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We investigate the interplay between numerical relativity (NR) and point-particle black hole perturbation

theory (ppBHPT) for quasi-circular nonspinning binary black holes in the intermediate mass ratio regime:

7 ≤ q ≤ 128 (where q ≔ m1=m2 is the mass ratio of the binary with m1 and m2 being the mass of the

primary and secondary black hole respectively). Initially, we conduct a comprehensive comparison

between the dominant ðl; mÞ ¼ ð2; 2Þ mode of the gravitational radiation obtained from state-of-the-art

NR simulations and ppBHPT waveforms along with waveforms generated from recently developed

NR-informed ppBHPT surrogate model, BHPTNRSur1dq1e4. This surrogate model employs a simple

but nontrivial rescaling technique known as the α-β scaling to effectively match ppBHPTwaveforms to NR

in the comparable mass ratio regime. Subsequently, we analyze the amplitude and frequency differences

between NR and ppBHPTwaveforms to investigate the nonlinearities, beyond adiabatic evolution, that are

present during the merger stage of the binary evolution and propose fitting functions to describe these

differences in terms of both the mass ratio and the symmetric mass ratio. Finally, we assess the performance

of the α-β scaling technique in the intermediate mass ratio regime.
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I. INTRODUCTION

The detection and characterization of gravitational wave

(GW) signals from binary black hole (BBH)mergers require

computationally efficient yet accurate multimodal wave-

form models. The development of such models relies

heavily on accurate numerical simulations of BBHmergers.

The most accurate way to simulate a BBH merger is by

solving the Einstein equations using numerical relativity

(NR). Over the past two decades, NR pipelines have been

refined for BBH systems with comparable masses

(1 ≤ q ≤ 10) [1–8]. The availability of a substantial number

of NR simulations in the comparable mass ratio regime has

facilitated the development of computationally efficient and

accurate approximate models, such as reduced-order surro-

gate models based on NR data [9–14], or semianalytical

models calibrated against NR simulations [15–23]. On the

other hand, extrememass ratio binaries (i.e., q→ ∞) can, in

principle, be modeled accurately with point particle black

hole perturbation theory (ppBHPT) where the smaller black

hole is treated as a point particle orbiting the larger black

hole in a curved space-time background. Substantial

progress has been made over the past two decades in

simulating BBH mergers accurately in this regime [24–33].

However, it is the intermediate mass ratio regime

(10 ≤ q ≤ 100) that still presents significant challenges

for performing accurate simulations of BBH mergers. NR

simulations for binaries in this mass ratio range become

exceedingly computationally expensive for a variety of

reasons. On the other hand, as the binary becomes less

asymmetric, the assumptions of the ppBHPT framework

begin to break down. Therefore, the intermediate mass

ratio regime provides a unique opportunity to compare

and contrast results obtained from NR and ppBHPT

framework. In particular, Refs. [34–36] studied this regime

to gain insights into the limitations and accuracy of both

approaches as well as to further the understanding about the

dynamics of the binary.

Recently, a significant milestone has been reached

with the development of the BHPTNRSur1dq1e4 surro-

gate model [37]. This model, based on the ppBHPT

framework, accurately predicts waveforms for comparable

to large mass ratio binaries. Through a simple but nontrivial

calibration process, the ppBHPT waveforms are rescaled

to achieve a remarkable agreement with NR data in the

comparable mass ratio regime. In a parallel effort, Ref. [38]

has developed a fully relativistic second-order self-force

model, which also demonstrates excellent agreement with

NR in the comparable mass ratio regime. Additionally,

recent advancements in NR techniques have pushed the
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boundaries of BBH simulations, enabling the simulations

of BBH mergers with mass ratios up to q ¼ 128 for various

spin configurations [39–42]. These new NR simulations

provide valuable data that can be compared with results

obtained from perturbative techniques such as the ppBHPT

framework (including the BHPTNRSur1dq1e4 surrogate

model) and the second-order self-force model.

Building upon these recent advances, in this paper, we

provide a detailed comparison between state-of-the-art NR

simulations and perturbative results in the intermediate

mass ratio regime. We begin by providing an executive

summary of the waveform data obtained from NR and point

particle black hole perturbation theory (ppBHPT) in Sec. II.

