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Abstract

A novel statistical method is proposed and investigated for estimating a heavy tailed
density under mild smoothness assumptions. Statistical analyses of heavy-tailed dis-
tributions are susceptible to the problem of sparse information in the tail of the dis-
tribution getting washed away by unrelated features of a hefty bulk. The proposed
Bayesian method avoids this problem by incorporating smoothness and tail regular-
ization through a carefully specified semiparametric prior distribution, and is able to
consistently estimate both the density function and its tail index at near minimax op-
timal rates of contraction. A joint, likelihood driven estimation of the bulk and the tail
is shown to help improve uncertainty assessment in estimating the tail index parameter
and o↵er more accurate and reliable estimates of the high tail quantiles compared to
thresholding methods.

Keywords: Semiparametric estimation, logistic Gaussian processes, posterior contraction,
tail index estimation, regular variation.

1 Introduction

For a heavy-tailed density with subexponential tail decay, the exceedance probabilities of a
sample sum and a sample maximum are of the same order. A random sample drawn from
such a density is likely to contain a small fraction of extreme observations whose magnitudes
overshadow the sum total of the remaining magnitudes. This property is expressive of many
naturally occurring phenomena, e.g., precipitation (Katz et al., 2002), financial returns or
insurance loss (Embrechts et al., 2013), and material or fatigue strength (Castillo, 2012).
However, statistically estimating a heavy tailed density from a random sample could be
challenging if estimation was sought under only smoothness conditions. Two densities can
be arbitrarily close in total variation distance while displaying entirely di↵erent tail decay

⇤
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rates. Estimation methods with rich shape flexibility and guaranteed L
1 estimation consis-

tency may provide no meaningful inference on the tails of the distribution; see Markovich
(2007); Li et al. (2019) for detailed discussions and cautionary results on kernel mixture
models.

When interest focuses on estimating only tail features, e.g., extrapolating to high quan-
tiles from limited data, it is common to exclude all but the most extreme observations so that
the tail speaks for itself. The Pickands-Balkema-de Haan Theorem (Balkema and de Haan,
1974; Pickands, 1975) justifies the so-called peaks-over-threshold estimation methods, where
a generalized Pareto distribution (GPD) is fitted to the subsample of observations exceed-
ing a high threshold; see de Zea Bermudez and Kotz (2010) for a review. It also motivates
nonparametric methods (Hill, 1975; Pickands, 1975; Dekkers et al., 1989; Alves, 2001) based
on only high sample quantiles for estimating the asymptotic tail decay rate of densities f(y)
whose survival function F̄ (y) =

R1
y

f(t)dt is regularly varying, i.e.,

F̄ (y) = y
�↵

L(y), y > 0, (1)

for some ↵ > 0 where L(y) is a slowly varying function, i.e., limy!1 L(ay)/L(y) = 1 for
every a > 0. We shall call such an f(y) a regularly varying density with tail index ↵, which

may be recovered from f as ↵ = ↵+(f) := � limy!1
log F̄ (y)
log y .

A data driven threshold selection is critical to the analysis, but an optimal choice
proves a steep challenge in practice. Diagnostic plots may point to multiple regimes of
transition to the tail. Automatic threshold estimation methods gloss over such ambiguity
with unverifiable tail assumptions and fail to account for the associated uncertainty in
subsequent analyses (Scarrot and MacDonnald, 2012). Several methods have been proposed
to estimate the entire density function by splicing together a mixture model for the bulk
with a GPD tail attachment (Tancredi et al., 2006; MacDonald et al., 2011; do Nascimento
et al., 2012). Although, in theory, these methods partially account for threshold uncertainty,
they employ heuristic estimation methods supported by little mathematical analysis.

Toward a more formal statistical methodology we consider the semiparametric model

f(y) = p✓, (y) := g✓(y) (G✓(y)), y > 0, (2)

where g✓(y) = �
�1

{1 + y/(↵�)}�(↵+1), G✓(y) =
R
y

0 g✓(z)dz, y > 0, are the density and
distribution functions of a GPD with location 0, scale � and shape 1/↵; here ✓ = (↵,�) 2
(0,1)2 is an unknown vector, and,  is an unknown density function on (0, 1). Under
this model, Y ⇠ f(y) if and only if U := G✓(Y ) ⇠  , and, ↵+(f) = ↵+(g✓) = ↵ under
a regularity condition on  (u) as u ! 1 (Lemma 1). Markovich (2007) o↵ers a thorough
analysis of an estimation approach where one first obtains an estimate ✓̂ of ✓ by thresholding
data Y1, . . . , Yn at a high quantile, and then a nonparametric estimate  ̂ of  is obtained
based on the transformed data Ûi = G

✓̂
(Yi), i = 1, . . . , n. With  ̂ estimated by a variable

kernel mixture, the back-transformed density f̂ = p
✓̂, ̂

o↵ers optimal estimation of f under
the mean integrated square error loss. Such a two-stage approach does not account for
threshold choice uncertainty in the estimation of f or any subsequent analyses. It also fails
to take advantage of the estimate of the bulk to improve tail estimation.

We consider a likelihood-based alternative approach where ✓ and  are jointly estimated
under a Bayesian extension of (2). A Bayesian formulation immediately facilitates informa-
tion sharing between the bulk and the tail and o↵ers a joint assessment of uncertainty of the
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extreme and non-extreme features. But important new questions arise on both Bayesian
and frequentist sides. What is a principled way to choose a prior distribution on the non-
parametric density  ? What are the statistical properties of the resulting estimates? These
questions could be partially addressed by examining asymptotic concentration properties of
the posterior distribution resulting from a specific prior allocation. We show that with a lo-
gistic Gaussian process (LGP) prior on  (Leonard, 1978; Lenk, 1988, 1991; Tokdar, 2007),
the posterior distribution on f given a random sample Y1, . . . , Yn from an f

⇤ concentrates
around f

⇤ whenever the latter is continuous and regularly varying. Moreover, the posterior
distributions on f and ↵+(f) simultaneously concentrate around f

⇤ and ↵+(f⇤) at polyno-
mially fast contraction rates that are nearly minimax optimal, whenever f

⇤ = p✓⇤, ⇤ with
a su�ciently smooth  ⇤ . It is significant that the LGP prior enables the likelihood func-
tion to preserve relevant information on tail quantities; no other example has been worked
out before (Li et al., 2019). Moreover, guaranteeing posterior contraction across a large
model subspace is tantamount to adopting the principle of intersubjective prior allocation
to facilitate asymptotic merger of beliefs (Diaconis and Freedman, 1986).

Computational details are provided for an e�cient and streamlined implementation
making it feasible to analyze data sets consisting of several thousand records. Finite sam-
ple properties are examined with an extensive simulation study which corroborates the
asymptotic analysis result of accurate tail index estimation under strong GPD tail match,
and complements it by revealing that even under deviations from a GPD tail, estimates of
high tail quantiles are much superior compared to those obtained from thresholding meth-
ods. An analysis of daily precipitation records is presented to highlight potential benefits
of the joint semiparametric estimation in mitigating ambiguity regarding threshold choice
and providing tight but robust estimates of high tail quantiles.

2 Estimation model

2.1 Tail index expression

We restrict to the case where the support of f is [a,1) for a known finite number a, which is
set to be zero without any loss of generality. The primary goal of the analysis is taken to be
estimating the entire density f accurately in L

1 or comparable metrics, while also accurately
estimating its heavy right tail. Toward this, we first show that the GPD-transformation
model (2) is expressive of an entire range of polynomial tail decay rates under a regularity
assumption on  .

Let P denote the class of densities  on (0, 1) satisfying  ̄(1� u) = uL̃(1/u) for some
slowly varying function L̃; here  denotes the distribution function of  and  ̄ = 1 �  .
Note that if L(y) is slowly varying then

lim
y!1

L(a(y)y)

L(y)
= 1 (3)

for any function a(y) with a limit a1 := limy!1 a(y) 2 (0,1).

Lemma 1. If ✓ = (↵,�) 2 (0,1)2 and  2 P then f = p✓, is regularly varying with tail

index ↵. Conversely, if f is a regularly varying density on (0,1) with tail index ↵ > 0 then

for every � > 0, f = p(↵,�), for some  2 P.
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Proof. If f = p✓, then F̄ (y) =  ̄(1�Ḡ✓(y)) = Ḡ✓(y)L̃(1/Ḡ✓(y)), with Ḡ✓(y) = 1�G✓(y) =
y
�↵

L✓(y), L✓(y) = {1/y+1/(↵�)}�↵ ! c✓ := (↵�)↵ as y ! 1. Therefore, F̄ (y) = y
�↵

L(y)
where L(y) = L✓(y)L̃(y↵/L✓(y)) is slowly varying by (3). Conversely, if f is a regularly
varying density on (0,1) with tail index ↵ > 0 and ✓ = (↵,�) for some � > 0, then f = p✓, 

where

 (u) =
f(G�1

✓
(u))

g✓(G
�1
✓

(u))
, u 2 (0, 1). (4)

It is trivial to check that  is a density on (0, 1) with  ̄(1�u) = F̄ (Ḡ�1
✓

(u)) = F̄ (↵�(u�
1
↵ �

1)) = uL̃( 1
u
) where L̃(y) = ↵�{1� 1/y1/↵}�↵L(↵�{y1/↵ � 1}), with L denoting the slowly

varying component of F̄ . By (3), L̃ itself is a slowly varying function.

Lemma 1 says, with  2 P the semiparametric model (2) is fully expressive of all regu-
larly varying densities on (0,1) with tail index uniquely identified by the model parameter
↵. It also says that the pair (�, ) is not uniquely identifiable. Although one could fix � and
have both ↵ and  uniquely identified under (2), no obvious choice presents itself. Instead,
we find it more useful to retain the scale expressiveness of the model to adjust for implicit
shape preferences of any nonparametric prior on  . The LGP prior introduced below con-
centrates around  functions such that the derivatives of log are small in magnitude; a
bias toward smooth functions being critical to statistical regularization. A flexible choice
of the pairing � creates an important counterbalance. It o↵ers an entire arc of equivalent
(�, ) pairs for a given f , increasing the possibility that at least some of these pairs will be
favorable to LGP shape bias and hence will enjoy high posterior concentration. For exam-
ple, when f = g(2,1) the pair (� = 1, ⌘ 1) presents a favorable representation. But if one
now adds a little contamination a di↵erent pair with a � 6= 1 could be more suitable, even
if the contamination does not alter the tail behavior. Figure 1 shows a concrete example
with a gamma contamination.

