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Distributed Continuous-Time Resource Allocation Algorithm for
Networked Double-Integrator Systems with Time-Varying Non-Identical
Hessians and Resources

Yong Ding, Wei Ren, and Ziyang Meng

Abstract— This paper investigates the optimal resource allo-
cation problem for networked double-integrator systems with
time-varying cost functions and resources. Due to the coex-
istence of challenges caused by non-identical Hessians and
more complicated agents’ dynamics, the extension from existing
related results on single-integrator agents is nontrivial. A
distributed algorithm is proposed to address the time-varying
resource allocation problem and achieve the exact optimum
tracking. Finally, an example is provided to illustrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

In optimal resource allocation problem, a certain amount
of resources must be distributed among a group of agents
while minimizing the sum of all the agents’ local cost
functions. This problem can be found in various fields
of research including power systems [1], [2], distributed
computer systems [3], sensor networks [4], robot networks
[5], and economic systems [6]. Recently, a number of dis-
tributed algorithms (see, for example, [2], [7]-[10]) have
been established to address the optimal resource allocation
problem by using local information and communication.
These distributed approaches are addressing the problem
with time-invariant cost functions and fixed amounts of
resources to be distributed. In practical applications (e.g.,
the economic dispatch problem), however, the cost functions
and/or the amount of resources to be distributed might be
time varying, and hence the optimal solutions are trajectories
changing over time instead of fixed points. It is meaningful
and closer to the practical applications to investigate the
optimal time-varying resource allocation problem.

In the literature, there are a few results on the distributed
optimal time-varying resource allocation problem. The works
[11] and [12] establish discrete-time distributed approaches
to solve the constrained time-varying optimization problem,
and there are usually nonzero tracking errors between the
local decision variables and the optimal ones. There is
another body of literature that devotes to derive continuous-
time distributed algorithms to solve the resource allocation
problem, and the established results can be used for robotic
systems to accomplish certain tasks. The works [13] and [14]
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propose continuous-time algorithms to solve the resource
allocation problem with time-invariant cost functions and
time-varying resources. When implementing the results in
[13], there exist non-zero tracking errors, and the results
in [14] suit for quadratic cost functions. In [15]-[17], the
optimal time-varying resource allocation problem is solved
for the case where both the cost functions and the resource
vectors are time varying. Specifically, in [15], [16], it is
assumed that the cost functions have identical Hessians,
and in [17], the case of non-identical time-varying diagonal
Hessians is addressed.

Notice the fact that a broad class of vehicles can be mod-
eled by double-integrator dynamics. Moreover, the results
about the time-varying resource allocation problem men-
tioned above essentially assume single-integrator dynamics
for the agents. These results cannot be directly applied to
double-integrator agents. To this end, in this paper, the opti-
mal time-varying resource allocation problem is investigated
for networked double-integrator systems. First, a centralized
approach is established, where a central virtual system is
constructed to track the optimal Lagrange multiplier, and
the central state information is used to design control inputs
for each agent to track its own optimal decision trajectory.
To remove the requirement of a central node, a distributed
resource allocation algorithm only using local information
and communication is proposed to achieve exact optimal-
decision tracking. Specifically, each agent has a virtual
system to track the optimal Lagrange multiplier, and the local
virtual state is used in the controller design. Compared with
the works in [15]-[17], this paper considers that the cost
functions have non-identical time-varying Hessians, which is
more general and includes them as special cases. Moreover,
the agents’ dynamics are double integrators, which is more
complicated that the single-integrator systems considered in
[15]-[17]. It is worth pointing out that the results obtained in
this paper are not simple extensions from the existing results
established for single-integrator systems.

