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1 CALLING ALL TYPES

Many programming languages let typed code interact with untyped code in some ways while
retaining some desirable aspects of each typing discipline. The currently popular research focus
of gradual typing provides many examples. Exactly which interactions are allowed and which
desirable aspects are retained, however, varies widely among languages. There are four leading
type-enforcement strategies that restrict interactions between typed and untyped code:

e Erasure (a.k.a. optional typing) is a hands-off method that uses types only for static analysis
and imposes no restrictions at run-time [8, 11].

o Transient inserts shape checks! in typed code to guarantee only that operations cannot “go
wrong in the typed portion of code due to values from the untyped portion [83, 86].

e Natural uses higher-order checks to ensure the integrity of types in the entire program
(68, 78].

LA shape check enforces a correspondence between a top-level value constructor and the top-level constructor of a type.
It generalizes the tag checks found in many runtime systems.
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e Concrete enforces types with tag checks. It ensures the full integrity of types, but requires
that every value comes with a fully descriptive type tag [52, 93].

In addition, researchers have designed hybrid techniques [9, 31, 34, 61, 64]. An outstanding and
unusual exemplar of this kind is Pyret, a language targeting the educational realm (pyret.org).

Each semantic choice denotes a trade-off among static guarantees, expressiveness, and run-
time costs. Language designers should understand these trade-offs when they create a new typed-
untyped interface. Programmers need to appreciate the trade-offs if they can choose a language
for a project. If stringent constraints on untyped code are acceptable, then Concrete offers strong
and inexpensive guarantees. If the goal is to interoperate with an untyped language that does not
support proxy values, then Transient may be the most desirable option. If fine-grained interop-
erability demands complete type integrity everywhere, then Natural is the right choice.? And if
predictable behavior and performance matter most, then Erasure may be best—it is certainly the
industry favorite.

Unfortunately, the literature provides little guidance about how to compare such different se-
mantics formally. For example, the dynamic gradual guarantee [69]—a widely studied property in
the gradual typing world—is satisfied by any type-enforcement strategy, including the no-check
Erasure, as long as the type Dynamic is relatively well-behaved.® In short, the field lacks an apples-
to-apples way of comparing different strategies and considering their implications.

This article introduces a framework for systematically comparing the behavioral guarantees
offered by different semantics of typed—untyped interaction. The comparison begins with a com-
mon surface syntax to express programs that can mix typed and untyped code. This surface syn-
tax is then assigned multiple semantics, each of which follows a distinct protocol for enforcing
the integrity of types across boundaries. With this framework, one can directly study the possible
behaviors for a single program.

Using the framework, the article compares the three implemented semantics explained above
(Natural (N), Transient (T), Erasure (E)) and three theoretical ones (Co-Natural (C), Forgetful (F),
and Amnesic (A)). Co-Natural enforces data structures lazily rather than eagerly. Forgetful is lazy
in the same way and also ignores type obligations that are not strictly required for type soundness.
Ampnesic is a variation of Transient that uses wrappers to improve its blame guarantees.

The comparison excludes two classes of prior work: Concrete, because of the stringent con-
straints it places on untyped code, and semantics that rely on an analysis of the untyped code
(such as References [2, 13, 91]). That is, the focus is on enforcement strategies that can deal with
untyped code as a “dusty deck” without recompiling the untyped world each time a new type
boundary appears.

Table 1 sketches the results of the evaluation. The six letters in the top row correspond to differ-
ent semantics for the common surface language. Each row introduces one discriminating property.
Type soundness guarantees the validity of types in typed code. Complete monitoring—a property
adapted from research on contracts [23]—guarantees that the type system moderates all bound-
aries between typed and untyped code—even boundaries that arise at run-time. Blame sound-
ness ensures that when a run-time check goes wrong, the error message contains only boundaries
that are relevant to the problem. Blame completeness guarantees that error messages come with
all relevant information, though possibly with some irrelevant extras. For both blame soundness
and completeness, the notion of relevant boundaries is determined by an independent (axiomatic)

2Implementations of Natural can yield performance improvements relative to untyped code, especially when typed code
rarely interacts with untyped code [44, 75].

3Thanks to the TOPLAS reviewers for reminding us that the gradual guarantees are not meant to distinguish semantics in
terms of how they enforce types. The guarantees address a separate dimension; namely, the behavior of type Dynamic.
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Table 1. Informal Sketch of Contributions

Natural Co-Natural Forgetful Transient Amnesic FErasure

Type soundness v v v v v X
Complete monitoring v v X X X X
Blame soundness v v v X v v
Blame completeness v v X X v X
Error preorder N < C < F < T = A S E
No wrappers X X X v X v

Full results in Table 2 (page 51).

specification that tracks values as they cross boundaries between typed and untyped code. Last,
the error preorder compares the relative permissiveness of types in two semantics. Natural (N)
accepts the fewest programs without raising a run-time type mismatch and Erasure (E) accepts
the greatest number of programs. Additionally, Transient and Erasure are the only strategies that
can avoid the complexity of wrapper values.

In sum, the five properties enable a uniform analysis of existing strategies and can guide the
search for new strategies. Indeed, the synthetic Amnesic semantics (A) is the result of a search for
a semantics that fails complete monitoring but guarantees sound and complete blame.

1.1 Performance and Pragmatics Are Out of Scope

Understanding the formal properties of typed—untyped interactions is only one third of the chal-
lenge. Two parallel and ongoing quests aim to uncover the performance implications of different
strategies [6, 24, 34, 37, 38, 44] and the pragmatics of the semantics for working developers [45].
These efforts fall outside the scope of this article.

1.2 Relation to Prior Work

This article is a synthesis of results that have been published piecemeal in two conference
papers [34, 35] and a dissertation chapter [33]. It is the only article to compare the six semantics
on equal grounds. In addition to the synthesis, it brings three contributions: a survey of type-
enforcement strategies, a high-level comparison of the six semantics, and refined meta-theoretic
results.

1.3 Outline

Sections 2 through 5 explain the what, why, and how of our design-space analysis. There is a
huge body of work on languages that support typed—untyped interactions that needs organizing
principles (Section 2). The properties listed in the top five rows of Table 1 offer an expressive
and scalable basis for comparison (Section 3). By starting with a common surface language and
defining semantics that explore various strategies for enforcing types, the properties enable apples-
to-apples comparisons of the dynamics of typed-untyped interactions (Section 4). This article
focuses on six type-enforcement strategies in particular (Section 5).

Section 6 formally presents the six semantics and the key results. Expert readers who are not
interested in informal discussions may wish to begin there and use Section 5 as needed for a high-
level picture. The supplementary material presents the essential definitions, lemmas, and proof
sketches that support the results.

2 ASSORTED BEHAVIORS BY EXAMPLE

There are many languages that allow typed and untyped code to interact. Figure 1 arranges a few
of their names into a rough picture of the design space. Languages marked with a star (x) are
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Fig. 1. Landscape of mixed-typed languages, ¥ = migratory, x = gradual.

gradual in the sense that they come with a universal dynamic type, often styled as Dynamic, *,
or ? [68, 77]. Technically, the type system supports implicit down-casts from the dynamic type
to any other type—unlike, say, the universal Object type in Java. This notion of gradual is more
permissive than the refined one from Siek et al. [69], which asks for a dynamic type that satisfies
the gradual guarantees [69]. Languages marked with a cross (f) are migratory [81]; they add a
tailor-made type system to an untyped language (as opposed to working static-first [32]). Other
languages have different priorities. This article uses the name “mixed-typed” as an umbrella term
to describe languages in the design space.

For the most part, these mixed-typed languages fit into the broad forms introduced in Section 1.
Erasure is by far the most popular strategy; perhaps because of its uncomplicated semantics and
ease of implementation. The Natural languages come from academic teams that are interested
in types that offer strong guarantees, Transient is gaining attention as a compromise between
types and performance, and Concrete has generated interest among industry teams as well as
academics. Several languages exhibit a hybrid approach. Sorbet adds types to Ruby and optionally
checks method signatures at run-time. Thorn and StrongScript offer both concrete and erased
types [61, 93]. Pyret uses Natural-style checks to validate fixed-size data and Transient-style checks
for recursive types (e.g., lists) and higher-order types.* Static Python combines Transient and Co-
Natural to mitigate the restrictions of the latter [46]. Grift has a second mode that implements a
monotonic semantics [4]. Prior to its 2.0 release, Dart took a hybrid approach. Developers could
toggle between a checked mode and an Erasure mode. Monotonic is similar to Natural, but uses a
checked heap instead of wrappers and rejects additional programs [58, 60, 64, 73]. A final variant
is from the literature. Castagna and Lanvin [15] present a semantics that creates wrappers like
Natural but also removes wrapper that do not matter for type soundness. This semantics is similar
to the forgetful contract semantics [31].

Our goal is a systematic comparison of type guarantees across the wide design space. Such
a comparison is possible, because, despite the variety, the different guarantees arise from choices
about how to enforce types at the boundaries between statically typed code and dynamically typed
code. The following three subsections present illustrative examples of interactions between typed
and untyped code in four programming languages: Flow [16], Reticulated [86], Typed Racket [81],
and Nom [52]. These languages use the Erasure, Transient, Natural, and Concrete strategies, re-
spectively. Flow is a migratory typing system for JavaScript, Reticulated equips Python with grad-
ual types, Typed Racket extends Racket, and Nom is a new gradual-from-the-start object-oriented
language.

4Personal communication with Benjamin Lerner and Shriram Krishnamurthi.
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function f(x : number): number def f(x : Int)->Int:
{ return x + 1; } return x + 1
Nirrn iR Nl
HGH B TGN

(a) Flow (b) Reticulated

/class F {
constructor () {3}
fun apply(Int x) : Int {
return x + 1;

(: f (-> Integer Integer)) 3}
(define (f x) 1
N ~
1
+x 1)) <
& >§ dyn f = new F(); T
6] f.apply((dyn)f); |-~
(c) Typed Racket (d) Nom

Fig. 2. Program (1) translated to four languages.

2.1 Enforcing a Base Type

One of the simplest ways that a typed—untyped interaction can go wrong is for untyped code to
send incorrect input to a typed context that expects a first-order value. The first example illustrates
one such interaction:

N
(f_/l(x.lnt).x+lj) . Ff (1)

The typed function on the left expects an integer. The untyped context on the right imports this
function f and applies f to itself; thus the typed function receives a function rather than an integer.
The question is whether the program halts or invokes the typed function f on a nonsensical input.

Figure 2 translates the program to the four chosen languages. Each white box represents type-
checked code, and each grey box represents untyped and un-analyzed code. The arrows represent
the boundary behavior: the solid arrow stands for the call from one area to the other, and the
dashed one for the return. Nom is an exception, however, because it cannot interact with truly
untyped code (Section 2.2). Despite the differences in syntax and types, each clearly defines a
typed function that expects an integer and applies the function to itself in an untyped context.

In Flow (Figure 2(a)), the program does not detect a type mismatch. The typed function receives
a function from untyped JavaScript and surprisingly computes a string (ECMA-262 edition 10, Sec-
tion 12.8.3). In the other three languages, the program halts with a boundary error message that
alerts the programmer to the mismatch between two chunks of code.

Flow does not detect the run-time type mismatch, because it follows the erasure, or optional
typing, approach to type enforcement. Erasure is hands-off; types have no effect on the behavior
of a program. These static-only types help find typo-level mistakes and enable type-directed IDE
tools, but disappear during compilation. Consequently, the author of a typed function in Flow
cannot assume that it receives only well-typed input at run-time.
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X = [HAII , 2]
class Pair {
l)( private fst;
private snd;
def g(y : Tuple(Int,Int)): # ...
return y[0] + 1 3
g(x) X = new Pair("A", 2)
. L
(a) Reticulated
X
q q nAN a N\
(define x (list "A" 2)) class IntPair {
! private Int fst;
X private Int snd;
# ...,

(require/typed }
[x (List Integer Integer)])

IntPair)x).fst + 1
L« ) )

(+ (first x) 1)

(c) Nom
(b) Typed Racket

Fig. 3. Program (2) translations.
The other languages enforce static types with some kind of dynamic check. For base types, the
check validates the shape of incoming data. The checks for other types reveal differences among
these non-trivial type enforcement strategies.

2.2 Validating an Untyped Data Structure

The second example is about pairs. It asks what happens when typed code declares a pair type and
receives an untyped pair:

/_\ -
(g:A(x: Intxlnt).(fstx)+1]) . ) g (“A”,2) @

The typed function on the left expects a pair of integers and uses the first element of the input pair
as a number. The untyped code on the right applies this function to a pair that contains a string
and an integer.

Figure 3 translates this idea into Reticulated, Typed Racket, and Nom. The encodings in Retic-
ulated and Typed Racket define a pair in untyped code and impose a type in typed code. The en-
coding in Nom is substantially different. Figure 3(c) presents a Nom program in which the typed
code expects an instance of one data structure but the untyped code provides something else. This
shape mismatch leads to a run-time error.

Nom cannot express program (2) directly, because the language does not allow truly untyped
values. There is no common pair constructor that: (1) untyped code can use without constraints
and (2) typed code can instantiate at a specific type. Instead, programmers must declare one kind
of pair for every two types they wish to combine. On the one hand, this requirement greatly
simplifies run-time validation, because the outermost shape of any value determines the full type
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of its elements. On the other hand, it imposes a significant programming burden. To add refined
static type checking at the use-sites of an untyped data structure, a programmer must either add
a cast to each use in typed code or edit the untyped code for a new data definition. Because of this
rigidity, the model in Section 6 supports neither Nom nor other concrete languages [19, 52, 61, 93],

Both Reticulated and Typed Racket raise an error on program (2), but for different reasons. Typed
Racket rejects the untyped pair at the boundary to the typed context, because the pair does not
fully match the declared type. Reticulated accepts the value at the boundary, because it is a pair,
but raises an exception at the elimination form y[@], because typed code expects an integer result
and receives a string. In general, Typed Racket eagerly checks the contents of data structures while
Reticulated lazily validates them at use-sites.

2.3 Debugging Higher-order Interactions

Figures 4 and 5 present simplified excerpts from realistic programs that mix typed and untyped
code. These examples follow a common general structure: an untyped client interacts with an un-
typed library through a thin layer of typed code. The solid arrows indicate these statically visible
dependencies. Additionally, the untyped client supplies an argument to the untyped service mod-
ule that, due to type annotations, dynamically opens a back channel to the client; the dashed arrow
indicates this dynamic dependency of the two untyped modules. Both programs also happen to
signal run-time errors, but do so for different reasons and with rather different implications.

The first example shows how Typed Racket’s implementation of the Natural semantics, which
monitors all interactions that cross type boundaries, can detect a mistake in a type declaration.
The second example uses Reticulated’s implementation of the Transient semantics to demonstrate
how a type-sound language can fail to detect a mismatch between a value and a type.

2.3.1 A Mistaken Type Declaration. Figure 4 consists of an untyped library, an incorrect layer of
type annotations, and an untyped client of the typed layer. The module at the top left, net/url, is
a snippet from an untyped library that has been part of Racket for two decades.’ The typed module
on the right defines types for part of the library. Last, the module at the bottom left imports the
typed library and invokes the library function call/input-url.

Operationally, the library function flows from net/url to the typed module and then to the
client. When the client calls this function, it sends client data to the untyped library code via the
typed layer. The client application clearly relies on the type specification from typed/net/url
based on the arguments that it sends: the first is a URL structure, the second (underlined) is a
function that accepts a string, and the third is a function that maps an input port to an HTML
representation. Unfortunately for the client, the boldface type String in Figure 4 is in conflict with
the code in the library, which applies the second argument (a function) of call/input-url to a
URL struct rather than a string,.

Fortunately, Typed Racket compiles types to contracts and thereby catches the mismatch. Here,
the compilation of typed/net/url generates a contract for call/input-url. The generated con-
tract ensures that the untyped client provides three type-matching argument values and that the
library applies the callback to a string. When the net/url library eventually applies the callback
function to a URL structure, the function contract for the callback halts the program. The blame
message says that the interface for net/url broke the contract, but warns the developer on the
last line with “assuming the contract is correct.” Thus, the contract error is a warning that either
the code in net/url or the type in its interface is incorrect; and indeed, the type from which the
contract is derived is an incorrect specification of the library’s behavior.

