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SUMMARY

Translation is the process by which ribosomes synthesize proteins. Ribosome profiling recently revealed that
many short sequences previously thought to be noncoding are pervasively translated. To identify protein-
coding genes in this noncanonical translatome, we combine an integrative framework for extremely sensitive
ribosome profiling analysis, iRibo, with high-powered selection inferences tailored for short sequences. We
construct a reference translatome for Saccharomyces cerevisiae comprising 5,400 canonical and almost
19,000 noncanonical translated elements. Only 14 noncanonical elements were evolving under detectable
purifying selection. A representative subset of translated elements lacking signatures of selection demon-
strated involvement in processes including DNA repair, stress response, and post-transcriptional regulation.
Our results suggest that most translated elements are not conserved protein-coding genes and contribute to

genotype-phenotype relationships through fast-evolving molecular mechanisms.

INTRODUCTION

The central role played by protein-coding genes in biological
processes has made their identification and characterization
an essential project for understanding organismal biology.
Over the past decade, the scope of this project has expanded
as ribosome profiling (ribo-seq) studies have revealed pervasive
translation of eukaryotic genomes.'™ These experiments
demonstrate that genomes encode not only the “canonical
translatome,” consisting of the open reading frames (ORFs)
identified as protein-coding genes in genome databases such
as RefSeq® but also a large “noncanonical translatome” consist-
ing of ORFs that are not annotated as genes. Despite the lack of
annotation, large-scale studies find that many noncanonical
ORFs (nORFs) are translated to express stable proteins and
show evidence of association with cellular phenotypes.®'° In
addition, a handful of previously unannotated coding sequences,
identified by RNA-seq or ribo-seq experiments, have now been
characterized in depth, revealing that they play key roles in bio-
logical pathways and can increase organism fitness."'~'®> How-
ever, these well-studied examples represent only a small fraction
of the noncanonical translatome. Most noncanonical translation
could simply be biologically insignificant “translational noise” re-
sulting from the imperfect specificity of translation pro-
cesses.'®'? Alternatively, thousands of missing protein-coding
genes that contribute to phenotype and fitness could be hidden
in the noncanonical translatome.

A common and powerful approach to identifying biologically
relevant genomic sequences is to look for evidence of selec-
tion.?°?? Many canonical genes were annotated on the basis
of such evidence,?>?* and this approach has also been applied
to nORFs detected by ribo-seq.?>?® However, in the case of
noncanonical translation, the evolutionary analysis is often
limited by a lack of sufficient statistical power to confidently
detect selection. Most nORFs are much shorter than canonical
genes,”"'??° thus having fewer genetic variants that can be
analyzed for evolutionary inference. As a result, short coding se-
quences are sometimes missed by genome-wide evolutionary
analyses despite long-term evolutionary conservation.'**° It is
especially challenging to detect selection among nORFs that
are evolutionarily novel, as a short evolutionary history also pro-
vides less time for enough genetic variants to accumulate the
signatures that allow for statistically distinguishing selective
from neutral evolution.®’ Several young genes of recent de
novo origin (i.e., coding genes that evolved from previously
non-genic sequences) have been discovered from within the
noncanonical translatome.®3%3

In addition to the challenges short ORF length poses for the
detection of selection, it also poses challenges for an unequivo-
cal detection of translation in the first place. Microproteins are
often missed by most proteomics techniques, although special-
ized methods have had some success.”'%**=6 In ribo-seq data,
the most robust evidence of translation comes from a pattern of
triplet periodicity in reads corresponding to the progression of
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Figure 1. The iRibo framework enables the detection of thousands of noncanonical translated sequences

(A) The iRibo framework. (1) Candidate ORFs, both canonical (cORFs; red) and noncanonical ORFs (nORFs; blue), are identified in the genome. (2) Reads
aggregated from published datasets are then mapped to these ORFs. (3) Translation is inferred from triplet periodicity of reads. (4) The false discovery rate is
estimated by scrambling the ribo-seq reads of each ORF and then assessing periodicity in this scrambled set.

(B) iRibo identifies translated ORFs that are undetectable in any single experiment. Mapped ribo-seq reads across an example nORF located on chromosome I,
604,674-604,748. The top five graphs correspond to five individual experiments with reads mapping to the ORF, whereas the bottom graph includes all reads
integrated across all experiments. Reads are colored according to their position on the codon.

(legend continued on next page)
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the ribosome across codons.®*"*® Ribo-seq analysis methods
are less capable of detecting translation of short ORFs, as they
contain fewer positions to use to establish periodicity.*° The
low expression levels of some nORFs further increases the diffi-
culties in identification.>?” Perhaps as a result of these limita-
tions, less than half of the nORFs detected as translated in hu-
mans are reproducible across studies.”’

Here, we designed an approach to increase sensitivity in the
detection of both translation and selection among nORFs. We
address the challenges in detecting translation through the
development of a ribo-seq analysis framework (iRibo) that iden-
tifies signatures of translation with high sensitivity and high spec-
ificity by integrating data across hundreds of experiments from
many published studies. This facilitates the detection of se-
quences that are short or poorly expressed. We address the
challenges in detecting selection through a comparative geno-
mics framework that analyzes translated sequences collectively
across evolutionary scales within and between species.

We applied our approach to define a “reference translatome”
for the model organism Saccharomyces cerevisiae and charac-
terize the biological relevance of nORFs. Using iRibo, we identi-
fied ~19,000 nORFs translated at high confidence and estab-
lished the dependence of noncanonical translation on both
genomic context and environmental conditions. Using genomic
data both within strains of S. cerevisiae and across budding
yeast species,’®*' we identified a handful of undiscovered
conserved genes within the yeast noncanonical translatome.
However, we find that most of the yeast noncanonical transla-
tome is evolutionarily young and of de novo origin, having
emerged recently from the noncoding sequence. These young
ORFs differ greatly from conserved genes in their length, amino
acid composition, and expression level and show no signs of
purifying selection. Nevertheless, we report experimental evi-
dence based on fluorescent protein tagging and conditional
loss-of-function fitness measurements showing that translation
of evolutionarily young nORFs can generate stable protein prod-
ucts and affect cellular phenotypes. We thus propose that much
of the noncanonical translatome is composed of neither transla-
tional noise nor conserved genes but rather of a distinct class of
evolutionarily short-lived coding sequences with important bio-
logical implications. This “transient translatome” is larger than,
and categorically distinct from, the conserved translatome
made mostly of canonical protein-coding genes that have been
studied for decades.

RESULTS

An integrative approach to defining the translatome

We designed iRibo to detect translation events with high sensi-
tivity and high specificity. High sensitivity is achieved through
the integration of ribo-seq data across hundreds of diverse ex-
periments, which provides sufficient read depth for the detection
of translated ORFs that are short or weakly expressed. High
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specificity is achieved through the use of three-nucleotide peri-
odicity as the sole basis for translation inference. Three-nucleo-
tide periodicity corresponds to the progression of the ribosome
codon by codon across a transcript, a dynamic unique to trans-
lation. Three-nucleotide periodicity is therefore robust against
the false inference of translation from other sources of ribo-seq
reads.®”*®“? High specificity is further achieved by controlling
confidence levels using an empirical false discovery rate (FDR)
approach that relies on minimal modeling assumptions. iRibo
consists of four components (Figure 1A). First, a set of “candi-
date” ORFs that could potentially be translated are identified in
the genome. Second, reads from multiple ribo-seq experiments
are pooled and mapped to these ORFs. Third, the translation sta-
tus of each candidate ORF is assessed based on whether the
reads mapping to the ORF exhibit a pattern of triplet nucleotide
periodicity according to a binomial test. Finally, a list of trans-
lated ORFs is constructed with a specified FDR, derived from
applying the same translation calling method on a negative con-
trol set constructed to exhibit no genuine signatures of
translation.

iRibo can be applied to a set of ribo-seq experiments conduct-
ed under a single environmental condition to identify ORFs that
are translated under that condition. Alternatively, iRibo can be
deployed on a broader set of ribo-seq experiments conducted
in many different contexts to construct a reference translatome
consisting of all elements within a genome with sufficient evi-
dence of translation.