In Sec. III A, we conduct a comprehensive comparison of

the dominant ðl; mÞ ¼ ð2; 2Þ mode of the waveforms. We

examine the phenomenology of the amplitudes and

frequencies of different modes in Sec. III B and discuss

the differences in peak times of various spherical harmonic

modes of the gravitational radiation in Sec. III C. To

understand the nonlinearities during the merger stage,

we analyze the amplitude differences between NR and

ppBHPT waveforms and propose fitting functions to

describe these differences in Sec. IVA. Additionally, we

evaluate the effectiveness of the α-β scaling technique in

the intermediate mass ratio regime. We provide similar fits

for the frequency differences in Sec. IV B. Finally, in

Sec. V, we discuss the implications and lessons learned for

both NR and perturbative techniques.

II. GRAVITATIONAL WAVEFORMS IN THE

INTERMEDIATE MASS RATIO REGIME

Gravitational radiation from the merger of a binary black

hole is typically written as a superposition of −2 spin-

weighted spherical harmonic modes with indices ðl; mÞ:

hðt; θ;ϕ; λÞ ¼
X∞

l¼2

Xl

m¼−l

hlmðt; λÞ
−2Ylmðθ;ϕÞ; ð1Þ

where λ is the set of intrinsic parameters (such as the

masses and spins of the binary) describing the system, θ is

the polar angle, and ϕ is the azimuthal angle. In this paper,

hðt; θ;ϕ; λÞ is obtained from both NR simulations and

different flavors of perturbation theory frameworks.

a. Numerical relativity data. We utilize the latest NR

simulations of high mass ratio binaries performed by the

RIT group [39,40]. These simulations encompass mass

ratios up to q ≤ 128 and spins ranging from −0.85 to 0.85.

The NR waveforms obtained from these simulations

include modes up to l ¼ 6. However, due to numerical

noise, we restrict our analysis to modes up to l ¼ 4 only.

Additionally, for the current study, we focus exclusively on

nonspinning cases.

b. Perturbation theory waveforms. We generate ppBHPT

waveforms using the BHPTNRSur1dq1e4 model [37], a

recently developed surrogate waveform model that com-

bines numerical relativity (NR) information with perturba-

tion theory. This model can be accessed through the

gwsurrogate [43] or the BHPTNRSurrogate [44]

package from the Black Hole Perturbation

Theory Toolkit [45].

The BHPTNRSur1dq1e4 model is trained on wave-

form data generated by the ppBHPT framework for non-

spinning binaries with mass ratios ranging from q ¼ 2.5

to q ¼ 104. The full inspiral-merger-ringdown (IMR)

ppBHPT waveform training data is computed using a

time-domain Teukolsky equation solver, which has been

extensively described in the literature [24–27,37,46]. The

model includes a total of 50 spherical harmonic modes up

to l ¼ 10.

The model calibrates ppBHPT waveforms to NR data

in the comparable mass ratio regime (2.5 ≤ q ≤ 10) up to

l ¼ 5 employing a simple but nontrivial scaling called the

α-β scaling [37]:

hl;m
full;αl;β

ðt; qÞ ∼ αlh
l;m
pp ðtβ; qÞ; ð2Þ

where αl and β are determined by minimizing the L2-norm

between the NR and rescaled ppBHPT waveforms. After

this α-β calibration step, the ppBHPT waveforms exhibit

remarkable agreement with NR waveforms [with an error

of ∼10−3 for the (2,2 mode)]. For instance, when compared

to recent SXS and RIT NR simulations with mass ratios

ranging from q ¼ 15 to q ¼ 32, the dominant quadrupolar

mode of BHPTNRSur1dq1e4 agrees to NR with errors

smaller than≈10−3. Further studies have shown that the α-β

scaling corrects for the missing finite size effect of the

secondary black hole in ppBHPT framework [47].

Using BHPTNRSurrogate [44], we then generate both

ppBHPT and rescaled ppBHPT waveforms for any mass

ratio within the training range of the model.