II. PRELIMINARIES

A. Notations

Throughout this paper, let R, R>(, and R denote the sets
of all real numbers, all nonnegative real numbers, and all
positive real numbers, respectively. For a set S, |S| denotes
the cardinality of S, and for a real number z € R, |z

Z. M i ith  the Department of Precisi In- . .
strument engTsinl;huan Univjrsity eparBr:g?ng © looogicmoncmnl; denotes the absolute value of . The transpose of matrix A is
(ziyangmeng@tsinghua.edu.cn) denoted by AT . Fora given vector x = [z1, . .. ,xp]T € RP,
979-8-3503-2806-6/$31.00 ©2023 AACC 1159

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 06,2024 at 01:30:33 UTC from IEEE Xplore. Restrictions apply.



define e, = Y7, feil, all, = VP + -+ o, I
and x| = maxlfl,wp x;|. For a symmetric matrix A €
RP*P let A\1(A), -, \p(A) denote its eigenvalues. Let @
and co denote the Kronecker product and the convex closure,
respectively. Let diag{Ai,..., Ay}, where 4; € R™™,
represent the block diagonal matrix with the i-th block in
the main diagonal being A;. For a vector x € RP, define
sen(z) = [sgn(z1),...,sgn(z,)] " where sgn(z;) = 1 if
x; > 0, sgn(x;) = 0 if z; = 0, and sgn(x;) = —1
if x; < 0. Let 0 and 1 denote the zero and all-ones
vectors/matrices with appropriate dimensions, respectively.
I, € R™ ™ denotes the identity matrix.

B. Graph Theory

For a multi-agent system consisting of N agents, the
interaction topology can be modeled by an undirected graph
G={V,&}, where V={1,...,N} and £ CV x V denote
the node set and edge set, respectively. An edge denoted by
(i,7) € €, means that agent ¢ and j can obtain information
from each other. In an undirected graph, the edges (3, )
and (j,4) are equivalent. It is assumed that (i,¢) ¢ &£. The
neighbor set of node 7 is denoted by NV; = {5 € V| (j,4) €
E}. By arbitrarily assigning an orientation for every edge
in G, let B = [B;;] € RYV*IEl denote the incidence matrix
associated with graph G, where B;; = —1 if edge e; leaves
node i, B;; = 1 if it enters node 7, and B;; = 0 otherwise.

An undirected path between node ¢; and i is a sequence
of edges of the form (iy,42), (i2,%3), ..., (ik—1,%x), Where
i, € V. A connected graph means that there exists an
undirected path between any pair of nodes in V.

Assumption 1: The graph G is connected.

III. PROBLEM STATEMENT

Consider a multi-agent system consisting of N double-
integrator agents, and agents’ dynamics are described as

Qi = V4, U’L = U, S V7 (1)

where ¢; € R, v; € R?, and u; € R? denote, respectively,
the position, velocity, and control input of agent ¢. In the
distributed resource allocation problem, each agent aims to
cooperatively track the optimal trajectory determined by the
group objective function and the coupTled equality constraint.
Let ¢*(t) = [q{T(t),...,qj*VT(t)] € RN denote the
optimal trajectories for the agents, and it is defined as

q()argmm{Zflql } )

q(t)

N N
subject to Z qi(t) = Z ci(t), 3)
=1 =1
where ¢(t) = [q/ (1), ..., a0 ()], fila(t), 1] : R x Rsg —

R is the local cost function associated with agent ¢ € ), and
ci(t) € R? is agent i’s time-varying resource vector. The
objective is to design control inputs/torques for the agents
such that the agents are capable of tracking the optimal
trajectories defined in (2)-(3), i.e., ¢;(t) — ¢ (t) Vi € V.

We make the following assumptions on the cost functions
and resource vectors.

Assumption 2: For any i € V, the cost function f;[g;(t), ]
is twice continuously differentiable and uniformly strongly
convex with respect to ¢; for all £. That is, there exists
a positive constant m such that X;(H;[g;(t),t]) > m,
t = 1,...,d, where H;[q;(t),t] is the Hessian matrix of
filg:(t),t]. In addition, each H;(qg;,t) is upper-bounded, i.e.,
|H;(gi,t)||, <™ Vi €V, where T is a positive constant.