We used iRibo to identify translated ORFs across the
S. cerevisiae genome (Figure S1). First, we constructed the set
of candidate ORFs by collecting all genomic sequences at least
three codons in length that start with ATG and end with a stop
codon in the same frame. For ORFs overlapping in the same
frame, only the longest ORF was kept. Each candidate ORF
was classified either as a canonical ORF (cORF), if it was anno-
tated as “verified,” ‘“uncharacterized,” or “transposable
element” in the Saccharomyces Genome Database (SGD)** or
as an nOREF, if it was annotated as “dubious,” “pseudogene,”
or was unannotated. We excluded nORFs that overlap cORFs
on the same strand. This process generated a list of 179,441
candidate ORFs: 173,868 nORFs and 5,573 cORFs. We as-
sessed the translation status for candidate ORFs using data
from 412 ribo-seq experiments across 42 studies (Tables S1
and S2).

As expected, integrating data from many experiments allowed
for the identification of translated ORFs that would otherwise
have too few reads in any individual experiment (Figure 1B).
Setting a confidence threshold to ensure a 5% FDR among
nORFs, we identified 18,953 nORFs (Figure 1C) as translated
along with 5,364 cORFs (Figure 1D), for a total of 24,317 ORFs
making up the yeast reference translatome (Table S38). This cor-
responds to an identification rate of 99% for verified cORFs,
77% for uncharacterized cORFs, 37% for dubious nORFs, and
only 11% for unannotated nORFs (Figure 2A). Despite the low

(C) iRibo identifies 18,953 translated nORFs at a 5% false discovery rate. The number of NORFs found to be translated using iRibo (y axis) at a range of p value
thresholds (x axis) is shown as a solid blue line. Translation calls for a negative control set, constructed by scrambling the actual ribo-seq reads for each nORF, is
also plotted (dashed blue line). The dashed vertical line indicates a false discovery rate of 5% among nORFs.

(D) iRibo identifies 5,364 cORFs. The number of cORFs found to be translated using iRibo at a range of p value thresholds, contrasted with negative controls

constructed by scrambling the ribo-seq reads of each cORF.
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Figure 2. The noncanonical yeast translatome is larger than the canonical
(A) The percent of ORFs in each Saccharomyces Genome Database annotation class that are detected as translated by iRibo, with canonical classes indicated in
red and noncanonical in blue. The total number of ORFs in each class are: 4,895 verified, 676 uncharacterized, 559 dubious, 7 pseudogene, and 173,302 un-

annotated.

(B) The number of ORFs of each annotation class that are detected as translated using iRibo.
(C) ORF length distributions for translated cORFs (N = 5,364) and nORFs (N = 18,953).

(D) Distribution of translation rate (in-frame ribo-seq reads per base) for translated cORFs (N = 5,364) and nORFs (N = 18,953).

(E) For six large studies, the proportion of nORFs (N = 18,953) identified using reads from that study that are replicated using reads from the largest study,
Gerashchenko and Gladyshev.** Random expectation is the proportion that would be expected to replicate by chance.
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rate of identified translation, unannotated nORFs make up a
large majority of translated sequences (Figure 2B). In general,
translated cORFs are much longer (Figure 2C) and translated
at much higher rates (Figure 2D) than translated nORFs.

To assess replicability in translation calls for nORFs, we
applied iRibo separately to each of the largest individual studies
by read count. We then counted, among the nORFs that could be
inferred to be translated using only the reads in each study, how
many were also found in the largest study, Gerashchenko and
Gladyshev.** For all studies, at least 75% of detected ORFs
were also detected in the largest study (Figure 2E). In general,
translation rates among ORFs were highly correlated among in-
dependent studies (Figure S2). These observations demonstrate
that noncanonical translation patterns are highly reproducible,
suggesting that they are driven by regulated biological processes
rather than technical artifacts or stochastic ribosome errors.

Many ribo-seq experiments use the translation elongation in-
hibitor cycloheximide (CHX). This drug is known to influence
ribo-seq results in several ways.***® We therefore wished to
specifically examine whether the size of the noncanonical trans-
latome we identified could have been artificially inflated by CHX
usage. To this aim, we compared translation signatures from ex-
periments with (N = 139) and without (N = 170) CHX, randomly
sampling the same number of reads from both groups of exper-
iments. We observed a large enrichment in ribo-seq read counts
among nORFs with CHX treatment (p < 10~ '°, Fisher’s exact
test, Figure 2F), resulting in 56% more nORFs identified as trans-
lated (p < 10~ '°, Fisher’s exact test). This enrichment may be due
to an accumulation of reads in the first 50 codons of ORFs with
CHX treatment, which has a greater relative impact on shorter
ORFs (Figure S3). The nORFs identified as translated only with
CHX treatment nevertheless displayed a strong collective signal
of triplet periodicity (i.e., preferential mapping to the first position
in the codon) in experiments without CHX treatment when reads
were aggregated across all such nORFs (Figure 2G). These
results indicate that CHX treatment aids the detection of transla-
tion events that also occur but are more difficult to detect
without CHX.

Noncanonical translation patterns depend on genomic
and environmental context

We examined to what extent the translation of NORFs depends
on genomic context. We classified nORFs as upstream nORFs
(UORFs) located on the 5’ untranslated regions of transcripts
containing cORFs, downstream nORFs (dORFs) located on the
3’ untranslated regions of transcripts containing cORFs, inter-
genic nORFs that do not share transcripts with cORFs (indepen-
dent), nORFs antisense to a cORF and located entirely within the
bounds of that cORF (antisense full overlap), and nORFs overlap-
ping the boundaries of a cORF on the opposite strand (antisense
partial overlap) (Figure 3A). In addition, for nORFs sharing a tran-
script with an RNA gene, the nORF was classified based on
the type of the RNA gene. The transcripts used for these classi-
fications were derived from the TIF-seq (transcript isoform
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sequencing) data collected by Pelechano et al.,*’

the transcript start and end sites.

Most nonoverlapping translated nORFs were independent
(6,373, 52%), and around 47% shared a transcript with a
cORF, including 3,512 uORFs and 2,278 dORFs, whereas
1.5% (186) shared a transcript with an annotated RNA gene (Fig-
ure 3B). Among antisense nORFs, 73% (4,844) overlapped fully
with the opposite-strand gene, whereas 27% (1,760) overlapped
partially.

We next calculated the frequency at which candidate nORFs
were identified as translated for each genomic context (Fig-
ure 3C); for purposes of comparison, we considered only those
nORFs fully contained within a TIF-seq transcript. Consistent
with previous research,*® uUORFs were translated at significantly
higher rates than other classes, with 30% of the considered
uORFs found to be translated compared with only 17% of dORFs
(p < 107'°, Fisher’s exact test) and 20% of independent nORFs
(p < 107", Fisher’s exact test). nORFs antisense to cORFs and
only partially overlapping them were translated at the lowest
rate of any context, with a rate of 10% compared with 26% for
fully overlapping antisense nORFs (p < 10~ ', Fisher’s exact test).

The amino acid frequencies of the proteins expressed from
translated nORFs differ greatly from those of cORFs and depend
on the genomic context (p < 10~'° for any comparison between
cORF amino acid frequencies and nORF frequencies in a given
context, chi-square test; Figure 3D). The translation products
of nORFs present a large excess of cysteine, phenylalanine,
isoleucine, arginine, and tyrosine and deficiency in alanine,
asparagine, glutamic acid, and glycine relative to cORFs. Aside
from arginine, the amino acids with large excess in nORFs rela-
tive to cORFs are all hydrophobic. Amino acid frequencies of
nORFs appear to largely reflect underlying DNA sequence
composition biases that differ between distinct genomic con-
texts. Indeed, within each genomic context, amino acid fre-
quencies of translated nORF are generally similar (with less
than a 15% difference in frequency) to that of length- and
context-matched nORFs that lack evidence of translation,
although they do show significant differences (p < 10~ for all
contexts, chi-square tests; Figure 3E). The largest differences
include a large excess of methionine residues and a deficiency
in tryptophan and glycine residues among translated nORFs
compared with the untranslated control group.

In addition to the genomic context, we assessed how environ-
mental context affects noncanonical translation. To this aim, we
leveraged the power of iRibo to construct separate datasets of
nORFs found translated in rich media (YPD) or in nutrient-limited
minimal media (SD) (Table S8). Previous research has reported
an increase in detected noncanonical translation events relative
to canonical translation events in response to starvation.'®
Consistent with these results, more nORFs were identified as
translated in minimal than in rich media at equal read counts (Fig-
ure 3F). Furthermore, 2,968 nORFs were supported by a signifi-
cantly higher number of in-frame reads in minimal media than
rich media, whereas the converse was true for only 1,265 nORFs

which provide

(F) Ratio of total ribo-seq read counts mapping to cORFs or nORFs in experiments with vs. without CHX treatment. Note that the same number of total reads

(n = 178,264,204) is sampled from each condition.