Toward a Bayesian analysis, we choose a product prior distribution ⇡✓ = ⇡↵ ⇥ ⇡� on
✓ = (↵,�), where ⇡� is the half-Cauchy distribution on (0,1) and ⇡↵ is the distribution of
↵ = ↵+(2�↵) · e⇣/1.5 with ⇣ distributed according to the standard logistic distribution on
the real line. The choice of ⇡↵ restricts ↵ > ↵ with probability one, where ↵ > 0 is treated as
a hyperparameter to be fixed by the modeler. The numerical analyses presented in Section
4 were carried out with ↵ = 0.5, for which the extreme value index ⇠ = 1

↵
has unimodal

density on (0, 2) with a gentle peak at ⇠ = 0.5 (i.e., ↵ = 2). We also experimented with
↵ = 0.1 and all posterior estimates were found to be essentially the same as with ↵ = 0.5.

2.2 LGP prior for  

Let C[0, 1] denote the space of real, continuous functions on [0, 1]. For any ! 2 C[0, 1],

its logistic transform L(!), defined as (L!)(u) = e
!(u)

R 1
0 e!(t)dt

, u 2 (0, 1), is a well defined

probability density function on (0, 1). When ! is a Gaussian process with E[!(u)] = µ(u)
and Cov[!(u),!(v)] = c(u, v) such that ! 2 C[0, 1] with probability one, the probability
law of the random density function L(!) is called a logistic Gaussian process distribution,
denoted LGP(µ, c).

We adopt a hierarchical LGP prior for  in (2). Let c�(u, v) = exp{��2(u�v)2} denote
the unit variance Gaussian covariance kernel with inverse length-scale parameter � > 0. It
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Figure 1: Lack of identifiability of (�, ) and the importance of scale expressiveness. Left:
graph of f(y) = 0.8⇥g(2,1)(y)+0.2⇥ g̃(y) where g̃(y) is the density of a gamma distribution
with mean 4 and variance 1; overlaid on the histogram of a sample of size n = 1000 drawn
from the same. The tail of f(y) is completely dominated by that of g(2,1). Remaining panels
show graphs of  (u) in (4) overlaid on the histogram of transformed data with ↵ = 2 and
two choices of the scale: � = 1 (middle) and � = 4 (right). The larger scale value produces
a flatter  which is more favorable to the LGP prior. For the data displayed here, the
posterior concentrates around (↵,�) = (2.1, 4) with [2.2, 7.2] giving a 95% interval for �.

is well known that if ! is a mean zero Gaussian process with covariance 2c� for some  > 0,
then ! 2 C[0, 1] with probability one, and hence, the probability distribution LGP(0,2c�)
is well defined for every  > 0,� > 0. The prior on  is implicitly defined by the hierarchy

 ⇠ LGP(0,2c�), (2,�) ⇠ ⇡2 ⇥ ⇡�, (5)

with the distributions ⇡2 and ⇡� on (0,1) described below.
It is clear that if ! 2 C[0, 1] and  = L(!), then  (1) := limu!1  (u) exists and

 (1) 2 (0,1). By mean value theorem  ̄(1 � u) = u (t(u)) for some t(u) 2 [1 � u, 1].
Consequently, L̃(y) =  (t(1/y)), is slowly varying because limy!1 L̃(y) =  (1) 2 (0,1).
Therefore, under the hierarchical LGP prior adopted here, Pr( 2 P) = 1. Of course, the
prior support of  is actually smaller than P, because limu#0 u

�1 ̄(1� u) 2 (0,1) almost
surely under the prior, whereas P contains densities  where this limit may be zero, infinity
or undefined. This may suggest that the induced prior distribution on p✓, may not have
full support within the class of regularly varying densities. The theorem below reassures
that no loss is incurred in a probabilistic sense. Below we assume 0  ↵ < ↵  1 are such
that ↵ 2 (↵,↵) with probability one under the prior ⇡✓.

Theorem 2. Let f
⇤
be any bounded, continuous, regularly varying density on (0,1) with

tail index ↵
⇤
2 (↵,↵). If (✓, ) ⇠ ⇡✓ ⇥ LGP(0,2c�) for some  > 0,� > 0, then for every

✏ > 0, Pr(dKL(f⇤
, p✓, ) < ✏) > 0, where dKL(f, g) =

R
f(y) log{f(y)/g(y)}dy denotes the

Kullback-Leibler divergence of f from g.

Proof. Let ✏ > 0 be given. Fix a 0 < � < 1 � e
�✏/2. Consider any ✓0 = (↵0,�0) where

↵ < ↵0 < ↵
⇤ and �0 > 0. Let  0 be defined as in (4) so that f

⇤ = p✓0, 0 . Since
↵0 < ↵

⇤, g✓0 has heavier tails than f
⇤ and hence  0 is bounded and continuous with
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 0(1) = 0. Consequently, the density  1(u) := (1 � �) 0(u) + �, u 2 (0, 1), is bounded
and continuous, and is bounded above �, and therefore, !1 = log 1 can be extended
to an element of C[0, 1]. Now, for any  = L(!) with ! 2 C[0, 1], dKL(f⇤

, p✓0, ) =

dKL( 0, )  dKL( 0, 1) +
R 1
0  0(u) log

 1(u)
 (u) du  � log(1 � �) + 2k! � !1k1. Therefore,

Pr(dKL(f⇤
, p✓, ) < ✏ | ✓ = ✓0) � Pr(k!�!1k1 <

✏

2), where the latter probability, calculated
for a Gaussian process ! with mean zero and covariance 2c�, must be positive because
such a Gaussian process has the entire C[0, 1] in its uniform topology support (Tokdar and
Ghosh, 2007; van der Vaart and van Zanten, 2009). An application of the law of total
probability completes the proof.

Although not apparent from the above result, the covariance parameters play an im-
portant role in determining how the prior mass is distributed within the broad support.
The inverse length-scale parameter � is of critical importance here because of its direct
influence on the range of smoothing; though in our experience, a prior on  also helps with
model fit and posterior computation via Markov chain Monte Carlo. We take ⇡2 to be a
convenient inverse-gamma distribution with shape a and rate b, i.e., (1/2) ⇠ Ga(a, b)
which is partially conjugate to the likelihood function in 2 and allows this parameter to
be integrated out during model fitting. No such conjugate choice exists for � and formal
subjective or objective principles are di�cult to apply in selecting ⇡�; however, see Paulo
(2005); Gu et al. (2018) for relevant discussions.

An alternative track is to seek ⇡� that guarantees optimal asymptotic frequentist con-
vergence of the posterior distribution to the truth. In the setting of purely nonparametric
density estimation with LGP, van der Vaart and van Zanten (2009) show that a gamma
prior distribution on � is critical to optimally spreading prior mass into various smooth-
ness classes, which in turn is critical to guaranteeing adaptive and optimal concentra-
tion of the posterior distribution to the truth. We follow this recommendation to spec-
ify ⇡� ⇠ Ga(a�, b�). Our numerical experiments were carried out with a = b = 3/2,
a� = 16 and b� = 2.2. The latter choices could be appreciated in several ways. Consider
⇢ = c�(0,�) = e

��2�2
which gives the correlation of the Gaussian process at a distance �.

With � = 10%, our choice of ⇡� assigns 95% prior probability to ⇢ 2 (0.28, 0.84) with prior
mean and median ⇡ 0.6. Alternatively, one could look at the number of up-crossings at zero
of the process sample paths; which could be taken as a proxy to the number of local modes.
The well known Rice formula states that the expected number of up-crossings of zero of a
mean zero Gaussian process on the unit interval with covariance 2c� is �/(⇡

p
2) ⇡ 0.22�

(Rice, 1944; Adler and Taylor, 2009). With our choice of ⇡�, the prior probabilities of zero
through five up-crossings, respectively, are 8%, 37%, 40%, 13% and 2%.

2.3 Posterior computation

For data (y1, . . . , yn), the likelihood function (✓, ) 7!
Q

n

i=1{g✓(yi) (ui)}, where ui =
G✓(yi), involves  only through the finite vector  U = ( (u1), . . . , (un))>. Unfortu-
nately, the joint prior density of  U , given model hyper-parameters (�,), is not available
in closed form. This necessitates involving the latent Gaussian process ! in the representa-
tion  = L(!) in posterior computation. However,  U depends on both the corresponding
vector !U and the scalar !norm =

R 1
0 e

!(u)
du giving the normalization in the logistic trans-
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form and involving the whole function !(u). It is practically impossible to carry out any
numerical analysis of the posterior when a function valued input variable is involved in the
likelihood evaluation. We overcome this challenge by adopting a grid-based representation
of ! proposed and analyzed in Tokdar (2007).

2.3.1 Likelihood approximation

Specifically, a dense set of points T = {0 = t1 < t2 < · · · < tL = 1} ⇢ [0, 1] is cho-
sen as a grid over which both ! and  are to be represented, respectively, as the vector
!T = (!(t1), . . . ,!(tL))> and the corresponding vector  T . Given !T , a very accurate
approximation to !norm could be obtained by applying the trapezoidal rule of numerical
integration to the pair (T,!T ), readily producing the vector  T . To evaluate  U , which
is needed for likelihood evaluation, it is useful to formally express the trapezoidal approx-
imation to !norm as the exact integration of the function h(u) that linearly interpolates
the points (tl, e!(tl)), l = 1, . . . , L. We may now view  T as the evaluation over the grid
T of the (normalized) density function h̄(u) = h(u)/

R 1
0 h(t)dt. Consequently,  U could be

readily equated with the corresponding vector h̄U . The overall computational complexity
of this likelihood approximation is O(max(n, L)) and can be carried out extremely fast in
actual time with optimized codes. In the numerical experiments reported here we use an
equally spaced grid with L = 101 and increment size 0.01.

2.3.2 Low rank approximation and marginalization of hyper-parameters

With the availability of a grid based representation and the linear interpolation based
approximation to the likelihood function, it is feasible to carry out a Markov chain Monte
Carlo approximation the posterior distribution of (✓,!T ). The prior density of !T , given
(�,), is a multivariate normal density with mean zero and covariance 2CT (�) where
CT (�) = ((c�(tl, tk)))Ll,k=1. An evaluation of this density involves factorizing CT (�) at

O(L3) computational complexity, which is practicable but slow at L = 101, and could be
outright prohibitive for larger grid sizes. Additionally, running a Markov chain sampler on
!T , which is a dense representation of a smooth function, produces slow-mixing chains.

Considerable e�ciency gains can be made by replacing the smooth Gaussian pro-
cess ! with a low-rank Gaussian process (Snelson and Ghahramani, 2006; Tokdar, 2007;
Banerjee et al., 2008). For a set of knots S = {s1, . . . , sm} ⇢ [0, 1], with m much
smaller than L, the so called predictive process !̃(u) = E[!(u) | !(s1), . . . ,!(sm)], gives a
smooth interpolation of the graph of (S,!S), and is fully determined by the random vec-
tor !S = (!(s1), . . . ,!(sm))>. Typically the predictive process conditioning is defined for
given covariance parameters (�,), but a hyper-parameter marginalized extension proposed
in Yang and Tokdar (2017) and described below o↵ers considerable additional speed up.