III. COMPARISON BETWEEN NR

AND PERTURBATION WAVEFORMS

Currently available high mass ratio NR simulations are

of varying lengths, often spanning only 1500M (where M
is the total mass of the binary). This limited duration

frequently poses a challenge when conducting a detailed

comparison with existing waveform models. Additionally,

many of the high mass ratio simulations exhibit residual

eccentricity (see the Appendix), further complicating wave-

form-level comparisons. Nonetheless, in Ref. [37], an

interesting comparison is presented between RIT NR data

and the BHPTNRSur1dq1e4 waveform model for mass

ratios q ¼ ½15; 32�. While a comprehensive comparison of

the full inspiral-merger-ringdown waveform is challenging

due to the residual eccentricity in these simulations, they

can still be utilized to comprehend and compare waveform

phenomenology during the merger-ringdown stage, where

the binary significantly circularizes. Hence, this paper
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primarily focuses on comparing the phenomenology of the

NR data with the waveforms obtained from perturbation

theory models.

A. Comparison of ðl;mÞ= ð2;2Þ mode waveforms

To begin, we decompose each spherical harmonics mode

hlmðtÞ into its amplitude AlmðtÞ and phase ϕlm compo-

nents, represented as hlmðtÞ ¼ AlmðtÞeiϕ
lm

.

For simplicity, we first focus on comparing the dominant

ðl; mÞ ¼ ð2; 2Þ mode during the final ∼1000M of the

binary’s evolution (see Fig. 1). To facilitate this com-

parison, we align the multimodal NR data (shown as solid

black lines; labeled as RIT-NR), ppBHPT waveforms

(shown as solid yellow lines; labeled as BHPT), and

rescaled ppBHPT waveforms (represented by dashed

red lines; labeled as BHPTNRSur1dq1e4) on the same

time grid t ¼ ½−1000; 100�M, where t ¼ 0M corresponds

FIG. 1. We show the real part of the (2,2) mode extracted from the NR data (solid black lines; labeled as “RIT-NR”), along with the

ppBHPTwaveform (solid yellow lines; labeled as “BHPT”) and rescaled ppBHPTwaveforms generated using the BHPTNRSur1dq1e4

model (dashed red lines; labeled as “BHPTNRSur1dq1e4”) for mass ratios q ¼ ½7; 15; 32; 64; 128�. More details are in Sec. III A.
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to the peak of the ðl; mÞ ¼ ð2; 2Þ mode amplitude.

Additionally, we adjust the phases such that the orbital

phase is zero at the beginning of the waveforms, i.e.,

at t ¼ −1000M.

We observe that the rescaled ppBHPTwaveforms exhibit

a close match to the NR data for mass ratios ranging from

q ¼ 7 to q ¼ 32, while the ppBHPT waveforms display

differences in both amplitude and phase evolution when

compared to NR data (top four rows of Fig. 1). However,

for mass ratios q ≥ 64, the NR data shows notable

eccentricities, resulting in significant dephasing between

the ppBHPT waveforms and NR, as well as between the

rescaled ppBHPTwaveforms and NR (bottom three rows of

Fig. 1). Furthermore, it is important to mention that the

ppBHPTand rescaled ppBHPTwaveforms become increas-

ingly similar to each other for mass ratios q ≥ 64. This

suggests that the higher-order corrections to the linear

ppBHPT results are relatively small in this regime.

In order to analyze the discrepancies between these

waveforms, we calculate the relative differences in ampli-

tude ΔA22=A
NR
22 and the absolute differences in phase Δϕ22

for both ppBHPT and rescaled ppBHPT waveforms com-

pared to the NR data. Figure 2 illustrates the errors in

amplitudes and phases during the late inspiral-merger-

ringdown phase of the waveforms. For mass ratios in the

range of q ¼ 7 to q ¼ 16, it is clear that the differences in

both amplitudes and phases between the rescaled ppBHPT

waveforms and the NR waveforms are significantly smaller

than those observed between the ppBHPT waveforms and

NR. This suggests that the linear ppBHPT waveforms are

insufficient in accurately matching the NR waveforms

within this mass ratio range. However, as we move toward

higher mass ratios (i.e. q ≥ 32), the differences in

ΔA22=A
NR
22 and Δϕ22 between the ppBHPT and rescaled

ppBHPTwaveforms diminish gradually. This indicates that

the linear description of the binary evolution becomes

increasingly accurate as the mass ratio increases. For mass

ratios q ≥ 64, both ΔA22=A
NR
22 and Δϕ22 exhibit distinct

features that strongly suggest the presence of residual

eccentricities in the NR simulations.