(G) Among nORFs identified as translated by iRibo only in the CHX condition (N = 5,944), all codons (N = 30,169) among these nORFs are classed based on which
of the three positions in the codon (if any) have the most reads from experiments without CHX.
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Figure 3. Noncanonical translation patterns depend on both genomic and environmental context

(A) Potential genomic contexts for nORFs in relation to nearby canonical genes. Transcripts are defined from published TIF-seq data.’

(B) Counts of translated nORFs (N = 18,953) identified by iRibo in each considered genomic context, determined by which elements share a transcript with the
nORF and its position within the transcript. For nORFs that share a transcript with RNA genes, the annotation of the RNA gene is specified.

(C) Proportion of nORFs detected as translated by iRibo in each genomic context considered, among nORFs completely covered by a TIF-seq transcript
(N = 15,572).

(D) Amino acid composition of translated nORFs differs from that of translated cORFs and depends on the genomic context. Amino acid frequencies among
predicted protein products of translated nORFs in each genomic context and of cORFs. The start codon methionine is excluded from frequency estimates.
(E) Amino acid composition of translated nORFs is similar to that of context-matched controls. For each genomic context, the amino acid frequency of translated
nORFs relative to that of length-matched untranslated nORFs in that same context. The start codon methionine is excluded from frequency estimates.

(legend continued on next page)
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(5% FDR, Fisher’s exact test with the Benjamini-Hochberg pro-
cedure”®; Figure 3G). These results suggest that starvation con-
ditions may increase noncanonical translation or alternatively
that noncanonical translation is less affected by the general
translation inhibition that occurs in starvation conditions.®° Either
way, these results support the hypothesis that nORF translation
is regulated in response to changing environments.

Two translatomes, transient and conserved
Given the large numbers of nORFs translated in the yeast
genome, we next sought to assess the biological relevance of
this translation by determining the extent to which these nORFs
are evolving under selection. We assessed selection acting on
nORFs, and cORFs for the purpose of comparison, across three
evolutionary scales. At the population level, we analyzed 1,011
distinct S. cerevisiae isolates sequenced by Peter et al.*® At
the species level, we compared S. cerevisiae ORFs with their or-
thologs in the Saccharomyces genus, a taxon consisting of
S. cerevisiae and its close relatives.®' To detect long-term evolu-
tionary conservation, we looked for homologs of S. cerevisiae
ORFs among 332 budding yeast genomes (excluding Saccharo-
myces) in the subphylum Saccharomycotina collected by Shen
et al.*" The power to detect selection on an ORF depends on
the amount of genetic variation in the ORF available for evolu-
tionary inference, which in turn depends on its length, the density
of genetic variants across its length, and the number of genomes
available for comparison. Given that many translated nORFs are
very short (Figure 2C), we employed a two-stage strategy to in-
crease the power for detecting signatures of selection. First,
we investigated selection in a set of “high-information” ORFs
for which we have sufficient statistical power to potentially
detect selection. Second, we investigated the remaining “low-in-
formation” ORFs in groups to quantify collective evidence of se-
lection (Figure 4A). Group-level analysis increases the power to
detect the presence of selection but does not enable the identi-
fication of the individual ORFs under selection. The high-infor-
mation set consisted of the ORFs that (1) have homologous
DNA sequences in at least four other Saccharomyces species
and (2) have a median count of nucleotide differences between
the S. cerevisiae ORF and its orthologs of at least 20. We found
that these criteria are sufficient to distinguish ORFs evolving un-
der strong purifying selection (Figure S4). Under this definition,
9,440 translated ORFs that do not overlap a different cORF
(henceforth “nonoverlapping ORFs,” including 4,248 nORFs
and 5,192 cORFs) and 3,022 ORFs that overlap a cORF on the
opposite strand (“antisense ORFs,” including 2,962 nORFs
and 60 cORFs) were placed in the high-information set.

We attempted to detect purifying selection in the high-infor-
mation set within the Saccharomyces genus and within the Sac-
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charomycotina subphylum. For the Saccharomyces analysis, we
adapted reading frame conservation (RFC), a sensitive approach
developed by Kellis et al.?° to distinguish ORFs evolving under
selection from other ORFs in the yeast genome. RFC is an index
ranging from 0 to 1 that indicates how well the reading frame
is conserved between an ORF in a given species (here,
S. cerevisiae) and its orthologous sequences in related species
(other species in the Saccharomyces genus). An RFC value of
1 indicates perfect agreement of the reading frame, such that
all bases that make up the first nucleotide in a codon in the
S. cerevisiae ORF also make up the first nucleotide in a codon
in each orthologous ORF. An RFC value of 0 indicates that all ba-
sesinthe S. cerevisiae ORF align to bases with a different within-
codon position in orthologous ORFs or that the aligned bases
exist outside of any ORF. We found a bimodal distribution of
RFC among nonoverlapping ORFs in the yeast translatome,
considering cORFs and nORFs together: 53.3% have RFC
above 0.8 and 45.5% have RFC less than 0.6, with only 1.2%
of ORFs intermediate between these values (Figure 4B). The
bimodal distribution of RFC among translated ORFs is similar
to the bimodal distribution observed among all candidate
ORFs, regardless of the translation status (Figure S5A), as
observed previously by Kellis et al.?° The modes of distribution
largely correspond to annotation status, with 96.7% of cORFs
having an RFC > 0.8 and 98.5% of nORFs having an
RFC < 0.6. This pattern holds when evaluated only in the last
100 bp of ORFs, suggesting that it is not affected by the potential
incorrect inference of NORF start positions (Figure S5B). The
clean separation between well-conserved and poorly conserved
ORFs indicates that most high-information ORFs can be
straightforwardly classified into one of the two groups, and
thus, nearly all high-information nonoverlapping nORFs can be
placed in the poorly conserved class. High RFC among anti-
sense ORFs does not demonstrate selection on the ORF itself,
as it might be caused by selective constraints on the opposite-
strand gene, but low RFC still indicates a lack of purifying selec-
tion. A majority of antisense translated nORFs (64.1%) have an
RFC < 0.6, indicating that most are not preserved by selection
across the genus (Figure S5C). Overall, we find no evidence for
purifying selection acting on nORFs on a large scale.

In light of the general correspondence between annotation and
conservation, the exceptions are of interest: 110 cORFs had an
RFC < 0.6, and 13 nonoverlapping unannotated nORFs had an
RFC > 0.8. To further assess conservation among these two
sets of ORFs, we performed a BLAST analysis (using both
BLASTP and TBLASTN with default parameters) to search for ho-
mologs of each ORF among the budding yeast genomes assem-
bled by Shen et al.*' Among the 110 cORFs with low RFC, 101
also had no detected homology to other S. cerevisiae genes or

(F) More nORFs are identified as translated in minimal than rich media. Number of translated nORFs identified (y axis) for experiments on yeast grown in either
minimal (SD, solid line) or rich media (YPD, dashed line) at a range of read depths (x axis). For each read depth, reads are sampled at random from experiments in
each condition.

(G) For each nORF called translated by iRibo in minimal media (SD), rich media (YPD), or both (N = 15,563), the log reads per base in each condition is indicated.
Total read count in each condition was held constant (n = 170 million) by randomly sampling reads until the target count was reached. nORFs with significantly
more reads in one condition than the other are colored, green for SD, and brown for YPD. Lists of nORFs with significantly different translation rates were obtained
as follows: p values for differential translation of each nORF were calculated from Fisher’s exact test on in-frame ribo-seq reads mapping to the ORF in each
condition and a 5% FDR was set using the Benjamini-Hochberg approach.*® An nORF had to be detected as translated in a condition by iRibo to be identified as
more highly translated in that condition.
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any budding yeast genome outside of Saccharomyces, indicating
that these are likely annotated ORFs of the recent de novo origin.
For the 13 nORFs with high RFC, several additional lines of evi-
dence suggest that these are indeed evolving under purifying se-
lection (Table S4). For nine of the thirteen, we identified a homolog
among budding yeast genomes outside of the Saccharomyces
genus by either a BLASTP or TBLASTN search. The existence
of a homolog in a distantly related species indicates that the
ORF existed in the common ancestor of S. cerevisiae and that
distant species, implying long-term preservation of the ORF by
purifying selection in both lineages. We also performed the pN/
pS analysis for each ORF on S. cerevisiae isolates and dN/dS
analysis for each ORF among the Saccharomyces genus species
(Table S4). A pN/pS or dN/dS ratio significantly below 1 indicates
purifying selection on the ORF amino acid sequence among
S. cerevisiae strains or among Saccharomyces genus species,
respectively, whereas a ratio above 1 indicates positive selection.
By these measures, two ORFs showed significant evidence of
purifying selection by pN/pS and three by dN/dS (Table S4).
Thus, a small number of NORFs appear to have beneficial biolog-
ical roles preserved by selection.

