Lagrange multiplier, and the local

virtual state is used in the controller design. Compared with

the works in [15]–[17], this paper considers that the cost

functions have non-identical time-varying Hessians, which is

more general and includes them as special cases. Moreover,

the agents’ dynamics are double integrators, which is more

complicated that the single-integrator systems considered in

[15]–[17]. It is worth pointing out that the results obtained in

this paper are not simple extensions from the existing results

established for single-integrator systems.

II. PRELIMINARIES

A. Notations

Throughout this paper, let R, R≥0, and R+ denote the sets

of all real numbers, all nonnegative real numbers, and all

positive real numbers, respectively. For a set S , |S| denotes

the cardinality of S , and for a real number x ∈ R, |x|
denotes the absolute value of x. The transpose of matrix A is

denoted by A⊤. For a given vector x = [x1, . . . , xp]
T ∈ R

p,
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define ‖x‖1 =
∑p

i=1 |xi|, ‖x‖2 =
√
|x1|2 + · · ·+ |xp|2,

and ‖x‖∞ = maxi=1,...,p |xi|. For a symmetric matrix A ∈
R

p×p, let λ1(A), · · · , λp(A) denote its eigenvalues. Let ⊗
and co denote the Kronecker product and the convex closure,

respectively. Let diag{A1, . . . , Ap}, where Ai ∈ R
n×m,

represent the block diagonal matrix with the i-th block in

the main diagonal being Ai. For a vector x ∈ R
p, define

sgn(x) = [sgn(x1), . . . , sgn(xp)]
⊤ where sgn(xi) = 1 if

xi > 0, sgn(xi) = 0 if xi = 0, and sgn(xi) = −1
if xi < 0. Let 0 and 1 denote the zero and all-ones

vectors/matrices with appropriate dimensions, respectively.

In ∈ R
n×n denotes the identity matrix.

B. Graph Theory

For a multi-agent system consisting of N agents, the

interaction topology can be modeled by an undirected graph

G = {V, E}, where V = {1, . . . , N} and E ⊆ V × V denote

the node set and edge set, respectively. An edge denoted by

(i, j) ∈ E , means that agent i and j can obtain information

from each other. In an undirected graph, the edges (i, j)
and (j, i) are equivalent. It is assumed that (i, i) /∈ E . The

neighbor set of node i is denoted by Ni = {j ∈ V | (j, i) ∈
E}. By arbitrarily assigning an orientation for every edge

in G, let B = [Bij ] ∈ R
N×|E| denote the incidence matrix

associated with graph G, where Bij = −1 if edge ej leaves

node i, Bij = 1 if it enters node i, and Bij = 0 otherwise.

An undirected path between node i1 and ik is a sequence

of edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where

ik ∈ V . A connected graph means that there exists an

undirected path between any pair of nodes in V .

Assumption 1: The graph G is connected.

III. PROBLEM STATEMENT

Consider a multi-agent system consisting of N double-

integrator agents, and agents’ dynamics are described as

q̇i = vi, v̇i = ui, i ∈ V, (1)

where qi ∈ R
d, vi ∈ R

d, and ui ∈ R
d denote, respectively,

the position, velocity, and control input of agent i. In the

distributed resource allocation problem, each agent aims to

cooperatively track the optimal trajectory determined by the

group objective function and the coupled equality constraint.

Let q⋆(t) =
[
q⋆1

⊤(t), . . . , q⋆N
⊤(t)

]⊤ ∈ R
Nd denote the

optimal trajectories for the agents, and it is defined as

q⋆(t) = argmin
q(t)

{
N∑

i=1

fi[qi(t), t]

}
, (2)

subject to

N∑

i=1

qi(t) =

N∑

i=1

ci(t), (3)

where q(t) =
[
q⊤1 (t), . . . , q

⊤
N (t)

]⊤
, fi[q(t), t] : R

d×R≥0 →
R is the local cost function associated with agent i ∈ V , and

ci(t) ∈ R
d is agent i’s time-varying resource vector. The

objective is to design control inputs/torques for the agents

such that the agents are capable of tracking the optimal

trajectories defined in (2)-(3), i.e., qi(t) → q⋆i (t) ∀i ∈ V .

We make the following assumptions on the cost functions

and resource vectors.

