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ABSTRACT
This paper presents an overview of an NSF Research Experience
for Undergraduate (REU) Site on Trust and Reproducibility of Intel-
ligent Computation, delivered by faculty and graduate students in
the Kahlert School of Computing at University of Utah. The chosen
themes bring together several concerns for the future in produc-
ing computational results that can be trusted: secure, reproducible,
based on sound algorithmic foundations, and developed in the
context of ethical considerations. The research areas represented
by student projects include machine learning, high-performance
computing, algorithms and applications, computer security, data
science, and human-centered computing. In the �rst four weeks
of the program, the entire student cohort spent their mornings in
lessons from experts in these crosscutting topics, and used one-
of-a-kind research platforms operated by the University of Utah,
namely NSF-funded CloudLab and POWDER facilities; reading as-
signments, quizzes, and hands-on exercises reinforced the lessons.
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In the subsequent �ve weeks, lectures were less frequent, as stu-
dents branched into small groups to develop their research projects.
The �nal week focused on a poster presentation and �nal report.
Through describing our experiences, this program can serve as
a model for preparing a future workforce to integrate machine
learning into trustworthy and reproducible applications.
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1 INTRODUCTION
Life in modern society is increasingly dependent on trustworthy
components that work as expected, such as veri�ed arithmetic li-
braries that form the bedrock of climate simulation codes typically
executed on high-performance computing (HPC) machines. Scien-
tists and engineers conduct their day-to-day work based on such
components, and also on existing scienti�c results (e.g., prior studies
on trade wind �ows) to deliver newer trustworthy components and
scienti�c results (e.g., prediction of where forest-�re-carried smoke
will next land). Other examples of trust include face-recognition
systems in airports that are based on arti�cial intelligence (AI) and
machine learning (ML): people trust digital face recognition systems
to classify images without bias (e.g., against skin tones), respect
privacy (e.g., not to leak the images), and be intrusion-proof (have
su�cient network security). Another aspect of enhancing trust is
through community-level debugging, where issues using the Git
tool are posted against software components found inadequate, and
enhancements are made to bene�t all users.

Trust fundamentally depends on reproducibility. A person must be
able to take an existing scienti�c result or a pre-existing software
component, test it, and see if they can reproduce the published
speci�cations or claims. Since results are reproducible only when
the exact setup conditions are obeyed, practices and habits that
promote reproducibility—such as the use of Jupyter Notebook tool—
must become ingrained into common practice.

The TREU REU site at the Kahlert School of Computing, Univer-
sity of Utah was designed with the goals set forth thus far. By the
time our REU funds arrived (end of February), we advertised our
site, vigorously promoting the opportunity in multiple ways, with
a closing deadline of April 15.

We were surprised at the encouraging response rate (total 85
applicants received for 10 positions) and started making o�ers soon
after the closing date. The o�ers were imparted a personal touch
through a Zoom call followed by a formal o�er letter. A few aspiring
local undergraduates from Utah were also added (using other REU
supplements) to make the experience wholesome for the group.
The o�ers were slanted toward institutions without an established
research program, and emphasized gender and ethnic diversity. The
external students selected were spread more or less evenly between
sophomores and juniors, with many having taken basic computer
science classes, and with most of them having their �rst such REU
site experience.

What now follows is a description of the student projects, in-
tended to convey what the students could accomplish after about
�ve weeks of lessons. This paper does not focus on any particular
topic (e.g., parallelism); instead, it is oriented at how a blend of areas
were taught in the context of supporting intelligent computation
(i.e., AI and ML). It is to be emphasized that the success would have
been far less had we not engaged the help of our very capable PhD
students and a postdoctoral researcher. We conclude the paper with
an assessment of the outcomes using our surveys.

2 STUDENT PROJECTS
We now describe the student projects, listing their goals, concepts
involved, and experiments performed, including whether the com-
putational platforms—GPUs in particular—were a bottleneck (es-
pecially closer to project �nish). We provide qualitative summary
assessments in each section.

2.1 Artifact Evaluation Work and Challenges
Goal: Students were to help prepare an IRB-approved study

of conferences’ artifact evaluation processes and gain practice in
human-centered computing research methods. The study design
was completed before the REU began. Involved students were to
pilot study materials (i.e., diary study questions and interview pro-
tocols) and re�ne them prior to data collection beginning.

Concepts involved: This project related to human-centered com-
puting, reproducibility and sociotechnical factors a�ecting its achieve-
ment, diary studies, semi-structured interviews, trace data collec-
tion, pilot studies, and data triangulation.