At this point, we aim to quantify the difference between

NR and (scaled) ppBHPT waveforms for different mass

ratios using the L2-norm. To compute the L2-norm between

two waveforms h221 ðtÞ and h222 ðtÞ, we minimize the time-

domain overlap integral (or L2-norm error) given by:

Eðh1; h2Þ ¼ min
tc;φz

R
je−2πiφzh221 ðt − tcÞ − h222 ðtÞj2dtR

jh222 ðtÞj2dt
: ð3Þ

We compute this error over a shift in time tc and a rotation

about the z-axis by an angle φz. It is important to note that

the duration of NR simulations varies significantly for

different mass ratios. For instance, at q ¼ 7, the NR data

covers the final ∼2400M of the binary evolution, while

for q ¼ 64, the NR data is only ∼1000M long. Initially, we

use all available NR data to compute these differences. We

find that the scaled ppBHPT waveforms (obtained from

BHPTNRSur1dq1e4) yield a better match to NR than the

original ppBHPT waveforms. For example, the L2-norm

FIG. 2. We show the relative differences in amplitudeΔA22=A
NR
22

and the absolute differences in phase Δϕ22 for both ppBHPT and

rescaled ppBHPT waveforms compared to the NR data for mass

ratios q ¼ ½7; 15; 32; 64; 128�. More details are in Sec. III A.
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error betweenNRand ppBHPTwaveforms is∼0.6, while the

error between NR and scaled ppBHPTwaveforms is ∼0.03

for q ¼ 10. However, for q ¼ 64, both ppBHPT and scaled

ppBHPT waveforms exhibit equally worse agreement with

NR data (which includes residual eccentricity), yielding

L2-norm values of 0.6 and 0.7, respectively. Similar errors

are also obtained for q ¼ 128. We further point out that the

errors are worse for the higher order modes.

FIG. 3. We show the amplitudes and instantaneous frequencies of the (2,2), (3,3), and (4,4) spherical harmonic modes extracted from

the NR data (solid black lines), along with the amplitudes and instantaneous frequencies obtained from the ppBHPTwaveforms (solid

yellow lines; labeled as “BHPT”) and rescaled ppBHPTwaveforms generated using the BHPTNRSur1dq1e4model (dashed red lines;

labeled as “BHPTNRSur1dq1e4”) for mass ratios q ¼ ½7; 15; 32; 64; 128�. More details are in Sec. III A.
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B. Comparison of the amplitudes and frequencies

of different modes

We now examine the amplitudes and instantaneous

frequencies of three representative modes ½ðl; mÞ� ¼
½ð2; 2Þ; ð3; 3Þ; ð4; 4Þ� for mass ratios ranging from q ¼ 7

to q ¼ 128 (see Fig. 3). For any given mode, instantaneous

frequenciesωl;m is given by the time derivative of the phase

ωl;m ¼
dϕl;m

dt
: ð4Þ

To mitigate the impact of residual eccentricities in the

comparisons, we focus on the merger-ringdown stage

of the binary (−100M ≤ t ≤ 100M), where circulariza-

tion is expected to be nearly complete. For mass ratios

7 ≤ q ≤ 32, noticeable differences are observed between

ppBHPT and NR amplitudes, while the rescaled ppBHPT

amplitudes closely match the NR values across all mass

ratios. Moreover, as anticipated, the differences in ampli-

tudes between ppBHPT and NR (and rescaled ppBHPT)

decrease as the mass ratio increases. For q ≥ 64, ppBHPT

and rescaled ppBHPT produce nearly identical amplitudes.

Interestingly, the frequencies of the individual modes

computed from ppBHPT waveforms and NR exhibit

remarkable agreements for all mass ratios. It is important

to note that due to numerical noise in the NR data,

frequencies display unphysical oscillations after the

merger, particularly for mass ratios q ≥ 15.