Assumption 2: For any i ∈ V , the cost function fi[qi(t), t]
is twice continuously differentiable and uniformly strongly

convex with respect to qi for all t. That is, there exists

a positive constant m such that λi
(
Hi[qi(t), t]

)
> m,

i = 1, . . . , d, where Hi[qi(t), t] is the Hessian matrix of

fi[qi(t), t]. In addition, each Hi(qi, t) is upper-bounded, i.e.,

‖Hi(qi, t)‖2 ≤ m ∀i ∈ V , where m is a positive constant.

Assumption 3: There exists a positive constant c̄ such

that supt∈[0,∞) ‖ci(t)‖2 ≤ c̄, supt∈[0,∞) ‖ċi(t)‖2 ≤ c̄ and

supt∈[0,∞) ‖c̈i(t)‖2 ≤ c̄ ∀i ∈ V .

Assumption 4: For any i ∈ V , the gradient of the cost

function fi(qi, t) can be written as ∇fi(qi, t) = Hi(t)qi +
gi(t), where Hi : R≥0 → R

d×d is a matrix-valued

function, and gi(t) is a smooth time-varying function. In

addition, there exist positive constants H̄ and ḡ such that

supt∈[0,∞)

∥∥∥Ḣi(t)
∥∥∥
2

≤ H̄ , supt∈[0,∞)

∥∥∥Ḧi(t)
∥∥∥
2

≤ H̄ ,

supt∈[0,∞) ‖gi(t)‖2 ≤ ḡ, supt∈[0,∞) ‖ġi(t)‖2 ≤ ḡ, and

supt∈[0,∞) ‖g̈i(t)‖2 ≤ ḡ hold for any i ∈ V .

Remark 1: Note that Assumptions 2 and 4 can be sat-

isfied in many real-world applications. For instance, by

constructing the cost functions as fi(qi, t) = ‖qi − gi(t)‖22,

the distributed average tracking problem, which has found

several applications in region following formation control

[18] and coordinated path planning [19], can be solved as

a time-varying optimization problem. Similar assumptions

have been applied in recent works on distributed time-

varying optimization [20]–[22], especially on time-varying

resource allocation [15]–[17], and Assumption 4 includes the

case considered in all aforementioned results as special cases.

IV. RESOURCE ALLOCATION FOR NETWORKED

DOUBLE-INTEGRATOR AGENTS

Define the Lagrange function associated with the optimiza-

tion problem in (2)-(3) as

L(q, µ, t) =
N∑

i=1

fi[qi(t), t] + µ⊤(t)
N∑

i=1

[qi(t)− ci(t)], (4)

where µ(t) ∈ R
d is the Lagrange multiplier. From Assump-

tion 2, it follows that the Lagrange function (4) is strongly

convex in q(t) and concave in µ(t). Then the optimal primal-

dual pair {q⋆(t), µ⋆(t)} is unique at all time t ≥ 0, and

satisfy the following KKT condition:

0 = ∇qL(q⋆, µ⋆, t) = ∇q

(
N∑

i=1

fi[q
⋆
i (t), t]

)
+ 1⊗ µ⋆(t),

0 = ∇µL(q⋆, µ⋆, t) =

N∑

i=1

[
q⋆i (t)− ci(t)

]
,

where ∇ξL(q, µ, t) denotes the partial derivative of the

function L(q, µ, t) with respect to ξ ∈ {q, µ}. Define

z = [q⊤, µ⊤]⊤. The Lagrange function (4) can be rewritten

as L(z, t), and the KKT condition can be rewritten as

∇zL(z⋆, t) = 0, where z⋆ =
[
q⋆⊤, µ⋆⊤]⊤. Then, we have

the following lemma adapted from [23].
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Lemma 1: If ∇zL(z, t) → 0 as t → ∞, then qi(t) →
q⋆i (t) ∀i ∈ V and µ(t) → µ⋆(t) as t→ ∞.