Assumption 3: There exists a positive constant ¢ such
that supycpo ooy [|ci(t)lly < € supsepoo0) lI€i(E)]l; < € and
SUP¢¢(0,00) l&@)l, <eVieV.

Assumption 4: For any ¢ € V, the gradient of the cost
function f;(g;,t) can be written as V f;(¢;,t) = H;(t)q; +
gi(t), where H; Rsp — R¥>? is a matrix-valued
function, and g;(¢) is a smooth time-varying function. In
addition, there exist positive constants H and g such that

SUPte(0,00) H ’H ) < H’

SUPrc0.00) 19:E)o” < G SUPreoe) I3:(8) = G and
SUDye0,00) 13i(t) [l < g hold for any 7 € V.

Remark 1: Note that Assumptions 2 and 4 can be sat-
isfied in many real-world applications. For instance, by
constructing the cost functions as f;(g;,t) = ||¢; — g (t)H;,
the distributed average tracking problem, which has found
several applications in region following formation control
[18] and coordinated path planning [19], can be solved as
a time-varying optimization problem. Similar assumptions
have been applied in recent works on distributed time-
varying optimization [20]-[22], especially on time-varying
resource allocation [15]-[17], and Assumption 4 includes the
case considered in all aforementioned results as special cases.

H < H, SUDP;e[0,00)

IV. RESOURCE ALLOCATION FOR NETWORKED
DOUBLE-INTEGRATOR AGENTS

Define the Lagrange function associated with the optimiza-
tion problem in (2)-(3) as

=3 70 )

i=1

J, 4

Q7 /1’3 - Cz
where pu(t) € Rd is the Lagrange multiplier. From Assump-
tion 2, it follows that the Lagrange function (4) is strongly
convex in ¢(t) and concave in p(t). Then the optimal primal-
dual pair {g*(t),p*(¢)} is unique at all time ¢ > 0, and
satisfy the following KKT condition:

(Zfzqz >+1®u (1),

0=V,L(¢", 1,

Mz

0=V,L(¢",p", —ci(t
i=1

where V¢L(g,p,t) denotes the partial derivative of the
function L(q,pu,t) with respect to £ € {q,pu}. Define
z=1[q",u"]". The Lagrange function (4) can be rewritten
as L(z,t), and the KKT condition can be rewritten as
V.L(z*,t) = 0, where z* = [q*T,u*T]T. Then, we have
the following lemma adapted from [23].
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Lemma 1: If V,L(z,t) — 0 as t — oo, then ¢;(t) —
qr(t) Vi €V and p(t) — p*(t) as t — oo.

Proof:  Let H,(z,t) denote the Hessian matrix
associated with the Lagrange function L(z,t) and
H,(z,t) = H{(—Jr’ 2 (1) , where H(q,t) =

diag{ H1(q1,t),..., Hn(qn,t)}. By Assumption 2, it
holds that H,(z,t) is nonsingular [24, p. 523] and
bounded. Then, there exists a positive constant my such
that HHz_l(z,t)H2 < myg. By mean-value theorem, it
holds that [[2(t) —z*(t)ll, = ||H:'(z,t)V.L(z )], <

my |V.L(2,t)]|,, where the fact that V,L(z* t) =0
has been used to obtain the equality. Hence, it holds that
z(t) = z*(t) as t — oo, which shows that the statement in
Lemma 1 holds. n

A. Centralized Algorithm

We establish a centralized algorithm for (1), and assume
that there exists a central server that is connected with and
can exchange information with all the agents. Construct a
virtual system for the central server as

ji=—B(— )+ 5 5)
where
N -1 N
ji=—op— [ZHJ‘_l(qivt)] > {éj —a(g; — ¢))
j=1 j=1
0|0V 0 9V E @]} ©

and, 8 and « are positive constants. Design the control input
for agent ¢ € V as

Fi(Qiaﬂvﬂ’t)7Fi(qivua,uvt)7 (7)

where the vector-valued function F; : R?x R xR xR —
R? is defined as

. _ 0

U; = —V; —

+aVfi(qi,t) +op+ ﬂ]- ®)