Sgithub.com/racket/net.
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net/url
#lang racket typed/net/url
;; t600 lines of code .... a A\
#lang typed/racket
(define (call/input-url url c h) .
:; connect to the url via c, (define-type URL ....)
;; process the data via h ) .
... (h (curl)) ....) (requ1re/typ§d/prov1de
;; from this library
TN, net/url
client L
;3 import the following
ey redt [string->url
(require html typed/net/url) (-> String URL)]
(def1n§ St [call/input-url
(string->url "https://sr.ht")) v (A)
(-> URL
;3 connect to url, read html (-> String In-Port)
(define (main) (-> In-Port A)
(call/input-url URL AN
(A (str) ....) \ J
read-html))

call/input-url: broke its own contract
promised: String
produced: (url "https" #f "sr.ht" #f #t '() '() #f)
in: the 1st argument of
the 2nd argument of
(parametric->/c (A11)
(—>%
(g8 g14 (—>* (g15) () (values A11))) O
(values A11)))
contract from: interface for call/input-url
blaming: interface for call/input-url
(assuming the contract is correct)

Fig. 4. Typed Racket detects and reports a higher-order type mismatch.

Alternative Possibility. If Typed Racket was merely type-sound, then it would not be guaranteed
to catch the type mismatch between the interface and the client. In this case, the client function
(underlined) passed to call/input-url would be executed with a URL struct bound to the str
variable. The consequences of this bad input would depend on how the function is implemented.
If an error occurs at all, then it might happen in the client and it might happen in another module
that the function passes its input to. Either way, the typed module would be off the stack for the
error message; programmers would have to remember its role to debug the type mistake.

2.3.2 A Data Structure Mismatch. Figure 5 presents an arrangement of three Transient Reticu-
lated modules, similar to the code in Figure 4. The module on the top left exports a function that
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requests

# +2,000 lines of code .... typed_requests

import requests as r
def get(url, =*args, *xkws):

# Sends a GET request def get(url:Str
ds:Tuple(Float,Float)):

i return r.get(url, timeout=ds)
|
|

e

client

from typed_requests import get

delays = (2, "zero")
get("https://sr.ht", delays)

Traceback (most recent call last):
File "client.py", line 81, in <module>
get("https://sr.ht", (5, "zero"))
File "typed_requests.py", line 23, in get
return mgd_cast_type_function(
cast@(requests, gensym2, '4', gensym3).get,
gensym4, '4', gensym5)(url, timeout=timeout)
File "/PythonLib/requests/api.py", line 75, in get
return request('get', url, params=params, xxkwargs)
File "/PythonLib/requests/api.py", line 6@, in request
return session.request(method=method, url=url, *xkwargs)
File "/PythonLib/requests/sessions.py", line 533, in request
resp = self.send(prep, **send_kwargs)
File "/PythonLib/requests/sessions.py", line 646, in send
r = adapter.send(request, #*xkwargs)
File "/PythonLib/requests/adapters.py", line 436, in send
raise ValueError(err)
ValueError: Invalid timeout (5, 'zero').
Pass a (connect, read) timeout tuple, or a single float
to set both timeouts to the same value

Fig. 5. Reticulated does not catch errors that occur in untyped Python code.

retrieves data from a URL.® This function accepts several optional and keyword arguments. The
typed adaptor module on the right formulates types for one valid use of the function; namely, a
client may supply a URL as a string and a timeout as a pair of floats. These types are correct, but
the client module on the bottom left sends a tuple that contains an integer and a string.

Reticulated’s run-time checks ensure that the typed function receives a string and a tuple, but
do not validate the tuple’s contents. These same arguments thus pass to the untyped get function
in the requests module. When the untyped get eventually uses the string ‘ ‘zero’’ as a float,
Python (not Reticulated) raises an exception that originates from the requests module. A com-
pletly untyped version of this program gives the same behavior; the Reticulated types are no help
for debugging.

Sgithub.com/psf/requests.
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In this example, the developer is lucky, because the call to the typed version of get is still visible
in the stack trace, providing a hint that this call might be at fault. If Python were to properly
implement tail calls, or if the library accessed the pair some time after returning control to the
client, then this hint would not be present.

Alternative Possibility. If Reticulated chose to traverse the bad tuple at the type boundary, then it
would discover the type mismatch. Similarly, if Reticulated checked all reads from the tuple in un-
typed contexts, then it could detect the mismatch and raise an appropriate error. Both alternatives
go beyond what is strictly required for type soundness, but would help for debugging this program.

3 COMPARING SEMANTICS

The design of a type-enforcement strategy is a multi-faceted problem. A strategy determines:
whether mismatches between type specifications and value flows are discovered; whether the
typed portion of the code is statically typed in a conventional sense or a weaker one; what typed
APIs mean for untyped client code; and whether an error message can pinpoint which type spec-
ification does not match which value. All decisions have implications for language designers and
programmers.

The examples in Section 2 illustrate that various languages choose different points in this design
space. But, examples can only motivate a systematic analysis; they cannot serve as an analysis.
After all, examples tell us little about the broader implications of each choice.

A systematic analysis needs a suite of formal properties that differentiate the design choices
for the language designer and working developer. These properties must apply to a large part
of the design space. Finally, they should clarify which guarantees type specifications offer to the
developers of typed and untyped code, respectively. While the literature focuses on type soundness
and the blame theorem, our analysis adds new properties to the toolbox, which all parties should
find helpful in making design choices or selecting languages for a project.

3.1 Type Soundness and the Blame Theorem

Type soundness is one formal property that meets the above criteria. A type soundness theorem
can be tailored to a range of type systems, has meaning for typed and untyped code, and can
be proven via a syntactic technique that scales to a variety of language features [92]. The use of
type soundness in the literature, however, does not promote informed comparisons. Consider the
four example languages from the previous section. Chaudhuri et al. [16] present a model of Flow
and prove a conventional type soundness theorem under the assumption that all code is statically
typed. Vitousek et al. [86] prove a type soundness theorem for Reticulated Python that focuses on
shapes of values rather than types. Muehlboeck and Tate [52] prove a full type soundness theorem
for Nom. Tobin-Hochstadt and Felleisen [78] prove a full type soundness theorem for a prototypical
Typed Racket that includes a weak blame property. These four type soundness theorems differ in
several regards: one focuses on the typed half of the language; a second proves a claim about a loose
relationship between values and types; a third is a truly conventional type soundness theorem; and
the last one incorporates a claim about the quality of error messages.

Another well-studied property is the blame theorem [1, 64, 78, 86—88]. It states that a run-time
mismatch may occur only when an untyped—or less-precisely typed—value enters a typed context.
The property is a useful design principle, but too many languages satisfy this property too easily.

3.2 Our Analysis

The primary formal property has to be type soundness, because it tells a programmer that eval-
uation is well-defined in each component of a mixed-typed programs. The different levels of
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soundness that arise in the literature must, however, be clearly separated. For one, the canoni-
cal forms lemmas that support these different levels of soundness set limits on the type-directed
optimizations that a compiler may safely perform.

The second property, complete monitoring, asks whether types guard all statically declared
and dynamically created channels of communication between typed and untyped code. That is,
whether every interaction between typed and untyped code is mediated by run-time checks. Sec-
tion 2.3 illustrates this point with two contrasting example. Both open channels of communication
between untyped pieces of code at run time—see the dashed arrows in Figures 4 and 5—that are
due to value flows through typed pieces of code. While Typed Racket’s type-enforcement mecha-
nism catches this problem, Reticulated’s does not. (The problem is caught by the run-time checks
of Python.)

When a run-time check discovers a mismatch between a type specification and a flow of values
and the run-time system issues an error message, the question arises how informative the message
is to a debugging programmer. Blame soundness and blame completeness ask whether a semantics
can identify the responsible parties when a run-time type mismatch occurs. Soundness asks for a
subset of the potential culprits; completeness asks for a superset.

Furthermore, the differences among type soundness theorems and the gap between type sound-
ness and complete monitoring suggests the question of how many errors an enforcement regime
discovers. The answer is given by an error preorder relation, which compares semantics in terms
of the run-time mismatches that they discover.

Individually, each property characterizes a particular aspect of a type-enforcement strategy.
Together, the properties inform us about the nature of the multi-faceted design space that this
semantics problem opens up. Additionally, this work should help with the investigation of the
consequences of design choices for the working developer.

4 EVALUATION FRAMEWORK

To formulate different type-enforcement stategies on an equal footing, the framework is based on
a single mixed-typed surface language (Section 4.1). This syntax is then equipped with distinct
semantics to model the different type-enforcement strategies (Section 4.2). Type soundness (Sec-
tion 4.3) and complete monitoring (Section 4.4) characterize the type mismatches that a semantics
can detect. Blame soundness and blame completeness (Section 4.5) measure the theoretical quality
of error messages. The error preorder (Section 4.6) is a direct comparison of the semantics.

4.1 Surface Language

The surface syntax is a multi-language that combines two independent pieces in the style of
Matthews and Findler [48]. Statically typed expressions constitute one piece; dynamically typed
expressions are the other half. Technically, these expression languages are identified by two judg-
ments: typed expressions e, satisfy I ey : 7y for some type 7y, and untyped expressions e; satisfy
F ey : U for the uni-type. Boundary expressions connect the two pieces.

The uni-type U is not the flexible dynamic type from the theory of gradual typing that can
replace any static type [5, 68, 77], rather, it describes all well-formed untyped expressions [48].”
There is consequently no need for a type precision judgment in the surface language, because
all typed—untyped interactions occur through boundary expressions. In this way, our surface lan-
guage closely resembles the cast calculi that serve as intermediate languages in the gradual typing
literature, e.g., References [67, 69].

"How to add a dynamic type is a separate dimension that is orthogonal to the question of how to enforce types. With or
without such a type, our results apply to the language’s type-enforcement strategy.
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The sets of statically typed (vs) and dynamically typed (vg) values consist of integers, natural
numbers, pairs, and functions:

vs =i|n|(us,vs) | A(x: 7). e, r=Int| Nat|r=71| X7,
vg=i|n|{vg,vg)| Ax.eq.

These core value sets are relatively small, but they suffice to illustrate the behavior of types for
the basic ingredients of a full language. First, the values include atomic data, finite structures,
and higher-order values. Second, the natural numbers n are a subset of the integers i to motivate
a subtyping judgment for the typed half of the language. Subtyping adds some realism to the
model® and allows it to distinguish between two sound enforcing methods (declaration-site vs.
use-site).

Surface expressions include function application, primitive operations, and boundaries. The de-
tails of the first two are fairly standard (Section 6.1), although function application comes with
an explicit app operator (app e, e1). Boundary expressions (dyn and stat) are the glue that enables
typed—untyped interactions. A program starts with named chunks of code, called components.
Boundary expressions link these chunks together with a static type to describe the values that
may cross the boundary. Suppose that a typed component named £, imports and applies an un-
typed function from component ¢;:

¢1  Nat= Nat o
/}\

Axo.sum xq 2

®)

The surface language can model the composition of these components with a boundary expression
that embeds an untyped function in a typed context. The boundary expression is annotated with
a boundary specification(£y« Nat = Nat« ;) to explain that component ¢, expects a function from
the server module ¢;, henceforth called sender:

(3) = app(dyn (£o« Nat= Nat« ¢1)(Ax,.sumxg 2)) 9.
In turn, this two-component expression may be imported into a larger untyped component. The

sketch below shows an untyped component in the center that imports two typed components: a
new typed function on the left and the expression (3) on the right:

ls (IntxInt)=Int 6 Nat

])/E\ X @)

app g x

(A(xl : IntxInt). fst x;

©

When linearized to the surface language, this term becomes
(4) ~ app(stat (£2« IntxInt=Int« €3)(A(x; : IntXInt). fst x;))
(stat (£« Nat< £;)(3)).

Technically, a boundary expression combines a boundary specification b and a sender expres-
sion. A dyn boundary embeds dynamically typed code in a typed context; a stat boundary em-
beds statically typed code in an untyped context.” The specification includes the names of the

8 Adding this form of subtyping also ensures model can scale to include true union types, which are an integral part of the
idiomatic type systems added to untyped languages [15, 80, 81].

9Boundary terms are similar to casts from the gradual typing literature, but provide more structure for blame assignment.
A boundary connects a typed component to an untyped component. A cast connects typed code to less-precisely typed
code; both sides of a cast may be part of the same component.
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interacting components along with a type to describe values that are intended to cross the bound-
ary. Names such as £, come from some countable set € (i.e., {; € £). The boundary types guide the
static type checker, but are mere suggestions unless a semantics decides to enforce them:

es=...|dynbeg, b= (l« 1<),
eq=...|statbes, ¢ = countable set of names.
The typing judgments for typed and untyped expressions require a mutual dependence to han-
dle boundary expressions. A well-typed expression may include any well-formed dynamically

typed code. Conversely, a well-formed untyped expression may include any typed expression that
matches the specified annotation:

Iorey: U IoFey: 1o

F() + dyl’l (€0< To 51) (A rg I stat (504 To< 51) € : u

Each surface-language component must have a name. These names must be coherent in the sense
that the client name in all boundary specifications must match the name of its enclosing context.

The purpose of the names is to support blame assignment when an typed—untyped interaction
goes wrong. Suppose a program halts due to a mismatch between a type Nat and a value —2. If the
semantics has knowledge of both the client and sender of the bad value, then an error report can
include this boundary where Nat is required and —2 arrived.

4.2 Semantic Framework

The first ingredient a reduction semantics must supply is the set of result values v to which ex-
pressions may reduce. Our result sets extend the sets of core values introduced in the preceding
subsection (v 2 v U vy). Potential reasons for extending the value set include the following:

(1) to associate a value with a delayed type-check;

(2) to record the boundaries that a value has previously crossed;
(3) to permit untyped values in typed code, and vice versa; and
(4) to track the identity of values on a heap.

Reasons 1 and 2 call for two kinds of wrapper value.!’ A guard wrapper (G bv) associates a bound-
ary specification with a value to achieve delayed type checks. Guards are similar to boundary
expressions; they separate a context component from a value component. A trace wrapper (T b V)
attaches a list of boundaries to a value as metadata. Trace wrappers simply annotate values.

The second ingredient is a set of notions of reduction, most importantly those for boundary
expressions. For example, the Natural semantics (Section 6.5) fully enforces types via the classic
wrapper techniques [25, 48], which is expressed as follows where a filled triangle (») describes a
step in untyped code and an open triangle (>>) describes a step in typed code:

stat (o« Nat« (1) 42 By 42, (a)
dyn (fo« (Int=Nat)« £1)(Axg. =8) I G (fo« (Int=Nat)« £1)(Axo. -8). (b)

According to the first rule, a typed number may enter an untyped context without further ado.
According to the second rule, typed code may access an untyped function only through a newly
created guard wrapper. Guard wrappers are a higher-order tool for enforcing types for first-class
functions. As such, wrappers require elimination rules. To complete its type-enforcement strategy,

10 A language with the dynamic type will need a third wrapper for base values that have been assigned type dynamic.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.



4:14 B. Greenman et al.

the Natural semantics includes the following rule to unfold the application of a guarded function
into two boundaries:

app(G (fo« (Int=Nat)« {1)(Axp. —8)) 1 I
dyn (o« Nat« ¢{1)(app(Axo. —8)(stat ({1« Int« {y) 1)). (c)

Other semantics have different behavior at boundaries and different supporting rules. The Tran-
sient semantics (Section 6.8) takes a first-order approach to boundaries. Instead of using wrappers,
it checks shapes at a boundary and guards elimination forms with shape-check expressions. For
example, the following simplified reduction demonstrates a successful shape check:

check{(NatxNat)}(-1,-2) > (-1,-2). (d)

The triangle is filled gray (>), because Transient is defined via a single notion of reduction that
handles both typed and untyped code.

These two points, values and checking rules, are the distinctive aspects of a semantics. Other
ingredients can be shared, such as the errors, evaluation contexts, and interpretation of primitive
operations. Indeed, Section 6.2 defines three baseline evaluation languages—higher-order, first-
order, and erasure—that abstract over the common ingredients.

4.3 Type Soundness

Type soundness asks whether evaluation is well-defined and whether a surface-language type
predicts properties of the result. Since there are two kinds of surface expressions, soundness has
two parts: one for statically typed code and one for dynamically typed code.

For typed code, the question is the extent to which surface types predict the result of an evalua-
tion. There are a range of possible answers. Suppose that an expression with surface type 7, reduces
to a value. At one end, the result value may match the full type 7y according to an evaluation-
language typing judgment. The other extreme is that the result is merely a well-formed value,
with no stronger prediction about its shape. Even in this weak extreme, however, the language
guarantees that typed reductions cannot reach an undefined state.

For untyped code, there is one surface type. Soundness guarantees that evaluation cannot reach
an undefined state, but it cannot predict the shape of result values.