Experiments conducted, platforms used: Students participated in
four pilot sessions and collected feedback on the study materials’
clarity and comprehensiveness. Materials were designed to capture
data on how reviewers evaluate research artifacts’ reproducibility
and challenges reviewers face. Diary studies were piloted using
Qualtrics. Interviews were conducted over Zoom. Students substan-
tially revised the materials, improving their validity and utility.

Overall assessment: Through assigned readings and engagement
in the research process, students gained an appreciation for the
sociotechnical factors that a�ect reproducibility (e.g., time to create
an artifact, reward for such work, available instructions and infras-
tructure). Students gained practice in conducting and scheduling
interviews. Attempts to use third-party packages to collect trace
data from artifact repositories were unsuccessful. However, stu-
dents did gain practice in communicating with package developers
and troubleshooting. Piloting revealed that authors conceive of
research artifacts as distinct from the documentation that explains
them; to computational researchers, artifacts are code.

2.2 Particle Filters for Event Location
Goal: Particle �lters are often used to estimate the position of an

object in an environment given a map of its features and (imperfect)
sensor readings. Usual implementations of particle �lters require
environment features to be repeatedly observable, and we sought
ways around this limitation. The case study involved locating events
in a musical concert.

Concepts involved: Our particle �lter used ideas from reinforce-
ment learning, positional encoding layers, and attention layers. Its
implementation involved PyTorch Tensor operations on the GPU.

Experiments conducted, platforms used: We performed accuracy
and time experiments comparing our particle �lter with the typ-
ical particle �lter. We used a variety of machines from laptops to
desktops, with and without GPUs.

Overall assessment: We developed a particle �lter technique that
can be used to estimate the temporal location of a sequence of
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distinct events that approximately follows an expected schedule. In
addition, we developed a fast weighting function that, according
to our experiments, is much faster and almost as accurate as the
typical Gaussian weighting function, which may be preferred in
applications that demand low latency or frequent updates. The
student made meaningful, non-trivial contributions to our research.
We intend to submit this to a conference such as ICLR.

2.3 Machine Unlearning
Goal: While the primary goal of a machine learning system is

making inferences from data, we are sometimes required (e.g. for
legal reasons) to have a model that “forgets” certain ideas, such as
certain classes. However, there are no techniques that we could
�nd for making a model behave as if it had never been trained on
certain data, besides completely retraining a model from scratch
without that data. We sought such a technique.

Concepts involved: This project involved general deep learning
concepts and experiments were written in PyTorch.

Experiments conducted, platforms used: The student who partici-
pated in this project participated in other projects as well. For this
reason, we did not have time to prepare experiments using larger
datasets, so GPU availability was not a bottleneck. Experiments
were performed on a desktop machine with a single GPU.

Overall assessment: We developed a technique that avoids com-
plete retraining, and our initial experiments demonstrate compara-
ble performance to models that were not required to unlearn from
training data. The student implemented and ran experiments for
our non-trivial machine unlearning technique.

2.4 Semantic Classi�cation: Spatial Trajectories
Goal: The goal of the project was to include semantic informa-

tion within a recent framework for classifying spatial trajectories
(e.g., a series of GPS way points).

Concepts involved: The project involves spatial data, machine
learning, and reproducibility. The student needed to initially repro-
duce experiment from a research code base for classifying spatial
trajectories, and then extend it.

Experiments conducted, platforms used: The students reproduced
existing experiments, in the process, understood how to run various
algorithmic variants, on di�erent datasets, and reproduce experi-
mental results �gures. Then the student extended the method which
only treated spatial trajectories as shapes to also include semantic
information about various spatial points of interest.

Overall assessment: The project was success. The student got
exposed to the reproduction process of most empirical research,
and then was able to extend it and demonstrate clear improvement
in a controlled experiment.

2.5 Compiler Optimization: ML Primitives
Goal: The project focused on performance of machine learning

workloads. Students learned how to measure and model perfor-
mance, and develop an understanding of the performance impact
of programming language choice, memory hierarchy optimization,

and architecture. Parallel code for GPUs was developed and mea-
sured against the state-of-the-art TVM compiler[5].

Concepts involved: Students used state-of-the-art performance
analysis and code optimization tools. The lessons included how to
optimize matrix-vector multiplication, convolution 1D, convolution
2D, transposed matrix-matrix multiplication, and matrix-matrix
multiplication, which are used at the heart of scienti�c comput-
ing and deep learning benchmarks. Another lesson discussed the
roo�ine model, a performance modeling tool for understanding
performance bottlenecks. Students were introduced to the concept
of scheduling languages, which provide an interface to compilers to
describe transformations to be applied to code. Autotuners compare
the performance of di�erent schedules to �nd the schedule that
achieves the best performance.