Proof: Let Hz(z, t) denote the Hessian matrix

associated with the Lagrange function L(z, t) and

Hz(z, t) =

[
H(q, t) 1

1
⊤ 0

]
, where H(q, t) =

diag
{
H1(q1, t), . . . , HN (qN , t)

}
. By Assumption 2, it

holds that Hz(z, t) is nonsingular [24, p. 523] and

bounded. Then, there exists a positive constant mH such

that
∥∥H−1

z (z, t)
∥∥
2

≤ mH . By mean-value theorem, it

holds that ‖z(t)− z⋆(t)‖2 =
∥∥H−1

z (z, t)∇zL(z, t)
∥∥
2

≤
mH ‖∇zL(z, t)‖2, where the fact that ∇zL(z⋆, t) = 0

has been used to obtain the equality. Hence, it holds that

z(t) → z⋆(t) as t → ∞, which shows that the statement in

Lemma 1 holds. �

A. Centralized Algorithm

We establish a centralized algorithm for (1), and assume

that there exists a central server that is connected with and

can exchange information with all the agents. Construct a

virtual system for the central server as

µ̈ = −β(µ̇− µ̃) + ˙̃µ (5)

where

µ̃ = −αµ−
[

N∑

j=1

H−1
j (qj , t)

]−1 N∑

j=1

{
ċj − α(qj − cj)

+H−1
j (qj , t)

[
α∇fj(qj , t)

∂

∂ t
∇fj(qj , t)

]}
, (6)

and, β and α are positive constants. Design the control input

for agent i ∈ V as

ui = −vi − Fi(qi, µ, µ̇, t)− Ḟi(qi, µ, µ̇, t), (7)

where the vector-valued function Fi : R
d×R

d×R
d×R≥0 →

R
d is defined as

Fi(qi, µ, µ̇, t) = H−1
i (qi, t)

[
∂

∂ t
∇fi(qi, t)

+ α∇fi(qi, t) + αµ+ µ̇

]
. (8)

By Assumption 2, it holds that the Hessians Hi(qi, t), i ∈
V , are positive definite, which implies that all H−1

i (qi, t),
i ∈ V , exist and are positive definite. Then, the matrix∑N

j=1H
−1
j (qi, t) is also positive definite, and hence invert-

ible. Thus, the definition of µ̃ in (6) is justified. By Assump-

tions 2-4, ˙̃µ exists. Then, Fi(qi, µ, µ̇, t) and Ḟi(qi, µ, µ̇, t)
exist, and hence, the controller (7) is well defined.

Proposition 1: Suppose that Assumptions 2-4 hold and let

α, β ∈ R+. Using (7) with µ, µ̇ and µ̈ generated/given by

(5) for the double-integrator agents (1) solves the distributed

resource allocation problem, i.e., qi(t) → q⋆i (t) ∀i ∈ V as

t→ ∞.

Proof: Define χi = vi + Fi(qi, µ, µ̇, t). By (7), it holds

that χ̇i = −χi. Then, it holds that χi → 0 ∀i ∈ V as t→ ∞.

Define ψi = ∇fi(qi, t) + µ. By (1) and the definition

of χi, it holds that ψ̇i = Hi(qi, t)q̇i +
∂
∂ t
∇fi(qi, t) + µ̇ =

−αψi + Hi(qi, t)χi, where the definition of Fi(qi, µ, µ̇, t)
in (8) has been used to obtain the last equality. Note that

ψ̇i = −αψi is a standard exponentially stable linear time-

invariant (LTI) system. Recall that χi → 0 as t→ ∞. Then,

it follows from the property of the input-to-state stability [25,

p. 175] and Assumption 2 that ψi → 0 ∀i ∈ V as t → ∞.

That is, ∇fi(qi, t) + µ → 0 ∀i ∈ V as t → ∞. Hence, it

holds that ∇qL(q, µ, t) → 0 as t→ ∞.

Define eµ = µ̇− µ̃. By (5), it then holds that ėµ = −βeµ.

It holds that eµ → 0 as t→ ∞.

Define ζ =
∑N

i=1

(
qi − ci

)
. It holds that ζ̇ = −αζ +∑N

i=1 χi − ∑N
i=1H

−1
i (qi, t)eµ. Recall that χi, eµ → 0

∀i ∈ V as t → ∞, and note that ζ̇ = −αζ is a standard

exponentially stable LTI system. It then follows from the

property of the input-to-state stability [25, p. 175] and

Assumption 2 that ζ → 0 as t → ∞. Hence, it holds that

∇µL(q, µ, t) → 0 as t→ ∞.