Both parts combine into the following definition, where the function F and judgment +p are
parameters. The function F maps surface types to observations that one can make about a result;
varying the choice of F offers a spectrum of soundness for typed code. For example, for Natural, F is
the identify function and for Transient, it is a function that ignores all but the top-level constructor
of a type. The judgment +-r matches a value with a description.

Definition Sketch (F-type Soundness).

If e has static type 7o (- € : 70), If ey is untyped (- o : U),
then one of the following holds: then one of the following holds:
e ¢y reduces to a value v, e ¢y reduces to a value v,
and Fr vy : F(1g) and Fr vy : U
e ¢, reduces to an allowed error ® ¢y reduces to an allowed error
o ¢ diverges. o ¢y diverges.

4.4 Complete Monitoring

The complete monitoring property holds if a language has complete control over every type-
induced channel of communication between two components in a world that mixes typed and
untyped code. Consider an identity function that flows from an untyped component ¢, to a
typed one ¢y, through an (Int= Int) type annotation. Now imagine that this function flows into
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untyped component ¢,, which applies this function to itself. This application opens a channel of
communication between ¢, and ¢, at run time. This channel is type-induced, because the identity
function migrated to this point through a type boundary. If the language satisfies complete mon-
itoring, then it rejects this application, because the argument is a function and not an integer; an
error report could point back to the boundary between ¢, and ¢;, which imposed the obligation
that arguments must be of type Int.

At first glance, this example seems to inject sophistication where none is needed. In particular,
applying the identity function to itself does no harm. But, as Section 2.3 explains with a distilled
real-world example, such mis-applications can be the result of type specifications for untyped code
that are simply wrong. Thus, while the type checker may bless the typed code, its interactions
with untyped code may reveal the mismatch between the obligation that a type imposes and the
computations that the code performs.

Our approach to validating complete monitoring uses the well-known subject-reduction tech-
nique for a semantics modified to track obligations imposed by type boundaries. Tracking these
obligations relies on tracking boundary crossings via component labels, dubbed ownership labels
by Dimoulas et al. [22]. A sequence of labels on a value reflects the path that the value has taken
through components and, by implication, which type obligations the value has incurred. These
labels enrich the semantics with information without changing it. A meta-type system describes
desired properties of the evaluation in terms of the labels, and subject reduction establishes that
the properties hold.

Labels track information as follows. At the start of an evaluation, no interactions have occurred
yet and every expression has exactly one label that names the component in which it resides.
When a boundary term reduces, an interaction happens and the labels in the result term change
as follows:

o If the sender component supplies a value whose adherence to a client’s type specification
can be fully checked, then the value loses its old labels and comes under full control of the
client.

o If the check has to be partial, because the value is higher-order, there are two possible
outcomes depending on how the value crosses the boundary:

— If the original value crosses over as is, then it keeps its old labels and acquires the labels
of the client. The sender and client share joint responsibility for the value going forward.

— If the client receives a newly created proxy, then the proxy acquires the client’s labels
and the wrapped value retains its old labels. The sender remains responsible for the
wrapped value, and the client has full responsibility for the proxy.

In short, the ownership labels on a value denotes the parties responsible for the behavior of

the value. Storing these labels as a sequence keeps track of the order in which they gained

responsibility for the value.

A semantics that prevents joint-responsibility situations satisfies the goal of complete monitor-
ing; it controls every typed—untyped interaction. When a language is in control, it can present
useful error messages as demonstrated in Section 2.3.1. When a language is not in control, mis-
leading errors can arise due to issues at type boundaries as the example in Section 2.3.2 illustrates.

An ownership label “ names one source-code component. Expressions and values come with at

least one ownership label; for example, (42)% is an integer with one owner “ and (((42)[")61 )[2—
short-hand: (42))%“‘2—is an integer with three owners.

A complete monitoring theorem requires two ingredients that manage these labels. First, a re-
duction relation —" must propagate ownership labels to reflect interactions and checks. Second, a
single-ownership judgment I must test whether every value in an expression has a unique owner
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relative to a map Ly from variables to their binding component. To satisfy complete monitoring,
reduction must preserve single-ownership.
The key single-ownership rules deal with labeled expressions and boundary terms:

Loy - eg Losl1 - e
Lo by I+ (€9)™ Lo; Lo - dyn (o 7o+£1) (€9)"

Values such as ((42))%“ represent a communication that slipped through the run-time checking
protocol and therefore fail to satisfy single ownership.

The definition of complete monitoring states that a labeled reduction relation must preserve the
single-ownership invariant.

Definition Sketch (Complete Monitoring).
For all -; €y I- e, any reduction ey —* e; implies -; €y I e;.

4.4.1  How to Uniformly Equip a Reduction Relation with Labels. In practice, a language comes
with an unlabeled reduction system, and it is up to a researcher to design a lifted relation that
propagates labels without changing the underlying relations. Lifting thus requires insight. If la-
bels do not transfer correctly, then a complete monitoring theorem loses (some of) its meaning.
Similarly, if the behavior of a lifted relation depends on labels, then a theorem about it does not
apply to the original, un-lifted reduction system.

Section 6 present six reduction relations as the semantics of our single mixed-typed syntax.
Each relation needs a lifted version to support an attempt at a complete monitoring theorem.
Normally, the design of any lifted reduction relation is a challenge in itself [22, 23, 51, 76]. Labels
must reflect the communications that arise at run-time, and the possible communications depend
on the unlabeled semantics. The six lifted relations for this article, however, follow a common
pattern. Section 6 therefore presents one lifted relation as an example (Section 6.5) and defers to
the supplementary material for the others.

To give readers an intuition for how each lifted relation comes about, this section presents in-
formal guidelines for managing labels in a path-based way. Each guideline describes one way that
labels may be transferred or dropped during evaluation and comes with an illustrative reduction.

Because labels are an analytical tool that (in principle) apply to any reduction relation, the ex-
amples are posed in terms of a hypothetical reduction relation r over the surface language. To
read an example, assume the unlabeled notion of reduction ere is given and focus on how the
labels (superscripts) change in response. Recall that stat and dyn are boundary terms; they link
two different components, a client context and an enclosed sender expression, via a type.

(G1) If a base value reaches a boundary with a matching base type, then the value drops its
current labels as it crosses the boundary.
Example: (stat (£o« Nat« ;) (0)[251)[0 r (0)%,
Explanation: The value 0 fully matches the type Nat.
(G2) Otherwise, a value that crosses a boundary acquires the label of the new component.
Example:  (stat (fp« Nat< £1)({(-2, 1))[1)[0 r (-2, )70,
Explanation: The pair (-2, 1) does not match the type Nat.

(G3) Every value that flows out of a value vy acquires the labels of vy and the context.

Bxample:  (snd(((), (2))*) " £ (2)0606,

Explanation: The value 2 flows out of the pair (1, 2).
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(G4) Every value that flows into a function v, acquires the context’s label and v,’s reversed
labels.
A4

Example:  (app((Axo. fst x0) % (8, 6))%2) t ((Fst(((8, 6)) 230100y,
Explanation: The argument value (8, 6) is input to the function. The substituted body
flows out of the function, and by G3 acquires the function’s labels.
(G5) A new value produced by a primitive acquires the context’s label.
Example: (sum(2)% (3)‘71)52 r (5)%,
Explanation: Ignoring the labels, §(sum, 2,3) = 5.
(G6) Consecutive equal labels are dropped; they do not represent boundary crossings.
Example:  (0)%ffé = ((0)folrto,
(G7) Labels on an error term are dropped; the path of an error term is not important.
Example: (dyn (€o« Int<« £1)(sum9 (DivErr)fl))KU r DivErr.

Although guideline G4 refers specifically to functions, the concept generalizes to reference cells
and to other values that accept inputs.

To demonstrate how these guidelines influence a lifted reduction relation, the following rules
lift the examples from Section 4.2. Each rule accepts input with any sequence of labels (£), pattern-
matches the important labels, and shuffles labels in accordance with the guidelines. The first rule
(a”) demonstrates a base-type boundary (G1). The second (b’) demonstrates a higher-order bound-
ary (G2); the new guard on the right-hand side implicitly inherits the context label. The third rule
(c’) sends an input (G4) and creates new application and boundary expressions. The fourth rule
(d’) applies G3 for an output:

(stat (£o«Nat< ;) (42)7)" > (42)°, (@)

(dyn (fo (Int = Nat) < £2) (o, (=8)7)7) > )
(G (Ly= (Int=>Nat)« £;) (Axo. ((_8»52»;3)6’4 ,

(a9p(G (lo= (Int = Nat)« £) (60) )" () e ©)
(dyn (ty« Nat 1) (app(en) (sat (6« Int o) (@)ftsrery 4

Z AN z. 7o 203 ,
(check{(NatxNat)} (((=1)™, (=2)")) ) > (((=1) (=2)")) . (d)

4.5 Blame Soundness, Blame Completeness

Blame soundness and blame completeness ask whether a semantics can identify the responsible
parties in the event of a run-time mismatch. A type mismatch occurs when a typed context receives
an unexpected value. The value may be the result of a boundary expression or an elimination form,
and the underlying issue may lie with either the value, the current type expectation, or some prior
communication. To begin debugging, a programmer should know which boundaries the value
traversed; after all, it is these boundaries that imposed the violated obligations. A semantics may
offer information by blaming a set of boundaries. Then the question is whether those boundaries
have any connection to the value at hand.

Suppose that a reduction halts on the value vy and blames the set b; of boundaries. Ownership
labels let us check whether the set b; has anything to do with the boundaries that the lifted seman-
tics recorded, that is, the sequence of labels attached to the v, value. Relative to this source-of-truth,
blame soundness asks whether the names in b; are a subset of the labels. Blame completeness asks
for a superset of the labels.
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A semantics can trivially satisfy blame soundness by reporting an empty set of boundaries.
Conversely, the trivial way to achieve blame completeness is to blame every boundary for every
possible mismatch. The technical challenge is to either satisfy both or find a middle ground.

Definition Sketch (Blame Soundness).
For all reductions that end in a mismatch for value vy blaming boundaries bj, the names in b;
are a subset of the labels on v.

Definition Sketch (Blame Completeness).
For all reductions that end in a mismatch for value vy blaming boundaries bj, the names in by
are a superset of the labels on vy.

4.6 Error Preorder

Whereas the above properties characterize semantics independently of one another, the error pre-
order relation sets up a direct comparison. One semantics is below another in this preorder, written
X <Y, ifit raises errors on at least as many well-formed programs. Put another way, X < Y holds
when X is less permissive than Y is. When two semantics agree about which expressions raise
run-time errors, we use the notation X <~ Y.

Definition Sketch (Error Preorder <).
X < Yiffey —>*Y Err implies e, —>;‘( Err.

Definition Sketch (Error Equivalence =).
X=~YiffX <YandY < X.

The six semantics in this article are especially close to one another. Although they use different
methods for enforcing types, they agree on other behaviors. In particular, these semantics diverge
on the same expressions and compute equivalent values ignoring wrappers. This close correspon-
dence lets us view the error preorder in another way: X < Y holds for these semantics if and only
if Y reduces at least as many expressions to a result value ({ey | 3 vy.€9 —>;‘< v} C {e; | vg.eq —>§
v1}). The supplementary material presents bisimulations that establish the correspondences.

5 TYPE-ENFORCEMENT STRATEGIES

The six chosen type-enforcement strategies share some commonalities and exhibit significant dif-
ferences in philosophy and technicalities. This section supplies the ideas behind each strategy and
serves as a quick, informal reference. Readers who prefer formal definitions may wish to skip
to Section 6.

The overview begins with the strategy that is lowest on the error preorder and ascends to the
most lenient strategy:

Natural : Wrap higher-order values; eagerly check first-order values.

Co-Natural :  Wrap higher-order and first-order values.

Forgetful : Wrap higher-order and first-order values, but drop inner wrappers.

Transient : Never use wrappers; check the shape of all values that appear in typed code.
Amnesic : Check shapes like Transient; use wrappers only to remember boundary types.
Erasure : Never use wrappers; check nothing. Do not enforce static types at run-time.

Three of these strategies have been implemented in full-fledged languages: Natural, Transient,
and Erasure. Two, Co-Natural and Forgetful, originate in prior work [31, 34] and, sitting between
the Natural and Transient strategies, highlight the variety of designs. Finally, Amnesic is a
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Natural strategy. dyn = dynamic to static, stat = static to dynamic
dynintov > - stat Into » -
check that v is an integer check nothing
dyn(moxXn) v > - stat (tpX11) v » -
check that v is a tuple and recursively recursively protect the elements
validate its elements
dyn(np=mn)v > - stat (fp=11) 0 » -
check that v is a function and wrap v to wrap v to validate inputs and protect
protect higher-order inputs and validate higher-order outputs
outputs

Fig. 6. Natural boundary checks (omitting blame).

synthetic semantics, created to demonstrate how the analysis framework can be used to address
problems, specifically the impoverished nature of blame assignment in Transient.

5.1 Natural

Natural strictly enforces the boundaries between typed and untyped code. Every time a typed
context imports an untyped value, the value undergoes a comprehensive check. For first-order
values, this implies a deep traversal of the incoming value. For higher-order values, a full check at
the time of crossing the boundary means creating a wrapper to monitor its future behavior.

Figure 6 describes in more detail the checks that happen when a value reaches a boundary. The
descriptions omit component names and blame to keep the focus on types. These checks either
validate an untyped value entering typed code (left column) or protect a typed value before it
enters untyped code (right column).

5.1.1 Theoretical Costs, Motivation for Alternative Methods. Implementations of Natural have
struggled with the performance overhead of enforcing types [25, 38]. A glance at the sketch above
suggests three sources for this overhead: checking that a value matches a type, the layer of indi-
rection that a wrapper adds, and the allocation cost.

For base types and higher-order types, the cost of checking is presumably low. Testing whether
a value is an integer or a function is a cheap operation in languages that support dynamic typing.
Pairs and other first-order values, however, illustrate the potential for serious overhead. When a
deeply nested pair value reaches a boundary, Natural follows the type to conduct an eager and
comprehensive check whose cost is linear in the size of the type. To check recursive types such as
lists, the cost is linear in the size of the incoming value.

The indirection cost grows in proportion to the number of wrappers on a value. There is no limit
to the number of wrappers in Natural, so this cost can grow without bound. Indeed, the combined
cost of checking and indirection can lead to exponential slowdown even in simple programs [24,
31, 41, 44, 74].

Last, creating a wrapper initializes a data structure. Creating an unbounded number of wrappers
incurs a proportional cost, which may add up to a significant fraction of a program’s running time.

Researchers have addressed these costs to some extent with implementation techniques that
lower the time and space bounds for Natural [6, 14, 24, 31, 41, 44, 63, 66] without changing its
behavior. The next three type-enforcement strategies can, however, offer more drastic improve-
ments. First, the Co-Natural strategy (Section 5.2) reduces the up-front cost of checks by creating
wrappers for pairs. Second, the Forgetful strategy (Section 5.3) reduces indirection by keeping at
most two wrappers on any value and discarding the rest. Third, the Transient strategy (Section 5.4)
removes wrappers altogether by enforcing a weaker type soundness invariant.
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Co-Natural strategy. dyn = dynamic to static, stat = static to dynamic
dynintov > - statIntov » -
check that v is an integer check nothing
dyn (rpXm) v > - stat (tpx11) v » -
check that v is a tuple and wrap v to vali- wrap v to protect its elements
date its elements
dyn(rp=r1)v > - stat (p=>11) v » -
check that v is a function and wrap v to wrap v to validate inputs and protect
protect higher-order inputs and validate higher-order outputs
outputs

Fig. 7. Co-Natural boundary checks.

5.1.2  Origins of the Natural strategy. The name “Natural” is due to Matthews and Findler [48],
who use it to describe a proxy method for transporting untyped functions into a typed context.
Prior works on higher-order contracts [25], remote procedure calls [55], and typed foreign function
interfaces [56] employ a similar type-directed proxy method. In the gradual typing literature, Natu-
ral is also called “guarded” [84], “behavioral” [18], and “deep” [82]. This strategy has an interesting
justification via work on AGT [28]; namely, its checks ensure that a proof of type preservation is
still possible given the untyped values that have arisen at runtime.

5.2 Co-Natural

The Co-Natural strategy checks only the shape of values at a boundary. Instead of eagerly validat-
ing the contents of a data structure, Co-Natural creates a wrapper to perform validation by need.
The cost of checking at a boundary is thereby reduced to the worst-case cost of a shape check. Al-
location and indirection costs may increase, however, because even first-order values are wrapped
in monitors. Figure 7 outlines the strategy.