C. Comparison of the peak times

Next, we determine the times t
peak
l;m corresponding to the

maximum amplitude Apeak
l; m for each spherical harmonic

mode. We then calculate the relative time of the peaks with

respect to the dominant (2,2) mode as:

δtpeakl; m ¼ t
peak
l;m − t

peak
2;2 ; ð5Þ

where t
peak
2;2 is the time at which the (2,2) mode amplitude

reaches its maximum. We show the relative peak times

δt
peak
l;m in the NR data for a set of three representative modes

½ðl; mÞ� ¼ ½ð2; 1Þ; ð3; 3Þ; ð4; 4Þ� along with the relative

peak times for the same modes in the ppBHPT and rescaled

ppBHPTwaveforms in Fig. 4. For comparison, we include

the relative peak times of these modes from one of the

state-of-the-art effective-one-body models for aligned-spin

binaries, namely SEOBNRv4HM. This model includes four

higher-order modes in addition to the dominant quadrupolar

mode of radiation: ðl; mÞ ¼ ½ð2;�1Þ; ð3;�3Þ; ð4;�4Þ;
ð5;�5Þ�, and it is calibrated to a set of 141 NR waveforms

for mass ratios q ≤ 10 and spins χ1;2 ≤ 0.99.

Interestingly, the relative peak times δt
peak
l;m within these

waveforms exhibit significant inconsistencies with each

other for almost all mass ratio values. The inconsistencies

in the relative peak times δt
peak
l;m indicate that there is still

room for improvement in accurately predicting the timing of

different modes during the merger-ringdown phases of binary

black hole systems. Further developments in waveform

modeling techniques and more comprehensive calibration

againstNRsimulationsmayhelp reduce the discrepancies.We

further notice that the differences in peak times between

ppBHPT and rescaled ppBHPT waveforms are very small.

This can be attributed to the dominant influence of the inspiral

phase in the α-β calibration procedure. Accurate modeling of

the peak times in rescaled ppBHPT waveforms (i.e. in

BHPTNRSur1dq1e4) may require further tuning in the

merger-ringdown part as done in Ref. [48].

IV. INTERPLAY BETWEEN NR AND

PERTURBATION THEORY

To gain a deeper understanding of the interaction

between the NR and ppBHPTwaveforms, we now examine

FIG. 4. We show the relative times (with respect to the

(2,2) mode) at which the amplitudes of the (2,1) mode

(upper panel), (3,3) mode (middle panel), and (4,4) mode (lower

panel) reach the maximum in the NR data (circles) along with

the times obtained from the ppBHPT waveforms (squares;

labeled as BHPT) and rescaled ppBHPT waveforms generated

using the BHPTNRSur1dq1e4 model (crosses; labeled as

BHPTNRSur1dq1e4). Additionally, we include the relative peak

locations in the SEOBNRv4HM model (represented by pentagons)

for comparison. The gray vertical dashed line represents q ¼ 10,

which serves as a crude boundary between the comparable mass

regime and the intermediate mass ratio regime. More details are

in Sec. III C.
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their disparities in terms of amplitude and frequencies (as

illustrated in Fig. 3) across different mass ratios.

A. Amplitude differences between NR and ppBHPT

We first investigate the differences between NR and

ppBHPT in amplitude across various mass ratios. Speci-

fically, we replicate and expand upon the analysis presented

in Refs. [34–36]. Following the methodology outlined in

Refs. [34–36], we define the amplitude differences as:

δAl;m ¼ jABHPT
l;m − ANR

l;mj; ð6Þ

where ABHPT
l;m represents the amplitude of the ppBHPT

waveform.

We observe that the amplitude differences for the q ¼ 10

and q ¼ 15 cases near the merger exhibit the following

behavior (Fig. 5):

δA
q¼10

22 ∼ 1.92 × δA
q¼15

22

∼ 1.441.92 × δA
q¼15

22 ; ð7Þ

where 1.44 is to the ratio of the symmetric mass ratios ν.

This approximate scaling differs slightly from the one

reported in Ref. [36], which suggested δA
q¼10

22 ∼ 1.442.3 ×

δA
q¼15

22 . Nevertheless, both results indicate the presence of

nonlinear effects (beyond adiabatic evolution) in the

amplitude differences between the NR and ppBHPT

waveforms, as these differences scale nonlinearly with

the symmetric mass ratio ν. Likewise, we find that the

amplitude differences for the q ¼ 10 and q ¼ 32 cases near

the merger can be characterized as follows:

δA
q¼10

22 ∼ 7.7 × δA
q¼32

22

∼ 2.811.98 × δA
q¼32

22 ; ð8Þ

where 2.81 is the ratio of the symmetric mass ratios ν.