From the analysis above, it holds that ∇zL(z, t) → 0 as

t → ∞, where z = [q⊤, µ⊤]⊤. Therefore, the statement in

Proposition 1 follows by Lemma 1. �

From Proposition 1, it holds that
∑N

i=1[qi(t) − ci(t)] →
0 as t → ∞, which implies that feasibility is achieved

asymptotically. Moreover, if the initial condition is feasible,

i.e.,
∑N

i=1[qi(0) − ci(t)] = 0, one can select appropriate

values for µ(0), µ̇(0) such that the solution
∑N

i=1 qi(t) will

be feasible all the time, i.e.,
∑N

i=1[qi(t)−ci(t)] = 0 ∀t ≥ 0.

Remark 2: Note that from the centralized algorithm,

the optimal Lagrange multiplier is estimated by µ,

and it requires global information, especially the Hes-

sians Hi(qi, t), to calculate the terms G1, G2, Ġ1

and Ġ2, where G1 =
∑N

j=1H
−1
j (qj , t) and G2 =∑N

j=1

{
H−1

j (qj , t)
[
α∇fj(qj , t)+ ∂

∂ t
∇fj(qj , t)

]
+ċj−α(qj−

cj)
}

. To derive the distributed counterpart, one can use

distributed average tracking algorithms to estimate the those

terms in a distributed manner, which is done in this way in

[17] to address the time-varying resource allocation prob-

lem with diagonal Hessians. However, when it comes to

non-diagonal Hessians, exchanging matrices (e.g., Hessians’

inverses) among the agents is expensive and not practical.

In the following, we propose a distributed algorithm for

networked double-integrator agents (1) to cooperatively solve

the time-varying resource allocation problem without ex-

changing matrices.

B. Distributed Algorithm

Each agent i ∈ V has a virtual system defined by

µ̈i = −β(µ̇i − µ̃i) + ˙̃µi + Ḣi(qi, t)H
−1(qi, t)(µ̇i − µ̃i)

− γHi(qi, t)
∑

j∈Ni

sgn
[
α(µi − µj) + µ̇i − µ̇j

]
, (9)

where

µ̃i = −αµi + αHi(qi, t)
(
qi − ci

)
−Hi(qi, t)ċi

− ∂

∂ t
∇fi(qi, t)− α∇fi(qi, t), (10)
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and α, β and γ are positive constants to be determined.

Define the control input for agent i ∈ V as

ui = −vi − Fi(qi, µi, µ̇i, t)− Ḟi(qi, µi, µ̇i, t), (11)

where the function Fi(·, ·, ·, ·) is given in (8).

Theorem 1: Suppose that Assumptions 1-4 hold and let

positive constants α, β and γ be selected to satisfy that

γm ≥ 2|E|dω̄
√
Nd, (12)

where

ω̄ =
[
(αβ + α+ 1)H̄ + (α+ β + 1)m

]
c̄

+ (α+ β + 1)H̄ζ̄ +

(
β + 1

α
+ 2

)
H̄χ̄

+

(
β + 1

α
+ 3

)
H̄ē+ (3α+ β + 1)H̄

γN
√
d

αβ

+ (αβ + α+ β + 1)ḡ, (13)

ζ̄ = max
i∈V

{
‖qi(0)− ci(0)‖2

}
, (14)

χ̄ = max
i∈V

{
‖vi(0) + Fi[qi(0), µi(0), µ̇i(0), 0]‖2

}
, (15)

ē = max
i∈V

{∥∥H−1
i (0)[µi(0)− µ̃i(0)]

∥∥
2

}
. (16)

Using (11) with µi, µ̇i and µ̈i generated/given by (9) for the

double-integrator agents (1) solves the distributed resource

allocation problem, i.e., qi(t) → q⋆i (t) ∀i ∈ V as t→ ∞.

Proof: The proof is divided into four steps.

In Step 1, it is proved that ∇fi(qi, t)+µi → 0 ∀i ∈ V as

t → ∞. Define χi = vi + Fi(qi, µi, µ̇i, t). By (11), it holds

that χ̇i = −χi. It then holds that χi → 0 ∀i ∈ V as t→ ∞.

It also follows that χi(t) = e−tχi(0) ∀i ∈ V for t ∈ R≥0.