Integrate out 2 from the model and express the prior distribution of !S given � as the
multivariate Student-t distribution with pdf p(!S |�) / {1+!>

S
CS(�)�1

!S/(2b)}�(a+m/2)

where CS(�) is the analogue of CT (�) over the knot set S. It is impossible to analytically in-
tegrate out �, but a discrete integration could be carried out by replacing ⇡� with a discrete
approximation over a dense set of support points {�1, . . . ,�G} ⇢ (0,1). With ⇡

⇤
�
(g) :=

Pr(� = �g), the prior distribution of !S is the mixture density p(!S) =
P

g
⇡
⇤
�
(g)p(!S |�g).
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The vector !̃T , which is the predictive process replacement of !T , can be computed analyt-
ically from !S as !̃T =

P
g
⇡
⇤
�
(g|!S)Ag!S where Ag = CTS(�g)CS(�g)�1 with CTS(�) de-

noting the L⇥mmatrix with elements c�(t, s), t 2 T, s 2 S, and, ⇡⇤
�
(g|!S) / ⇡

⇤
�
(g)p(!S |�g).

We select the support points 0 < �1 < · · · < �G of ⇡⇤
�
based on the knots set S. First

�1 is fixed such that ⇢1 := c�1(0, 0.1) = 0.95 and then successive �g values are chosen so
that dKL(N(0, CS(�g�1)), N(0, CS(�g))) = 0.5 until we get ⇢G+1 := c�G+1(0, 0.1) < 0.2.
This gradual stepping down ensures successive N(0,2CS(�g)) distributions maintain con-
siderable overlap, eliminating any major gaps in the prior distribution of !S due to the
discretization of �. In our experience, posterior calculation is not sensitive to exact choices
of the bookending values of ⇢1 and ⇢G+1, or the Kullback-Leibler stepping size.

2.3.3 Markov chain sampling and runtimes

With the above approximations in place, the model parameters reduce to the (m + 2)
dimensional vector (↵,�,!S). An adaptive, blocked Metropolis sampler is used on a trans-
formed parameter space such that multivariate normal proposals can be used. Candidate
proposal covariances are slowly adapted to achieve a 15% acceptance rate using Algorithm
4 of Andrieu and Thoms (2008). Results presented in this paper were achieved by using
one block containing !S , one block updating ✓ = (↵,�), and one block updating all (m+2)
parameters simultaneously. An important consequence of the discretization of � is that
all relevant matrices, namely {(Ag, Rg) : g = 1, . . . , G}, where Rg is a Cholesky factor of
CS(�g), could be precomputed and stored prior to Markov chain sampling. Subsequent
evaluations of the log posterior density reduce to O(m ·max(n, L)) computing complexity.

Experience suggests that the actual runtime of the sampler scales linearly in the sample
size and sub-linearly in the number of knots m or the grid size L. All numerical results
reported in Sections 4 and 5 use L = 101,m = 11, with equally spaced points in T and
S with end points equalling 0 and 1. This choice of S leads to a discretization of ⇡�
with G = 30 support points. In analyzing Fort Collins precipitation data with sample size
n = 6180 (Section 5), it took 9.8 minutes on a personal computer to carry out 500,000
iterations of the Markov chain. For two further subsamples with n = 3645 (0.6x with
respect to the original set) and n = 1061 (0.2x), the same number of iterations took 6.3
(0.6x) and 2.2 (0.2x) minutes respectively. For the original set with n = 6180, it took 12.2
minutes (1.2x) to run the same number of iterations when the knots set S was doubled to
m = 21 equally spaced knots (G = 82), keeping L fixed at 101. Similarly, when the grid
T was doubled to L = 201 grid points (retaining m = 11, G = 30), it took 12.5 minutes
(1.3x) to run the same number of iterations. We recommend L = 101 and m = 11 as default
choices. But for any application, one should assess whether finer approximations are needed
by repeating the analysis with larger values of L and m until posterior calculations stabilize.

3 Asymptotic properties

In recent years, mathematical analyses of large sample concentration properties of the pos-
terior distribution have proven useful to the question of prior allocation in Bayesian analysis
of infinite dimensional models; see Ghosal and van der Vaart (2017) for a comprehensive
overview. Here we focus on posterior consistency and posterior contraction rate properties
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of the semiparametric LGP prior. Our treatment involves distinct model space topologies
suitable for assessing either density estimation accuracy or tail index estimation accuracy;
keeping in mind that proximity of two densities in L

1 topology may not guarantee simi-
lar tail index values. Posterior consistency, a frequentist evaluation of a prior intended for
Bayesian applications, guarantees intersubjective knowledge generation through asymptotic
merger of beliefs (Diaconis and Freedman, 1986).

3.1 Density estimation consistency

Let ⇧ denote the induced prior measure on f = p✓, , with (✓, ) ⇠ ⇡✓ ⇥ LGP(0,2c�)
where we treat  = 1 as fixed, and work with a gamma prior on �. We allow ⇡✓ to be
arbitrary but assume it has a compact support ⇥ = [↵,↵]⇥ [�,�] for some 0 < ↵ < ↵ < 1,
0 < � < � < 1, with a strictly positive density in the interior of ⇥. Compactness of ⇥ is
assumed chiefly for technical reasons. An unbounded support adds layers of complication
to critical function approximation results used below (e.g., Lemma 8 in Appendix A) with
little gain in insight. One can enlarge ⇥ arbitrarily without virtually altering the posterior
contraction rates.

We may view ⇧ as a probability measure on F , the subspace of density functions
in L

1[0,1). Given data (y1, . . . , yn), the posterior measure equals ⇧(df | y1, . . . , yn) /

{
Q

n

i=1 f(yi)}⇧(df). Below H
� [0, 1] denotes the Hölder-� space consisting of functions on

[0, 1] that are b�c times continuously di↵erentiable with the b�c-th derivative being Hölder
continuous of exponent ��b�c where b�c is the largest integer smaller than �. The minimax

density estimation rate over Hölder-� classes is n� �
2�+1 (Stone, 1982).

Theorem 3. If Y1, . . . , Yn
IID
⇠ f

⇤
where f

⇤
is a bounded, continuous, regularly varying

density on (0,1) with tail index ↵
⇤
2 (↵,↵), then plimn!1⇧({f : kf � f

⇤
k1 > ✏} |

Y1, . . . , Yn) = 0 for every ✏ > 0. Additionally, if f = p✓⇤, ⇤ with ✓
⇤
in the interior of ⇥ and

�
⇤ = log ⇤

2 H
� [0, 1] for some � > 2, then the fixed error margin ✏ may be replaced with

the vanishing sequence ✏n = Bn
� �

2�+1 (log n)
4�+1
2�+1 for some large constant B.

Proof. To prove the first claim, we only need to establish (Ghosal et al., 1999, Theorem 2)

C1. ⇧({f : dKL(f⇤
, f) < ✏}) > 0 for every ✏ > 0,

C2. for any ✏ > 0, there exist constants c, C > 0 and sets F1,F2, . . . ⇢ F , such that
⇧(Fc

n)  ce
�Cn and logN(✏,Fn, dH)  n✏

2 for all large n,

where N(�,Fn, dH) denotes the covering number of Fn by balls of radius � in the Hellinger
metric dH(p, q) = [

R
{
p
p(y)�

p
q(y)}2dy]1/2. C1 follows readily from Theorem 2. C2 follows

from the following stronger condition necessary for the second part of the theorem.

C2*. For every 0 < t < 1/2, s > 0, there exist a constant C > 0 and sets F1,F2, . . . ⇢ F ,
such that ⇧(Fc

n)  e
�(C+4)n✏̄2n and logN(✏̄n,Fn, dH)  n✏

2
n for all large n, where

✏̄n = Bn
�t(log n)s for some B > 0 and ✏n = ✏̄n log n.

A proof is given in Appendix C. A key step is Lemma 8 (Appendix A) which states

dH(p✓1, 1 , p✓2, 2)  c2k!1k
1/2
C2 k✓1� ✓2k+ k!1�!2k1e

k!1�!2k1/2 if ✓1, ✓2 are interior points

9



in ⇥ and  1 = L(!1),  2 = L(!2) with !1,!2 2 C
2[0, 1], the space of twice continu-

ously di↵erentiable functions on [0, 1] with norm k!kC2 := k!k1 + k!̇k1 + k!̈k1. Clearly,
H
� [0, 1] ⇢ C

2[0, 1] for all � > 2. Construction of the sets F1,F2, . . . relies on the observa-
tion that a separable, mean-zero Gaussian process ! on [0, 1] with covariance function c�

may be viewed as a Borel measurable random element with a Gaussian measure ⌫� on the
Banach space (C2[0, 1], k · kC2). Our construction builds upon that of van der Vaart and
van Zanten (2009) who embed the Gaussian measure in (C[0, 1], k · k1). However, some
key modifications are needed to address the change in the embedding space (Appendix C).

By Theorem 8.9 of Ghosal and van der Vaart (2017), under the additional assumption
on f

⇤, a proof of the second part of the theorem may be established by applying C2* with
t = �

2�+1 , s = 2t, in conjunction with the following sharper version of C1:

C1*. ⇧({f : dKL(f⇤
, f)  ✏̄

2
n, V (f⇤

, f)  ✏̄
2
n}) � e

�Cn✏̄
2
n for all large n,

where V (f, g) =
R
f(y) log2{f(y)/g(y)}dy. This sharper prior concentration bound can be

proved via a non-trivial extension of Theorem 3.1 of van der Vaart and van Zanten (2009).
A proof of possible independent interest is given in Appendix B.

3.2 Tail index estimation consistency

In the following, assume without loss of generality that ↵ 
1
2 and ↵ > 1. As in Theorem

3, assume that the true density is some f
⇤ = p✓⇤, ⇤ where ✓⇤ = (↵⇤

,�
⇤) is in the interior of

⇥ and �⇤ = log ⇤
2 H

� [0, 1] with � > 2. Denote � = �

2�+1 2 (0, 1/2) so that the posterior

contraction rate in L
1 topology equals a constant multiple of n��(log n)2�+1. The lower

bound assumption on � implies that both ⇢̄(⇠) := 2⇠
2⇠+1��

3(1�2�)
2↵⇤(2⇠+1) and ⇢̂(⇠) := ⇠��

3
2(1�2�)

are strictly positive for every ⇠ 2 [ ↵
↵⇤ , 1].