By Assumption 2, it holds that the Hessians H; (ql, t), i €
V, are positive definite, which implies that all H,” Y t),
1 € V), exist and are positive definite. Then, the matrix
Z]N:l H Y(gs,t) is also positive definite, and hence invert-
ible. Thus, the definition of 1 in (6) is justified. By Assump-
tions 2-4, [ exists. Then, Fj(qi, u,f1,t) and Fy(qs, p, f1, 1)
exist, and hence, the controller (7) is well defined.

Proposition 1: Suppose that Assumptions 2-4 hold and let
o, € R,. Using (7) with u, £ and ji generated/given by
(5) for the double-integrator agents (1) solves the distributed
resource allocation problem, i.e., ¢;(t) — ¢ (t) Vi € V as
t — oo.

Proof:  Define x; = v; + Fi(qi, p, i1, t). By (7), it holds
that x; = —x;. Then, it holds that y; — 0 Vi € V as t — oo.

Define ¢; = Vfi(qi,t) + p. By (1) and the definition
of Xx;, it holds that ¥; = H;(q:,t)g; + atvfz(q“ t)+p =

—atp; + H;(q;,t)xi, where the definition of F;(q;, pt, fi,t)
in (8) has been used to obtain the last equality. Note that
1; = —aap; is a standard exponentially stable linear time-
invariant (LTT) system. Recall that x; — 0 as ¢ — oco. Then,
it follows from the property of the input-to-state stability [25,
p. 175] and Assumption 2 that ); — 0 Vi € V as { — oo.
That is, Vf;(gi,t) + ¢ — 0 Vi € V as t — oo. Hence, it
holds that V,£L(g, p,t) — 0 as t — oo.

Define e, = i — f. By (5), it then holds that é, =
It holds that e,, — 0 as ¢ — oo.

Define ( = ZN (ql —¢;). It holds that { = —a¢ +
SN xi — SN H7Ygi,t)e,,. Recall that xi,e, — O
Vi € V as t — oo, and note that C = —a( is a standard
exponentially stable LTI system. It then follows from the
property of the input-to-state stability [25, p. 175] and
Assumption 2 that ( — 0 as ¢t — oo. Hence, it holds that
V.L(g,p,t) = 0as t — oo.

From the analysis above, it holds that V,L(z,t) — 0 as
t — oo, where z = [qT, /LT]T. Therefore, the statement in
Proposition 1 follows by Lemma 1. ]

From Proposition 1, it holds that Zf;l[qi(t) —¢i(t)] —
0 as ¢ — oo, which implies that feasibility is achieved
asymptotically. Moreover, if the initial condition is feasible,
ie., Zf\il[qi(O) — ¢;(t)] = 0, one can select appropriate
values for £(0), £(0) such that the solution Zil qi(t) will
be feasible all the time, i.e., S, [¢:(t) — ¢;(t)] = 0 V¢ > 0.

Remark 2: Note that from the centralized algorithm,
the optimal Lagrange multiplier is estimated by u,
and it requires global information, especially the Hes-
sians H;(q;,t), to calculate the terms Gi, G, Gy
and Go, where G; = Z;Ll Hj_l(qj,t) and Gy =
ey {H; (a5, [V £i(g5, )+ 2V £ (g, 8)] +¢—alq;—
cj)}. To derive the distributed counterpart, one can use
distributed average tracking algorithms to estimate the those
terms in a distributed manner, which is done in this way in
[17] to address the time-varying resource allocation prob-
lem with diagonal Hessians. However, when it comes to
non-diagonal Hessians, exchanging matrices (e.g., Hessians’
inverses) among the agents is expensive and not practical.
In the following, we propose a distributed algorithm for
networked double-integrator agents (1) to cooperatively solve
the time-varying resource allocation problem without ex-
changing matrices.