Then, ‖χi(t)‖2 ≤ e−t ‖χi(0)‖2 ≤ ‖χi(0)‖2. Define ψi =
∇fi(qi, t) + µi, and it holds that ψ̇i = −αψi +Hi(qi, t)χi.

Then, it holds that ψi → 0 ∀i ∈ V as t→ ∞.

In Step 2, it is proved that
∑N

i=1[qi−ci(t)] → 0 as t→ ∞.

Define eµi
= H−1

i (qi, t)(µ̇i − µ̃i). Then, it holds that

ėµi
= −βeµi

− γ
∑

j∈Ni

ρi,j (17)

where ρi,j = sgn
[
α(µi − µj) + µ̇i − µ̇j

]
, and the second

equality follows from (9) and the fact that d
d t
H−1

i (qi, t) =

−H−1(qi, t)
[ d

d t
Hi(qi, t)

]
H−1

i (qi, t).

Define eµ =
∑N

i=1 eµi
. Note that

∑N
i=1

∑
j∈Ni

ρi,j = 0

follows from Assumption 1. Then, it holds that ėµ = −βeµ.

Hence, eµ → 0 as t→ ∞.

Define ζi = qi − ci. It then holds that

ζ̇i = −αζi + χi − eµi
, (18)

where the last equality is obtained by using the definition

of µ̃i in (10). Define ζ =
∑N

i=1 ζi. It then follows that ζ̇ =

−αζ +∑N
i=1 χi − eµ. Recall that χi, eµ → 0 as t → ∞. It

follows from the properties of the input-to-state stability that

ζ → 0 as t→ ∞. That is, ∇µL(q, µ, t) → 0 as t→ ∞.

In Step 3, it is proved that µi − µj → 0 ∀i, j ∈ V as

t→ ∞. It follows from the definition of µ̃i in (10) that the

system (9) can be rewritten as

µ̈i = −αβµi − (α+ β)µ̇i + ωi(qi, vi, t)

− γHi(qi, t)
∑

j∈Ni

sgn
[
α(µi − µj) + µ̇i − µ̇j

]
, (19)

where ωi(qi, vi, t) = αβHi(qi, t)[qi − ci(t)] −
βHi(qi, t)ċi(t) − β ∂

∂ t
∇fi(qi, t) − αβ∇fi(qi, t) +

α
[ d

d t
Hi(qi, t)

]
[qi − ci(t)] + αHi(qi, t)[vi − ċi(t)] −

[ d
d t
Hi(qi, t)

]
ċi(t) − Hi(qi, t)c̈i − d

d t

∂
∂ t
∇fi(qi, t) −

α d
d t

∇fi(qi, t) +
[ d

d t
Hi(qi, t)

]
eµi

. Note from

Assumption 4 that ∇fi(qi, t) = Hi(t)qi + gi(t),
and then it follows from the definition of ζi that

ωi(qi, vi, t) = −
[
αβHi(t)+αḢi(t)

]
ci(t)−

[
(α+β)Hi(t)+

Ḣi(t)
]
ċi(t) − Hi(t)c̈(t) −

[
βḢi(t) + Ḧi(t)

]
[ζi + ci(t)] −

Ḣi(t)
[
ζ̇i + ċi(t)

]
−αβgi(t)− (α+ β)ġi(t)− g̈i + Ḣi(t)eµi

.

Note that for any i ∈ V , it follows from (17) that∥∥∥
∑

j∈Ni
ρi,j

∥∥∥
2

≤ N
√
d. Then, it holds that eµi

(t) =

e−βteµi
(0)−γ

∫ t

0
e−β(t−τ)

∑
j∈Ni

ρi,j(τ)dτ . It follows that

‖eµi
(t)‖2 ≤ ‖eµi

(0)‖2 + γN
√
d

β
. It follows from (18)

that ‖ζi(t)‖2 ≤ ‖ζi(0)‖2 + 1
α
[‖χi(0)‖2 + ‖eµi

(0)‖2] +
γN

√
d

αβ
. It follows from (18) that

∥∥∥ζ̇i
∥∥∥
2

≤ α ‖ζi(0)‖2 +

2[‖χi(0)‖2+‖eµi
(0)‖2]+

2γN
√
d

β
. By Assumption 4, it holds

that ‖ωi(qi, vi, t)‖∞ ≤
[
(αβ+α+1)H̄+(α+β+1)m

]
c̄+

(α + β + 1)H̄ ‖ζi(0)‖2 +
(
β+1
α

+ 2
)
H̄ ‖χi(0)‖2 +

(
β+1
α

+

3
)
H̄ ‖eµi

(0)‖2+(3α+β+1)H̄ γN
√
d

αβ
+(αβ+α+β+1)ḡ ≤ ω̄,

where ω̄ is given in (13).