We next assessed selection among the full set of NORFs (both
high and low information) at the subphylum scale, searching for
the addition nORFs that exhibited long-term conservation and
thus purifying selection. Toward this end, we searched for
distant homologs of all translated nonoverlapping S. cerevisiae
nORFs using TBLASTN against budding yeast genomes in the
Saccharomycotina subphylum, excluding species in the Saccha-
romyces genus. After excluding matches that appeared non-
genic or pseudo-genic (Figure S6), we identified a single addi-
tional nORF with both distant TBLASTN matches and recent
signatures of purifying selection (dN/dS = 0.5, p = 0.039 for the
test of difference from 1.0): YBR012C, annotated as dubious
on SGD. Thus, combining the 13 nORFs that appeared
conserved by RFC analysis and the single additional nORF found
using TBLASTN, we identified 14 translated nORFs that show
evidence of preservation by purifying selection (Table S4).

To analyze collective evidence of selection among low-infor-
mation ORFs, we first divided low-information nonoverlapping
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nORFs (7,855 nORFs, after excluding those with homology to
conserved S. cerevisiae cORFs) according to properties that
we expected to be potentially associated with selection: rate
of translation (as measured by ribo-seq reads mapped to the
first position within codons divided by the length of the ORF),
coding score”®®? (a measure of sequence similarity to anno-
tated coding sequences), ORF length, and genomic context.
For each group, we calculated the pN/pS ratio among 1,011
S. cerevisiae isolates’® and the dN/dS ratio based on align-
ments of the S. cerevisiae ORFs with their orthologous DNA
sequence in S. paradoxus. We also analyzed low-information
nonoverlapping cORFs (22 cORFs) in the same manner. For
low-information antisense nORFs (3,642 nORFs; only 2 cORFs
fell in this category and were not analyzed), we calculated the
pN/pS and dN/dS ratios restricted to substitutions that were
synonymous on the opposite-strand cORF.**** Unlike the
RFC, dN/dS, and pN/pS analyses conducted above on individ-
ual high-information ORFs, these analyses were conducted by
aggregating substitutions among all low-information ORFs in
each group to assess evidence for selection (i.e., a ratio signif-
icantly different from 1) within the group as a whole. We ex-
pected that if low-information nORFs were evolving under
selection, then more highly translated ORFs, longer ORFs,
and ORFs with coding scores more similar to conserved genes
would be enriched in biologically relevant nORFs and thus
show stronger signatures of selection. Low-information
nonoverlapping cORFs did show collective pN/pS and dN/dS
ratios significantly below 1, indicating that some ORFs in this
group are evolving under purifying selection (Figure 4GC;
Table S5). By contrast, for all groups of low-information nORFs
examined, we observed no significant difference in the pN/pS
or dN/dS ratio from 1, providing no evidence for either purifying
or positive selection (Figure 4C; Table S5).

Finally, we assessed collective evidence of long-term evolu-
tionary conservation in each group. To do this, we calculated
the frequency of weak TBLASTN matches (e values between
10~* and 0.05, above our threshold for homology detection at
the individual level) of ORFs in each group to the Saccharomyco-
tina subphylum genomes outside of Saccharomyces compared

Figure 4. Two distinct translatomes: transient and conserved

(A) Selection inference analyses conducted on low-information and high-information ORFs to classify them as evolutionarily conserved, transient, or unclassified.
(B) A bimodal distribution of reading frame conservation (RFC) among high-information translated ORFs. The distribution of RFC (x axis), indicating how well
reading frame of the ORF is conserved in the Saccharomyces genus, is shown for all translated high-information ORFs (top, N = 9,440), only cORFs (middle,
N =5,192), and only nORFs (bottom, N = 4,248). See STAR Methods for details. Dashed lines separate RFC < 0.6 and RFC > 0.8, the thresholds used to distinguish
ORFs preserved or not preserved by selection.

(C) No evidence of purifying selection acting on low-information nORFs. pN/pS, and dN/dS ratios are shown for each group of ORFs. Low-information
nonoverlapping nORFs that lack a conserved homolog (N = 7,855) are divided into deciles of translation rate (in-frame ribo-seq reads per base), coding score, or
ORF length and into three genomic contexts. Untranslated nORFs (N = 60,113) are the set of all nonoverlapping nORFs in the genome not called as translated by
iRibo. Low-information nonoverlapping cORFs (N = 22) are assembled into a single group, with the set of all nonoverlapping cORFs (N = 5,364) shown for
comparison. Low-information antisense NORFs (N = 6,604) were also assembled into a single group, with the set of all antisense cORFs (N = 62) shown for
comparison. pN/p$ is calculated from variation at each ORF codon among 1,011 S. cerevisiae isolates.’® dN/dS is calculated among all codons that share the
same frame between S. cerevisiae ORFs and aligned orthologous ORFs in S. paradoxus. Note that the displayed pN/pS and dN/dS values are not averages of
these ratios among ORFs. Rather, synonymous and nonsynonymous variants among all ORFs in each class are counted, and a single ratio is calculated from the
summed counts. Error bars indicate standard errors estimated from bootstrapping. The dashed blue line indicates a ratio of one, the expected ratio under neutral
evolution.

(D) No evidence of distant homology for low-information nORFs. The frequency of nORFs with weak TBLASTN matches (10~* < e value < 0.05, N = 49) in each
group of nORFs (dark bars) and negative controls (light bars, N = 49) consisting of the sequences of the nORFs of each group randomly scrambled. Error bars
indicate standard errors estimated from bootstrapping.

(E) ORFs that are translated yet evolutionarily transient make up 72% of the yeast reference translatome. The components of the translatome (transient,
conserved, unclassified) are represented with area proportional to frequency. Each box represents sets of 15 ORFs.
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with a negative control set consisting of scrambled sequences of
the ORFs in each group. Applying this strategy to the full set of
362 nonoverlapping cORFs that lacked TBLASTN matches
outside Saccharomyces at the e value < 10~* level, we found a
large excess of weak matches relative to controls (p = 0.0001,
Fisher’s exact test; Figure S7), demonstrating the ability of this
approach to detect faint signals of homology within a group of
ORFs. However, we identified no significant difference in the fre-
quency of weak TBLASTN hits between any nonoverlapping
nORF group and scrambled controls (Figure 4D) nor among
nonoverlapping nORFs overall (p > 0.05, Fisher’s exact test).
The lack of a significant result does not exclude the possibility
that a small subset of short conserved nORFs could be lost in
the noise of a much larger set of NORFs without distant homol-
ogy. However, our TBLASTN, dN/dS, and pN/pS analyses alto-
gether indicate that ORFs evolving under strong purifying selec-
tion are not a major component of the yeast noncanonical
translatome.

Overall, our analyses distinguish two distinct yeast transla-
tomes: a conserved, mostly canonical translatome with intact
ORFs preserved by selection and a mostly noncanonical transla-
tome where ORFs are not preserved over evolutionary time. This
distinction is rooted in evolutionary evidence rather than annota-
tion history. We thus propose to group the translated ORFs
that showed neither evidence of selection nor homology to
conserved ORFs in our high-information and low-information
sets as the “transient translatome.” The transient translatome
designation indicates membership in a set of ORFs that are ex-
pected to exist in the genome for only a short time on an evolu-
tionary scale, although we cannot be certain that any particular
translated ORF that currently exists in the yeast genome will be
rapidly lost. The transient translatome includes 4,051 nonover-
lapping and 1,923 antisense nORFs identified as not preserved
by selection using RFC analyses and having no conserved ho-
mologs, along with 86 nonoverlapping and 15 antisense cORFs
(total 101) matching the same criteria. Also included are 7,855
nonoverlapping and 3,644 antisense nORFs that lack sufficient
information to analyze at the individual level but were found to
show no selective signal in group-level analyses. Together, this
set of 17,574 ORFs that are translated yet likely evolutionarily
transient makes up 72% of the yeast reference translatome
(Figure 4E).