—Bep.

B. Distributed Algorithm
Each agent ¢ € V has a virtual system defined by
jii = =B — i) + 1i; + Hi(qs, t)H

—yHi(gi,t) Y sgnla(u

JEN;

Yqis t) (1 — 1)
— 1) + fii — i), 9)

where

0
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and «,  and ~y are positive constants to be determined.
Define the control input for agent ¢ € V as
ui = —v; — Fy(gi, i, fuirt) — Fi( @i, pas i 1), (11)
where the function F;(-,-,-,-) is given in (8).
Theorem 1: Suppose that Assumptions 1-4 hold and let
positive constants «, 3 and 7 be selected to satisfy that

v > 2|€|doV/Nd, (12)
where

w=[(af+a+1)H+ (a+ B+ 1)m|c

+(a+B+1)HC+ <ﬁ++2>H>_<

+(5+1 )He+@a+B+DH7N¢E

« of

+(aB+a+B+1)7, (13)
(= r}leag{ l4i(0) = ci(0)]l, }, 14)
X = max{ [0:(0) + Fi[gi(0), 1 (0), 24(0), 01|, },  (15)
e = max { || H(0) 1:(0) — 70}, } (16)

Using (11) with p;, f1; and ji; generated/given by (9) for the
double-integrator agents (1) solves the distributed resource
allocation problem, i.e., ¢;(t) — ¢f(t) Vi € V as t — 0.

Proof:  The proof is divided into four steps.

In Step 1, it is proved that V f;(g;,t) + u; — 0 Vi € V as
t — oo. Define x; = v; + Fi(qi, i, (13, ). By (11), it holds
that x; = —x;. It then holds that xy; - 0 Vi € V as t — oo.
It also follows that x;(t) = e *x;(0) Vi € V for t € Rx.
Then, [[xi(®)lly < e [xi(0)l, < Ix(0)ll,. Define 1, =
V fi(gi, t) + u;, and it holds that v; = —atp; + H;(qi, t)x:
Then, it holds that 1; — 0 Vi € V as t — oc.

In Step 2, it is proved that 3= | [g;—¢;(t)] — O as t — oo.
Define e,,, = H; '(g;,t)(j1; — i;). Then, it holds that

é#i = _5(3#1' -7 Z Pi,j

JEN;

a7

where p; j = sgnf[o(p; — ;) + f1; — f1;], and the second

equality follows from (9) and the fact that (? H Ygit) =
—H (g t) [ Hi(gi, )| H (a1.1).
Define ¢, = Y.~ e,,. Note that 31V > jen; Pij =0

follows from Assumption 1. Then, it holds that é, = —fe,,.
Hence, e, — 0 as t — oo.
Define (; = q; — c¢;. It then holds that
i = —adi + xi — eu,s (18)

where the last equality is obtained by using the definition
of 7i; in (10). Define ¢ = >~ ¢;. It then follows that ¢ =
—aC+ XN xi — e, Recall that x;,e, — 0 as ¢ — co. It
follows from the properties of the input-to-state stability that
¢ — 0 ast— oo. That is, V,,L(q, pt,t) — 0 as t — oo.