5.2.1 Origins of the Co-Natural strategy. The Co-Natural strategy introduces a small amount
of laziness. By contrast to Natural, which eagerly validates immutable data structures, Co-Natural
waits until the data structure is accessed to perform a check. The choice is analogous to the ques-
tion of initial algebra versus final algebra semantics for such datatypes [7, 12, 89], hence the prefix
“Co” is a reminder that some checks now happen at an opposite time. Findler et al. [27] imple-
ment exactly the Co-Natural strategy for Racket struct contracts. Other researchers have explored
variations on lazy contracts [17, 20, 21, 42]; for instance, by delaying even shape checks until a
computation depends on the value.

5.3 Forgetful

The goal of Forgetful is to guarantee type soundness and to limit the number of wrappers around
a value. A non-goal is to enforce types in any way that is not strictly required by soundness.
Consequently, types in Forgetful are not compositionally valid claims about code. Typed code can
rely on the static types that it declares, nothing more. Untyped code cannot trust type annotations,
because those types may be forgotten without ever getting checked.

The Forgetful strategy is to keep at most two wrappers around a value. An untyped value gets
one wrapper when it enters a typed context and loses this wrapper upon exit. A typed value gets
a “sticky” inner wrapper the first time it exits typed code and gains a “temporary” outer wrapper
whenever it re-enters a typed context. The sticky wrapper protects the function from bad inputs.
The temporary outer wrappers protect callers. Figure 8 presents an outline of the strategy.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 4. Publication date: February 2023.



Typed-Untyped Interactions: A Comparative Analysis 4:21

Forgetful strategy. dyn = dynamic to static, stat = static to dynamic
dynintov > - stat Into » -
check that v is an integer check nothing
dyn(moxn) v > - stat (tpX11) v » -
check that v is a tuple and wrap v to vali- if v has a wrapper, discard it; otherwise
date its elements wrap v to protect its elements
dyn(np=mn)v > - stat (p=11) 0 » -
check that v is a function and wrap v to if v has a wrapper, discard it; otherwise
protect higher-order inputs and validate wrap v to validate inputs and protect
outputs higher-order outputs

Fig. 8. Forgetful boundary checks.

An untyped function crosses three boundaries:
dyn (C=C) (stat (B=B) (dyn (A= A) Axy. xp))

u > A=A > U > C=C
G(C=0)
Natural  Axp. x G(A=A) G(Gr(l(gA:;B:») A) G(B=8)
" 0- %0 (Axo. Xo) (. 20 G(A=A)
070 (Axo. x0)
G(A=A) G(C=0)
Forgetful Axq. xp (Axo. x0) Axp. X Axo. %o
A typed function crosses three boundaries:
stat (C=C) (dyn (B=B) (stat (A= A) A(xp : A). X))
A=A > U » B=B > U
G(C=0)
G (B=B)
] G(A=A) G (B=B)
Natural  A(xp : A). xo Axo : A). % (/}{((A ?A/?) G(A=A)
Yo : A)- %o Alxo = A). xo
G(B=B)
Forgetful A(xp : A). xo % ((A ?A’s)‘) G(A=A) (i ((A ,:’A’;)
Xo : ) /I(XO . A).XO Xo : . Xo

Fig. 9. Natural vs. Forgetful.

5.3.1 Comparison to Natural. Figure 9 present two examples to demonstrate how Forgetful
manages guard wrappers as compared to the Natural semantics.!! Each example term sends an
identity function across three boundaries. To keep the illustration concise, let A, B, and C be three
types such that the example terms are well-typed. The three boundaries at hand use the function
types A=A, B=B,and C=C.

Since these examples use only function types, they exhibit the same behavior according to Co-Natural as well as Natural.
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These examples are formatted in a tabular layout. Each row of the table corresponds to a type-
enforcement strategy. From left to right, the cells in a row show how a value accumulates guard
wrappers. Each column states whether the current redex is untyped or typed. Untyped columns
have a shaded background. Typed columns come with an expected type. Similarly, the arrows
between the columns are open (I>) when the value passes through a dyn boundary and filled (»)
when the value passes through a stat boundary. The top of each figure presents a full example
term that can be reduced using the semantics in Section 6.

Example: Untyped Identity Function. Figure 9 (top) shows how Natural and Forgetful add wrap-
pers to an untyped function that crosses three boundaries. Natural creates one wrapper for each
boundary. Forgetful creates a temporary wrapper whenever the function enters a typed context
and removes this wrapper when the function exits.

Example: Typed Identity Function. Figure 9 (bottom) shows how Natural and Forgetful add wrap-
pers to a typed function that crosses three boundaries. Natural creates one guard wrapper for each
boundary. Forgetful creates an initial “sticky” guard wrapper when a typed function first exits
typed code. This wrapper enforces the function’s domain type. When the function re-enters typed
code, Forgetful adds a wrapper to record its new type. When it exits typed code, this outer wrapper
gets forgotten.

5.3.2  Origins of the Forgetful strategy. Greenberg [30, 31] introduces forgetful manifest con-
tracts, proves their type soundness, and observes that unlike normal types, forgetful types cannot
support abstraction and information hiding. Castagna and Lanvin [15] present a gradual language
with union and intersection types that has a forgetful semantics to keep the formalism simple
without affecting type soundness.

There are other strategies that limit the number of wrappers on a value without sacrificing type
guarantees [31, 41, 63]. These methods require an implementation of wrappers that can be merged
with one another, whereas Forgetful can treat wrappers as black boxes.

5.4 Transient

The Transient strategy aims to prevent typed code from “going wrong” [49] in the sense of apply-
ing a primitive operation to a value outside its domain. For example, every application (eg e1) in
Transient-typed code can trust that the value of e is a function.

Transient meets this goal without wrappers and without traversing data structures by rewriting
typed code ahead-of-time in a conservative fashion. Every type boundary, every typed elimination
form, and every typed function body gets rewritten to execute a shape check. These shape checks
match the top-level constructor of a value against the top-level constructor of a type. By applying
shape checks wherever an ill-typed value might sneak in, Transient protects typed code against
undefined primitive operations.

Figure 10 describes the checks that happen at a boundary in the Transient semantics. Unlike the
other semantics, however, these boundary checks are only part of the story. Additional dyn-style
checks appear within typed code because of the rewriting pass.

In general, Transient checks add up to a greater number of run-time validation points than those
that arise in a wrapper-based semantics, because every expression in typed code may require a
check. The net cost of these checks, however, may be lower and easier to predict than in higher-
order strategies, because each check has a low cost [29, 37, 62, 86]. Often a tag check suffices,
although unions and other expressive types require a deeper check [36]. Static analysis can further
reduce costs by identifying overly conservative checks [85], and JIT compilers have been effective
at reducing the costs of Transient [29, 46, 62, 85].
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Transient strategy. dyn = dynamic to static, stat = static to dynamic
dynintov > - statIntov » -
check that v is an integer check nothing
dyn (rpX11) v > - stat (toX7) v » -
check that v is a pair check nothing
dyn(p=r1)v > - stat (p=11) v » -
check that v is a function check nothing

Typed code dyn-checks outputs of elimination forms and inputs to functions.

Fig. 10. Transient boundary checks.

Amnesic strategy. dyn = dynamic to static, stat = static to dynamic

dynintov > - statIntv » -
check that v is an integer check nothing

dyn(rpXr) v > - stat (tpxX11) v » -
check that v is a tuple and wrap v to check if v has a guard wrapper, replace with a
its elements trace; otherwise guard v

dyn(p=m)v > - stat (p=>11) v » -
check that v is a function and wrap v to if v has a guard wrapper, replace with a
protect higher-order inputs and validate trace; otherwise guard v
outputs

Fig. 11. Amnesic boundary checks.

5.4.1 Origins of the Transient strategy. Vitousek [83] invented Transient for Reticulated Python.
The name suggests the nature of its run-time checks: Transient type-enforcement enforces local
assumptions in typed code but has no long-lasting ability to influence untyped behaviors [84].
Transient has been adapted to Typed Racket [34, 36] and has inspired closely related approaches
in Grace [29, 62] and in Static Python [46].

5.5 Amnesic

The goal of the Amnesic semantics is to specify basically the same behavior as Transient but
improve the error messages when a type mismatch occurs. Amnesic demonstrates that wrappers
offer more than a way to detect errors; they seem essential for informative errors.

The Amnesic strategy wraps values, discards all but three wrappers, and keeps a record of dis-
carded boundary specifications. To record boundaries, Amnesic uses trace wrappers. When a type
mismatch occurs, Amnesic presents the recorded boundaries to the programmer.

If an untyped function enters a typed component, then Amnesic wraps the function in a guard. If
the function travels back to untyped code, then Amnesic replaces the guard with a trace wrapper
that records two boundaries. Future round-trips extend the trace. Conversely, a typed function
that flows to untyped code and back N+1 times gets three wrappers: an outer guard to protect
its current typed client, a middle trace to record its last N trips, and an inner guard to protect its
body. Figure 11 outlines the strategy.

5.5.1 Comparison to Forgetful and Transient. The design of Amnesic is best understood as a
variation of Transient that accepts a limited number of wrappers per value. Like the Forgetful
semantics, it puts at most two guard wrappers around a value. It also uses at most one trace wrapper
to remember all boundaries that the value has crossed.
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An untyped function crosses three boundaries:
dyn (C=C) (stat (B=B) (dyn (A= A) Axy. xp))

u > A=A > U » C=C
G(A=A) G(C=0)
Forgetful  Axp. xo (xo. Xo) Axo. xo (Axo. x0)
Transient Axg. x Axp. %o Axp. %o Axg. %0
G(C=0)
B=B)
. G(A>A) T {{ ) (B=B),
Amnesic  Axg. x (xo. X0) Ax(Ax:> A) T{ (A=>A) }
0- X0 1
Xo0- X0
A typed function crosses three boundaries:
stat (C=C) (dyn (B=B) (stat (A= A) A(xo : A). x0))
A=A > U » B=B > U
G (B=B)
Forgetful  A(xo : A). %o Cﬁ ((A ?A’;‘) G (A= A) (j ((A ?A’;)
Xo : - X0 /1(3(0 . A).X() Xo : - X0
Transient A(xg : A). xo Alx : A). xo Alxo : A). xo Alxg : A). xo
C=0)
B=B ( ?
Amnesic  A(xp : A). xo GA=A) %((AZ A)) B (B=B) }
A(XO 8 A).XO A(x . A) X G (A=>A)
0" o /1()('0 : A) X0

Fig. 12. Forgetful vs. Transient vs. Amnesic.

The following two examples compare Forgetful, Transient, and Amnesic side-by-side using the
same example terms as in Figure 9. As before, let A= A, B= B, and C = C be three function types
such that the example terms are well-typed.

Example: Untyped Identity Function. Figure 12 (top) shows how Forgetful, Transient, and Am-
nesic manage an untyped function that crosses three boundaries. Forgetful creates a wrapper when
the function enters typed code and removes a wrapper when it leaves. Transient lets the function
cross boundaries without creating wrappers. Amnesic creates the same guard wrappers as Forget-
ful and also uses a trace wrapper to record the obligations from forgotten guards.

Example: Typed Identity Function. Figure 12 (bottom) shows how Forgetful, Transient, and Am-
nesic manage a typed function that crosses three boundaries. Both Forgetful and Amnesic create
a sticky wrapper when the function leaves typed code. When the function re-enters typed code,
they add a second guard wrapper that gets removed on the next exit. Amnesic additionally uses
a trace wrapper to collect all boundaries that the function has crossed. Transient does not create
wrappers.
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Erasure strategy. dyn = dynamic to static, stat = static to dynamic
dynintov > - stat Intov » -
check nothing check nothing
dyn (X)) v > - stat (px1) v » -
check nothing check nothing
dyn(p=11)v > - stat (p=>11) v » -
check nothing check nothing

Fig. 13. Erasure boundary checks.

5.5.2  Theoretical Costs. Amnesic is a theoretical design that may not be realizable in practice. In
particular, an implementation must find an efficient representation of trace wrappers. Trace wrap-
pers track every boundary that a value has crossed. Consequently, they have a space-efficiency
problem similar to the unbounded number of guard wrappers in the Natural and Co-Natural se-
mantics. One simple fix is to settle for worse blame by putting an upper bound on the number of
boundaries that a trace wrapper can hold. Another option is to invent a compression scheme that
exploits redundancies among boundaries to reduce the space needs of a large set.

5.5.3 Origins of the Amnesic strategy. Amnesic is a synthesis of Forgetful and Transient that
demonstrates how our framework can guide the design of new checking strategies [35]. The name
suggests a connection to forgetful and the Greek origin of the second author.

5.6 Erasure

The Erasure strategy is based on a view of types as an optional syntactic artifact. Type annotations
are a structured form of comment that help developers and tools read a codebase. At run-time,
types check nothing (Figure 13). Any value may flow into any context.

Despite the complete lack of type enforcement, the Erasure strategy is widely used (Figure 1)
and has a number of pragmatic benefits. The static type checker can point out logical errors in
type-annotated code. An IDE may use the static types in auto-completion and in refactoring tools.
An implementation does not require any instrumentation to enforce types. Users that are familiar
with the host language do not need to learn a new semantics to understand the behavior of type-
annotated programs. Finally, Erasure programs run as fast as a host-language program.

5.6.1 Origins of the Erasure strategy. Erasure is also known as optional typing and dates back to
the type hints of MACLISP [50] and Common Lisp [71]. StrongTalk is another early and influential
optionally typed language [11]. Models of optional typing exist for JavaScript [8, 16], Lua [47], and
Clojure [10].

6 TECHNICAL DEVELOPMENT

The technical analysis consists of three major pieces: the precise surface syntax (Section 6.1); the
six reduction semantics, each equipped with a typed evaluation syntax (Section 6.2); and a set of
theorems concerning the properties that each semantics satisfies. Figure 14 displays a diagram
that outlines the presentation. As the diagram indicates, four of the semantics share a common
evaluation syntax; the intrinsically first-order transient semantics is separate from those.

Several properties depend on lifted semantics that propagate ownership labels in accordance
with the guidelines from Section 4.4.1. Meaning, the map in Figure 14 is only half of the formal
development. Fach syntax and semantics comes with a parallel, lifted version. Since the differ-
ences are in small details, the section presents only one lifting in full. The others appear in the
supplement.
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Surface syntax __ Evaluation syntaxes , Semantics
section 6.1 section 6.2
(Fe:7) — Higher-order (1 e : 7) _ Natural  (%,%)
section 6.2.1 section 6.5

Co-Natural (>.,».)
section 6.6

I

Forgetful = (>,»)

section 6.7

First-order (-5 e : s) Transient  (>)

section 6.2.2 section 6.8
|, Amnesic NN

section 6.9

Erased (o e : U) Erasure (™)

section 6.2.3 section 6.10

Fig. 14. Map of definitions in Section 6.

6.1 Surface Syntax, Types, and Ownership

Figure 15 presents the syntax and typing judgments for the surface language. Expressions e include
variables, integers, pairs, functions, primitive operations, applications, and boundary expressions.
The primitive operations are pair projections and arithmetic functions; these model interactions
with a runtime system. A boundary expression either embeds a dynamically typed expression in
a statically typed context (dyn) or a typed expression in an untyped context (stat).

A type specification %/q; is either a static type 7 or the symbol U for untyped code. Fine-grained
mixtures of 7 and U, such as IntX U, are not grammatical; the model describes two parallel syn-
taxes that are connected through boundary expressions (Section 4.1). A statically typed expression
eo is one for which the judgment I, + ¢y : 7 holds for some type environment and type. This judg-
ment depends on a standard notion of subtyping (<) that is based on the relation Nat <: Int,
covariant for pairs and function codomains, and contravariant for function domains. The meta-
function A determines the output type of a primitive operation. For example, the sum of two natural
numbers is a natural (A(sum, Nat, Nat) = Nat) but the sum of two integers returns an integer. A
dynamically typed expression e; is one for which I} + e; : U holds for some environment I3.

Every function application and operator application comes with a type specification %/q; for the
expected result. These annotations serve two purposes: to determine the behavior of the Transient
and Amnesic semantics, and to disambiguate statically typed and dynamically typed redexes. An
implementation could reconstruct valid annotations from the term and its context. The model
keeps them explicit to easily formulate examples where subtyping affects behavior; for instance,
the terms unop{Nat} ey and unop{Int} e, may give different results for the same input expression.