Transient cORFs are representative of the transient
translatome overall

By general theory and practice in evolutionary genomics, the
lack of a selective signal suggests that the transient translatome
does not meaningfully contribute to fitness.*> Nevertheless, 101
cORFs belong to the transient set, suggesting that some tran-
sient ORFs do have phenotypes. To assess whether these
cORFs are representative of the transient translatome overall,
we compared their evolutionary and sequence properties with
those of transient dubious nORFs (annotated but presumed
nonfunctional) and transient unannotated nORFs. We found
transient cORFs, transient dubious nORFs, and transient unan-
notated nORF to all have pN/pS ratios indistinguishable from
1.0 (Figure S8A), providing no evidence for purifying selection.
Similarly, the average nucleotide diversity (mean number of
nucleotide differences per site between pairs of isolates) of tran-
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sient cORFs was indistinguishable from that of transient nORFs
or untranslated controls and much higher than that of conserved
cORFs (Figure S8B). In addition, no class of transient ORFs
showed differences from each other in RFC between
S. cerevisiae and S. paradoxus (Figure S8C), the rate of transla-
tion (Figure S8D), or the coding score (Figure S8E).

The only distinguishing property between classes of transient
ORFs was their length: annotated transient cORFs and transient
dubious nORFs are much longer on average than unannotated
transient nORFs (Figure S8F). This is a consequence of the his-
tory of annotation of the S. cerevisiae genome, where a length
threshold of 300 nt was set for the annotation of ORFs.%°’
The sharp 300 nt threshold is still clearly reflected in annotations.
For example, genome annotations include 96% of nonoverlap-
ping transient ORFs in the 300-400 nt range (55/57) but only
4% in the 252-297 nt range (4/101). Given that transient nORFs
resemble transient cORFs in all respects besides length, we hy-
pothesized that numerous never-studied transient nORFs are
just as likely to have phenotypes as transient cORFs.

Transient ORFs are detected in the cell and mediate
diverse phenotypes

To gain further insights into the potential biological roles of tran-
sient ORFs, we examined published reports about annotated
ORFs (transient cORFs and transient dubious nORFs) in the
S. cerevisiae experimental literature and performed additional
experiments to investigate transient unannotated nORFs. We
examined whether transient ORF products could be detected
experimentally, whether they affect phenotypes, and whether
they interact with specific biological pathways.

We first assessed whether the proteins encoded by transient
ORFs can be detected in the cell. We examined the CYCLoPs
database,*®° the C-SWAT tagging library,’® and the YeastRGB
database,’®' which contain collections of fluorescently tagged pro-
teins expressed from their native promoters and terminators,
including both cORFs and dubious nORFs. Together, these
studies detected the expression of a fluorescent protein product
for 90 of the 93 (97 %) transient cORFs tested, along with 37 of
the 41 (90%) transient dubious nORFs tested (Figure 5A). For
comparisons, we C-terminally tagged 21 highly expressed unan-
notated transient nORFs with mNeonGreen at their endogenous
locus and examined their expression using microscopy. We de-
tected 8 of the 21 tagged nORF proteins (38%) (Figures 5A, 5B,
and S9). Thus, the translation of tagged proteins can be detected
for both annotated and unannotated transient ORFs.

We next examined the evidence that transient ORFs affect
phenotype. Five transient cORFs have been studied in depth.
Two of these, MDF1%? and YBR196C-A,®® have been previously
described as having emerged de novo from non-genic se-
quences. MDF1 inhibits the mating pathway in favor of vegeta-
tive growth,°>%* and YBR196C-A is an endoplasmic reticulum-
located transmembrane protein whose expression is beneficial
under nutrient limitations.°®> The remaining three have been
experimentally characterized, although their evolutionary prop-
erties were not analyzed in the corresponding studies: HUR1
plays a role in non-homologous end-joining DNA repair°®,
YPRO96C regulates the translation of PGM2°", and ICS3 is
involved in copper homeostasis.®® These cases demonstrate
that some transient ORFs do the phenotypes.
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To determine whether transient cORFs that are not well
described also affect phenotype, we examined all literature
listed as associated with the ORF on SGD. Many of these tran-
sient cORFs have direct evidence of the phenotype (Table S6).
Of the 101 transient cORFs, 45 were reported to have deletion
mutant phenotypes (i.e., a change in phenotype observed
when the ORF is deleted) and 12 to have overexpression pheno-
types. Overall, we found phenotypes reported in the literature for
50 of the 101 transient cORFs (50%).

As unannotated transient nNORFs have not been systematically
investigated for phenotype, we sought to experimentally deter-
mine whether these ORFs too might have deletion mutant phe-
notypes. We thus conducted a deletion mutant screen of 49 un-
annotated transient nORFs selected for high translation rate and
to avoid intersecting cORFs, annotated ncRNAs, or promoters
(200 bp upstream of canonical genes). We fully deleted the
nORF using homologous recombination, and each strain was as-
sayed for colony growth in seven conditions. Eight nORF dele-
tion mutant strains showed deleterious phenotypes in at least
one condition at a 5% FDR (Figure 5C; Table S7). Thus, the
loss of transient nORFs, as with cORFs, can affect the phenotype
despite the lack of evolutionary conservation.

To begin to understand the specific biological processes in
which transient ORFs might be involved, we leveraged the large
yeast genetic interaction network assembled in the study of Cos-
tanzo et al.®® This dataset includes 75 nonoverlapping transient
cORFs and 9 nonoverlapping dubious transient NORFs. Genetic
interaction strength, ¢, measures the difference between the
observed fitness of a strain in which two genes are deleted
and the expected fitness, given the fitness of the two single-
gene deletion strains; a negative value of high magnitude sug-
gests that the two mutated genes are involved in related pro-
cesses. Of the 84 transient ORFs in the dataset, 79 (94%) have
at least one negative genetic interaction at the high-stringency
cutoff defined by Costanzo et al.®® (¢ < —0.2 and p value < 0.05)
and 51 (61%) have synthetic lethal interactions (¢ < —0.35 and p
value < 0.05) as defined in that study (Figure 5D). This was only a
slightly lower rate than that for conserved nonessential ORFs,
98% of which had negative interactions at the high-stringency
cutoff and 76% of which had synthetic lethal interactions. At
the high-stringency threshold, 27 transient ORFs were found to

Cell Systems

interact with groups of related genes enriched in specific gene
ontology (GO) terms (5% FDR; Table S8). For example, the inter-
actors of YER175W-A are associated with the GO category
“cryptic unstable transcript (CUT) metabolic processes” with
high confidence, and five of its eleven interactors are compo-
nents or co-factors of the exosome (Figure 5E), indicating likely
involvement in CUT degradation or a closely related post-tran-
scriptional regulation pathway. Other enrichments included
diverse processes such as “mating projection tip” or “Golgi
sub-compartment.” In contrast, when we applied the GO enrich-
ment analysis to the full set of genes that interact with any tran-
sient ORF, no significant enrichment was observed. These re-
sults suggest that transient ORFs in general do not participate
in one shared biological process but rather are involved in a
wide variety of cellular processes.

Overall, we uncovered evidence that 131 of the 250 (53%) an-
notated transient ORFs have at least one indicator of biological
relevance (detection of a protein product, a reported phenotype
in a screen, or a genetic interaction in the Costanzo et al.’®
network) (Figure 5F). In addition, we demonstrate that unanno-
tated transient ORFs encode proteins that can be detected in
the cell (38% of those tested in this study) and influence cellular
fitness when deleted (17% of those tested in this study). Given
that this class has received almost no study compared with the
great number of experiments that have been conducted on
cORFs, the number of transient ORFs with biological relevance
may be substantially larger than that which has been annotated.