In Step 3, it is proved that p; — p; — 0 Vi,j7 € V as
t — oo. It follows from the definition of jz; in (10) that the
system (9) can be rewritten as

i = —aBu; — (a+ B)ft; + wi(gi, vi, t)

—yHi(gi,t) Y senfa(ps — 1) + fui — 5]
jGNi

19)

where  w;(q;,vi,t) = aBHi(q,t)|q ()] —
BHi(qi, t)ei(t) — BLVfilait) — aﬂsz(ql,t) +
o[SHi (g 0)][a: — et)] + oHilg, D — &) -
(& Hi(qi,0)]e(t) —  Hilgi t)é 29 filait)

a%Vfi(qi,t) + [%Hi(qi,t)]em. Note  from

Assumption 4 that Vfi(¢;,t) = H({t)ga + gi(t),
and then it follows from the definition of (; that
Hi(t)] ¢i(t) — Hi(t)ét) — [BHi(t) + Hi()][G + ci(t)] —

H;i(t) [Gi + ¢5(t)] — aBgi(t) — (a+ B)gi(t) — i + Hi(t)ey,

Note that for any ¢ € V), it follows from (17) that
sze/\/ pUH2 < NVd. Then, it holds that e,,(t) =
e e, ( ’yfg e PU=T) 7 v, pig (T)dT. Tt follows that
He,”(t)ng < He,”(())n2 + V41t follows from (18)
that [|G;(#)ll, < (IGO0 + SOy + lew (O)ll] +
WVA 1t follows from (18) that Hg L < allcOl, +

H|Xi 0)[l5+llew; (0)[5]+ %ﬁ By Assumption 4, it holds
that [|w;(¢;, v, 1) < [(@B+a+1)H + (a+B+1)m|c+
(o + B+ DH GO, + (5 +2)H (Ol + (5 +
3)H e (0)lly+(BatB+1) H XYy (afta+p+1)g <
where @ is given in (13).

Define §; = apu; + f1; and § = [61'—,...
B=1B ® I4. Then, it holds that

5= —B6 — ’yH(t)ésgn(ETJ) + w(q,v,t),
where H(t) = diag{H:(t),...,Hn(t)} and w(q,v,t) =
[wy (q1,v1,2), ..., wh(gn,vn,t)] . Since the signum func-
tion is measurable and locally essentially bounded and
w(q, v, t) is bounded, by [26], the Filippov solutions ! of (20)
exist and are absolutely continuous, that is, J is continuous.
Hence, K[—30] = {36} and K[w(q,v,t)] C [~@, 0]V It
holds that K] C Fs, where F5 = {0} + Klw(q,v,t)] —
vHBK {sgn(g—ré)]. Note that, for any r = [r1,...,rp] €
RP, it holds that K[sgn(r)] = K[sgn(r1)] x - - - x Klsgn(rp)]
and K[sgn(r;)] = {1} if »; > 0, K[sgn(r;)] = {-1} if r; <
0, and K[sgn(r;)] = [-1, 1] if »; = 0. Consider the Lyapunov
function candidate V[0 (¢)] = HET(S H Note that V' is locally
Lipschitz continuous but nonsmooth at some points. Then, by

[27], it holds that c? V[§(t)] € V. The generalized gradient

,51—5] T, and let

(20)

'Consider the vector differential equation & = f(z,t), where f :
R? x R — R? is measurable and locally essentially bounded. A vector
function z(-) is called a Filippov solution on [to,t1] if () is absolutely
continuous on [to, ¢1] and for almost all ¢ € [to,t1], & € K[f](z,t), where
Klfl(z,t) == Naso Nur)= OE]‘(B(QE7 A) — A, t) is the Filippov set-
valued map of f(z,t) and ﬂ _o denotes the intersection over all sets
A of Lebesgue measure Zero
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of V is given by OV = BK [sgn(éTé)}. By [27], the set-
valued Lie derivative of V' is given by

Ve ﬂgen[sgn(é&)] ¢'BTF;.