Similarly, the amplitude differences for the q ¼ 15 and

q ¼ 32 cases near the merger obeys:

δA
q¼10

22 ∼ 3.97 × δA
q¼32

22

∼ 1.991.96 × δA
q¼32

22 ; ð9Þ

where 1.99 is the ratio of the symmetric mass ratios ν.

Next, we perform fitting for the amplitude differences

δAl;m of three representative modes ðl; mÞ ¼ ½ð2; 2Þ;
ð3; 3Þ; ð4; 4Þ� at their respective peaks as a function of ν

(Fig. 6). The obtained relations are as follows:

δA2;2 ∼ 6.07 × ν3.06 ð10Þ

δA3;3 ∼ 1.53 × ν2.90 ð11Þ

δA4;4 ∼ 0.43 × ν2.84: ð12Þ

Next, we repeat the fitting in terms of 1
q
[(Fig. 7)] and find:

FIG. 5. We show the amplitude difference δA22 between

ppBHPT and NR for q ¼ 10 (solid gray line) and q ¼ 15 (solid

red line). Furthermore, we show the amplitude difference for q ¼
15 after rescaling them with different powers of the ratio of

symmetric mass ratios (blue lines). More details are in Sec. IVA.

FIG. 6. We show the amplitude differences δAl;m between

ppBHPT and NR data at the merger (denoted by the maximum

amplitude in the (2,2) mode) for (2,2) (blue circles), (3,3) (red

squares) and (4,4) (green pentagons) modes for mass ratios

q ¼ ½7; 15; 32; 64; 128�. Additionally, we show the best-fit func-

tions for each mode in terms of ν. More details are in Sec. IVA.
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δA2;2 ∼ 1.86=q2.81 ð13Þ

δA3;3 ∼ 0.51=q2.66 ð14Þ

δA4;4 ∼ 0.15=q2.61: ð15Þ

These fits not only provide a simple scaling for the

differences in maximum amplitudes between ppBHPT

and NR waveforms, but also serve as further confirmation

of the presence of nonlinearity during the merger stage of

the binary evolution. Additionally, we observe that the

nonlinearity is more pronounced in the (2,2) mode com-

pared to higher order modes.

We now calculate ANR=ABHPT, which represents the ratio

of the ppBHPT and NR amplitudes for all mass ratios. This

ratio is expected to correspond roughly to the α parameter

in Eq. (2) after multiplying by the transformation factor
1

1þ1=q
between a mass scale of m1 and M. In Fig. 8, we

present both the ratio of the amplitude ANR=ABHPT and the

α values obtained from the BHPTNRSur1dq1e4 model.

We observe that as the mass ratio increases, the agreement

between these two quantities improves, suggesting that the

α-β scaling works reasonably well even beyond the

comparable mass ratio regime where it was originally

constructed. The differences observed for q ≤ 15 can be

attributed to numerical noise and the presence of residual

eccentricities in the NR data.

Next, we repeat our study using scaled ppBHPT wave-

forms (obtained from the BHPTNRSur1dq1e4 model). In

particular, we calculate the differences in amplitude across

various mass ratios.

δAscaled
l;m ¼ jABHPTNRSur1dq1e4

l;m − ANR
l;mj; ð16Þ

where A
BHPTNRSur1dq1e4
l;m represents the amplitude of the

scaled ppBHPT waveform. At the peak, we find the

following relations:

δAscaled
2;2 ∼ 4.87 × ν3.09 ð17Þ

δAscaled
3;3 ∼ 0.13 × ν2.53 ð18Þ

δAscaled
4;4 ∼ 0.03 × ν2.46 ð19Þ

and

δAscaled
2;2 ∼ 1.47=q2.83 ð20Þ

δAscaled
3;3 ∼ 0.05=q2.33 ð21Þ

δAscaled
4;4 ∼ 0.014=q2.26: ð22Þ

It is worth noting that the exponents in the relation for

δAscaled
l;m have changed only slightly compared to δAl;m.