Theorem 4. If Y1, . . . , Yn
IID
⇠ f

⇤
and ↵/↵

⇤
< ⇠ < min(1, 1/↵⇤) is such that �⇠ > 3/2 then

plimn!1⇧({f : |↵+(f) � ↵
⇤
| > B1n

�⇢(log n)s} | Y1, . . . , Yn) = 0 for all large B1 where

⇢ = min{⇢̄(⇠), ⇢̂(⇠)} and s = 2⇢+ 4
↵⇤(2⇠+1) if ⇢ = ⇢̄(⇠), s = 2⇢+ 4 otherwise.

A proof is presented in Appendix E. The main argument relies on establishing exis-
tence of tests that can distinguish f

⇤ from model elements f = p(↵,�), with |↵
⇤
� ↵| >

B1n
�⇢(log n)s with type I and II error probabilities vanishing suitably rapidly. This line of

argument directly follows the path laid out in the original work of Schwartz (1965); a mod-
ern presentation is Theorem 8.9 Ghosal and van der Vaart (2017). See also Kleijn (2021)
for related recent developments. Li et al. (2019) present a similar theoretical exploration
with test functions derived from an exceedance probability based tail index estimator of
Carpentier and Kim (2015). Our proof relies on a more complex test procedure which first
tries to detect a di↵erence between the exceedance probability of the empirical distribution
at a high threshold and that of the true distribution, and if no significant di↵erence is
detected then repeats the process one more time at an even higher threshold but only to
the conditional distributions to the right of the first threshold.

The theorem requires su�cient smoothness of the true density via the assumption � ·

min(1, 1/↵⇤) > 3/2 so that a suitable ⇠ may be found with �⇠ > 3/2. This condition
demands that a relatively rough density (small �) must have a su�ciently heavy tail (small
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↵
⇤) to insure accurate estimation of the latter with our semiparametric estimation model.

This requirement may be understood in the light that with a density function lacking in
smoothness, the bulk of the density carries less information about the tail, and hence an
accurate estimation of the tail is possible only when more observations are available directly
from the tail itself, i.e., only when the tail is heavy.

Additionally, multiple factors control the value of ⇢ which determines the posterior
contraction rate. Notice that both ⇢̄(⇠) and ⇢̂(⇠) are strictly increasing in ⇠ and hence
sharpest rates are obtained by taking ⇠ as close as possible to the maximum allowed value
of min(1, 1

↵⇤ ). Since ⇢̄(⇠) < ⇢̂(⇠) if and only if �⇠(2⇠ � 1) > 3
2(2⇠ + 1� 1/↵⇤), the following

observations can be made on the fastest possible rate. If ↵⇤
2 (↵, 2�↵1+↵ ] then Theorem 4

holds with any ⇠ arbitrarily close to min(1, 1
↵⇤ ), ⇢ = ⇢̄(⇠) and s = 2⇢ + 4

↵⇤(2⇠+1) . On the

other hand, if ↵⇤
� 2, the theorem holds with any ⇠ arbitrarily close to 1

↵⇤ , ⇢ = ⇢̂(⇠) and

s = 2⇢+ 4. In the intermediate case of ↵⇤
2 (2�↵1+↵ , 2), ⇠ can be arbitrarily close to 1

↵⇤ with

⇢ = ⇢̄(⇠), s = 2⇢+ 4
↵⇤(2⇠+1) if � >

3↵⇤

2 ⇥
1+↵⇤

2�↵⇤ and ⇢ = ⇢̂(⇠) and s = 2⇢+ 4 otherwise.

When ↵
⇤
2 (↵, 2�↵1+↵ ], the choice of ⇢ = ⇢̄(⇠) = 2⇠

2⇠+1� �
3(1�2�)

2↵⇤(2⇠+1) compares favorably

to the optimal rates obtained by Hall and Welsh (1984, 1985). In particular, whenever
 
⇤ is infinitely smooth, e.g., f⇤ is a GPD itself, the density estimation contraction rate

has � ⇡
1
2 and hence ⇢ ⇡

⇠

2⇠+1 with ⇠ ⇡ min(1, 1
↵⇤ ); here ⇡ indicates “arbitrarily close

from below”. Since |y
↵
⇤
F̄

⇤(y)/⇣(f⇤) � 1| ⇣ y
�min(1, 1

↵⇤ ), with ⇣(f) = limy!1 y
↵+(f)

F̄ (y),
f
⇤ belongs to a suitable Hall-Welsh class of heavy tailed densities D(↵⇤

, C0, ✏, ⇠, A) := {f :
F̄ (y) = Cy

�↵
{1+R(y)}, |R(y)| < Ay

�⇠↵
, |↵�↵

⇤
| < ✏, |C�C0| < ✏} for which the minimax

rate of tail index estimation is precisely n
� ⇠

2⇠+1 . See Section 6 for further discussion.

4 Finite sample behavior

4.1 Tail index estimation

From Hall and Welsh (1984), statistical performance of any estimator of tail quantities
depends on how quickly the actual tail starts resembling the corresponding Pareto tail
y
�↵+(f). When sample size n is only moderately large, the Pareto shape may only be

partially established within the range of the observed data, posing a serious challenge to
any thresholding method in detecting if and where a bulk-to-tail transition takes place.
A similar challenge is posed to our joint semiparametric estimation which must balance a
likelihood function that receives little information from a partially established tail against
a model specification that idealizes a generalized Pareto-like tail.

Consider three di↵erent choices of the shape of f , namely, (i) GPD: f↵(y) = g(↵,1)(y),

(ii) GPD4: f↵(y) = 4g(↵,1)(y){G(↵,1)(y)}
3, and (iii) Half-t: f↵(y) = 2c(↵)(1+y

2
/↵)�(↵+2)/2,

c(↵) = �(↵+1
2 )/{

p
↵⇡�(↵2 )}; each giving a regularly varying density with tail index ↵. Ta-

ble 1 reports performance statistics of our semiparametric estimation of the corresponding
extreme value index ⇠ = ↵

�1, averaged across 100 data sets of size n = 1000 each, with the
true value of ⇠ varying over {0.1, 0.2, 0.3, 0.5, 1.0}. For comparison, we include correspond-
ing figures from a thresholding estimation of ⇠, where the threshold is determined by the
adaptive technique of Durrieu et al. (2015), followed by a Bayesian fit of a GPD model to
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Model EVI Method Estimating ⇠ Estimating Q̄(p) (rMAECover)

Bias RMSE Cover p = 0.01 0.001 10
�4

10
�5

GPD

0.1
Semi 0.03 0.05 99 0.0693 0.1194 0.1896 0.2698

Thresh 0.14 0.16 84 0.0695 0.1793 0.4491 0.9089

0.2
Semi 0.01 0.06 100 0.0797 0.1499 0.23100 0.34100

Thresh 0.12 0.15 90 0.0796 0.2097 0.5094 1.0392

0.3
Semi 0.02 0.06 99 0.0894 0.1896 0.3096 0.4697

Thresh 0.12 0.17 85 0.0896 0.2993 0.7588 1.5986

0.5
Semi 0.00 0.09 97 0.1393 0.2993 0.4995 0.7696

Thresh 0.09 0.15 89 0.1491 0.4191 0.9290 1.8191

1
Semi -0.01 0.12 97 0.2395 0.4997 0.8597 1.4597

Thresh 0.04 0.15 89 0.2594 0.6292 1.2391 2.3391

GPD4

0.1
Semi 0.03 0.09 97 0.0595 0.1291 0.2590 0.4891

Thresh 0.13 0.15 83 0.04100 0.1595 0.4093 0.8088

0.2
Semi 0.01 0.06 98 0.0695 0.1395 0.2296 0.3498

Thresh 0.08 0.11 92 0.0696 0.1797 0.3895 0.7191

0.3
Semi -0.00 0.07 96 0.0897 0.1794 0.2995 0.4396

Thresh 0.07 0.12 93 0.0895 0.2397 0.5194 0.9791

0.5
Semi 0.02 0.08 92 0.1394 0.3093 0.5391 0.8392

Thresh 0.06 0.13 93 0.1593 0.3995 0.7993 1.4292

1
Semi 0.05 0.10 96 0.1797 0.4096 0.7696 1.3696

Thresh 0.04 0.12 97 0.1994 0.4496 0.8296 1.3896

Half-t

0.1
Semi -0.06 0.06 87 0.0679 0.1272 0.1683 0.1891

Thresh 0.09 0.11 96 0.0492 0.1390 0.3186 0.5987

0.2
Semi -0.10 0.11 56 0.0692 0.1194 0.1797 0.2795

Thresh 0.06 0.11 94 0.0691 0.1694 0.3795 0.7196

0.3
Semi -0.12 0.13 75 0.0796 0.1397 0.2396 0.3590

Thresh 0.04 0.11 99 0.0698 0.2096 0.4496 0.7897

0.5
Semi -0.10 0.13 87 0.1095 0.2396 0.3996 0.5491

Thresh 0.02 0.10 95 0.1096 0.2696 0.5196 0.8595

1
Semi -0.06 0.14 96 0.1996 0.3696 0.5796 0.8296

Thresh 0.02 0.11 100 0.2195 0.4598 0.7699 1.1999

Table 1: Estimating the extreme value index (EVI) ⇠ = ↵
�1 and high tail quantiles Q̄(p) =

F̄
�1(p) from synthetic data of sample size n = 1000. Estimation accuracy and coverage of

95% credible intervals are averaged across 100 data sets for each experimental group. For
Q̄(p), estimation accuracy is measured via relative mean absolute error as a fraction of the
true quantile value. Additional keys: RMSE = root mean squared error, Cover = coverage.

the excess data with the GPD location parameter set at the threshold, and the scale � and
shape 1/↵ estimated under the same prior as used in our semiparametric estimation.

For the GPD sets, in addition to smaller bias and averaged error for the point estimates,
the 95% posterior credible intervals from the semiparametric method are much narrower
with higher coverage than those from the thresholding method (figure included in supple-
mentary material). This improvement is unsurprising; the true density f↵ matches the
model specification in a very strong way. A similar match between the model and the
truth is absent in the GPD4 sets for which f↵ may be expressed as p(↵,�), but only with
a  = L(!) for which limu!0 !(u) = �1. But this misspecification at the left does not
appear to a↵ect estimation of the right tail, where the semiparametric method performs as
well or better than the thresholding method, especially when the tail is not too heavy.

The Half-t sets pose a far more serious challenge to the semiparametric method. Al-
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though the averaged error of the estimates are comparable between the two methods, the
semiparametric method incurs a strong negative bias for ⇠ = ↵

�1 (i.e., underestimates the
tail heaviness) with fairly tight posterior credible intervals resulting in poor coverage when
true ⇠ < 1. For a half-t density, we may use (4) to write f↵ = p(↵,�), and verify that

� = log 2 C[0, 1] but �̇(1� t) = (↵+1)t⇠�1

↵
⇥

(1+↵�2)t⇠�↵�2

t2⇠+↵�2(1�t⇠)2
, and hence limu!1 �̇(u) equals

�1,�2 or 0, according to whether ⇠ < 1, ⇠ = 1 or ⇠ > 1. There is a strong mismatch be-
tween the idealized shape and the truth on the right tail when ⇠ < 1, causing the posterior
distribution on ⇠ to be biased downward.