Figure 16 augments the surface syntax with ownership labels and introduces a single-owner
ownership consistency relation. These labels record the component from which an expression
originates. The augmented syntax brings one addition, labeled expressions (¢)¢, and a require-
ment that boundary expressions label their inner component. The single-owner consistency judg-
ment (L; ¢ I- e) ensures that every subterm of an expression has a unique owner. This judgment
is parameterized by a mapping from variables to labels (£) and a context label (£). Every variable
reference must occur in a context that matches the map entry for that variable; every labeled ex-
pression must match the context; and every boundary expressions must have a client name that
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Surface Syntax

e =x|i|n|{ee)|Ax.e|AMx:7).¢e| b
app{*/u}e e | unop{*/u}e | binop{*/ytee| b*

(C<1<0)
P(b)

dynbe|statbe { = countable set of names
T = Int|Nat| =71 | X7 { = sequences of names
- D= | (x: o) T
unop = fst | snd i =7
binop = sum | quotient n =N
(xo : To) € FO (xo : ‘[0), FO Fey: T
Io Fxp: 19 Io F np : Nat Ip Fig: Int r()l-/l(xOZTo).e()ZTo:Tl
Tore:ny Tore :m
Iokep: 1o Lhre 7 Tokey:m A(unop, 1) < 19 A(binop, 11, 12) < 19
I + {eg, 1) : ToXT1y Iy + unop{ro} ey : 0 Iy + binop{to} epe1 : 7o
Ibrte: =0 Iorer:my
Ty <' 7o Iorey: U Torey:my T ST
I+ app{ro} €y e1: Ty I+ dyl’l (504 T 51) € : Tp Tore: 1
(X()Zﬂ)er() (XOZﬂ),rol—e()ZU Tore:U Tore U
ToFxo:U Torig: U Io F Axg.e0 : U F0|-<€0,€1>27,l
TorFey: U ToFey: U lore : U ToFey: U lorFe : U
Iy + unop{U} ey : U I + binop{U}eye; : U Io+app{U}ey e : U

ToFey: 1

Iy F stat (504 T0<{/)1) e : ‘U

Fig. 15. Surface syntax and typing rules.

L
matches the context label. For example, the expression (dyn (£p« Nat« £1)(x0)")"* is consistent

under a mapping that contains (x, : £1) and the £, context label. The expression ((42)60)[1, also
written ((42))°% (Figure 18), is inconsistent for any parameters.

Labels correspond one-to-one to component names but come from a distinct set. Thus, the ex-
pression (dyn (£« Nat« £1)(x0)%") contains two names (¢, and ¢;) and one label (1). The label
matches the inner component name, which means that the inner component is responsible for the
variable inside the boundary. The reason for using two distinct sets is to keep our analysis frame-
work separate from the semantics that it analyzes. Whereas a semantics can freely inspect and
manipulate component names (which would be realized as symbols or addresses in an implementa-
tion), it cannot use labels to determine its behavior (labels would not be part of an implementation).

Last, a surface expression is well-formed (e : ?/¢; wf) if it satisfies a typing judgment—either
static or dynamic—and single-owner consistency under some labeling and context label. The the-
orems below all require well-formed expressions (though some ignore the ownership labels).
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Ownership Syntax e: g wf
| p Syntax |

e =x|i|n|(ee)|Ax.e| Mx:1).e| (o) : 7o wf
app{*/u} e e | unop{*/u} e | binop{*/u}ee | if ;6o I (e0)? and - F ¢ : 7
dynb (e) | stat b (e)’ | (e) (e0) : U wf
¢ = countable set if 560 I () and - F eg : U
L= |(x:0),L
(xo0: €o) € Lo (x0 : €0), Lo; €o - € (x0 2 €o), Los to I+ €o
Lo; € IF xo Lo 6o I+ i Loy F AX(). €o Lo € - A(XO : T()). €0
Loty I+ eg Loslo I+ e Lo; €y - eg Lo; €y - eg Loty I e
Lo; €y I+ {eg, 1) Lo; €o + unop{%/e1} eo Lo; €o I+ binop{T/q;} e €1
Lol I+ e Lo € IF e Loty I ey Loty - ey
L();fo I+ app{T/ru} €p e1 L();f() I+ dyn (504 To 51) (60)[1 L();f() I stat (504 Tp< 51) (60)61
Los €y I eg

L{);go I+ (60)[0

Fig. 16. Ownership syntax and single-owner consistency.

6.2 Three Evaluation Syntaxes

Each semantics requires a unique evaluation syntax, but overlaps among these six languages
motivate three common platforms. A higher-order evaluation syntax supports type-enforcement
strategies that require wrappers. A first-order syntax, with simple checks rather than wrappers,
supports Transient. And an erased syntax supports the compilation of typed and untyped code to
a common untyped host.

Figure 17 defines common aspects of the evaluation syntax. These include errors Err, shapes (or,
constructors) s, evaluation contexts, and evaluation metafunctions.

The evaluation syntax extends the surface syntax in a technical sense; namely, the grammar
presented in Figure 17 would be complete if it included a copy of the grammar from Figure 15.
Every occurrence of the word “extends” in a figure has a similar meaning. For example, the typing
judgments in Figure 19 would be complete if the judgment rules from Figure 15 were copied in.

A program evaluation may signal four kinds of errors.

e A dynamic tag error (TagErr) occurs when an elimination form is applied to a mis-shaped
input. For example, the first projection of an integer signals a tag error.

e An invariant error (InvariantErr) occurs when the shape of a typed redex contradicts static
typing. A “tag error” in typed code is one way to reach an invariant error. A type-sound
system eliminates such contradictions.

e A division-by-zero error (DivErr) may be raised by an application of the quotient primitive.
In a full language, there will be many additional primitive errors.

e Aboundary error (BoundaryErr (b*, v)) reports a mismatch between two components. The
sender provides the enclosed value; the client rejects it. The set of witness boundaries sug-
gests potential sources for the fault; intuitively, this set should include the client-sender
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’ Common Evaluation Syntax ‘ extends Surface Syntax

Err = TagErr | InvariantErr | DivErr | BoundaryErr (b, v)

e = ...|Err

s = Int | Nat | Pair | Fun

E = [11app{Ta} Ee | app{Tu} 0 E | (E,e) | (0.E) | unop{T/as} E | binop{Tfes} E |
binop{*/¢;} vE | dyn b E | stat b E

[70] 8(unop, (v, v1))

Nat if 7o = Nat

] Int if 7g = Int
~ ] Pair ifry € TXT
Fun frper=r

shape-match (so, vp)
True
if so = Natand vy € n
orsg = Intand vy € i
or s = Pair and
vy € {(v,v) U
(G (b« (rxT)<l) V)
= or sy = Fun and
vo € (Ax.e)U(A(x: 7). e)U
(G(«(r=1)0) )
shape-match (so, v1)
if vo=Tb;u
False
otherwise

vy if unop = fst{%¢;}
vy if unop = snd{%/¢;}

5(binop, ig, l])

ip + i1
if binop = sum{%/¢;}
DivErr
if binop = quotient{%/¢;}
andi; =0
Lio/i1]
if binop = quotient{%/¢;}
and iy #0

Fig. 17. Common evaluation syntax and metafunctions.

4:29

boundary. The error BoundaryErr ({(£o« 70« €1)},v9), for example, says that a mismatch
between value v, and type 7y prevented the value sent by the £; component from entering

the £, component.

Remark: The semantics in this article all blame a set of boundaries to share a common
evaluation syntax. Many semantics can, however, provide more precise blame. Natural and
Co-Natural can blame a single boundary; Forgetful and Amnesic can blame a sequence.
The supplementary material presents these alternatives. In the supplement, it is therefore

crucial that a lifted reduction relation tracks sequences of labels rather than sets.

The four shapes, s, correspond both to type constructors and to value constructors. Half of the
correpondence is defined by the |- | metafunction, which maps a type to a shape. The shape-match
metafunction is the other half; it checks the top-level shape of a value.

Both metafunctions use an - € - judgment, which holds if a value is a member of a set. The
claim v, € n, for example, holds when the value v, is a member of the set of natural numbers. By
convention, a variable without a subscript refers to a set and a term containing a set describes
a comprehension. The term (A(x : 7). v), for instance, describes the set {(A(x; : 7j). vg) | x; € x A

7j € T A v € v} of all typed functions that return a value (rather than an expression).

The shape-match metafunction also makes reference to two value constructors unique to
the higher-order evaluation syntax: guard (G bv) and trace (T b*v) wrappers. A guard has
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rev(by) rev(€y- -+ €n)
= {(tyx1olo) | (bo=104 1) € bé} = tlp-lo
senders(by) owners(vg)
= {t1 | (bo«mo< 1) € by} {0} U owners(vy) if vy = (v7)"
=1 owners(v;) if vy = T by vy
{} otherwise

Abbreviation: (e)’" i = e, = o1 =(---(eg)ln--)"

Fig. 18. Metafunctions for boundaries and labels.

Higher-Order Evaluation Syntax ‘ extends Common Evaluation Syntax

e = ...|traceb®e

v=1i|ln|{vv)|Ax.e|Ax:7).e|G{l«t=10)v | G(lrXT<l) v | Tb*0V

I' 1 e:7|extends I' ke : 7 to allow guard wrappers and errors

Toriv: U

Io Hq G(f(r T 51) Vo : Tp Iy F1 Err: 7y

'ty e: Ulextends I' e : U to allow guard wrappers, trace wrappers, and errors

To H1 00 : 10 Tor1v9:U
Ih Hq 6(5041'0451) vy U Io Hq Tbg vy U IoHq Err: U

L;C I e |extends L;{ I e to allow guard wrappers and trace wrappers

Lo; €1 F vy Lo; €0 I+ vy
Loy by + G (LoTo+£1) (v9)" Lo; o - T by v

Fig. 19. Higher-order syntax, typing rules, and ownership consistency.

a shape determined by the type in its boundary. A trace is metadata, so shape-match looks
past it. Section 4.2 informally justifies the design. Figure 19 formally introduces these wrapper
values.

The final components of Figure 17 are the § metafunctions. These provide a standard and partial
specification of the primitive operations.

Figure 18 defines additional metafunctions for boundaries and ownership labels. For boundaries,
rev flips every client and sender name in a set of specifications. Both Transient and Amnesic
reverse boundaries at function calls. The senders metafunction extracts the sender names from
the right-hand side of every boundary specification in a set. For labels, rev reverses a sequence.
The owners metafunction collects the labels around an unlabeled value stripped of any trace-

wrapper metadata. Guard wrappers are not stripped, because they represent boundaries. Last, the
abbreviation ((-))" captures a list of boundaries. The term (4)%% is short for ((4)‘;")61 and ((5)%

matches 5 with £, bound to the empty list.

6.2.1 Higher-order Syntax, Path-based Ownership Consistency. The higher-order evaluation
syntax (Figure 19) introduces the two wrapper values described in Section 4.2. A guard wrapper
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(G (£« 7« £)v) represents a boundary between two components.'> A trace wrapper (T b*v)
attaches metadata to a value.

Type-enforcement strategies typically use guard wrappers to constrain the behavior of a value.
For example, the Co-Natural semantics wraps any pair that crosses a boundary with a guard;
this wrapper validates the elements of the pair upon future projections. Trace wrappers do not
constrain behavior. A traced value simply comes with extra information; namely, a collection of
the boundaries that the value has previously crossed.

The higher-order typing judgments, I" ;1 e : T/q;, extend the surface typing judgments with rules
for wrappers and errors. Guard wrappers may appear in both typed and untyped code; the rules
in each case mirror those for boundary expressions. Trace wrappers may only appear in untyped
code; this restriction simplifies the Amnesic semantics (Figure 28). A traced expression is well-
formed iff the enclosed value is well-formed. An error term is well-typed in any context.

Figure 19 also extends the single-owner consistency judgment to handle wrapped values. For
a guard wrapper, the outer client name must match the context and the enclosed value must be
single-owner consistent with the inner sender name. For a trace wrapper, the inner value must be
single-owner consistent relative to the context label.

6.2.2  First-order Syntax. The first-order syntax (Figure 20) supports typed—untyped interaction
without proxy wrappers. A new expression form, (check{?/¢;} eg p,), represents a shape check. The
intended meaning is that the given type must match the value of the enclosed expression. If not,
then the location p, may be the source of the fault. Locations are names for the pairs and functions
in a program. These names map to pre-values in a heap () and to sets of boundaries in a blame
map (B). Pairs and functions are now second-class pre-values (w) that must be allocated before
they may be used.

Three meta-functions define heap operations: -(-), -[- = -], and -[- U -]. The first gets an item
from a finite map, the second replaces a blame heap entry, and the third extends a blame heap
entry. Because maps are sets, set union suffices to add new entries.

The first-order typing judgments state basic invariants. For statically typed expressions, the
judgment checks the top-level shape (s) of an expression and the well-formedness of any subex-
pressions. This judgment depends on a subtyping judgment for shapes, which is reflexive, allows
Nat <: Int, and nothing more. For dynamically typed expressions, the judgment checks well-
formedness. Both judgments rely on a store typing environment (7) to describe heap-allocated
values. Store types must be consistent with the actual values on the heap, a standard technical
device that is spelled out in the supplement.

Two aspects of the first-order typing judgments deserve special mention. First, untyped func-
tions may appear in typed contexts and typed functions may appear in untyped contexts. This
behavior is an essential aspect of the first-order language, which allows typed-untyped interop-
erability and does not use wrappers to enforce a separation between the two worlds. Second,
shape-check expressions are allowed in typed and untyped contexts. This is a technical device.
In particular, checks arise after a function call to separate the substituted body from the calling
context, and this separation allows the typing judgments to switch from static mode to dynamic
mode as needed.

6.2.3 Erased Syntax. Figure 21 defines an evaluation syntax for type-erased programs. Expres-
sions include error terms. The typing judgment holds for any expression without free variables.
Aside from the type annotations left over from the surface syntax, which could be removed with
a translation step, the result is a conventional dynamically typed language.

12Correction note: our prior work uses the name monitor wrapper and value constructor mon [34, 35]. The name guard
wrapper better matches earlier work [23, 76], in which mon creates an expression and G creates a wrapper.
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’ First-Order Evaluation Syntax ‘ extends Common Evaluation Syntax

e = ...|p|check{%y}ep Ho(vo) .

v =iln|p :{wo if vy € pand (vy — wy) € Hy
w = Ax.e|Ax:7).e| (v,0V) vy ifvy ¢ p

p = countable set of heap locations Bo(wo)

H = P((p— w)) _| by ifv € pand (v = by) € By
B = P((p— b)) 0  otherwise

T = |(p:9).7T Byfoy > b

{vo = b3} U (By \ (v = bY))

= ifvy € pand (vy - b}) € By
By otherwise

Bo[vg U by] = Byl[vg > by U By(vy)]

(po : s0) € Ty (x0 : 10) € T
To;To Fs po = o To; To s xo : L 70] To; To Fs o = Int To;To ks no = Nat
To; (0 = U), Ty ks e = U To; (30 = 70), Tp Fs €0 = S To;To Fs €0 : So To;To Fs € : 81
‘ZZ);FO kg /1}(0.60 : Fun %;ro ks A(XO : Tg).eo : Fun ‘ZE);FO kg <€0,61> : Pair
To; Ty +s €o : Fun To;To ks €1 2 So To; Ty +s € : Pair
To;To ks Err:sp To;To ks app{7o} eo €1 : L70] To; To ks unop{zo} o : [ 70]
To;To ks e = o To;To ks e : 51
A(binop, s, s1) = 11 <71y To:Torey: U
To; T +s binop{zo} ep €1 : [ 70] To;To + dyn (bo<o< 1) € = [70]
To;To Fs €0 : 81
%;r() Fs €9 : U %;ro Fs €0 So s1 <58
To; To +s check{zo} eo po : [ 70] To; To +s check{zo} eg po : [ 70] To;To Fs € : o
selected rules that handle references, variables, boundaries, and checks
(po : s0) € Ty (xo: U) €T To;To ks e = [ 7o)
%;FO Fs Po ¢ u %;r() ks Xo : U %;r() ¢ stat (504 To<fl) e : ‘U
To;To ks eo - U To;To +s g : so
To; To s check{U} eg po : U To; To s check{U} eg po : U

Fig. 20. First-order syntax and typing rules.

6.3 Properties of Interest

Type soundness guarantees that the evaluation of a well-formed expression (1) cannot end in an
invariant error and (2) preserves an evaluation-language image of the surface type. Note that an
invariant error captures the classic idea of an evaluation going wrong [49].
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‘ Erased Evaluation Syntax ‘ extends Common Evaluation Syntax

v=1i|n|{(vv)|Ax.e|A(x:1).e

selected rules that handle variables, functions, and boundaries

(%0 : T/u) € To (x0: U)To ko e+ U (x0:70),To ko eo = U

ToFoxo:U Io ko AXO. e : ‘U Io Fo /‘l(X() : T()). e : ‘U

Toroeo: U Toroer: U IoFoeo: U Toroe: U
Io ko app{‘(',l} eper: U Iy ko dyl"l byey: U Iy ko stat by ey : U

Fig. 21. Erased evaluation syntax and typing.