However, it is important to highlight that the coefficients

for δAscaled
l;m are much smaller than the ones that appear

in δAl;m.

FIG. 7. We show the amplitude differences δAl;m between

ppBHPT and NR data at the merger (denoted by the maximum

amplitude in the (2,2) mode) for (2,2) (blue circles), (3,3) (red

squares), and (4,4) (green pentagons) modes for mass ratios

q ¼ ½7; 15; 32; 64; 128�. Additionally, we show the best-fit func-

tions for each mode in terms of 1
q
. More details are in Sec. IVA.

FIG. 8. We show the ratio of the ppBHPT and NR amplitudes

for mass ratios q ¼ ½7; 15; 32; 64; 128�, along with the α param-

eter extracted from the BHPTNRSur1dq1e4 model. More

details are in Sec. IVA.
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B. Frequency differences between NR and ppBHPT

Following the methodology described in Sec. IVA

regarding the amplitudes, we define the frequency

differences as:

δωl;m ¼ jωBHPT
l;m − ωNR

l;mj; ð23Þ

where ωBHPT
l;m and ωNR

l;m represent the instantaneous frequen-

cies of the ppBHPT and NR waveforms, respectively.

We calculate δωl;m at the merger, indicated by the

maximum amplitude in the (2,2) mode, for the (2,2),

(3,3), and (4,4) modes for mass ratios q ¼ ½7; 15; 32;
64; 128� (Fig. 9). Subsequently, we conduct a fitting

analysis for the frequency differences δA2;2 in terms of 1
q

and obtain the following relationship (Fig. 9):

δω2;2 ∼ 0.047=q0.73: ð24Þ

Next, we repeat the fitting in terms of ν and find:

δω2;2 ∼ 0.063ν0.78: ð25Þ

It is important to acknowledge that due to numerical

noise present in the NR data, as observed in Fig. 3, it

becomes increasingly difficult to obtain accurate estimates

of the instantaneous frequencies from NR for mass ratios

q ≥ 16. Therefore, we refrain from attempting to fit the

frequency differences for the (3,3) and (4,4) modes in this

scenario.

We then investigate the differences in the instantaneous

frequencies between scaled ppBHPT and NR around

merger, defined as:

δωscaled
2;2 ¼ jωBHPTNRSur1dq1e4

2;2 − ωNR
2;2 j: ð26Þ

We find the following scalings for δωscaled
2;2 :

δωscaled
2;2 ∼ 0.233=q1.07; ð27Þ

and

δωscaled
2;2 ∼ 0.154ν0.98: ð28Þ

In contrast to the amplitude differences, we observe that

both the coefficient and exponent are significantly different

between δωscaled
2;2 and δω2;2 scalings.

V. DISCUSSIONS AND CONCLUSION

In this work, we have conducted a detailed com-

parison between state-of-art NR simulations and pertur-

bative results in the intermediate mass ratio regime. In

particular, we use both ppBHPT waveforms and rescaled

ppBHPT waveforms from the BHPTNRSur1dq1e4 sur-

rogate model.

We first provide a comprehensive comparison of the

dominant ðl; mÞ ¼ ð2; 2Þ mode of the gravitational radia-

tion obtained from NR and ppBHPT techniques. We

observe that the rescaled ppBHPT waveforms exhibit a

close match to the NR data for mass ratios ranging from

q ¼ 7 to q ¼ 32, while the ppBHPT waveforms display

differences in both amplitude and phase evolution when

compared to NR data. For mass ratios q ≥ 32, residual

eccentricities and numerical noise in the NR data make

such comparisons challenging (Sec. III A; Figs. 1 and 2).

We further observe that as the mass ratio increases, the

differences between NR data and ppBHPT results reduce

(Sec. III A; Fig. 3). Furthermore, excellent match between

NR amplitudes and scaled ppBHPT amplitudes indicate

effectiveness of the α-β scaling in the intermediate mass

ratio regime (Sec. IVA; Fig. 8). However, the differences in

peak times of different modes between NR, ppBHPT and

BHPTNRSur1dq1e4 highlight the intricacies of the

merger stage, revealing insights into the nonlinear dynam-

ics of the binary evolution (Sec. III C; Fig. 4).