A limitation of much of the experimental evidence available on
deletion mutant phenotypes is that most deletion mutants and
genetic interaction screens are based on a full gene replacement
strategy in which the entire ORF is lost, leaving the possibility that
some deletion phenotypes could be caused by the loss of a
ncRNA or a DNA regulatory element located at the same position
as the ORF rather than the loss of the ORF translation (Figure 6A).
To examine this possibility, we constructed a set of strains where
the ORF start codon ATG was replaced with an AAG codon while
keeping the rest of the ORF intact. This set included three tran-
sient cORFs that have previously been characterized on the basis
of overexpression or full deletion mutants, /CS3,°® YPR096C,®’
and YBR196C-A,®° along with four transient nORFs that showed
strong deleterious phenotypes in our full ORF deletion screen

Figure 5. Transient nORFs and cORFs can be detected in the cell and exhibit phenotypes

(A) Transient ORFs are detected by fluorescent microscopy. For cORFs or dubious nORFs, the proportion of proteins expressed by transient ORFs detected in the
C-SWAT,®® CYCLoPs,*® or YeastRGB®' microscopy datasets out of those tested. For unannotated transient nORFs, the proportion detected by mNeonGreen
tagging in this study. Error bars indicate standard error of the proportion.

(B) Tagged unannotated transient NnORFs show varied subcellular localizations. Microscopy images of unannotated transient nORFs taken at 100x. Left panel
shows the expression of the nORFs tagged with mNeonGreen, middle panels the dyes CMAC blue and MitoTracker red for mitochondria and vacuoles iden-
tification, respectively, and the right panel the merge of all the above channels with DIC. Top panel show the nORF (orf45629) with a cytosolic expression and the
bottom panel the nORF (orf231865) with expression localizing to the mitochondria. Each image is representative of around 100 individual cells. Scale bars, 5 pm.
(C) Loss of transient nNORFs can affect phenotype despite lack of evolutionary conservation. The proportion of deletion mutants with reported loss-of-function
phenotypes in two groups: transient cORFs in published deletion mutant screens, and transient nORFs assayed in this study. Reported phenotypes in published
data were taken from the literature associated with each ORF on SGD. In this study, deleterious deletion mutant phenotypes were identified from a high-
throughput colony fitness screen in six stress conditions using a 5% FDR threshold.

(D) Transient ORFs engage in epistatic relationships. The percent of transient ORFs (N = 84) and nonessential genes (N = 4,681) with at least one genetic
interaction at the given threshold are shown. Differences between groups were tested using Fisher’s exact test.

(E) Genetic interactions of the transient ORF YER175W-A. Five interactors are related to exosome (striped circles).

(F) Presence of phenotypes among annotated transient ORFs (N = 250). “Protein detected” indicates that the ORF product was found in either the C-SWAT or
CYCLoPs database. Phenotypes of deletion collection, deletion, and overexpression screens were taken from reported findings in the yeast experimental
literature (Table S6). “Genetic interaction” indicates a statistically significant genetic interaction with e < —0.2, and “GO-associated interactors” indicates a GO
enrichment was found among significant interactors at 5% FDR.
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Figure 6. Translation inhibition of transient ORFs causes strong phenotypes

(A) A two-step strategy for inhibiting nORF translation. An ORF may overlap a DNA regulatory element or an RNA with a noncoding function (wild-type ORF), both
of which are disrupted in a gene replacement strategy in addition to the loss of translation (full gene replacement). This creates ambiguity in interpreting com-
parisons between deletion mutants and wild-type strains. Following a deletion screen using gene replacement, we used a second round of homologous
recombination to restore either the full ORF (restored ORF) or an ORF with its start codon mutated from ATG to AAG (translation inhibition). As these mutants differ

only by this single base, the specific effects of translation inhibition can be inferred.

(legend continued on next page)
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(Table S9; HUR1 and MDF 1 were not tested because they overlap
other cORFs). Each deletion strain was tested in seven environ-
mental conditions. The single nucleotide ATG —AAG mutation
caused a significantly reduced colony size for all three transient
cORFs tested and for three of the four transient nORFs tested
in at least one condition (Figure 6B). We gave these three NnORFs
systematic names YDL204W-A, YGR016C-A, and YNL040C-A.
The remaining NnORF, YDRO73C-A, showed a weak beneficial
phenotype from the ATG — AAG mutation in some conditions,
as did two other nORFs, YGR0O16C-A and YNLO40C-A. The
largest growth reductions were observed from disabling transla-
tion in YDL204W-A: this strain reached only 64% of wild-type
growth in hydroxyurea and 63% in high salt concentrations,
with a smaller reduction to 94% growth in rich media (YPDA).
These growth defects were also observed in a liquid growth
setting (Figures 6C-6E). To confirm that these phenotypes were
caused by loss of the YDL204W-A protein rather than cis effects
at the locus, we expressed the intact YDL204W-A ORF from a
plasmid in the ATG — AAG mutant strain. Plasmid expression of
the ORF fully restored the wild-type phenotype in the mutant
strains (Figures 6F-6H), providing further evidence that blocking
YDL204W-A translation causes a loss-of-function phenotype
mediated by loss of the encoded protein.

In our translation dataset, YDL204W-A has a translation rate at
the top percentile among transient ORFs (Figure 6l), higher than
10% of cORFs. Comparing its sequence with the homologous
region of other Saccharomyces genus species, only
S. paradoxus and S. mikatae have a homologous start codon,
but a 2 bp insertion in S. cerevisiae results in a frameshift such
that little of the ORF is shared in any other species (Figure 6l);
thus, this ORF has a RFC score of only 0.2 (Table 1). The other
transient ORFs with phenotypes induced by an ATG — AAG mu-
tation also showed no signs of selection (Table 1). Thus, our re-
sults exemplify the potential for unannotated coding sequences
with no evident evolutionary conservation to affect cellular phe-
notypes and fitness.

DISCUSSION

Since the advent of ribo-seq, it has been evident that large parts
of eukaryotic genomes are translated outside of canonical pro-
tein-coding genes,’ but the nature and full significance of this
translation have remained elusive. To facilitate the study of this
noncanonical translatome, we developed iRibo, a framework
for integrating ribo-seq data to sensitively detect ORF translation
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across a variety of environmental conditions. The iRibo frame-
work can be applied to any species and set of candidate ORFs
of interest. Here, we deployed iRibo to map a high-confidence
yeast reference translatome almost 5 times larger than the ca-
nonical translatome. This resource can serve as the basis for
further investigations into the yeast noncanonical translatome,
including the prioritization of NORFs for experimental study.

We designed iRibo to be highly sensitive at detecting patterns
of triplet periodicity through the genome, but there are some lim-
itations to our strategy. We focused exclusively on ORFs with
AUG start codons and therefore missed the non-AUG codons
that are sometimes used as starts.”’ Similarly, we did not
consider ORFs overlapping canonical genes in a different frame
on the same strand, although some such nORFs are known to be
translated.”>”® Finally, candidate ORFs were selected as the
longest ORF in any reading frame, which means the true bound-
aries of identified ORFs could be shorter than described. We
expect these limitations to cause an underestimation of the num-
ber of translated nORFs, suggesting that the true count is even
larger than that identified here.

We used the iRibo yeast reference translatome to address a
fundamental question: to what extent does the noncanonical
translatome consist of conserved coding sequences that were
missed in prior annotation attempts? In a thorough evolutionary
investigation, we identified 14 translated nORFs that show evi-
dence of being conserved under purifying selection. Only one of
these ORFs, YJR107C-A, appears to have been previously
described,** although it was not annotated on the SGD at the
time of our analysis. Thus, even a genome as well studied as
S. cerevisiae’s contains undiscovered conserved genes, likely
missed in prior analyses due to difficulties in analyzing ORFs of
a short length. These 14 nORFs are, however, the exception:
the great majority of translated nORF show no signatures of se-
lection, comprising a large pool of evolutionarily transient trans-
lated sequences.

The yeast genome thus encodes two translatomes, one
conserved and one transient. The conserved translatome con-
sists of coding sequences that are preserved by strong purifying
selection and usually have a long evolutionary history. They tend
to be relatively long, well expressed, and with sequence proper-
ties highly distinct from noncoding sequences. The transient
translatome, by contrast, is evolutionarily young, of recent de
novo origin from previously noncoding sequences and still
similar to noncoding sequences in nucleotide composition.
Evolving in the absence of strong purifying selection, transient

(B) Inhibiting translation of transient ORFs triggers colony growth phenotypes. The fitness of AAG mutants (translation inhibition) is shown for seven transient
ORFs under stress conditions. Fitness is estimated by comparing colony size between AAG mutants (n = 24 per strain and condition) and ATG controls (n = 24)
using the LI detector pipeline.”® A permutation test is used to test for a difference in fitness between the AAG mutant and AAG control, with significant differences
indicated as follows: *p < 0.05 **p < 0.01 **p < 0.001. Error bars indicate standard errors. A cross symbol after the ORF names indicates unannotated nORFs
assigned systematic names in this study.