4.2 Estimation of tail quantiles

Although an accurate estimation of the tail index parameter is conceptually appealing, prac-
tical interest usually focuses on estimating tail quantiles of f . By extending the numerical
analysis presented above, we find that the semiparametric joint estimation is substantially
more e↵ective at this task than the thresholding approach. Specifically, we look at the
estimates and the 95% posterior credible intervals of the tail quantiles Q̄(p) = F̄

�1(p) =
F

�1(1 � p) associated with excess tail probabilities p 2 {0.01, 0.001, 0.0001, 0.00001} and
compare these against the true values for the 3⇥ 5 experimental sets reported above. Both
methods produce credible intervals with coverage at or above the nominal 95% level in
most cases, but the semiparametric estimate is typically more accurate than the threshold-
ing estimate, with up to 400% improvement in some cases for very high quantiles (Table
1). The semiparametric posterior credible interval is also much tighter than the threshold
based interval (not shown).

The only concern about coverage of the semiparametric credible interval arises in the
Half-t sets with a small ⇠, for which the semiparametric model is strongly misspecified
at the right tail. However, a closer inspection of these cases reveals that while the semi-
parametric method overestimates the high quantiles, it still gives a credible interval that is
comparable in magnitude to the true quantile value. In contrast, the thresholding method
may minimally contain the true value at the lower end of its interval but usually produces
a very wide interval with the upper end of the interval being several orders of magnitudes
larger than the truth (Figure 2). In other words, in spite of the persistent bias in estimating
asymptotic tail heaviness, the semiparametric method produces reasonably accurate and
meaningful estimates of the tail itself.

5 Fort Collins precipitation

Katz et al. (2002) present an analysis of total daily precipitation measurements (in inches)
between 1900-1999 from a single rain gauge in Fort Collins, CO, estimating a heavy-tailed
distribution with ⇠ = ↵

�1 = 0.18 at the threshold of 0.4 inches. Scarrot and MacDonnald
(2012) estimate ⇠̂ = 0.21 ± 0.04 (standard error) at a similar threshold, and identify two
additional candidates for the threshold value at which usual GPD diagnostics plots appear
to stabilize, each leading to a di↵erent estimate of the tail index parameter: ⇠̂ = 0.13±0.07
at threshold 0.85 and ⇠̂ = 0.003± 0.09 at threshold 1.2. This kind of ambiguity about the
tail index is distinct from pure statistical uncertainty resulting from sampling variability.
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Figure 2: A comparison of the 95% posterior credible intervals for Q̄(p) = F̄
�1(p) from the

semiparametric and the thresholding methods, for three randomly chosen Half-t sets with
⇠ = ↵

�1 = 0.1, for which the semiparametric method serisouly underestimates ⇠. True
quantile values are shown as connected black beads.

A Bayesian expression of joint uncertainty of the bulk and the tail could be particularly
useful in mitigating between multiple distinct GPD tails o↵ering partial match.

The original data set1 contains N = 36, 524 daily measurements with 78% of the records
being zero; the rest are recorded to the nearest hundredth of an inch. We remove all
records with a precipitation measurement below 0.03 inches and jitter the remaining data
(n = 6180, 17% of all records) with a small uniform noise between �0.005 and 0.005 to
break ties while preserving original precision. With a smooth LGP prior at the core, the
semiparametric method is sensitive to the presence of strong discontinuous features in the
data histogram. A large number of ties in the records is one such feature, which necessitates
the random jittering. The presence of excess zeros is another such feature, which cannot
be overcome by jittering alone, since the distribution of the jittered data still presents
a big jump discontinuity near zero. In fact, we find that such an e↵ect persists up to
measurements of 0.02 inches, whose inclusion in the data analysis significantly distorts the
posterior inference from what is obtained when analyzing all or some subset of records
� 0.03 inches. We return to this point below after presenting our results.

Figure 3 (left panel) shows thresholding estimates of ⇠ = ↵
�1 obtained from a Bayesian

fit of a GPD tail to excess data over the threshold, as described in Section 4.1. These
estimates of ⇠ are di↵erent from those reported in Scarrot and MacDonnald (2012), who
employ maximum likelihood estimation without restricting ⇠ > 0 and without any regu-
larization via a prior. However, the detailed analysis of Katz et al. (2002) o↵ers strong
evidence of a heavy tail (i.e., ⇠ > 0), and thus a Bayesian estimation with a relatively
flat prior on ⇠ 2 [0, 2] appears a better alternative. In spite of a weak prior specification,
the posterior estimate and interval of ⇠ are heavily influenced by the prior choice for large
threshold values at which little excess data is left for parameter estimation. The adaptive
threshold choice method of Durrieu et al. (2015) gives a threshold value of 0.93, for which
⇠ is estimated to be 0.22 with a 95% posterior credible interval [0.08, 0.41].

The semiparametric method o↵ers a comparable estimate of ⇠ = 0.22 with a tighter
95% credible interval [0.12, 0.30]. Both methods point to a slightly heavier tail than what

1
Taken from the extRemes package in R (Gilleland and Katz, 2011).
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Figure 3: Estimation of tail heaviness (⇠ = ↵
�1) and high tail quantiles for Fort Collins

daily precipitation. Left panel shows thresholding estimates and 95% credible intervals of ⇠
corresponding to a grid of threshold values between 0.005 and 3.0 with an increment of 0.025;
the adaptive choice of threshold = 0.93 is highlighted with a darker shade. The horizontal
lines give the estimate and the 95% credible interval for the semiparametric analysis. Right
panel shows estimates of high quantiles Q̄(p) = F̄

�1(p) from the semiparametric method
and the thresholding method (threshold = 0.93). The exceedance probability p corresponds
to the original data of size N = 36, 524, without any truncation or thresholding. A graph
of the points {( i�0.5

N
, Y(i)), 1  i  N} is included to visualize empirical quantiles, where

Y(i) denotes the i-th order statistic of the original data.

was reported by Katz et al. (2002), but their estimate of ⇠ = 0.18 lies well within the 95%
credible intervals. The estimated high tail quantiles from the semiparametric method and
the threshold method (threshold = 0.93) are very similar to one another and they line up
well against empirical quantiles, but the 95% credible intervals from the semiparametric
method are considerably tighter (Figure 3, right). However, the di↵erence is much less
stark than what we see in simulation studies.

The maximum daily precipitation during the observation period was 4.63 inches, recorded
in the year 1997. The semiparametric method estimates the corresponding return period to
be 47.6 years, with a 95% posterior credible interval (PCI) of [23, 122.3]; the thresholding
method gives similar estimates. These estimates are close to the estimated return period
of 50.8 years reported by Katz et al. (2002), who did not report an interval. The estimated
return periods for 3 inches and 4 inches of precipitation are, respectively, 10 years (95%
PCI = [6.5, 16.5]) and 28 years (95% PCI = [14.9, 59.9]). We note that in the 100 year
observation period, there were 10 instances with 3 inches or more daily precipitation (1902,
’04, ’38, ’49, ’51, ’51, ’61, ’77, ’90, ’97), of which three had more than 4 inches of rain (’02,
’77, ’97). More speculatively, we estimate the return period of 5 inches of rain to be 64.2
years (95% PCI = [28.7, 178.8]).

The estimates from the semiparametric method remain reasonably robust when analyz-
ing further subsets of the data. When data analysis is restricted to records � 0.1 inches (or
� 0.4 inches), the estimate of ⇠ is 0.19 with 95% PCI = [0.06, 0.30] (or 0.16 with 95% PCI
= [0.04, 0.32]). For these further truncations, the estimated tail heaviness is slightly lower
with greater uncertainty, but the upper end of the credible interval remains essentially the
same. The same is reflected in high tail quantile estimates (Figure 4). It appears that there
is no strong evidence in the data pointing to a substantially lower tail heaviness than what

15



ξ
D

en
si

ty
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

Prec over 0.03 in
Prec over 0.1 in
Prec over 0.4 in

0
2

4
6

8
10

0.01 10−3 10−4 10−5

p

Q
(p
)

Prec over 0.03 in
Prec over 0.1 in
Prec over 0.4 in

Figure 4: Semiparametric estimation of tail heaviness (⇠ = ↵
�1) and high tail quantiles

under further left truncation of the Fort Collins precipitation data. Posterior distribution
of ⇠ (left) widens and moves to the left slightly but maintaining overlap. High tail quantile
estimates (right) remain robust.

was presented in Katz et al. (2002). The possible lower estimates at higher threshold values
discussed by Scarrot and MacDonnald (2012) are likely spurious.

However, the semiparametric method is not completely robust to the issue of trunca-
tion. When data analysis is expanded to include all non-zero records, the posterior shifts
substantially and results in a heavier tail estimate (0.3 with 95% PCI = [0.25, 0.36]) with
high tail quantiles being significantly larger than the estimates reported above (not shown).
The same shift is noticed also when expanding the analysis only slightly to include records
of 0.02 inches, or records of 0.01 and 0.02 inches. As indicated earlier, this discrepancy
is likely an artifact of excess of zero and other tiny measurements which cannot be fully
mitigated by jittering alone. See Section 6 for further discussion.

6 Concluding remarks

The semiparametric method analyzed here makes a case for likelihood based joint estimation
of the bulk and the tail, with potential benefits that such joint estimation may improve
estimation accuracy of high tail quantiles and provide a better uncertainty quantification
of tail heaviness. Our asymptotic analysis reassures that sparse tail information does not
get washed away by the bulk in such likelihood based estimation, however, suitable prior
distributions are needed to strike a balance while also retaining full expressiveness of the
bulk shape and tail decay rate. The transformation model (2) appears to deliver the
right theoretical platform especially when combined with the hierarchical LGP prior on the
nonparametric density of the transformed data. A crucial element of the model is the choice
of the Gaussian covariance kernel for the LGP prior. With a gamma prior on the inverse
length-scale parameter of the kernel, the adaptive estimation accuracy of the LGP prior
(van der Vaart and van Zanten, 2009) transfers seamlessly to our semiparametric setting.