Definition 6.1 (F-type Soundness). Let F map surface types to evaluation types. A semantics X
satisfies TS (F) if for all ey : 7/¢; wf one of the following holds:

* ¢ —) voand kr v : F(*/q),
° ¢ —>)*( {TagErr, DivErr} U BoundaryErr (b*, v),
o ¢odiverges.

Three surface-to-evaluation maps (F) suffice for the evaluation languages: an identity map 1, a
type-shape map s that extends the metafunction from Figure 17, and a constant map 0:

i T =
1Y) = Tas s(Tq)) = { L‘Zioj ;f 4;11 _ ;Zol,

Complete monitoring guarantees that a semantics can enforce types for all interactions between
components. The definition of “all interactions” comes from the propagation guidelines (Sec-
tion 4.4.1). In particular, the labels on a value enumerate all partially responsible components.
Relative to this specification, a reduction that preserves single-owner consistency (I, Figure 16)
ensures that a value cannot enter a new component without a full type check or a wrapper.

0(*/z) = U.

Definition 6.2 (Complete Monitoring). A semantics X satisfies CM if for all (e0)’ : T/g; wf and all
e such that ey —>)*( e1, the contractum is single-owner consistent: £, I e;.

Blame soundness and blame completeness measure the quality of error messages relative to a
specification of the components that handled a value during an evaluation. A blame-sound seman-
tics reports a subset of the true senders, though it may miss some or even all. A blame-complete
semantics reports all the true senders, though it may also report irrelevant extras. A sound and
complete semantics reports exactly the responsible components.

The path-based definitions for blame soundness and blame completeness rely on the propaga-
tion guidelines from Section 4.4.1. Relative to these guidelines, the definitions relate the sender
names in a set of boundaries (Figure 18) to the true owners of the mismatched value.

Definition 6.3 (Path-based Blame Soundness and Blame Completeness). For all well-formed e such
that e, —>)*< BoundaryErr (b;, vo):
o X satisfies BS iff senders (by) C owners (vy),
e X satisfies BC iff senders (by) 2 owners (vg).

Last, the error preorder relation allows direct behavioral comparisons. If X and Y represent two
strategies for type enforcement, then X < Y states that the X semantics is less permissive than the
Y semantics (or, as Section 4.6 notes, Y reduces at least as many expressions to a value as X).
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unop{ry} vy > InvariantErr unop{ U} vy » TagErr

ifvg ¢ (G (£«(rXxT1)<{) V) ifvg & (G ({«(rx1)<l) V)

and d(unop, vy) is undefined and &(unop, vy) is undefined
unop{to} vo > S(unop, vy) unop{ U} vy > S(unop, vy)

if 8(unop, vy) is defined if 8(unop, vy) is defined
binop{to} vo vy > InvariantErr binop{U} vy vy » TagErr

if 5(binop, vy, v1) is undefined if §(binop, vy, v1) is undefined
binop{ro} vov1 > d(binop, vy, v1) binop{ U} vy v; » (binop, vy, v1)

if 8(binop, vy, v1) is defined if 8(binop, vy, v1) is defined
app{ro}vov; > InvariantErr app{U} vy vy » TagErr

ifvg ¢ (Mx:7).e)U ifvy ¢ (Ax.e) U

(G U«(r=1)<0)v) (G(l«(r=1)<0) V)

app{ro}vo v1 B> eplxovi] app{U} vy v; » eglxo 1]

ifv() = (A(X() : Tl). e()) ion = (/1}60. 80)

Fig. 22. Common notions of reduction for Natural, Co-Natural, Forgetful, and Amnesic.

Definition 6.4 (Error Preorder). X <Y iff e —>:‘( Erro implies e —>;“( Err; for all well-formed
expressions e.

If two semantics lie below one another according to the error preorder, then they report type
mismatches on exactly the same well-formed expressions.

Definition 6.5 (Error Equivalence). X ~ Y iff X S Yand Y S X.

6.4 Common Higher-order Notions of Reduction

Four of the semantics build on the higher-order evaluation syntax. In redexes that do not mix
typed and untyped values, these semantics share the common behavior specified in Figure 22. The
rules for typed code (r>) handle elimination forms for unwrapped values and raise an invariant
error (InvariantErr) for invalid input. Type soundness ensures that such errors do not occur. The
rules for untyped code (») raise a tag error for a malformed redex. Later definitions, for example,
Figure 23, combine these relations (>>, ») with others to define a semantics.

6.5 Natural and Its Properties

Figure 23 presents the values and key reduction rules for the Natural semantics. Conventional
reductions handle primitives and unwrapped functions (» and >, Figure 22).

A successful Natural reduction yields either an unwrapped value or a guard-wrapped function.
Guards arise when a function value reaches a function-type boundary. Thus, the possible wrapped
values are drawn from the following two sets:

vs =G (l< (t=71)< {) (Ax. €), Vg =G (< (t=1)« ) (AMx:7).e),
| G (6« (t=71)« ) vy, | G (6« (t=71)« £)vs.

The presented reduction rules are those relevant to the Natural strategy for enforcing static
types. When a dynamically typed value reaches a typed context (dyn), Natural checks the shape
of the value against the type. If the type and value match, then Natural wraps functions and recur-
sively checks the elements of a pair. Otherwise, Natural raises an error at the current boundary.
When a wrapped function receives an argument, Natural creates two new boundaries: one to pro-
tect the input to the inner, untyped function and one to validate the result.
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Natural Syntax | extends Higher-Order Evaluation Syntax
v=1i|ln| (o) Ax.e|Ax:1).e| G{l«tD1<0)V

ed>, e

H

dyn (£0<T0$T1<£1) Vo I>N G(f(r ’['()ﬂ’[1<fl) Vo
if shape-match (| 7o = 11], vo)

dyn (o« o X114 €1) (V9, V1) > (dyn bg vo, dyn by v1)
if shape-match (| 7oX11], (vo, v1))
where bo = (f()< To< 51) and b1 = (504 T1<€1)

dyl’] (504 T f]) ip I>N 1o
if shape-match (| 7o, io)
dyn (£o« o< €1) vo >, BoundaryErr ({(£o« 70+ (1)}, vo)

if ~shape-match (|70, vo)

app{7o} (G (lo«r1 =12 €1) o) v1 By dyn by (app{U} vy (stat by v1))
where by = (£y<«12<¢1) and by = (£1<11<£y)

stat (5047,'0:}7,'1451) Vo >N G(£0<T0:>T1<€1) Vo
if shape-match (| o], vo)
stat (£o« 19X 11+ ¢1) (Vg, V1) > (stat by vy, stat by v;)

if shape-match (| 7o X1 ], {vo, v1))
where b() = (€0< To< 51) and bl = (504 T1<€1)

stat (€0< T 51) ip >N 1o
if shape-match (| o], io)
stat (€g« 1< {1) vy >, InvariantErr

if =shape-match (| o], vo)

app{U} (G (b« o= 11 €1) Vo) V1 »y stat by (app{r1}vo (dyn by 1))
where b() = (€0< T 51) and b1 = (514 T0<€0)

e —>r*\‘ e | is the transitive, reflexive, compatible (with respect to evaluation contexts E, figure 17)
closure of the relation J{m, ¥, », >}

Fig. 23. Natural notions of reduction.

Reduction in dynamically typed code (»,) follows a dual strategy. The rules for stat boundaries
wrap functions and recursively protect the contents of pairs. The application of a wrapped function
creates boundaries to validate the input to a typed function and to protect the result.

Unsurprisingly, this checking protocol ensures the validity of types in typed code and the well-
formedness of expressions in untyped code. The Natural approach additionally keeps boundary
types honest throughout the execution.

THEOREM 6.6. Natural satisfies TS (1).

Proor SKETCH. By progress and preservation lemmas for the higher-order typing judgment (+4).
For example, if an untyped pair reaches a boundary, then a typed step (I ) makes progress to either
a new pair or to an error. In the former case, the new pair contains two boundary expressions:

dyn (b« ToXT14 €1) (v, V1) D3 (dyn ({o<« 9« €1) vy, dyn (b« 714 £1) v1).
The typing rules for pairs and for dyn boundaries validate the type of the result.
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(e)¢ Do ()¢ | lifted version of By

= £
(unop{zo} (v0)") Do (InvariantErr)®
if v ¢ (v) and S(unop, vy) is undefined
A -
(unop{ro} (@0)™) b (B(unop, vy

if 8(unop, vy) is defined
(binop{zo} (vo)™ (v1)" > (InvariantErr)®
ifvy ¢ (v)’ and vy ¢ (v)¢ and d(binop, vy, v1) is undefined

(binop{zo} (vo)™ (v1)""
if 8(binop, vy, v1) is defined

o
)

ly
) > (8(binop, vy, v1))"

(app{n} ((UO))FO 01)60 Do (InvariantErr)®
if vy ¢ (v)° U (Ax.e) U(G b v)
Tolo
)

(app {0} (A 7). ) w1)” < (eolxo — (@) @)

- s
(app{n} (G (Goerr =10 l1) (@0)2) " 01) 2

¢ rev({-’) & FO&
(dyn by (app{ U} vo (stat by (01)""") )
where b() = (fo‘ To< fl) and bl = (€1< T1<€0)

(dyn (fo= (= 1) () (@)™) oo (G (o (r= )+ 01) ()

if shape-match (| 7o = 1], vo)

- - > 2
(Ayn (G« zoxrie 1) (Go, ) e ((dyn by (@0) . dyn by (2)))
if shape-match (| 79X 11 ], (vo, v1)) and by = (€o« 19« £1) and by = (Lo« 11<41)

(dyn (fo« 1o+ t1) ((io))zo
if shape-match (| 1], iy)

(dyn (fgm+ 1) (o)) o (BoundaryErr (fo= ). (20) ™)
if =shape-match (|79, vo)

v

0,
)

) e (i)

Fig. 24. Natural labeled notion of reduction for typed code.

A second interesting case is for the rule that applies a wrapped function in a typed context:

app{no} (G (o« (m=12)« {1) vo) 1 By

dyn (€« T2« £1)(app{U} vy (stat (£1« 71« £2) v1)).
If the redex is well-typed, then v; has type 7; and the inner stat boundary is well-typed. Similar
reasoning for v, shows that the untyped application in the result is well-typed. Thus, the dyn
boundary has type 7;, which, by the types on the redex, is a subtype of z. O

Figure 24 presents a labeled variant of the Natural semantics for typed code. Ignoring labels, the
rules in this figure are a combination of those in Figures 22 and 23. The labels reflect communica-
tions and changes of ownership. The labeled rules for untyped code are similar and appear in the
supplementary material.

THEOREM 6.7. Natural satisfies CM.
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ProoFr SKETCH. By showing that a lifted variant of the —>”"\J relation preserves single-owner
consistency (). Full lifted rules for Natural appear in the supplementary material, but one can
derive the rules by applying the guidelines from Section 4.4.1. For example, consider the » rule,
which wraps a function. The lifted version (>N) accepts a term with arbitrary ownership labels

and propagates these labels to the result:

> (G (le (m=m)« () (@)

)

(stat (Co= (=11)= £1) (v0)2)
if shape-match (L7o= 1], vo).-

If the redex satisfies single-owner consistency, then the context label matches the client name
(€5 = €) and the labels inside the boundary match the sender name (Ez = {,---{1). Under these
premises, the result also satisfies single-owner consistency.

As a second example, consider the lifted rule that applies a wrapped function:

- 4y
(applro} (G (bo= (=)< &) (@0)) "01) >
£, U3t

(dyn (Lo« 72 €1)(app{ U} vy(stat (1 114 £o)(o) "¢ @))7)

If the redex satisfies single-owner consistency, then {5 = l3 = ¢y and ¢, = {,. Hence, both se-
quences of labels in the result contain nothing but the context label ¢;. ]

Blame soundness and completeness ask whether Natural identifies the components responsi-
ble for a boundary error. Here, complete monitoring helps to simplify the questions. Specifically,
complete monitoring implies that the Natural semantics detects every mismatch between two
components—either immediately, or as soon as a function computes an incorrect result. Hence,
every mismatch is due to a single boundary.

LEMMA 6.8. If e is well-formed and e -\ BoundaryErr (b;, vy), then senders (by) =owners (vy)
and furthermore b; contains exactly one boundary specification.

Proor. The sole Natural rule that detects a mismatch blames a single boundary:
(eo)f0 —>L E[dyn (£1« 19« £3) vo]
N

BoundaryErr ({(€1« 19« £2)},vp).

Thus, by = {({1« 79« {3)} and senders (b;) = {{2}. This boundary is the correct one to blame only if
it matches the true owner of the value; that is, owners (vg) = {{»}. Complete monitoring guarantees
a match via €y I- E[dyn ({1« 19« £5)(v9)"]. O

COROLLARY 6.9. Natural satisfies BS and BC.

6.6 Co-Natural and Its Properties

Figure 25 presents the Co-Natural strategy. Co-Natural is a lazier variant of the Natural approach.
Instead of eagerly validating pairs at a boundary, Co-Natural creates a wrapper to delay element-
checks until they are needed.

Relative to Natural, there are two changes in the notions of reduction. First, the rules for a pair
value at a pair-type boundary create guards. Second, new projection rules handle guarded pairs;
these rules make a new boundary to validate the projected element.

Co-Natural still satisfies both a strong type soundness theorem and complete monitoring. Blame
soundness and blame completeness follow from complete monitoring. Nevertheless, Co-Natural
and Natural can behave differently.
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’ Co-Natural Syntax ‘ extends Higher-Order Evaluation Syntax
v=1i|ln|{vv)|Ax.e|AMx:7).e| G{l«t=1l)v | G(l<TXT<l)V

€>C€

dyn (€0< T0<€1) Vo DC G(€0< T0<€1) Vo
if shape-match (| 7o), vo) and vy € (v,v) U (Ax.e) U(G b v)
dyn (f()< To< 51) i I>C ip
if shape-match (| 7o, io)
dyn (£p< o< €1) vo > BoundaryErr ({(£o« 70+ £1)}, vo)

if ~shape-match (|.7], vo)

fst{7o} (G (Lo« 11 X124 1) V) b dyn by (fst{U} v)
where by = ({y<11<€1)

Snd{‘[()} (G (504 T]XT2451) U()) I>C dyn by (snd{‘ll} U())
where by = ({y«12<{1)

app{ro} (G (bo«71=124{1) v9) v1 B dyn by (app{U} vy (stat b; vy))
where by = ({y«12<€1) and by = (£1«11<£y)

CPCE

stat (£g«1o<£1) Vg > G (lo<to+t1) Vo
if shape-match (| 7o), vo) and vy € (v, v) U (A(x : 7). e) U (G b v)
stat (€o«19<{1) ip > o
if shape-match (| o], ip)
stat (€g« 1< 1) vy ». InvariantErr
if =shape-match (| 7o), vo)
fst{U} (G (Lo« o X114 1) Vy) ». stat by (fst{zo} vo)

where by = (£o«19<{1)
snd{U} (G (€y«ToX 11+ €1) Vy) > stat by (snd{z1} vo)
where by = (€o«11<{1)

app{U} (G (bo«mo=11+{1) vo) v1 P stat by (app{r1}vo (dyn by v1))
where by = ({y<11<€1) and by = (£1«19<ty)

closure of the relation U{>, »., >, >}
Fig. 25. Co-Natural notions of reduction.

THEOREM 6.10. Co-Natural satisfies TS (1).

B. Greenman et al.

e —>*C e | is the transitive, reflexive, compatible (with respect to evaluation contexts E, figure 17)

ProoF SKETCH. By progress and preservation lemmas for the higher-order typing judgment (-1).
Many of the proof cases are similar to cases for Natural. One case unique to Co-Natural is for pairs

that cross a boundary:
dyl’l (€0< ToX T« 51)(00,01) [>C G(€0< ToX T« fl)<vo,l)1>.

The typing rule for guard wrappers validates the result.

THEOREM 6.11. Co-Natural satisfies CM.

Proor SKETCH. By preservation of single-owner consistency for the lifted —. relation. For ex-
ample, consider the lifted rule that extracts the first element from a wrapped, untyped pair:
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PR R
(fst{U} (G (bow moXTia (1) (v0) ™) ") Wz (stat (Lo Tow (1) (Fst{zo} (v0)™) )
If the redex satisfies single-owner consistency, then £, = {73 ={lyand {; = {,. O
THEOREM 6.12. Co-Natural satisfies BS and BC.
Proor SKETCH. By the same line of reasoning that supports Natural; refer to Lemma 6.8. O

THEOREM 6.13. N < C.