Experiments conducted, platforms used: Students used an auto-
tuner called Ansor [23] to generate the best schedule for a set of
kernels for the state-of-the-art TVM compiler. Ansor uses genetic al-
gorithms to generate potential candidates. Students were interested
in whether the schedules in Ansor could be replicated in another
compiler framework, Multi-Level IR (MLIR) [12], and achieve the
same performance. MLIR’s transform dialect makes it possible to
express schedules as code. To compare the results, students con-
ducted experiments on Nvidia A100 GPU and AMD EPYC 7513 CPU
for common deep learning benchmarks such as convolution 1D,
convolution 2D, matrix-vector multiplication and matrix-matrix
multiplication.

Overall assessment: The students were able to generate MLIR
schedules and achieve high performance on matrix-vector multipli-
cation, which exceeded the performance of TVM+Ansor. For other
kernels, there were some performance gaps, for which they worked
with the graduate students to �nd explanations.

2.6 Object Detection and Classi�cation Studies
Goal: The primary goal of the project was to investigate the

performance of object detection models trained on video frames
containing images of lettuce and weeds. The original dataset, being
from video, contained many frames with overlapping content. We
created a second deaugmented dataset, where each frame is of
unique content, and investigated its impact on training behavior
and generalization performance.

Concepts involved: The project involved general deep learning
concepts. Image detection and classi�cation principles were gained
in the course of the project.

Experiments conducted, platforms used: Experiments were done
using YOLO v8 [9], an object detection and classi�cation model, due
to its ease of use through the corresponding web application. The
student preprocessed the dataset using Robo�ow [6] with di�erent
frame frequencies into two di�erent datasets consisting of 24 frames.
Afterwards, two YOLO v8 models were trained on the two datasets
and the results were evaluated using a validation dataset.

Overall assessment: As a result, the investigation showed that
the model trained on deaugmented set produced better generaliza-
tion performance than the model trained on the original dataset.
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Unfortunately, we did not notice that the deaugmented set was not
a subset of the original dataset until the poster was printed. Because
the deaugmented set covered 24 times the video length compared
to the original dataset, we �nd the result unsurprising. Nonethe-
less, the student gained pro�ciency in using object detection and
classi�cation models.

2.7 ML-based Computational Histopathology
Goal: Deep learning models for cell detection/counting [8, 22] in

digital histopathology are trained independently from tissue/tumor
segmentation[11] models as two separate tasks. But a pathologist
zooms out of a patient sample to identify tissues of interest and
zooms in to detect cells necessary for a diagnosis. This work�ow
indicates a dependence between these tasks. The aim of this project
was to train a deep learning model that closely matches a patholo-
gist’s work�ow. OCELOT [19] dataset was used where tissue anno-
tations and cell annotations are available for overlapping patches
and multi-task learning could be used to share features among
di�erent tasks [16, 19].

Concepts involved: During the course of the project, students
learned about semantic segmentation [18], data augmentation [3],
�ne-tuning pre-trained models [10], image post-processing (for
cell counting), and cross-validation. Writing their own data loader
and training con�guration in PyTorch exposed students to imple-
mentation details that assisted them in debugging inferior models
performance.

Experiments conducted, platforms used: Students trained mod-
els to examine: (a) Training on a CPU versus a GPU, (b) hyper-
parameter search for semantic segmentation, (c) the impact of uti-
lizing various data augmentation techniques, and (d) �ne-tuning
pre-trained backbone for improved convergence. As the majority of
the experiments required GPUs with more RAM, students utilized
CHPC resources at the University of Utah (speci�cally GPU nodes
owned by the Kalhert School of Computing), which also exposed
them to slurm scripting/scheduling.

Overall assessment: The project was a success because it exposed
students to multi-scale digital histopathology, medical imaging,
and issues that all deep learning researchers face while working in
this domain, including low training sample sizes, hyper-parameter
search, use of data augmentation, and utilization of pre-trainedmod-
els. Students were motivated to continue working on the project to
attain all speci�ed objectives.

2.8 Reinforcement Learning Studies
Goal: Reinforcement learning (RL) agents can exhibit superhu-

man performance in certain tasks such as Atari games, but often
do so unreliably, i.e. they may not exhibit acceptable performance
with high probability. The goal of the project was to compare the
reliability of using CNNs vs. vision transformers for estimating Q
values in deep Q networks [15].