The semiparametric model (2) adopts a GPD like tail and hence covers only the special
Hall-Welsh class D(↵, C0, ⇠, ✏, A) with ⇠ = min(1, 1

↵
), albeit Hall and Welsh (1984, 1985)

make stringent assumptions on other quantities such as ⇣(f) (Carpentier and Kim, 2015).
More ground might be recovered by using a more flexible parametric component, such
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as the three parameter extended-GPD family of Beirlant et al. (2009). It could also be
feasible to sharpen our posterior contraction rate in Theorem 4 by utilizing test functions
that specifically exploit the idealized shape. Theorem 4 intimately connects tail index
estimation rate with the smoothness level of f . It will be interesting to examine whether
this connection is intrinsic to the statistical task or simply an artifact of the proof technique
adopted here. We leave these extensions to a future study.

In applying the methodology developed here, an important consideration is whether
one should fit the semiparametric model to the whole dataset, or only to data to the right
of a low threshold. Our analysis of Fort Collins precipitation data indicates that while
estimates are robust when data is truncated at or slightly over 0.02 inches, the estimates
are sensitive to the presence of a massive number of excess zeros as well as a relative over-
abundance of measurements at 0.01 and 0.02 which cannot be fully addressed by a simple
jittering operation. Theorem 4 sheds light on this issue. Critical to the success of the joint
estimation is the assumption of smoothness of the entire density function. In applications, it
may be useful to threshold the data at a point above which the density function is believed
to maintain a common level of smoothness. An alternative approach will be to apply a
suitable smooth jitter to the data in the lower tail.

A full estimation of the density function is also appealing with respect to model exten-
sion, e.g., in accounting for serial correlation or incorporating covariate information. For the
latter task, we note that the transformation based density estimation model investigated
here is closely related to the joint quantile regression model of Yang and Tokdar (2017).
Let ⇣ =  �1 denote the quantile function of the transformed data U = G✓(Y ). Then the
quantile function Q(p) of the original data Y could be expressed as Q(p) = Q✓(⇣(p)) =R
⇣(p)
0 q✓(u)du where Q✓ = G

�1
✓

and q✓ = Q̇✓. To accommodate a predictor vector x 2 R
d,

consider a quantile regression formulation Q(p|x) =
R
⇣(p)
0 q✓(u){1 + x

>
h(!(u))}du where

! : u 7! (!1(u), . . . ,!d(u))> 2 R
d is unknown and h(b) is a suitably chosen, fixed transfor-

mation that ensures 1+ x
>
h(b) � 0 for all b 2 R

d and all x within a given bounded convex
domain. This formulation is a special case of the joint linear quantile regression model pro-
posed in Yang and Tokdar (2017) who jointly estimate (✓, ⇣,!) by adopting a hierarchical
LGP prior on the quantile density ⇣̇ and smooth Gaussian process priors on !1, . . . ,!d. The
theoretical analysis presented in the current paper is likely to yield a sharper understanding
of asymptotic properties of the method by Yang and Tokdar (2017), especially with respect
to tail estimation.

Appendix

We present here proofs of the main results stated in Section 3. Several auxiliary technical
results are stated whose proofs may be found in supplementary material. Several arguments
build upon van der Vaart and van Zanten (2009) which we abbreviate below as VZ09.

A Auxiliary results for density estimation

Mixed partial derivatives of functions `(✓), ✓ = (↵,�), are denoted by D
k
` := @

|k|
`(↵,�)

@↵k1@�k2
for

any bi-index k = (k1, k2) 2 {0, 1, 2, . . .}2 of order |k| := k1 + k2. Below ⇥ = [↵,↵] ⇥ [�,�]
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with 0 < ↵ < ↵ < 1, 0 < � < � < 1 and any constants appearing in statements and
proofs may implicitly depend on the boundary values of ⇥. Let ⇥̊ denote the interior of ⇥.

Lemma 5. Fix a density  = L(!) with ! 2 C
2[0, 1]. Let q✓ = p✓, , ✓ 2 ⇥. Then

max|k|=1 sup✓2⇥ |D
k log q✓(y)|  c0k!kC2 + c1 log(1 + y), max|k|=2 sup✓2⇥ |D

k log q✓(y)| 
c2k!kC2, for some constants c0, c1, c2.

Lemma 6. Fix a density  = L(!) with ! 2 C
2[0, 1]. If ✓1, ✓2 2 ⇥̊ then

1. dKL(p✓1, , p✓2, )  c2k!1kC2k✓1 � ✓2k
2
.

Moreover, there exist positive numbers c3, t0 such that if k✓1 � ✓2k < t0 then

2.
R
p✓2, (y)(

p✓1, 
(y)

p✓2, 
(y) � 1)2dy  c3e

3t0c0k!kC2k✓1 � ✓2k
2
, and

3. V (p✓1, , p✓2, )  c3e
3t0c0k!kC2k✓1 � ✓2k

2
.

Lemma 7. Fix ✓1 2 ⇥̊,  1 = L(!1) with !1 2 C
2[0, 1] and ✏ 2 (0, t0). There exists a

constant K depending on k!1kC2 such that dKL(p✓1, 1 , p✓2, 2)  K✏
2
, V (p✓1, 1 , p✓2, 2) 

K✏
2
, for every ✓2 2 ⇥̊ with k✓1 � ✓2k  ✏ and every  2 = L(!2) with k!1 � !2k1 < ✏.

Lemma 8. If ✓1, ✓2 2 ⇥̊ and  1 = L(!1),  2 = L(!2) with !1,!2 2 C
2[0, 1] then

dH(p✓1, 1 , p✓2, 2)  c2k!1k
1/2
C2 k✓1 � ✓2k+ k!1 � !2k1e

k!1�!2k1/2
.

B Proof of Condition C1*

For a mean-zero Gaussian process on [0, 1] with covariance c�, let ⌫� denote the Gaussian
measure with respect to the Borel �-algebra on (C[0, 1], k·k1); see Section 2 of van der Vaart
and van Zanten (2008) for necessary technical details. Define ⌫̄(·) =

R
⌫
�(·)⇡�(�)d� as the

probability measure on C[0, 1] under the hierarchical Gaussian process prior specification
with a prior density ⇡� on the inverse length-scale parameter. In light of Lemma 7, to prove
Condition C1* it is enough to to show that for all large n, both tn = ⇡✓({✓ : k✓�✓⇤k  ✏̄n})
and wn = ⌫̄({! : k! � �

⇤
k1  ✏̄n}) are larger than e

�CKn✏̄
2
n where C is a constant that

may depend on k�
⇤
kC2 . The bound on tn follows trivially from the assumption on ⇡✓ and

that on wn follows directly from Theorem 3.1 of VZ09.

C Proof of Condition C2*

Suppose there exist sets B1,B2, . . . ⇢ C
2[0, 1] such that for all large n,

⌫̄(Bc

n)  e
�(C+4)n✏̄2n (6)

logN(✏̄n,Bn, k · kC2)  n✏
2
n/2 (7)

sup{k!kC2 : ! 2 Bn}  (n✏̄n)
b
, (8)

for some b � 1. Then, F1,F2, . . . could be simply constructed as Fn = {p✓, : ✓ 2 ⇥, =
L(!),! 2 Bn}. To see that these sets satisfy the requirements of C2*, notice that ⇧(Fc

n) =
⌫̄(Bc

n)  e
�(C+4)n✏̄2n , and, by Lemma 8, logN(✏̄n,Fn, dH)  logN(✏̄n/(c2(n✏̄n)b/2),⇥, k ·k)+

logN(✏̄n,Bn, k · kC2)  log(diam(⇥) · nb) + n✏
2
n/2  n✏

2
n for all large n.
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Conditions (6)-(7) mirror conditions (3.6)-(3.7) of VZ09, but with the crucial technical
di↵erence that we need entropy calculation in k · kC2 as opposed to k · k1. Accordingly,
we adapt the construction of Bn for (C[0, 1], k · k1) by VZ09 to (C2[0, 1], k · kC2). Our
adaptation also produces a smaller exponent b in (8) than what is possible with the original
construction of VZ09. Although a smaller exponent is not critical to the current proof, it
proves useful for tail index estimation. Our adaptation builds on the well known fact that a
centered Gaussian process with covariance c� has infinitely di↵erentiable sample paths with
probability one. Therefore the Gaussian measures ⌫� introduced in the preceding section
could also be viewed as probability measures with respect to the refined Borel �-algebra
of (C2[0, 1], k · kC2). A more formal treatment is outlined below. Hereafter, <(z) and =(z)
denote the real and imaginary parts of a complex number z.

VZ09 show that the reproducing kernel Hilbert space H
� associated with c� con-

sists of functions h(u) = <(
R
e
ut
p
�1
⌘(t)µ�(t)dt) with khkH� = k⌘kL2(µ�), where µ�(t) =

e
�t

2
/4�2

/(2�
p
⇡) is the spectral density associated with c�. By applying Cauchy-Schwarz

inequality, with di↵erentiations under integration as needed, it follows that

khk1  khkH� , kḣk1 

p

2�khkH� , and kḧk1 

p

12�2khkH� . (9)

Clearly, khkC2  (1 +
p
2� +

p
12�2)khkH and H

� can be continuously and densely em-
bedded within the Banach space (C2[0, 1], k · kC2), guaranteeing a Borel measure ⌫� on the
embedding Banach space matching the law of a centered Gaussian process with covariance
c�. As before, define ⌫̄(·) =

R
⌫
�(·)⇡�(�)d�.

Let H
�

1 and B1 denote the unit balls of H� and C
2[0, 1]. Recall, ✏̄n = Bn

�t(log n)s,
✏n = ✏̄n log n where we are free to choose B > 0. To start o↵, take B large enough such
that rn = n✏̄

2
n > 1 for all n. Let mn be the smallest integer larger than log2(rn). Define

Bn = [{[mn
j=1(

p

2MnH
2j
1 )} [ {Mn�

�1/2
n H

1
1} [ {[�<�n(MnH

�

1)}] + ✏̄nB1 (10)

where Mn = 16Cr
1/2
n log(rn/✏̄n) with C taken from Lemma 10 below, and �n = ✏̄n/(4Mn).