Define δi = αµi + µ̇i and δ =
[
δ⊤1 , . . . , δ

⊤
N

]⊤
, and let

B̃ = B ⊗ Id. Then, it holds that

δ̇ = −βδ − γH(t)B̃sgn
(
B̃⊤δ

)
+ ω(q, v, t), (20)

where H(t) = diag
{
H1(t), . . . , HN (t)

}
and ω(q, v, t) =[

ω⊤
1 (q1, v1, t), . . . , ω

⊤
N (qN , vN , t)

]⊤
. Since the signum func-

tion is measurable and locally essentially bounded and

ω(q, v, t) is bounded, by [26], the Filippov solutions 1 of (20)

exist and are absolutely continuous, that is, δ is continuous.

Hence, K[−βδ] = {−βδ} and K[ω(q, v, t)] ⊆ [−ω̄, ω̄]Nd. It

holds that K
[
δ̇
]
⊆ Fδ , where Fδ = {−βδ}+K[ω(q, v, t)]−

γHB̃K
[
sgn
(
B̃⊤δ

)]
. Note that, for any r = [r1, . . . , rp] ∈

R
p, it holds that K[sgn(r)] = K[sgn(r1)]× · · · ×K[sgn(rp)]

and K[sgn(ri)] = {1} if ri > 0, K[sgn(ri)] = {−1} if ri <
0, and K[sgn(ri)] = [−1, 1] if ri = 0. Consider the Lyapunov

function candidate V [δ(t)] =
∥∥∥B̃⊤δ

∥∥∥
1
. Note that V is locally

Lipschitz continuous but nonsmooth at some points. Then, by

[27], it holds that d
d t
V [δ(t)] ∈ ˙̃V . The generalized gradient

1Consider the vector differential equation ẋ = f(x, t), where f :
R
d × R → R

d is measurable and locally essentially bounded. A vector
function x(·) is called a Filippov solution on [t0, t1] if x(·) is absolutely
continuous on [t0, t1] and for almost all t ∈ [t0, t1], ẋ ∈ K[f ](x, t), where
K[f ](x, t) :=

⋂
Λ>0

⋂
µ(N )=0 cof(B(x,Λ)−N , t) is the Filippov set-

valued map of f(x, t) and
⋂

µ(N )=0 denotes the intersection over all sets

N of Lebesgue measure zero

1162

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 06,2024 at 01:30:33 UTC from IEEE Xplore.  Restrictions apply. 



of V is given by ∂V = B̃K
[
sgn
(
B̃⊤δ

)]
. By [27], the set-

valued Lie derivative of V is given by

˙̃V ⊆
⋂

ξ∈K
[
sgn
(
B̃δ
)] ξ⊤B̃⊤Fδ. (21)

By (21), it holds that if
˙̃V 6= ∅ and assume that ã ∈ ˙̃V ,

then there exist η̃ ∈ K
[
sgn
(
B̃⊤δ

)]
and ω̃ ∈ K[ω(q, v, t)]

such that ã = ξ⊤B̃
[
− βδ − γHB̃η̃ + ω̃

]
holds for any

ξ ∈ K
[
sgn
(
B̃⊤δ

)]
. Define ρ = sgn

(
B̃⊤δ

)
, and for such

η̃ and ω̃, one can choose ξ = ξ̃ ∈ K
[
sgn
(
B̃⊤δ

)]
such

that ξ̃i = ρi if ρi 6= 0 and ξ̃i = η̃i if ρi = 0, where ξ̃i,
ρi and η̃i denote the ith element of the vectors ξ̃, ρ and

η̃, respectively. Note that ρi = 0 if and only if Xi = 0,

where Xi is the ith element of the vector X = B̃⊤δ.