Concepts involved: The project involved usage of two vision trans-
formers (SwinNet [13] T and S) and two CNNs (E�cientNetv2 [20]

S and M), as well as Q learning and general RL concepts. The ex-
periments were done using Python and Atari environments were
obtained from Gymnasium [21].

Experiments conducted, platforms used: We trained deep Q learn-
ing agents that used the CNNs or the vision transformers in di�erent
Atari environments.

Overall assessment: We observed a slightly better sum of average
rewards in the Froggerv5 environment than in other environments.
Because existing work using these environments used hyperparam-
eters that were impractical given our resources, we were unable to
rule out that GPU availability was not a bottleneck. The students
implemented the deep Q learning agents as well as the experiments
swapping out environments and Q value estimator models. Be-
cause compute resources were limited, they were not able to fully
investigate the original research question.

2.9 Malware Classi�cation using ML
Goal: The default ML model for text classi�cation is some

transformer-based classi�er such as BERT [7]. However, one disad-
vantage of transformers is that their number of parameters scales
quadratically with the input sequence length. Previous work [14]
has used convolutional neural networks (CNNs) to classify Android
opcode sequences, which can be hundreds of thousands of opcodes
long, into benign software or malware. We noticed that this work
did not mention transformers or recurrent neural networks. We
wanted a comparison between their CNN-based technique and
using transformers on truncated opcode sequences.

Concepts involved: Reproducing the CNN classi�er experiments
required understanding of convolution layers and CNN classi�ers
in general. Implementing the BERT-like classi�er involved the
encoder-decoder structure of transformers and relevant layers such
as embedding, positional encoding, and attention.

Experiments conducted, platforms used: We �rst attempted to run
the CNN classi�er authors’ experiments implemented in Lua, but
later opted to redo them in Python. These lightweight experiments
completed within minutes. The transformer experiments, using a
single GPU with 24 GB of memory, could not take in sequences
longer than about 213 opcodes. Because this was not close to the
entire sequence length, we did not seek other GPUs.

Overall assessment: We found the CNN to have better classi�-
cation accuracy. The student disassembled Android software into
opcode sequences, implemented both classi�ers and their vocabu-
laries in PyTorch, and ran the experiments.

2.10 Robust High-Dimensional Statistics
Goal: The goal was to reproduce, extend, and make practical

recent algorithmic improvements for high-dimensional robust sta-
tistics. The recent developments have been mostly theoretical with
only simple proof-of-concept code. This project seeks to understand
and simplify the mathematical and empirical properties of these
algorithms on very high-dimensional data.

Concepts involved: This project involves mathematics of data,
statistical analysis, and reproducibility in the context of an active
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machine learning topic. The student �rst needed to reproduce the
existing work, both the mathematical proofs and the experiments;
these e�orts were needed so the new work could be properly eval-
uated against the state-of-the-art.

Experiments conducted, platforms used: Empirical experiments
were performed, and included running existing code in MATLAB
and reproducing them in python. The main computational bottle-
necks were in linear algebra (SVD), and repetition of randomized
algorithms, so GPUs were not needed at this stage. The research
for this �rst-year undergraduate also involved novel mathemati-
cal proofs on statistical properties of high-dimensional data. The
faculty mentor and student worked out sketches of the proofs on
the board, and the student provided formal write-ups in a latex
document.

Overall assessment: This was a highly successful project that
managed to pair a motivated undergraduate with a like-minded
faculty mentor and an accessible topic. The faculty’s initial goal was
just for the student to reproduce the experiments in python, but
the student showed engagement and proclivity in the mathematics
allowing for a much deeper exploration. We are currently working
to extend the work, and prepare for a paper aimed at a top venue
in machine learning.

2.11 Computing Statistical Shape Atlases
Goal: Use Shapeworks [4] to compute a statistical shape model

for di�erent anatomies (left atrium and prostate [1]) available in
the public domain.

Concepts involved: Statistical shape modeling [4], data grooming
and preprocessing, hyper-parameter tuning, optimization, models
visualization and evaluation, and 3Dmedical image processing were
among the concepts used during project development. The student
was also required to analyze the modes of variation in the data
and report population-level changes in anatomy using principal
component analysis (PCA).