Because of (14), for all large n, Bn ⇢ 5r2nMnB1 and hence Bn satisfies (8) with b = 2.5. By
Lemma 4.7 of VZ09, Bn � MnH

� + ✏̄nB1 for every 0 < �  rn. Borell’s inequality implies
that ⌫�(Bc

n)  1��(��1(⌫�(✏̄nBn))+Mn)  1��(��1(⌫rn(✏̄nB1))+Mn) where the second
inequality follows since ⌫�(✏B1) is decreasing in � for every ✏ > 0 (Lemma 9 below). As
⌫
rn(✏̄nB1)  ⌫

1(✏̄nBn) < 1/4 and Mn � 4
p

log(1/⌫rn(✏̄nB1)) for all large n (Lemma 10

below), it must be that ⌫�(Bc
n)  1 � �(Mn/2)  e

�M
2
n/8  e

�rn for every � 2 (0, rn), for
all large n. This establishes (6), with B chosen suitably large, since ⇡�((rn,1))  e

�C3rn

for all large n for some constant C3.
To establish (7), first note that every h 2 [�<�n(MnH

�

1) satisfies kh� h(0)kC2  ✏̄n by
(14), i.e., as an element of C2[0, 1], the function h(u) is within ✏̄n distance of a constant func-
tion whose constant value ranges within [�Mn,Mn]. Clearly, logN(2✏̄n,[�<�n(MnH

�

1) +

✏̄nB1, k · kC2)  log 2Mn
✏̄n

. Next, by Lemma 10 below, logN(2✏̄n,Mn�
�1/2
n H

1
1 + ✏̄nB1, k ·

kC2)  C log2(Mn
✏̄n
�
�1/2
n ) and logN(2✏̄n,

p
2MnH

2j
1 + ✏̄nB1, k · kC2)  C2j log2(2

j+1/2
Mn

✏̄n
) 

2Crn log
2( rnMn

✏̄n
) for each 1  j  mn by the monotonicity of log x. Consequently,

logN(2✏̄n,[
mn
j=1(

p

2MnH
2j
1 ) + ✏̄nB1, k · kC2)  log(mn) + 2Crn(log

rnMn
✏̄n

)2,

concluding the proof of Condition C2*. Two auxiliary results used in the above prove are:
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Lemma 9. For any fixed ✏ > 0, the small ball probability ⌫
�(✏B1) is decreasing in � > 0.

Lemma 10. There exist C, ✏0 such that for all � � 1 and all ✏ < ✏0, (a) logN(✏,H�

1 , k ·

kC2)  C� log2(�/✏), and (b) � log ⌫�(✏B1)  C� log2(�/✏).

D Auxiliary results for tail estimation

If f is heavy tailed then limy!1 |y
↵+(f)

F̄ (y)/⇣(f)�1| = 0. For our semiparametric analysis
it is useful to consider classes of heavy tailed densities for which this convergence holds
uniformly. Define T (t, �) = {f : supy�t |y

↵+(f)
F̄ (y)/⇣(f) � 1|  �}, for any arbitrary

t > 0, � > 0. For any f 2 F , let P
n

f
denote the joint probability law of (Y1, . . . , Yn)

with Yi ⇠ f independently of one another and P
n

f
h denote expectation of h(Y1, . . . , Yn)

under P
n

f
. For the following lemma, let f

⇤ denote an arbitrary heavy tailed density with

↵
⇤ = ↵+(f⇤) 2 (↵,↵) and let ✏n ! 0 be an arbitrary positive sequence satisfying n✏

2
n ! 1.

By a test function we mean any statistic that takes values in [0, 1].

Lemma 11. Suppose there exist positive sequences tn ! 1, �n ! 0 such that f
⇤
2

T (tn, �n) and min{F̄ ⇤(tn), F̄ ⇤(tn)1/2�n} � 3✏n for all large n. Then there exist test functions

Tn = Tn(Y1, . . . , Yn) satisfying P
n

f⇤Tn  4e�n✏
2
n and sup{Pn

f
(1�Tn) : f 2 T (tn, �n),↵+(f) <

↵, |↵+(f)� ↵
⇤
| > 24+↵�n}  4e�n✏

2
n for all large n.

Lemma 12. Suppose ⌧n ! 0, Dn ! 1 are positive sequences and tn = (Dn/⌧n)1/min(1,A)

for some A > 0. Then, with B1 > 0 chosen su�ciently large, {f = p✓, : ✓ = (↵,�) 2

⇥,↵ � A, = L(!), k!̇k1  Dn} ⇢ T (tn, B1⌧n) for all large n.

E Proof of Theorem 4

Our argument is based on the proof of Theorem 8.9 in Ghosal and van der Vaart (2017).
Consider again the sets Fn = {p✓, : ✓ 2 ⇥, = L(!),! 2 Bn} from the proof of Condition

C2* where Bn is as in (10) with ✏̄n = B{(log n)2/n}
�

2�+1 for some large B. Recall that
⇧(Fc

n)  e
�(C+4)n✏̄2 for some constant C. Define

Un = {p(✓,�), : ✓ = (↵,�) 2 ⇥, |↵� ↵
⇤
| > B1n

�⇢(log n)s, = L(!),! 2 C
2[0, 1]}.

It follows from Bayes’ formula for ⇧(Un | Y1, . . . , Yn) that with An := {(y1, . . . , yn) :R
F
Q

n

i=1
f(yi)
f⇤(yi)

⇧(df) � e
�(2+C)n✏̄2n} and for any test function Tn : Rn

! [0, 1],

P
n

f⇤⇧(Un | Y1, . . . , Yn)  P
n

f⇤Tn + P
n

f⇤(Ac

n) + e
(2+C)n✏̄2n

"
sup

f2Fn\Un

P
n

f
(1� Tn) +⇧(F

c

n)

#

Now, limn!1 e
(2+C)n✏̄2n⇧(Fc

n) = 0 by construction and limn!1 P
n

f⇤(Ac
n) = 0 by Lemma

8.10 of Ghosal and van der Vaart (2017). Therefore the proof of the theorem is complete
once we have shown the existence of test functions (Tn : n � 1) satisfying

lim
n!1

P
n

f⇤Tn = 0, sup
f2Fn\Un

P
n

f
(1� Tn)  e

�(4+C)n✏̄2n for all large n. (11)

We shall construct such a test function based on Lemmas 11 and 12.
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Take ✏n = (4+C)1/2✏̄n. For any f = p✓, 2 Fn it follows from (14) that if � = log then

k�̇k1  Dn := C1r
3/2
n log n = C1n

3
2 (1�2�)(log n)6�+1 for some constant C1. Set ↵1 = ⇠↵

⇤

and note that ↵ < ↵1 < min(1,↵⇤) and partition Un = U1n [ U2n where U1n = Un \ {f :
↵  ↵+(f) < ↵1} and U2n = Un \ {f : ↵1  ↵+(f)  ↵}. By Lemma 12 (with A = ↵), for
any ⇢1, s1 > 0,

Fn \ U1n ⇢ T (t1n, �1n) \ {f : ↵+(f)  ↵, |↵+(f)� ↵
⇤
| > 24+↵�1n} for all large n, (12)

where �1n = B12⌧n, ⌧n = C12n
�⇢1(log n)s1 , t1n = (Dn/⌧n)

1/↵ and B12, C12 are large
constants to be adjusted. We next show that ⇢1, s1 > 0 could be chosen so that

min{F̄ ⇤(t1n), �1nF̄
⇤(t1n)

1/2
} � 3✏n for all large n. (13)

Indeed, F̄ ⇤(t1n) �
1
2⇣(f

⇤)t�↵
⇤

1n = 1
2⇣(f

⇤)(C12
C1

)1/⇠ ⇥ n
�{⇢1+ 3

2 (1�2�)}/⇠(log n)(s1�6��1)/⇠ for all
large n, where ⇠ = ↵/↵

⇤
2 (0, 1). Therefore, with a suitably large choice of C12 we can make

F̄
⇤(t1n) � 3✏n for all large n provided ⇢1  ⇢̂(⇠), and in case of an equality, s1 = 2⇢1+4. On

the other hand, in order to have �1nF̄ ⇤(tn)1/2 � 3✏n, we need to choose B12 suitably large
and ⇢1  ⇢̄(⇠), and in case of an equality, s1 = 2⇢1 +

4
↵⇤(2⇠+1) . With (12)-(13) established

with ⇢1 > 0 chosen as the minimum of the above two bounds and s1 > 0 set accordingly,
apply Lemma 11 to conclude that there exist test functions T1n = T1n(Y1, . . . , Yn) such that
P
n

f⇤T1n  e
�n✏

2
n and sup{Pn

f
(1� T1n) : f 2 Fn \ U1n}  e

�n✏
2
n for all large n.

Next we repeat the same arguments for testing f = f
⇤ versus f 2 Fn\U2n. Rewrite the

target rate as B1n
�⇢(log n)s = 24+↵�n where �n = B22⌧n, ⌧n = C22n

�⇢(log n)s, and tn =
(Dn/⌧n)1/↵1 , with B22, C22 to be adjusted as needed. As argued in the preceding paragraph,
the choices of ⇢, s imply that min(F̄ ⇤(tn), �nF̄ ⇤(tn)1/2) � 3✏n and Lemma 12 (with A = ↵1)
implies that Fn \ U2n ⇢ T (tn, �n) \ {f : ↵+(f)  ↵, |↵+(f) � ↵

⇤
| > �n}. Therefore, by

Lemma 11, there are test functions T2n = T2n(Y1, . . . , Yn) such that P
n

f⇤T2n  e
�n✏

2
n and

sup{Pn

f
(1 � T2n) : f 2 Fn \ U2n}  e

�n✏
2
n for all large n. The proof is now complete by

taking Tn = max(T1n, T2n).
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SUPPLEMENTARY MATERIAL

Proofs of auxiliary results

Proof of Lemma 5. Clearly � = log 2 C
2[0, 1] with �̇ = !̇, �̈ = !̈. Let r✓ and r

2
✓
denote

the first and second order vector di↵erential operators with respect to ✓ = (↵,�). Then,

r✓ log q✓(y) = r✓ log g✓(y) + �̇(G✓(y))r✓G✓(y)

r
2
✓
log q✓(y) = r

2
✓
log g✓(y) + �̇(G✓(y))r

2
✓
G✓(y) + �̈(G✓(y))r✓G✓(y)r✓G✓(y)

>

which immediately proves the result because @

@↵
log g✓(y) is bounded by a shifted and scaled

version of log(1 + y), and @

@�
log g✓(y) as well as every term in r

2
✓
log g✓(y), r✓G✓(y) and

r
2
✓
G✓(y) is uniformly bounded over y � 0 and ✓ 2 ⇥. For completeness we list below

the first and second order partial derivatives of log g✓(y) and G✓(y); expressed in terms of
z = (1 + y

↵�
)�1

2 (0, 1],

@

@↵
log g✓(y) = log z + 1�z

↵
,
@

@�
log g✓(y) =

↵�(↵+1)z
�

,

@
2

@↵2 log g✓(y) =
(1�z){↵�1�(↵+1)z}

↵2 ,
@
2

@�2 log g✓(y) =
(↵+1)z2�↵

�2 ,
@
2

@↵@�
log g✓(y) =

{↵�(↵+1)z}(1�z)
↵�

@G✓(y)
@↵

= (log z + 1� z)z↵, @
2
G✓(y)
@↵2 = {(log z + 1� z)2 + (1�z)2

↵
}z
↵

@G✓(y)
@�

= ↵(1�z)
�

z
↵
,
@
2
G✓(y)
@�2 = ↵(1�z){↵�1�z(↵+1)}

�2 z
↵
,
@
2
G✓(y)
@↵@�

= (1�z){↵(log z+1�z)+1�z}
�

z
↵
.