Then, it holds that −βξ̃⊤B̃⊤δ = −β
∥∥∥B̃⊤δ

∥∥∥
1
. It also holds

that −γξ⊤B̃⊤
HB̃η̃ ≤ −γλmin(H)

∥∥∥B̃ξ
∥∥∥
2

2
≤ −γm

∥∥∥B̃ξ
∥∥∥
2

2

and ξ⊤B̃⊤ω̃ ≤
∥∥∥B̃ξ

∥∥∥
2
‖ω̃‖2 ≤ ω̄

√
Nd

∥∥∥B̃ξ
∥∥∥
1

≤
2|E|dω̄

√
Nd ‖ξ‖∞. If there exists an edge (i, j) ∈ E such

that δi 6= δj , then

∥∥∥B̃ξ
∥∥∥
2
≥ 1. Then, it holds that ã ≤

−β
∥∥∥B̃⊤δ

∥∥∥
1
− γm+2|E|dω̄

√
Nd. Hence, if α, β and γ are

selected to satisfy (12), then it holds that ã ≤ −β
∥∥∥B̃⊤δ

∥∥∥
1
.

Therefore, for any ã ∈ ˙̃V , if there exists an edge (i, j) ∈ E
such that δi 6= δj , ã ≤ −β

∥∥∥B̃⊤δ
∥∥∥
1
. Hence, it holds that

B̃⊤δ → 0 as t → ∞. From the definition of δ, it follows

that (B⊤ ⊗ Id)µ→ 0 as t→ ∞, which implies that Step 3
is complete.

In Step 4, the statement of Theorem 1 is finally proved.

From Step 1, it holds that ∇fi(qi, t) + µi → 0 ∀i ∈ V as

t→ ∞. From Step 3, it is can be derived that there exists a

function µ(t) such that µi(t)−µ(t) → 0 ∀i ∈ V as t→ ∞.

Note that ∇fi(qi, t) + µi = ∇fi(qi, t) + µ(t) + µi − µ(t)
∀i ∈ V . Then, it holds that ∇fi(qi, t) + µ → 0 ∀i ∈ V as

t → ∞, which implies that ∇qiL(q, µ, t) → 0 as t → ∞.

Combine with Step 2, it holds that ∇zL(z, t) → 0 as t→ ∞,

where z = [q⊤, µ⊤]⊤. Then, by Lemma 1, the statement in

Theorem 1 holds. �

Remark 3: It is worth pointing out that one can always

find positive constants α, β and γ satisfying (12). For

instance, one can choose large enough values for α and

β such that αβ > (3α + β + 1)H̄N
√
d, and then choose

large enough value for γ. These parameters are constants,

which can be determined off-line and then embedded into

the agents.

V. ILLUSTRATIVE EXAMPLES

Consider a group of N = 10 double-integrator agents

described by (1) where d = 2, and assume that each agent

i ∈ V has a cost function fi(qi, t) =
1
2q

⊤
i Hi(t)qi+gi(t)

⊤qi+
hi(t), where Hi(t) = [10 + 0.1i, 10 + 0.1i; 10 + 0.1i, 13 +
0.1i cos(t)+0.1i], gi(t) = [i cos(t), i sin(t)]⊤, and hi(t) is a

time-varying function. The agents aim to cooperatively solve

the resource allocation problem defined in (2)-(3), where

ci(t) = [0.5i cos(t)+ i+45, 0.5i sin(t)+ i+20]⊤. We select

α = 0.5, β = 1 and γ = 9. The trajectories of qi and µi are

presented in Fig. 1 and Fig. 2. In the two figures, the solid

and dashed lines are the trajectories generated by using the

distributed algorithm (in Section IV-B) and the centralized

algorithm (in Section IV-A), respectively. The dash-dotted

lines are the optimal solutions of q⋆i and µ⋆, i ∈ V . It can

be seen that qi and µi can track the optimal q⋆i and µ⋆.
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Fig. 1. The position trajectories of double-integrator agents (1) generated
by using the algorithms in Sections IV-A and IV-B.
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Fig. 2. The trajectories of µi generated by using the algorithm in Sections
IV-A and IV-B.

VI. CONCLUSION

The distributed time-varying resource allocation problem

has been investigated for networked double-integrator agents.

A distributed algorithm has been proposed for the agents

to track the optimal decision trajectories with zero errors.

Finally, simulation results have been presented to validate

the effectiveness of the proposed distributed algorithm.
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