PROOF SKETCH. By a stuttering simulation between Natural and Co-Natural. Natural takes
additional steps when a pair reaches a boundary, because it immediately checks the contents,
whereas Co-Natural creates a guard wrapper. Co-Natural takes additional steps when eliminating
a wrapped pair. The supplement defines the simulation relation. O

THEOREM 6.14. C £ N.

Proor SKETCH. The pair wrappers in Co-Natural imply C £ N. Consider a statically typed ex-
pression that imports an untyped pair with an ill-typed first element:

dyn (£p« NatxNat« £1)(-2,2).

Natural detects the mismatch at the boundary, but Co-Natural will raise an error only if the first
element is accessed. ]

6.7 Forgetful and Its Properties

The Forgetful semantics (Figure 26) creates wrappers to enforce pair and function types, but strictly
limits the number of wrappers on any one value. An untyped value acquires at most one wrapper.
A typed value acquires at most two wrappers: one to protect itself from inputs and a second to
protect its current client:

vs = Gb{(v,v) vg = Gb{(v,v)
| GbAx.e | GbA(x:1).e
| Gb (G b{v,v))
| Gb(GbA(x:1).e)

Forgetful enforces this two-wrapper limit by removing the outer wrapper of any guarded value
that flows to untyped code. An untyped-to-typed boundary always makes a new wrapper, but
these wrappers do not accumulate, because a value cannot enter typed code twice in a row; it
must first exit typed code and lose one wrapper.

Removing outer wrappers does not affect the type soundness of untyped code; all well-formed
values match U, with or without wrappers. Type soundness for typed code is guaranteed by
the temporary outer wrappers. Complete monitoring is lost, however, because the removal of
a wrapper creates a joint-ownership situation. When a type mismatch occurs, Forgetful blames
one boundary. Though sound, this one boundary is generally not enough information to find the
source of the problem; in other words, Forgetful fails to satisfy blame completeness. Forgetful
lies above Co-Natural and Natural in the error preorder, because it fails to enforce certain type
obligations.

THEOREM 6.15. Forgetful satisfies TS (1).

ProOF SKETCH. By progress and preservation lemmas for the higher-order typing judgment
(F1). The most interesting proof case shows that dropping a guard wrapper does not break type
preservation. Suppose that a pair vy with static type IntXInt crosses two boundaries and re-enters
typed code at a different type:
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’ Forgetful Syntax ‘ extends Higher-Order Evaluation Syntax
v=iln|(wv)|Ax.e|Mx:1).e| GUl<t=1<l)v | G(lTXT<l)V

€l>F€

dyn (£o<10+{1) Vo > G (bot0+{1) Vo
if shape-match (| 9], vo) and vy € (v,v) U (Ax.e) U (G b v)

dyn (f0< To< f]) io [>F iO
if shape-match (|70, io)

dyn (€y« 1< €1) v > BoundaryErr ({(£o« 10+ 1)}, vo)
if ~shape-match (| 7o), vo)

fSt{To}(G (504 T1 XTp< 51) ’U()) I>F dyn by (fst{’u} Uo)

where by = ((o«11<{1)

snd{zo} (G (€o« 11 X124 L1) V) > dyn by (snd{U} vo)
where by = (£o«1p<{1)

app{no} (G (o<1 = 12+01) vo) v1 B dyn by (app{U} vy (stat by v1))
where b() = (50< To< 51) and b1 = (514 T1< f())

stat (€0< T0<€1) Vo PF G(€0< T0<€1) Vo
if shape-match (| 7o), vp) and vy € (v,v) U (A(x : 7). €)
stat (£0< T fl) (G b1 'Uo) >F Vo

if shape-match (| o], vo)
and vg € (v, V) U(Ax.e) U(G b (0, 0))U(Gb (A(x : 7). ¢e))

stat (f0< 7.'0461) ip >F In
if shape-match (| 1], ip)
stat (€o«19<1) vy ». InvariantErr
if =shape-match (| o], vo)
fst{U} (G (Lo« ToXT14{1) V) > stat by (fst{zo} vo)

where by = (£y<T9<{1)
snd{ U} (G (€o«toXT1<L1) V) ». stat by (snd{71} vo)
where by = (£o«11<{1)

app{U} (G (bo« o= 11+ {1) vo) v1 » stat by (app{7i} vo (dyn by vy))
where by = (€g«11<€1) and by = ({1« 19 {p)

closure of the relation U{>, >, », >}

Fig. 26. Forgetful notions of reduction.

dyn (£« (NatxNat)« £;)(stat ({;« IntxInt« £3) vp) —>:
G(€0< (Nathat)< fl)(G ([14 IntXInt« fz) U()).

B. Greenman et al.

e —>’; e | is the transitive, reflexive, compatible (with respect to evaluation contexts E, figure 17)

No matter what value vy is, the result is well-typed, because the context trusts the outer wrap-
per. If this double-wrapped value—call it v;—crosses another boundary, then Forgetful drops the
outer wrapper. Nevertheless, the result is a dynamically typed wrapper value with sufficient type

information:
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stat ({3« (NatxNat)« &) v, —>’;
G (€14« IntxInt« £5) vg.

When this single-wrapped wrapped pair reenters a typed context, it again gains a wrapper to
document the context’s expectation:

dyn ({4« (11 X13)« £3)(G ({1« IntXInt« £3) vp) —>’;
G (€4< (T]XT2)< {3)(@ (€1< IntXInt« [2) ’Uo).
The new wrapper preserves types. O
THEOREM 6.16. Forgetful does not satisfy CM.
Proor. Consider the lifted variant of the stat rule that removes an outer guard wrapper:
- ¢ -
(stat (o To« £1)(G b1 v) ™) B (20) "+
if shape-match (L7o], (G by vg)).
Suppose €y # £1. If the redex satisfies single-owner consistency, then Z, contains ¢; and 3 = €.
Thus, the rule produces a value with two distinct labels. O

THEOREM 6.17. Forgetful satisfies BS.

Proor. By apreservation lemma for a weakened version of the I judgment. The weak judgment
asks whether the owners on a value contain at least the name of the current component. Forgetful
easily satisfies this invariant, because the ownership guidelines (Section 4.4.1) never drop an un-
checked label. Thus, when a boundary error occurs,

dyn ({o« 79« {1) v BoundaryErr ({({o« 7o« €1)}, vo)
if =shape-match (L 10], vo),

the sender name ¢; matches one of the ownership labels on vy. O
THEOREM 6.18. Forgetful does not satisfy BC.

Proor. The proof of Theorem 6.16 shows how a value can acquire two labels. If such a value
triggers a boundary error, then the error will be incomplete:

dyn (£« Int< &) (Axg. x0) 081 >- BoundaryErr ({(£z« Int< £1)}, (Axo. %0) 0.

In this example, the error output does not point to component . ]
THEOREM 6.19. C < F.

Proor SKETCH. By a stuttering simulation. Co-Natural can take extra steps at an elimination
form to unwrap an arbitrary number of wrappers; Forgetful has at most two to unwrap. The For-
getful semantics shown above never steps ahead of Co-Natural, but the supplement presents a
variant with Amnesic-style trace wrappers that does step ahead. O

THEOREM 6.20. F £ C.

Proor SKETCH. F £ C, because Forgetful drops checks. Let:
eg = stat by(dyn (€p« (Nat= Nat)« £1)(Ax. xp)),
e; = app{U} ey(2,8).

Then, e; —>; (2, 8) and Co-Natural raises a boundary error. ]
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6.8 Transient and Its Properties

The Transient semantics in Figure 27 builds on the first-order evaluation syntax (Figure 20); it
stores pairs and functions on a heap as indicated by the syntax of Figure 20, and aims to enforce
type constructors (s, the codomain of |-|) through shape checks. For every pre-value w stored on
a heap #, there is a corresponding entry in a blame map ‘B that points to a set of boundaries. The
blame map provides information if a mismatch occurs, following Reticulated Python [83, 86].

Unlike for the higher-order-checking semantics, there is a significant overlap between the Tran-
sient rules for typed and untyped redexes. Figure 27 thus presents one notion of reduction. The
first group of rules in Figure 27 handle boundary expressions and check expressions. When a value
reaches a boundary, Transient matches its shape against the expected type. If successful, then the
value crosses the boundary and its blame map records the fact; otherwise, the program halts. For
a dyn boundary, the result is a boundary error. For a stat boundary, the mismatch reflects an in-
variant error in typed code. Check expressions similarly match a value against a type-shape. On
success, the blame map gains the boundaries associated with the location p,, from which the value
originated. On failure, these same boundaries may help the programmer diagnose the fault.

The second group of rules handles primitives and application. Pair projections and function
applications must be followed by a check in typed contexts to enforce the type annotation at the
elimination form. In untyped contexts, a check for the dynamic type embeds a possibly typed
subexpression. The binary operations are not elimination forms, so they are not followed by a
check. Applications of typed functions additionally check the input value against the function’s
domain type. If successful, then the blame map records the check. Otherwise, Transient reports
the boundaries associated with the function and its argument.'* Note that untyped functions may
appear in typed contexts and vice-versa, because Transient does not create wrappers.

Applications of untyped functions in untyped code do not update the blame map. This allows
an implementation to insert checks by rewriting only typed code, leaving untyped code as is.
Protected typed code can thus interact with any untyped libraries [86], just like other variants.

Not shown in Figure 27 are rules for elimination forms that halt the program. When ¢ is un-
defined or when a non-function is applied, the result is either an invariant error or a tag error
depending on the context.

Transient shape checks do not guarantee full type soundness, complete monitoring, or blame
soundness and completeness. They do, however, preserve the top-level shape of all values in typed
code. Blame completeness fails, because Transient does not update the blame map when an un-
typed function is applied in an untyped context.

THEOREM 6.21. Transient does not satisfy TS (1).
ProoF SKETCH. Let ¢y = dyn (o« (Nat= Nat)« £1)(1x,. —4).

e Then F ¢, : Nat= Nat in the surface syntax,
e and ¢y;0;0 -7 Po; Ho; By, where Hy(p,) = (Axo. —4),

but ¥#; (Axy. —4) : Nat = Nat. O
THEOREM 6.22. Transient satisfies TS (s).

ProoF SKETCH. Recall that s maps types to type shapes and the unitype to itself. The proof
depends on progress and preservation lemmas for the first-order typing judgment (+s). Although
Transient lets any well-shaped value cross a boundary, the check expressions that appear after

13Blaming the argument as well as the function is a change to the original Transient semantics [86] that may provide more
information in some cases (personal communication with Michael M. Vitousek).
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’ Transient Syntax ‘ extends First-Order Evaluation Syntax

v=iln|p

e;H; B B €; H; B | selected rules, omitting error-handling for application and for primitives

(dyn (Lo« o< 1) v0); Ho; By > vos Hos (Bolvo U {(Co< 10+ €1)}])
if shape-match (| 7o, Ho(vo))

(dyn (€o«to< 1) v0); Ho; By > BoundaryErr ({(£o« 7o« £1)}, v0); Hos Bo
if =shape-match (| 7], Hy(vp))

(stat (Lo« 1o« £1) vo); Ho; By By vo; Ho; (Bo[wo U {(Lo+ o< £1)}])
if shape-match (|70, Ho(vo))

(stat (£o«1o< 1) vo); Ho; By By InvariantErr; Ho; By
if =shape-match (| o], Ho(vo))

(check{U} vy po); Ho; By > vo; Ho; By

(check{zo} vo po); Ho; Bo > vo; Ho; (Bolwvo Y By(po)])
if shape-match (|10, Ho(vo))

(check{zo} v po); Ho; By > BoundaryErr (By(vy) U By(po), vo); Ho; Bo
if =shape-match (| o], Hy(vp))

(unop{™/ai} po); Ho; By >y (check{%/z/} 6(unop, Hy(po)) po); Ho; Bo
if 5(unop, Ho(po)) is defined

(binop{f/:u} i() il); %; fB() l>.|. 5(binop, i(), il); %; @0
if §(binop, iy, i1) is defined

(app{7o} po vo); Ho; By B (check{zo} eg[xo «vo] po); Ho; By
if #H(po) = Axo. €9
and B, = By[vy U rev(By(po))]

(app{U} po vo); Ho; By > (eo[x0 —vo]); Ho; By
if #H(po) = Axo. €9

(app{™/u} po vo); Hos By >y (check{"/as} eo[xo «—vo] po); Ho; By
if Ho(po) = A(xo : 7o). €0 and shape-match (| 70|, Ho(vyo))
and B; = By[vy U rev(By(po))]

(app{™/u} po vo); Ho; By > BoundaryErr (By(vo) U rev(By(po)), vo); Ho; By
if Ho(po) = A(xo : 7o). e and —shape-match (| 7o), Ho(vo))

wo; Ho; By B pos ({po = wot U Ho); ({po > 0} U By)
where pg fresh in 7 and B,

e;H; B —teH;B ‘is the compatible closure of the relation D=5 more precisely:
if eo; Ho; By >y en; H; By
then E[eo]; Hy; By —7 Ele]; Hi; By

e;H;B —>; e; H; B |is the transitive, reflexive closure of the relation —7

Fig. 27. Transient notions of reduction.
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elimination forms preserve soundness. Suppose that an untyped function crosses a boundary and
eventually computes an ill-typed result:

(app{Int} py4); Ho; By D> (check{Int} (4, sum{U} 4 1) py); Ho; By
if Ho(p,) = Axo. (xo,sum{‘ll}xo 1)
and B, = By[vy U rev (By(py))]-

The check expression guards the context. O
THEOREM 6.23. Transient does not satisfy CM.

ProoF. A structured value can cross any boundary with a matching shape, regardless of the
deeper type structure. For example, the following lifted rule (DT) adds a new label to a pair:

(dyn (G TxTie ) (po)™)"s 61 By B (o) 7s B -
where Hy(p,) € (v, v).

THEOREM 6.24. Transient does not satisfy BS.

Proor. Let component ¢ define a function f; and export it to components ¢; and ¢,. If com-
ponent ¢, triggers a type mismatch, as sketched below, then Transient blames both ¢; and the
irrelevant {y:

18 4y ty

[y

/-

The following term expresses this scenario using a let-expression to abbreviate untyped function
application:

(let fo = (Axo. (x0, x0))in
let f; = (stat (Lo« (Int=Int)« £1)(dyn (€1« (Int=Int)« {’0)(ﬁ))[°)[1)in
stat (£« Int< £)(appiint} (dyn (G« (Int=Int)« &)(f)%)5)™)";0;0.
Reduction ends in a boundary error that blames three components. O

THEOREM 6.25. Transient does not satisfy BC.

ProoF. An untyped function application in untyped code does not update the blame map:

(app{ U} py v0); Ho; By > (eo[x0 —0]); Ho; By
If%(po) = /b((). €p.
Such applications lead to incomplete blame when the function has previously crossed a type
boundary. To illustrate, the term below uses an untyped identity function f; to coerce the type
of another function f;. After the coercion, an application leads to type mismatch:

(let fo = stat (Lo« o= €1)(dyn (C1 7= €5)(Axo. x0)™) in

let f, = stat (o« (9= 71)= &5)(dyn (L3 (0= 11)< £4)(Axt. x1))  in
stat (£y« (IntxInt)« £5)

5
(appiIntxInt} (dyn (5= 71+ Lo)(app{U) fi f5)*)42)) ;00
Reduction ends in a boundary error that does not report the crucial labels {5 and ¢;. O

Finally, Transient is more permissive than Forgetful in the error pre-order.
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THEOREM 6.26. F S T.
ProoF SKEeTcH. Indirectly, via T < A (Theorem 6.30) and F < A (Theorem 6.31). O

The results about the wrapper-free Transient semantics are negative. It fails CM and BC, because
it has no interposition mechanism to keep track of type implications for untyped code. Its heap-
based approach to blame fails BS, because the blame heap conflates different paths in a program.'*

If several clients use the same library function and one client encounters a type mismatch, then
every component gets blamed. The reader should keep in mind, however, that the chosen prop-
erties are of a purely theoretical nature. In practice, Transient has played an important role when
it comes to performance [33, 36, 37]. Furthermore, the work of Lazarek et al. [45] has also raised
questions concerning the pragmatics of blame soundness (and completeness).

6.9 Amnesic and Its Properties

The Amnesic semantics (Figure 28) employs the same dynamic checks as Transient and supports
the synthesis of error messages with path-based blame information. While Transient attempts to
track blame with heap addresses, Amnesic uses trace wrappers to attach blame information to
values.