Experiments conducted, platforms used: All experiments were
done using either the ShapeWorksStudio [4] or the command line
interface of ShapeWorks on the student’s own desktop. The student
was instructed to compute a shape atlas and principal modes of
variations for synthetic 3D spherical data (one mode of variation)
to familiarize themselves with the entire computational pipeline.
Later, the student was able to compute the statistical shape model
for a dataset on the left atrium and analyze and report the modes
of variation present in the dataset. The student also conducted an
ablation study by analyzing the modes of variation using varying
quantities of particles for the same anatomy.

Overall assessment: The project introduced the student to 3D
medical image analysis in the context of morphology quanti�cation
and motivated them to work further on computing models for
di�erent anatomies available in the public domain.

3 ASSESSMENT
Resource issues: Some students launched a job requiring a huge

allocation and that was �ne but others who were even slightly late
to launch were stuck (GPU availability was a bottleneck). This is a

Table 1: Number (out of nine) of post hoc survey respon-
dents who accomplished the goals set at the beginning of the
REU. Note that we did not target any speci�c area other than
broadly AI/ML trust and reproducibility.

Student-set Goals # Students
• Collaborate with peers 9
• Create a research poster 8
• Create or work with ML models 9
• Develop professional relationships 9
• Work on paper-yielding research projects 5
• Identify engrossing research areas 7
• Improve (social) networking skills 6
• Improve ability to grasp research papers 8
• Improve time management skills 4
• Improve writing skills 4
• Increase awareness of CS research areas 9
• Increase knowledge of career options 7
• Increase knowledge of cybersecurity 6
• Increase knowledge of HPC 8
• Increase knowledge of ML and AI 9
• Learn a new programming language 2
• Make a decision about pursuing a PhD 4
• Meet researchers at di�erent career stages 8
• Produce demonstrable research artifacts 8

Table 2: Students’ con�dence in various research skills. Stu-
dents were asked to rate their con�dence on a scale of 1 (very
uncon�dent) to 5 (very con�dent). Survey items were derived
from Borrego et al. [2]. The attained con�dence boost is also
noted.

Research
Skill

A priori
mean
con�dence

Conf.
boost

Designing own research 2.5 1
Writing a scienti�c report 2.5 1.2
Using tools in the lab 2.7 1.2
Preparing a scienti�c poster 2.9 1.6
Presenting results of my data 3.1 1.3
Using statistics to analyze data 3.2 0.5
Analyzing data 3.3 0.7
Collecting data 3.3 0.7
Managing my time 3.5 0.6
Problem solving in the lab 3.6 0.4
Understanding scienti�c articles 3.7 0.3
Observing research in the lab 3.7 0.4
Reading scholarly research 3.7 0.6
Understanding guest lectures 3.8 0.2
Research team experience 3.8 0.6
Speaking to/with professors 3.9 0.4
Research relevance recognition 3.9 0.7
Grasping summer research basics 3.9 0.7
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reality likely to be faced by educational endeavors involving the
use of GPUs that must be dedicated for long training runs. Suitable
planning is needed to alleviate some of these resource contentions.

NSF acknowledges the uneven power in AI research. Univer-
sities that can allocate large numbers of DGX machines publish
more papers. Unfortunately, one cannot prove a point on a smaller
machine running for longer which is the unstated sad part of ML
research. Things like ablation studies “ablate the planet.”

Assessment of curricular impact: To evaluate REU outcomes, we
surveyed students before and after the REU about their intent to
pursue a PhD, the number of people they could ask for a letter of
recommendation, their con�dence with respect to various research
skills, their goals for the REU, and their self-reported knowledge of
several topic areas. We drew on Borrego et al. [2] to create these
surveys, re-using their survey items to capture students’ con�dence.
We received 15 responses to our a priori survey and 10 responses
to the post hoc survey; one of the post hoc survey participants did
not respond to all items. Survey responses were anonymous.

We saw a slight increase in intention to complete a PhD (a priori
mean 3.2 and mode 3, post hoc mean 3.6 and mode 4).

Students networked e�ectively during the REU. In our post hoc
survey, students said they would be comfortable asking a mode of
2 people from the REU program for a letter of recommendation
(range 2–4). This is a meaningful increase over the number of po-
tential recommenders students had before the program; students
reported a mode of 2 potential recommenders from their home in-
stitution (range 1–5) and only 1 from outside their home institution
and the REU (range 0–5).