By (21), it holds that if V # () and assume that a € V,
then there exist 7 € IC[sgn(ETé)} and @ € Klw(q,v,t)]
such that @ = fTé[ — By — ’yHEﬁ + d}] holds for any
£ € K[sgn(§T5)]. Define p = sgn(BTé), and for such
7 and @, one can choose { = £ € K[sgn(ET(D] such
that 61’ = p; if p; # 0 and Ez =1 if p; =0, W~here £i7
p; and 7); denote the ith element of the vectors &, p and
7, respectively. Note that p; = 0 if and only if X; = 0,
where X, is the ¢th element of the vector X = BTs.
Then, it holds that —3¢T BT6 = —f H§T6H1' It also holds

2L

~ ~ ~ 2 ~ 2
that —€™ BTHBT < —y\uin(H) | Be||. < —m||Be] ]
and €TBTo < H§5H2 lall, < cD\/NdHf}ng <
2|€|dwvV Nd ||| .. If there exists an edge (i,j) € £ such
that 6, # 4, then HEgHz > 1. Then, it holds that & <

-3 HETéH — ~vm + 2|€|dov/Nd. Hence, if a, 3 and v are
1

selected to satisfy (12), then it holds that @ < —f HBTaH .

. 1

Therefore, for any @ € V, if there exists an edge (i,j) € £
such that 6; # d;, a < —f3 HBTéH . Hence, it holds that
~ 1

BT§ — 0 as ¢+ — oo. From the definition of &, it follows
that (BT ® I3)u — 0 as t — oo, which implies that Step 3
is complete.

In Step 4, the statement of Theorem 1 is finally proved.
From Step 1, it holds that V f;(¢;,t) + u; — 0 Vi € V as
t — oo. From Step 3, it is can be derived that there exists a
function p(t) such that p;(t) — p(t) = 0VieVast — .
Note that Vf;(¢;,t) + i = Vfi(qi 1) + p(t) + pi — p(t)
Vi € V. Then, it holds that V f;(¢;,t) + © — 0 Vi € V as
t — oo, which implies that V, L£(q, ,t) — 0 as t — oo.
Combine with Step 2, it holds that V,£(z,t) — 0 as t — oo,
where z = [¢", 7] T. Then, by Lemma 1, the statement in
Theorem 1 holds. ]

Remark 3: It is worth pointing out that one can always
find positive constants «, [ and ~ satisfying (12). For
instance, one can choose large enough values for o and
8 such that a8 > (3a + B + 1)HNV/d, and then choose
large enough value for 7. These parameters are constants,
which can be determined off-line and then embedded into
the agents.

V. ILLUSTRATIVE EXAMPLES

Consider a group of N = 10 double-integrator agents
described by (1) where d = 2, and assume that each agent
1 € V has a cost function f;(g;,t) = %qIHi(t)qurgi(t)Tqur
h;(t), where H;(t) = [10 4+ 0.1¢,10 + 0.14; 10 + 0.1¢,13 +
0.17 cos(t) +0.1i], g;(t) = [icos(t),isin(t)] T, and h,(t) is a
time-varying function. The agents aim to cooperatively solve
the resource allocation problem defined in (2)-(3), where

ci(t) = [0.5i cos(t) +i+45,0.56 sin(t) +i+20] . We select
a=0.5, 8 =1and v = 9. The trajectories of ¢; and yu; are
presented in Fig. 1 and Fig. 2. In the two figures, the solid
and dashed lines are the trajectories generated by using the
distributed algorithm (in Section IV-B) and the centralized
algorithm (in Section IV-A), respectively. The dash-dotted
lines are the optimal solutions of ¢ and p*, ¢ € V. It can
be seen that g; and p; can track the optimal ¢ and p*.

L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

L L L L
12 14 16 18 20

10
Time(s)

Fig. 1. The position trajectories of double-integrator agents (1) generated
by using the algorithms in Sections IV-A and IV-B.

-1000
0

Hi2

-1000
0

Fig. 2. The trajectories of u; generated by using the algorithm in Sections
IV-A and IV-B.

VI. CONCLUSION

The distributed time-varying resource allocation problem
has been investigated for networked double-integrator agents.
A distributed algorithm has been proposed for the agents
to track the optimal decision trajectories with zero errors.
Finally, simulation results have been presented to validate
the effectiveness of the proposed distributed algorithm.
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