Amnesic bears a strong resemblance to the Forgetful semantics. Both use guard wrappers in the
same way, keeping a sticky “inner” wrapper around typed values and a temporary “outer” wrapper
in typed contexts. There are two crucial differences:

e Whenever Amnesic removes a guard wrapper, it saves the boundary specification in a trace
wrapper. The number of boundaries in a trace can thus grow without bound, but the num-
ber of wrappers around a value is limited to three.

e At elimination forms, Amnesic checks only the context’s type annotation. If an untyped
function enters typed code at one type and is later used at a supertype,

app{Int} (G (o« (Nat= Nat)« £1)Ax,.-7)2,
then Amnesic runs successfully, whereas Forgetful raises a boundary error.

The elimination rules for guarded pairs show the clearest difference between checks in Amnesic
(which mimics Transient) and Forgetful. Amnesic ignores the type in the guard. Forgetful ignores
the type annotation on the pair projection.

The following wrapped values can occur at run-time in Amnesic. The notation (T, b* e) is short
for an expression that may or may not have a trace wrapper.

vs = Gb (T b*(v,v)) vg =Tb*i
| Gb(T,b" Ax.e) | Tb*(v,v)
| Gb (T b* (G b{v,v))) | Tb* Ax.e
| Gb (T, b* (GbA(x : 7). e)), | T2 0" (G b(v, v))

| Tob* (GbA(x: 7). e).

Figure 29 defines three metafunctions and one abbreviation for trace wrappers. The metafunc-
tions extend, retrieve, and remove the boundaries associated with a value. The abbreviation sim-
plifies the formulation of the reduction rules as they now accept optionally traced values.

Amnesic satisfies full type soundness thanks to guard wrappers and fails complete monitor-
ing, because it drops wrappers. This is no surprise, because Amnesic creates and removes guard

141t is possible to adapt the path-based notion of ownership to a form of “shared” ownership that partially matches Tran-

5.«

sient’s “collaborative” blame strategy [35]. A notion of ownership that matches Transient fully remains an open problem.
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’ Amnesic Syntax ‘ extends Higher-Order Evaluation Syntax

v=1i|ln|{wo)|Ax.e|Ax:1).e| G{l«t=1<0)v | G({l«rXT<l)v | Tb*V

dyn (€0< T fl) Vo I>A G(f(ﬂ To< f]) Vo
if shape-match (| o], vo)

and rem-trace(vy) € (v,0) U(AMx : 7). e) U(G b v)

dyn (€0< T €1) Vo [>A Vo
if shape-match (| 70|, vo) and rem-trace(vy) € i

dyn (€o< 79+ €1) vy >, BoundaryErr ({({o«70«{1)} U by, o)
if ~shape-match (| 79], vy) and by = get-trace(vy)

fst{7o} (G (Lo« 1< £1) vg) >, dyn by (fst{ U} vo)
where by = ({y<To<{1)

snd{r} (G (€o«11<€1) Vo) >, dyn by (snd{U} vo)

where by = ({y<19<{1)

app{7o} (G (bo+ 71 = 12 {1) vo) v1 >, dyn by (app{U} vy (stat by v1))
where b() = (504 T0451) and bl = (f1< T1<€0)

€>A€

stat (f()< ’['()451) Vo >A 6(504 T()<€1) Vo
if shape-match (| 79], vo) and vy € (v,v) U (A(x : 7). €)
stat by (G by (T by vy)) », trace ({bo, b1} U bj) vo

if by = (o« 19+ 1) and shape-match (| 7], vo)

and vy € (v,0) U (Ax.e) U(Gb (A(x:7).e)) U(Gb (v,v))
stat (fo< T0<€1) ip PA ip

if shape-match (| 7o, ip)
stat (£o«19<£1) Vg >, InvariantErr

if =shape-match (|.7], vo)

fst{U} (T> b (G (Co« o xT1<€1) V) », trace by (stat by (fst{zo} vo))
where bo = (€0< To< 51)

snd{U} (T by (G (Lo« o X114 1) Vy)) », trace by (stat by (snd{7:} vo))
where by = ({y<11< (1)

app{U} (T> by (G (o<10+ 1) vo)) v1  », trace by (stat by (app{z2} v €0))
where 1) = 1y = 15 and by = ({y« 12« £1) and by = (1«11« Lp)
and ey = (dyn by (add-trace(rev(b;), v1)))

trace by vo >, U1
where v; = add-trace (bj, vo)

e —>Z e | is the transitive, reflexive, compatible (with respect to evaluation contexts E, figure 17)
closure of the relation J{>,, »,,»’, >}, where »’ is a variant of » (figure 22)
that calls rem-trace on inputs to § (details in supplement)

Fig. 28. Amnesic notions of reduction.
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add-trace(b;, vo) get-trace (vy)
o :{bg‘ if vy = T by v1
if by =0 0 ifuy¢Thb*v

_ ) T(byuby) v rem-trace (vg)
- if v = T b} vy _{vl if vy = T by vy
T b; vo | vy ifvygTb* o

ifvg ¢ Tb*vand by # 0
(T2 by vy) = v1 &= rem-trace(v;) = vy and get-trace(v;) = b;

Fig. 29. Metafunctions for Amnesic.

extends L;{ I e to check the labels on trace wrappers

b; ={(lo<t0+C1) - - - (Ln-1+Tn-1+Cn)} Lo; tn I=p Vo
% W AN /Y
Loy o 1p (T by (v0) )

Fig. 30. Path-based ownership consistency for trace wrappers.

wrappers in the same manner as Forgetful. Unlike the Forgetful semantics, Amnesic uses trace
wrappers to remember the boundaries that a value has crossed. This information leads to sound
and complete blame messages.

THEOREM 6.27. Amnesic satisfies TS (1).

ProOOF SKETCH. By progress and preservation lemmas for the higher-order typing judgment
(F1). Amnesic creates and drops wrappers in the same manner as Forgetful (Theorem 6.15), so the
only interesting proof cases concern elimination forms. For example, when Amnesic extracts an
element from a guarded pair, it ignores the type in the guard (z; X72):

fSt{T()}(G (€0< TI X Ty« 51)1)0) [>A dyn (504 Tp < 51)(f5t{ﬂ} 'U()).

The new boundary enforces the context’s assumption (rp), which is enough to satisfy type
soundness. O

THEOREM 6.28. Amnesic does not satisfy CM.

Proor SKETCH. Removing a wrapper creates a value with more than one label:

= 05
7, G

(stat (b« (9= 11)« €1)(G by (T b (Ao %0)72) ) ) >
(trace ({(Co« (o= 11)= €1), b1} U b)) (Ax. xo))gz))&afs.
THEOREM 6.29. Amnesic satisfies BS and BC.

ProOF SKETCH. By progress and preservation lemmas for a path-based consistency judgment,
I, that weakens single-owner consistency to allow multiple labels around a trace-wrapped value.
Unlike the heap-based consistency for Transient, which requires an entirely new judgment, path-
based consistency replaces only the rules for trace wrappers (shown in Figure 30) and trace ex-
pressions. Now consider the guard-dropping rule:
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7, b

)y e
2

e

(stat (Co« (m=71) £)(G b (T b, (- x0)72)

(trace ({(fo= (ro=T1) £1), by} U BY) (Axo. X))

Path-consistency for the redex implies that £3 and £; match the component names on the boundary
b1, and that the client side of b; matches the outer sender ¢;. Thus, the new labels on the result
match the sender names on the two new boundaries in the trace. O

THEOREM 6.30. T < A.

PRrROOF SKETCH. By a stuttering simulation between Transient and Amnesic. Amnesic may take
extra steps at an elimination form and to combine traces into one wrapper. Transient takes extra
steps to place pre-values on the heap and to check the result of elimination forms. In fact, the two
compute equivalent results up to wrappers and blame. O

THEOREM 6.31. F S A

Proor SKETCH. By a lock-step bisimulation. The only difference between Forgetful and Amnesic
comes from subtyping. Forgetful uses wrappers to enforce the type on a boundary. Amnesic uses
boundary types only for an initial shape check and instead uses the static types in typed code to
guide checks at elimination forms. O

THEOREM 6.32. A £ F.

Proor SKETcH. In the following A ¢ F example, a boundary declares one type and an elimina-
tion form requires a weaker type:
fst{Int} (dyn (fo« (NatxNat)« £1)(—4,4)).

Since —4 is an Int, Amnesic reduces the expression to a value. Forgetful detects an error. O

6.10 Erasure and Its Properties

Figure 31 presents the values and notions of reduction for the Erasure semantics. Erasure ignores
all types at run-time. As the first two reduction rules show, any value may cross any boundary.
When an incompatible value reaches an elimination form, the result depends on the context. In
untyped code, the redex steps to a tag error. In typed code, the malformed redex indicates that
an ill-typed value crossed a boundary. Thus, Erasure ends with a boundary error at the last pos-
sible moment. These errors come with no information, because there is no record of the relevant
boundary to point back to.

THEOREM 6.33. Erasure satisfies neither TS (1) nor TS (s).

Proor. Dynamic-to-static boundaries are unsound. An untyped function, for example, can en-
ter a typed context that expects an integer: dyn ({o« Int« €1)(Axo. 42) >y (Axo. 42). m|

THEOREM 6.34. Erasure satisfies TS (0).

ProoOF SKETCH. By progress and preservation lemmas for the erased “dynamic-typing” judgment
(ko). Given well-formed input, every b rule yields a dynamically typed result. m]

THEOREM 6.35. Erasure does not satisfy CM.

Proor SKETcH. This static-to-dynamic transition (stat ({o« 7o« {’1)(00){’)2)83 |>E((vo))€2€3 adds
multiple labels to a value. O
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Erasure Syntax | extends Erased Evaluation Syntax

v=1i|ln|{(vv)|Ax.e|Alx:1).e

dyn (€« < {1) vg B Vo

stat (€g« 1< {1) Vg B Vo

unop{to} vy > BoundaryErr (0, vy)
if 5(unop, vy) is undefined

unop{ U} vy > TagErr
if 5(unop, vy) is undefined

unop{¥/u} vo > &(unop,vy)
if §(unop, vy) is defined

binop{ro} vo v > BoundaryErr (0, v)
if §(binop, vy, v1) is undefined and vy ¢ i

binop{to} vo v > BoundaryErr(0,v;)
if 8(binop, vy, v1) is undefined and vy € i and v; ¢ i

binop{ U} vy v > TagErr
if 8(binop, vy, v1) is undefined

binop{®/¢1} vo v1 > &(binop, vy, v1)
if §(binop, vy, vy) is defined

app{zo} vo 1 > BoundaryErr (0, v)
ifvg ¢ (Ax.e) U (A(x: 7). e)

app{U} vy vy > TagErr

ifvg & (Ax.e) U (A(x : 7). e)
app{"/u} (A(xo : 7). €9) vo By eo[xo o]
app{*/u} (Axo. €o) vo Pr eo[xo o]
e —>E e | is the transitive, reflexive, compatible (with respect to evaluation contexts E, figure 17)

closure of the relation D

Fig. 31. Erasure notions of reduction.

THEOREM 6.36.

o Erasure satisfies BS.
o Erasure does not satisfy BC.

PrROOF SKETCH. An Erasure boundary error blames an empty set, for example,
fst{Int} (Axo. x0) B> BoundaryErr (0, (Axo. x0)).
The empty set is trivially sound and incomplete. O

THEOREM 6.37. A < E.

Proor SKETCH. By a stuttering simulation. Amnesic takes extra steps at elimination forms, to
enforce types, and to create trace wrappers. O

TuEOREM 6.38. E £ A.
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PROOF SKETCH. As a counterexample showing E £ A, the following term applies an untyped
function:

app{Nat} (dyn (o« (Nat= Nat)« {1)(Axy. —9))4.

Amnesic checks for a natural-number result and errors, but Erasure checks nothing. O

7 RELATED WORK

Several authors have used cast calculi to design and analyze variants of the Natural semantics.
The original work in this lineage is Henglein’s coercion calculus [40]. Siek et al. [67] discover sev-
eral variants by studying two design choices: laziness in higher-order casts and blame-assignment
strategies for the dynamic type. Siek et al. [63] present two space-efficient calculi and prove them
equivalent to a Natural blame calculus. Siek and Chen [65] generalize these calculi with a param-
eterized framework and directly model six of them.

The literature has many other variants of the Natural semantics. Some of these are eager, such
as AGT [28] and monotonic [64]; others are lazy like Co-Natural [20, 21, 27]. All can be positioned
relative to one another by our error preorder.

The KafKa framework expresses all four type-enforcement strategies compared in Section 2:
Natural (Behavioral), Erasure (Optional), Transient, and Concrete [18]. It thus enables direct com-
parisons of example programs. The framework is mechanized and has a close correspondence to
practical implementations, because each type-enforcement strategy is realized as a compiler to a
common core language. KafKa does not, however, include a meta-theoretical analysis.

New et al. [53, 54] develop an axiomatic theory of term precision to formalize the gradual guar-
antee and subsequently derive an order-theoretic specification of casts. This specification of casts
is a guideline for how to enforce types in a way that preserves standard type-based reasoning
principles. Only the Natural strategy satisfies the axioms.

8 DISCUSSION

One central design issue for languages that can mix typed and untyped code is the semantics
of types and specifically how their integrity is enforced as values flow from typed to untyped
code and back. Among other things, the choice determines whether static types can be trusted
and whether error messages come with useful information when an interaction goes wrong. The
first helps the compiler with type-based optimization and influences how a programmer thinks
about performance. The second might play a key role when programmers must debug mismatches
between types and code. Without an interaction story, mixed-typed programs are no better than
dynamically typed programs when it comes to run-time errors. Properties that hold for the typed
half of the language are only valid under a closed-world assumption [8, 16, 58]; such properties
are a starting point, but make no contribution to the overall goal.

As our analysis demonstrates, the limitations of the host language determine the invariants that
alanguage designer can hope to enforce. First, higher-order wrappers enable strong guarantees but
require functional APIs'® or support from the host runtime system. A language without wrappers
of any sort sets up weak guarantees by rewriting typed code.

Technically speaking, the article presents six distinct semantics from four different an-
gles (Table 2) and establishes an error preorder relation:

e Type soundness is a relatively weak property; it determines whether typed code can trust
its own types. Except for the Erasure semantics, which does nothing to enforce types, type
soundness does not clearly distinguish the various strategies.

15 A language with first-class functions can always use lambda as a wrapper [70].
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Table 2. Technical Contributions

Natural Co-Natural Forgetful Transient Amnesic Erasure

Type soundness 1 1 1 s 1 0
Complete monitoring v v X X X X
Blame soundness v v v X v 0
Blame completeness v v x X v X
Error preorder N < C < F < T = A < E

TSatisfiable by adding Amnesic-style trace wrappers; see supplement.

e Complete monitoring is a stronger property, adapted from the literature on higher-order
contracts [23]. It holds when untyped code can trust type specifications and vice-versa.

The last two properties tell a developer what aid to expect if a type mismatch occurs.

o Blame soundness ensures that every boundary in a blame message is potentially responsi-
ble. Four strategies satisfy blame soundness relative to a path-based notion of responsibility.
Transient fails to satisfies blame soundness, because it merges blame information for dis-
tinct references to a heap-allocated value (Theorem 6.24). Erasure is trivially blame-sound,
because it gives the programmer zero information.

o Blame completeness ensures that every blame error comes with an overapproximation of
the responsible parties. Three of the blame-sound semantics satisfy blame completeness,
and Forgetful can be made complete with a straightforward modification. The Erasure strat-
egy trivially fails blame completeness. The Transient strategy fails because it has no way
to supervise untyped values that flow through a typed context.

Transient and Erasure provide the weakest guarantees, but they also have a strength that Table 2
does not bring across; namely, they are the only strategies that do not require wrapper values.
Wrappers impose space costs and time costs; they also raise object identity issues [26, 43, 72, 84].
A wrapper-free strategy with stronger guarantees would therefore be promising. A related topic
for future work is to test whether the weaker guarantees of wrapper-free strategies are sufficiently
useful in practice. Lazarek et al. [45] find that the gap between Natural blame and Transient blame
is smaller than expected across thousands of simulated debugging scenarios. It remains to be seen
whether this small gap nevertheless has large implications for working programmers.

The choice of semantics of type enforcement has implications for two major aspects of language
design: the performance of an implementation and its acceptance by working developers. Green-
man et al. [38] developed an evaluation framework for the performance concern that is slowly
gaining in acceptance; Tunnell Wilson et al. [82] present rather preliminary results concerning
the acceptance by programmers. In conclusion, though, much remains to be done before the com-
munity can truly claim to understand this multi-faceted design space.
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