All of the goals students set were accomplished by at least one
person during the REU. Students were asked to list two goals that
they had for the summer in the a priori survey using free text entry.
Using this list, an REU instructor recognized 19 unique goals set
by the students. In the post hoc survey, students were asked which
of those 19 goals they accomplished (see Table 1). In this manner
we tracked progress toward student-generated goals rather than
instructor-identi�ed goals. Nine students responded to these ques-
tions. Five of theseThe attained con�dence boost is also noted. goals
were accomplished by all nine respondents: collaborate with peers,
develop professional relationships, create or work with machine
learning models, increase awareness of research topics in computer
science, and increase knowledge of machine learning and arti�cial
intelligence.

Comparison of our a priori survey results to our post hoc survey
results shows that students tended to gain the most con�dence
in areas where they were previously unsure of themselves (see
Table 2). The �ve skills where students gained the most con�dence
were preparing a scienti�c poster (post hoc mean 4.4), presenting
the results of data (post hoc mean 4.4), using tools in the lab (post
hoc mean 3.9), writing a scienti�c report (post hoc mean 3.8), and
designing research (post hoc mean 3.4).

Comparison of survey results also shows that students gained
knowledge in the two core areas of our REU—trust and reproducibil-
ity in computational research (average increase of 1.6; post hoc
means 3.6 and 3.9 respectively). Students also increased their knowl-
edge of research careers, ethics in research, and engineering careers
(see Table 3).

Overall, these results suggest that our REU was successful in
several respects. We educated students about the REU’s areas of
focus (trust and reproducibility). We provided professional net-
working opportunities and introduced students to research topics
in computer science. And, we guided students through the process
of conducting and presenting research.

4 DISCUSSIONS, CONCLUSIONS
In summary, the REU Site that we launched touched on a collection
of topics that are central to today’s advanced computer science
research, teaching, and practices. Anecdotal feedback (including
comments conveyed by the REUs to our local PhD students) suggest
that one might aim for a slightly reduced variety of topics next time
this site is o�ered. This is especially true considering the fact that
for cohort building and broad exposure, we had all the students
participate in all our initial lectures. Not only did it increase stress
on the instructors (to get readywith this variety of material quickly),
it also tended to be received by the students with varying degrees
of enthusiasm.

Two lesson modules for wider adoption have emerged from this
REU site: one on how to conduct performance measurement of
parallel computations1, and another on all the Machine Learning
modules that served as the backbone for this REU site.2 These
lesson modules are valuable beyond our REU site and may please
be considered for adoption in future endeavors of EduHPC.

On the positive side, we did interject the REU site activities not
only with social activities on campus, but also other enriching activ-
ities such as a presentation on “how to build research posters” (by
our O�ce of Undergraduate Research) and another on applying for
NSF Graduate Fellowships (by our Graduate School sta�). Another
highlight was a talk given by Prof. Daniel Reed on the future of
HPC being cloudy and uncertain [17]—a lecture that received rapt
attention and lengthy follow-up questions.

Perhaps the biggest payo� of REU sites is the camaraderie estab-
lished in the formative years amongst young students who would
otherwise not have met each other. Many opined that this experi-
ence where we made the gender and racial diversity a high priority
gave them a fresh appreciation of the power of inclusive education.

This REU site was an adventure, especially given that we really
had no prior working relationship with the chosen group, and
fearing their inability to sink roots in a campus far away from home
(luckily, the REUs took to Salt Lake City with gusto—also helped
by the social activities we organized). Given our Year-1 experience
with the topics of this REU site, our future year goals will be to
narrow-down the set of topics (the volume was troubling for some
REUs) and perhaps target the topics to the student tastes/needs (we
had all the students partake in all our activities, but it was clear that
a di�erent subset cared about a particular topic, with the others
ignoring it). The other lesson is to incentivize the completion of
exit surveys. We had di�culty collecting responses to our post hoc
surveys after students left campus; collecting responses prior to
their departure and o�ering incentive would likely address this
issue. Last but not least, an array of ML/AI projects �nishing at
the same time resulted in GPU availability issues—something that

1https://github.com/CtopCsUtahEdu/TREUhpc
2https://github.com/damtharvey/reu2023/tree/main
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Table 3: Students’ self-reported knowledge of �ve topic areas. Students were asked to rate their knowledge on a scale of 1 (not
at all knowledgeable) to 5 (extremely knowledgable).

Knowledge Area A priori knowledge mean Increase in knowledge
Trust in the context of computational research 2 1.6
Reproducibility of computational research 2.3 1.6
Research careers 2.4 0.8
Ethics in research 2.7 0.9
Engineering careers 2.9 0.5

needs to be addressed by staging GPU result collection across non-
overlapping batches (requiring proactive planning).
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