Next, we examine the disparities between NR and

ppBHPTwaveforms in terms of amplitude and frequencies

to gain a comprehensive understanding of the intricate

relationship between these two frameworks. We analyze the

amplitude differences δAl;m between NR and ppBHPT

waveforms for different modes to investigate the non-

linearities present during the merger stage of the binary

FIG. 9. We show the frequency differences δωl;m between

ppBHPT and NR data at the merger (denoted by the maximum

amplitude in the (2,2) mode) for (2,2) (blue circles), (3,3) (red

squares), and (4,4) (green pentagons) modes for mass ratios

q ¼ ½7; 15; 32; 64; 128�. Additionally, we show the best-fit

functions for the (2,2) mode in terms of 1
q
. More details are

in Sec. IV B.
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evolution and propose fitting functions to describe these

amplitude differences in terms of both q and ν. The

proposed fitting functions for amplitude differences

between NR and ppBHPT waveforms offer a valuable tool

for understanding and quantifying these nonlinearities

(Sec. IVA; Figs. 5–6). Finally, we provide similar fits

for the frequency differences in the (2,2) mode in Sec. IV B.

This study highlights the potential of ppBHPT and

surrogate models, such as BHPTNRSur1dq1e4, in effi-

ciently and accurately predicting waveforms in the inter-

mediate mass ratio regime. It opens up new opportunities

for exploring the nonlinearities during the merger stage of

binary and for developing reliable modeling strategies to

accurately determine the peak times of each mode. Our

findings underscore the importance of improving calibra-

tion methods for ppBHPT-based surrogate models and

enhancing eccentricity reduction algorithms in NR simu-

lations. These advancements will contribute to the develop-

ment of more accurate and efficient waveform models,

enabling better detection and characterization of GW

signals in the intermediate mass ratio regime.

ACKNOWLEDGMENTS

T. I. would like to thank Gaurav Khanna and Scott

Field for helpful discussion. T. I. is supported by NSF

Grants No. PHY-1806665 and DMS-1912716. This work

is performed on CARNiE at the Center for Scientific

Computing and Visualization Research (CSCVR) of

UMassD, which is supported by the Office of Naval

Research (ONR)/Defense University Research Instru-

mentation Program (DURIP) Grant No. N00014181255,

the UMass-URI UNITY supercomputer supported by the

Massachusetts Green High Performance Computing Center

(MGHPCC) and ORNL SUMMIT under allocation

AST166 [47].

APPENDIX: RESIDUAL ECCENTRICITIES

IN RIT-NR SIMULATIONS

It is important to highlight the challenges associated with

using RIT NR simulations [39,40] to estimate the accuracy

of waveform models in the intermediate mass ratio regime.

Two notable limitations are the shorter length of the NR

data and the presence of residual eccentricities.

To illustrate these issues, we plot the amplitudes of the

(2,2) mode in RIT-NR waveform data in Fig. 10 for three

different mass ratios: q ¼ 32 (RIT-BBH-0792; upper

panel), q ¼ 64 (RIT-BBH-1916; middle panel), and q ¼
128 (RIT-BBH-1076; lower panel). We have chosen the

same time-range for all three subplots to stress the varying

(and relatively short) length of the NR data corresponding

to different mass ratios. Figure 10 further shows clear

indications of residual eccentricity in the waveforms,

especially for mass ratios q ¼ 64 and q ¼ 128.

However, the metadata for these NR simulations does

not provide any estimate of initial eccentricities. While it

is possible to estimate eccentricities using waveform

amplitude or frequencies at the periastron and apostron

[14,49], the shorter duration of the NR data poses signifi-

cant challenges in obtaining accurate estimates. These

methods rely on precise interpolation of the frequencies

at the periastron and apostron, which is difficult to achieve

in cases where the NR data is limited. For example, we

could only find about three apostron and periastron before

merger for q ¼ 128. Consequently, we could not provide

any quantitative measurement of the eccentricities.

These limitations should be considered when comparing

and validating models in the intermediate mass ratio range

using RIT NR data.

FIG. 10. We show the amplitudes of the (2,2) mode in RIT-NR

waveform data for three different mass ratios: q ¼ ½32; 64; 128�.
In all cases, we see modulations in the amplitudes due to residual

eccentricity. More details are in the Appendix.
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