(C-E) Deleterious impact of inhibiting translation of transient nORF YDL204W-A in a liquid growth assay. Liquid growth curve of a strain in which YDL204W-A
translation is inhibited by mutating its start codon (AAG) and a strain with the initial codon as ATG in: 1 M NaCl (C), 100 mM hydroxyurea (D), and YPDA (E),
with three technical replicates for each strain. The shaded area covers 1 SD from the mean OD value among replicates.

(F-H) Expression from plasmid restores wild-type growth to YDL204W-A start codon mutants. Liquid growth curves of an attempted rescue of the YDL204W-A
AAG mutant by expressing intact YDL204W-A from a plasmid. The AAG start codon mutants were transformed with either an empty plasmid or a plasmid
expressing the intact ORF; the ATG controls were transformed with an empty plasmid. All strains were then assayed for growth in liquid media in either 1 M NaCl
(F), 100 mM hydroxyurea (G), or YPDA (H) with three technical replicates each. The shaded area covers 1 SD from the mean OD value among replicates.

(I) YDL204W-A is translated and not conserved. Top: ribosome profiling reads mapped by iRibo to YDL204W-A show triplet periodicity. Bottom: alignment of the
YDL204W-A ORF against homologous DNA in the Saccharomyces genus.
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Table 1. Evolutionary properties of transient ORFs with
phenotypes induced by inhibiting translation

Reading frame pN/pS TBLASTN
ORF name conservation (p value) matches
YBR196C-A 0.29 1.34 (0.65) 0
YDL204W-A* 0.20 1.25(0.83) 0
YGRO016C-A* 0.29 0.66 (0.36) 0
YJLO77C 0.21 0.74 (0.19) 0
YNLO40C-A? 0.38 0.97 (1.00) 0
YPR096C 0.20 1.39 (0.47) 0

The pN/pS ratio is obtained from nucleotide variation in the ORF among
the 1,011 S. cerevisiae strains assembled by Peter et al.“* TBLASTN was
run for each ORF against genomes in the subphylum Saccharomycotina,
excluding the genus Saccharomyces, with an e value threshold of 1074,
#We assigned this unannotated ORF a systematic name based on SGD
conventions.

translated ORFs appear to be frequently lost to disrupting muta-
tions, only to be replaced by other transient translated ORFs
following translation-enabling mutations. Despite these pro-
found differences, transient translated ORFs, like conserved
ones, can affect the phenotype and fitness of the organism.
Several well-characterized coding sequences unique to
S. cerevisiae, such as HUR1°® and MDF1,%? play key roles in bio-
logical processes by encoding lineage-specific proteins that
physically interact with conserved proteins. In addition, around
100 transient ORFs are annotated as coding genes and have
therefore been extensively screened; a majority express stable
proteins, and many have known loss-of-function phenotypes.
Their genetic interaction patterns suggest involvement in a
wide array of specialized cellular processes. Our experiments re-
vealed that disabling the start codons of unannotated transient
translated ORFs can cause a large fitness reduction in stress
conditions. The strength of the fitness reduction observed was
highly dependent on the stressor applied in the environment,
suggesting again specialized cellular roles. In some cases,
disabling the start codon resulted in growth increases, perhaps
indicating that disabling translation saved the cell energy.

Our work adds to the growing research on the roles noncanon-
ical coding play across many species, including humans.”:"* We
note that “noncanonical” is not a coherent biological category,
as it simply indicates the class of sequences that have not
been annotated in genome databases. We demonstrate that
the division between “canonical” and “noncanonical” transla-
tion in S. cerevisiae corresponds largely, but not perfectly, to a
biological division between transient and conserved. It is this
biological division that is fundamental: the 101 yeast cORFs
classified as transient have sequence and evolutionary proper-
ties nearly identical to noncanonical transient ORFs, except for
sequence length, and should be placed in the same category.
We can thus reclassify the translatome according to biology
rather than annotation history.

Itis perhaps unexpected that a coding sequence can affect or-
ganism phenotype despite showing no evidence of selection.
However, this result is consistent with evidence from the field
of de novo gene birth. Species-specific coding sequences
have been characterized in numerous species.®” For example,
Xie et al.”® identified a mouse protein contributing to the repro-
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ductive success that experienced no evident period of adaptive
evolution. Sequences that contribute to phenotype without con-
servation have also been described outside of coding se-
quences. Regulatory sequences, such as transcription factor
binding sites, are a mix of relatively well-conserved elements
and elements that are not preserved even between close spe-
cies’®; it is plausible that translated sequences also show such
a division. There are several explanations for why translated
ORFs may lack detectable signatures of selection. Most tran-
sient ORFs are expressed at much lower levels than canonical
genes and therefore may have minimal effects on the phenotype.
For those that do have large and beneficial effects in some envi-
ronmental conditions, these may be balanced by deleterious ef-
fects in other conditions. Moreover, selection may occur, and be
biologically relevant, below the limits of detectability for the
genomic approaches we used. Our findings do not imply an
absence of selective forces in shaping the patterns of noncanon-
ical translation. Rather, the particular selective environment fa-
voring the expression of these sequences may be too short lived
to detect selection using traditional comparative genomics ap-
proaches. Previous research, such as the proto-gene model of
de novo gene birth,® has proposed that recently emerged trans-
lated ORFs serve as an intermediary between noncoding se-
quences and mature genes. Our results add to the evidence
that these ORFs provide many potential phenotypes from which
selection could preserve beneficial ones for the long term.®° Still,
the observation that even ORFs with phenotypes lack evidence
of conservation at the population level suggests that there are fil-
ters that prevent the vast majority of recently emerged translated
ORFs, even those with beneficial phenotypes, from evolving into
mature genes that are preserved over long evolutionary time.
The primary influence of the great majority of de novo ORFs is
in their biological activity over their short lifespans.

The yeast reference translatome resource we constructed
with iRibo is meant to facilitate community efforts to decipher
the specific physiological implications of transient translated
ORFs. Our proof-of-concept analyses of subcellular localization,
genetic interactions, and ATG —AAG mutants suggest involve-
ment in diverse cellular processes and pathways. We note that
some transient translatome phenotypes may be mediated by a
protein product, by the process of translation itself, or both.
Translation of both UORFs’” and dORFs’® can affect the expres-
sion of nearby genes. Translation also plays a major role in the
regulation of RNA metabolism through the nonsense-mediated
decay pathway.”®®° Dissection of the molecular mechanisms
mediating transient translatome phenotypes is an exciting area
for future research.

Our results indicate that the yeast noncanonical translatome is
neither a major reservoir of conserved genes missed by annota-
tion nor mere translational noise. Instead, many translated
nORFs are evolutionarily novel and likely affect the biology,
fitness, and phenotype of the organism through species-specific
molecular mechanisms. As transient ORFs differ greatly in their
evolutionary and sequence properties from conserved ORFs,
they should be understood as representing a distinct class of
coding elements from most canonical genes. Nevertheless, as
with conserved genes, understanding the biology of transient
ORFs is necessary for understanding the relationship between
genotypes and phenotypes.
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KEY RESOURCES TABLE

Cell Systems

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Yeast Extract BD Difco DF0127179

Peptone BD Difco DF0118170

G-418 RPI G64000-1.0

D(+) Glucose Thermo Fisher AAA168280E

Hygromycin B RPI H75020-1.0

CellTracker Blue CMAC Dye Invitrogen C2110

MitoTracker Red CMXRos Invitrogen M7512

Tunicamycin Sigma SML1287-1ML

Fluconazole Sigma PHR1160-1G

Sodium Chloride Spectrum S1240-1KG

Hydroxyurea Thermo Scientific A10831.14

Hydrogen Peroxide Fisher Scientific H323-500

DMSO Amresco 0231-500ML

Poly(ethylene-glycol) 3350 Sigma P4338-500G

ssDNA Life Technologies 15632011

Lithium Acetate dihydrate Sigma L4158-100G

Deposited data

Deletion screen colony growth images This paper Figshare: https://doi.org/10.6084/m9.figshare.21741434.v1
Ribosome profiling analysis results This paper Figshare: https://doi.org/10.6084/m9.figshare.22312729.v1
C-SWAT collection Meurer et al.®® Table S2