Proof of Lemma 6. Denote q✓ = p✓, , ✓ 2 ⇥. By Taylor’s theorem, for ✓, ✓ + u in the
interior of ⇥,

log
q✓+u(y)

q✓(y)
= R1(✓, u, y) = u

>
r✓ log q✓(y) +R2(✓, u, y)

with |Rj(✓, u, y)|  kuk
j max|k|=j sup✓2⇥ |D

k log q✓(y)|, j = 1, 2. The first claim now follows

because dKL(q✓, q✓+u) =
R
q✓(y) log

q✓(y)
q✓+u(y)

dy = 0 +
R
R2(✓, u, y)q✓(y)dy  c2k!kC2kuk

2 by

Lemma 5. Next, use the inequality |e
x
� 1|  |x|e

|x| to conclude

��� q✓+u(y)
q✓(y)

� 1
���  |R1(✓, u, y)|e|R1(✓,u,y)|  kuk{c0k!kC2 + c1 log(1+ y)}ekuk{c0k!kC2+c1 log(1+y)}

by Lemma 5. Therefore,
R
q✓(y)(

q✓+u(y)
q✓(y)

� 1)2dy  c4kuk
2 where

c4 = sup
✓2⇥

Z
{c0k!kC2 + c1 log(1 + y)}2e2t0{c0k!kC2+c1 log(1+y)}

q✓(y)dy  c3e
3t0c0k!kC2

with c3 := t
�2
0 sup✓2⇥

R
(1 + y)3t0c1q✓(y)dy a finite number if t0 < ↵/(3c0). This proves

the second claim as well as the third claim since V (q✓, q✓+u) =
R
R1(✓, u, y)2q✓(y)dy 

c4kuk
2.
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Proof of Lemma 7. Denote pij = p✓i, j , Pij [g] :=
R
g(y)pij(y)dy, for i, j 2 {1, 2}. Note that

dKL(p11, p22) = dKL(p11, p21) + P11[log
p21
p22

]  c2k!1kC2k✓1 � ✓2k
2 + P11[log

p21
p22

] by Lemma
6. Use the fact that every pij has full support on [0,1) to write

P11[log
p21
p22

] = P21[
p11
p21

log p21
p22

] = P21[(
p11
p21

� 1) log p21
p22

] + dKL(p21, p22).

Notice, dKL(p21, p22) = dKL( 1, 2)  K0✏
2 for some constant K0 that depends only on t0;

see Lemma 3.1 of van der Vaart and van Zanten (2008). An application of Cauchy-Schwarz
inequality gives

P21[(
p11
p21

� 1) log p21
p22

]  {P21[(
p11
p21

� 1)2]}1/2{P21[(log
p21
p22

)2]}1/2.

Clearly P21[(log
p21
p22

)2] = V ( 1, 2)  k log  1
 2
k
2
1  4k!1 � !2k

2, and, by Lemma 6,

P21[(
p11
p21

� 1)2]  c3e
3t0c0k!1kC2k✓1 � ✓2k

2. Additionally, V (p11, p22)  2V (p11, p21) +

2k log  1
 2
k
2
1  c3e

3t0c0k!1kC2k✓1 � ✓2k
2 + 4k!1 � !2k

2
1 by Lemma 6. This concludes the

proof of the lemma with K = max(4,K0, c2k!1kC2 , c3e
3t0c0k!1kC2 ).

Proof of Lemma 8. Denote pij = p✓i, j , i, j 2 {1, 2}. By triangle inequality, dH(p11, p22) 
dH(p11, p21)+dH(p21, p22). The second term on the right equals dH( 1, 2) which is bounded
by k!1�!2k1 exp{k!1�!2k1/2} by Lemma 3.1 of van der Vaart and van Zanten (2008).
The desired bound on the first term follows by the inequality dH(p11, p21)  dKL(p11, p21)1/2

and Lemma 6.

Proof of Lemma 9. Let W (t) be a centered Gaussian process on R with Cov(W (s),W (t)) =
e
�(t�s)2 , t, s 2 R. Then ⌫� is the probability law of the rescaled process W � = (W �(t) :=
W (�t) : 0  t  1). The proof is complete by noting that

kW
�
kC2 = sup

0t�
|W (t)|+ � sup

0t�
|Ẇ (t)|+ �

2 sup
0t�

|Ẅ (t)|

where, with probability one, the right hand side is non-decreasing in �.

Proof of Lemma 10. Fix � � 1 and � < 1/12. Recall that H
�

1 consists of functions <(h⌘)

where h⌘(u) =
R
e
ut
p
�1
⌘(t)µ�(t) with k⌘kL2(µ�)  1. By applying Cauchy-Schwarz in-

equality, with di↵erentiations under integration as needed, it follows that

khk1  1, kḣk1 

p

2�, and kḧk1 

p

12�2. (14)

Any such h⌘ could be extended to an analytic function h⌘ on the complex plane C such

that |
d
j

dzj
h⌘(z)|  8�je2|=(z)|2�2 , z 2 C and j 2 {0, 1, 2}. By Proposition C.9 of Ghosal

and van der Vaart (2017), there is a collection P = {P1, . . . , PN} of piecewise polynomials
on [0, 1] with logN  C0�(log

�

�
)2 such that every h 2 H

�

1 satisfies kḧ � Pnk1 < � for

some 1  n  N ; here C0 is a universal constant. Consider an expanded collection P̃

of functions P̃ (u) = a + bu +
R 1
0 (u � t)+P (t)dt where a belongs to a �-net of [�1, 1], b

belongs to a �-net of [�
p
2�,

p
2�] and P 2 P. Use (14) and Taylor’s Theorem (second

order, with residual in the integral form) to conclude every h 2 H
�

1 satisfies kh� P̃kC2 < 6�
for some P̃ 2 P̃. This establishes the first claim because the cardinality Ñ of P̃ satisfies
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log Ñ  logN + log(2/�) + log(2
p
2�/�)  C�(log �

6� )
2 for all ✏ < 1/2 and a new universal

constant C. As shown in the proof of Lemma 4.7 of van der Vaart and van Zanten (2009),
the second claim follows as a corollary to the first claim and Theorem 2 of Li and Linde
(1999).

Proof of Lemma 11. Let Sn(t) =
P

n

i=1 I(Yi > t) denote the sample exceedance count over
a threshold t. Define the test functions

T1n = I(|Sn(tn)
n

� F̄
⇤(tn)| > ✏n), T2n = I(| Sn(2tn)

max{Sn(tn),1} �
F̄

⇤(2tn)
F̄ ⇤(tn)

| > �n),

and take Tn = max(T1n, T2n). Since Tn  T1n + T2n, we have P
n

f⇤Tn  P
n

f⇤T1n + P
n

f⇤T2n 

2e�2n✏2n +P
n

f⇤ [2e�2Sn(tn)�2n ] by applications of Hoe↵ding’s inequality where the second term
is handled by the law of iterated expectation with an intermediate conditioning on Sn(tn).
Now, for all large n, P

n

f⇤ [e�2Sn(tn)�2n ] = [1 � F̄
⇤(tn)(1 � e

�2�2n)]n  [1 � F̄
⇤(tn)�2n]

n


e
�nF̄

⇤(tn)�2n  e
�9n✏2n ; the last two inequalities hold because 1� e

�2x
� x for all small x > 0

and 1 + x  e
x for all x.

To bound the maximum type II error probability, first note that if f 2 F1n := {f :
|F̄ (tn) � F̄

⇤(tn)| > 2✏n} then P
n

f
(1 � Tn)  P

n

f
(1 � T1n)  2e�2n✏2n by another application

of Hoe↵ding’s inequality. Next consider an f 2 T (tn, �n) \ F1n with ↵+(f) < ↵ and
|↵+(f) � ↵

⇤
| > 24+↵�n. Let n be large enough so that �n < 1/2. It follows from the

definition of T (t, �) that | F̄ (2tn)
F̄ (tn)

� 2�↵+(f)
| < 21�↵+(f)

�n < 2�n and hence

|
F̄ (2tn)
F̄ (tn)

�
F̄

⇤(2tn)
F̄ ⇤(tn)

| � 2�max(↵+(f),↵⇤) log(2)|↵+(f)� ↵
⇤
|� 4�n > 2�n.

Consequently, Pn

f
(1 � T2n)  2Pn

f
[2e�2S̄n(tn)�2n ]  2e�nF̄n(tn)�2n . Since f 62 F1n, it follows

that F̄ (tn) � F̄
⇤(tn)� 2✏n �

1
3 F̄

⇤(tn) and hence P
n

f
(1� T2n)  2e�n✏

2
n .

Proof of Lemma 12. Suppose f = p✓, with ✓ = (↵,�) 2 ⇥, ↵ � ↵1, and  = L(!),
k!̇k1  Dn. Denote � = log and use Taylor’s theorem to write F̄ (y) =  (1)Ḡ✓(y){1 �

R✓, (y)} where R✓, (y) =
 ̇(1�u)
2 (1) Ḡ✓(y) =

1
2e

�u�̇(1�v)
�̇(1 � u)Ḡ✓(y) for some 0 < v < u <

Ḡ✓(y). Notice that Ḡ✓(y) = (↵�/y)↵{1 + r✓(y)} with |r✓(y)| < ↵
2
�/y  ↵

2
�/tn for all

y � tn and consequently, Ḡ✓(y)  c1t
�↵
n  c1⌧n/Dn for all y � tn, for some fixed constant

c1. Since k�̇k1 = k!̇k1  Dn, it follows that for all large n, |R✓, (y)| 
1
2e

c1⌧nc1⌧n  2c1⌧n
for all y � tn and consequently,

y
↵
F̄ (y)

⇣(f)
= {1 + r✓(y)}{1�R✓, (y)} = 1 + R̃✓, (y)

with |R̃✓, (y)|  3max(|R✓, (y)|, |r✓(y)|)  B1⌧n for all y � tn, for some constant B1. This
concludes the proof since the choice of B1 does not depend on f .
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Additional summary of numerical experiments

Model: GPD Model: GPD4 Model: Half−t
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Figure 5: A comparison of the 95% posterior credible intervals for ⇠ = ↵
�1 from the

semiparametric and the thresholding methods. For each group, the 100 data sets are
arranged in the ascending order of the maximum observation.

Codes

R package ‘sbde’ can be downloaded from https://CRAN.R-project.org/package=sbde.
Follow the link https://www2.stat.duke.edu/~st118/Codes-FortCollins/ to access R
codes along with dataset and auxiliary codes required to reproduce Fort Collins precipita-
tion analysis presented in this article.
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