YeastRGB collection Dubreuil et al.®’ Yeastrgb.org

CYCLoPs collection Ko et al.*® https://thecellvision.org/cyclops/
Saccharomyces cerevisiae S288C Saccharomyces http://sgd-archive.yeastgenome.org/sequence/
reference genome sequence R64.2.1 genome database

S. paradoxus genome Liti et al.”® http://www.saccharomycessensustricto.org/

S. arboricolus genome Liti et al.®’ GCF_000292725.1

S. jurei genome Naseeb et al.® GCA_900290405.1

S. mikatae, S. bayanus var. uvarum, Scannell et al.”" http://www.saccharomycessensustricto.org/

S. bayanus var. bayanus, and S. kudriavzevii genome

TIF-seq data Pelechano et al.*’ GEO: GSE39128

S. cerevisiae strain genomes Peter et al.** http://1002genomes.u-strasbg.fr/files/
Budding yeast genomes Shen et al.*’ https://y1000plus.wei.wisc.edu/data
Experimental models: Organisms/strains

Saccharomyces cerevisiae: BY4741 Dharmacon YSC1048

Saccharomyces cerevisiae: BY4741, Dharmacon YSC1053

deletion collection

Saccharomyces cerevisiae: BY4741, This paper Wacholder 2023, deletion
ORF::KanMx (mini collection with the collection, see Table S10

49 nORFs and 3 cORFs deleted)

Saccharomyces cerevisiae: BY4741, This paper Wacholder 2023, mNG
ORF-mNG:HYG (mini collection with the collection, see Table S10

selected ORFs tagged with mNeonGreen)

Saccharomyces cerevisiae: BY4741, This paper yARC0602

YDL204W-A(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0601

YDL204W-AATG — AAG):HYG
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Saccharomyces cerevisiae: BY4741, This paper yARC0604
YBR196C-A(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0603
YBR196C-A(ATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0606
YDRO73C-A(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0605
YDRO073C-A(ATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0608
YGR0O16C-A(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0607
YGRO16C-AATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0610
YJLO77C(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0609
YJLO77C(ATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0612
YNLO40C-A(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0611
YNLO40C-A(ATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0614
YPR096C(wt):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0613
YPR0O96C(ATG — AAG):HYG

Saccharomyces cerevisiae: BY4741, This paper yARC0831

YDL204W-A(wt):HYG,

pAG-GPD-ccdB1-KanMx

Saccharomyces cerevisiae: BY4741, This paper yARC0842
YDL204W-A(ATG — AAG):HYG,

pAG-GPD-ccdB1-KanMx

Saccharomyces cerevisiae: BY4741, This paper yARC0848
YDL204W-AATG — AAG):HYG,

pAG-GPD-YDL204W-A-KanMx

Recombinant DNA

Plasmid: pAG-GPD-ccdB1-KanMx This paper pARCO0112

Plasmid: pAG-GPD-YDL204W-A-KanMx This paper pARC0300

Software and algorithms

Code for analyses conducted This paper Zenodo: https://doi.org/10.5281/zenodo.7474228
Code for analyzing images of colonies on plates This paper Zenodo: https://doi.org/10.5281/zenodo.7760846
R version 4.12 R https://www.r-project.org/

BLAST 2.9.0+ National Library of Medicine https://blast.ncbi.nim.nih.gov/blast/Blast.cgi
Ontologizer 2.0 Bauer et al.®® http://ontologizer.de/

Water EMBOSS https://www.ebi.ac.uk/Tools/psa/emboss_water/
MUSCLE 3.8.31 Edgar® https://www.drive5.com/muscle/

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anne-

Ruxandra Carvunis (anc201@pitt.edu).

Materials availability
All materials will be made available on request to the lead contact.
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Data and code availability
® Ribosome profiling analysis results are publicly available at Figshare. Plate images for colony growth assays are available at
Figshare and are publicly available as of the date of publication. DOlIs are listed in the key resources table.
@ All original code has been deposited at GitHub and is publicly available as of the date of publication. DOls are listed in the key
resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Yeast strains

All strains used in this study are derived from S. cerevisiae BY4741 (Dharmacon, YSC1048). Cells were stored at -80° C and routinely
cultured in YPDA at 30° C with shaking or in YPDA agar plates at 30° C. The parental strain and all derivatives produced in this study
are listed in Table S10. The lithium acetate method®' was used to create new strains and selection was performed on appropriate
selection plates. For genomic integration, the inserts were PCR amplified from plasmids or GBlocks.

METHOD DETAILS

Defining candidate ORFs

To identify a set of translated ORFs, a set of candidate ORFs was constructed for which translation status could be inferred using
ribo-seq data. ORFs were identified on the R64.2.1 Saccharomyces cerevisiae genome assembly downloaded from SGD.*® The initial
set of candidates consisted of all possible single-exon reading frames starting with an ATG, ending with a canonical stop codon, and
having at least one additional codon between the start and stop. Among all ORFs that shared a stop codon, all but the longest were
discarded. An ORF was considered canonical if it shared a stop codon with an ORF annotated as “verified”, “uncharacterized”, or
“transposable element gene” on SGD. All other ORFs that overlapped a canonical ORF on the same strand were removed (including
pairs of overlapping canonical genes) while ORFs that overlapped cORFs on the opposite strand were classified as antisense ORFs.

Yeast ribo-seq dataset collection and read mapping

Alist of S. cerevisiae ribosome profiling (ribo-seq) studies was identified by conducting a broad literature search. For each study, all
ribo-seq experiments were added to the dataset except those conducted on mutants designed to alter wildtype translation patterns.
The full list of experiments and studies included is given in Tables S1 and S2, respectively. The fastq files associated with each exper-
iment were downloaded from Sequence Read Archive® or the European Nucleotide Archive.®® If adaptors were present in the fastq
file, they were trimmed. Reads were filtered to exclude reads in which any base had a Phred score below 20. For each remaining read,
the number of perfect matches in the S. cerevisiae genome were identified, and only unique perfect matches were kept.

Ininitial mapping, reads were assigned to the genomic position aligning with the first base of the read. It was necessary to remap the
reads such that the position assigned to the read instead corresponded to the first amino acid in the P-site of the translating ribosome,
as in previous ribo-seq analyses,*” so that the triplet periodic signal indicative of active translation overlaps precisely the bounds of
translated ORFs. This was done by shifting all reads by the same number of positions, with the number determined separately for each
read length and each experiment. To determine this number, a metagene profile was constructed: the number of reads in each of the
-20 to +20 positions relative to the start codon was counted, accumulated over all annotated genes on Saccharomyces Genome
Database (SGD).** As there should be many more reads on the start codon of annotated genes than the sequence immediately up-
stream of these genes, the first attempt was to remap the first position with read count above a threshold to the first amino acid on the
start codons, which then requires all other reads to shift by the same amount. The threshold selected was 5% of the total reads within
20 bases of the annotated start codons. The attempted shift was accepted if the expected triplet periodic pattern was obtained; i.e.,
there were more remapped reads on the first base of the codons of annotated genes than on the second or third base. Otherwise, a
second shift was attempted from the next position exceeding the read count threshold, and so on until both criteria were met.

For quality control, presence of triplet periodicity was then tested for each read length in each experiment. The number of reads
mapping (after remapping) to the first, second, and third position of each codon was counted among annotated genes, requiring at
least twice as many reads in the first position than each of the second and third. If a read length failed this test for a given experiment it
was excluded from further analysis, and if all read lengths for an experiment failed the experiment itself was excluded. All read lengths
from 25 to 35 nucleotides were tested.

Translation calling

The iRibo program can be applied to any set of ribo-seq experiments to identify a set of ORFs with evidence of translation among
those experiments. To construct a reference translatome, translation was inferred using ribo-seq data from the full set of experiments
we collected that passed quality control (Table S4). Separately, iRibo was also run on specific subsets of the full collection, including:
experiments with or without the drug cycloheximide, experiments only on cells grown in YPD; only on cells grown on SD; and only on
cells grown in YPD without cycloheximide (Table S4). iRibo was also run separately for each individual study, generating lists of trans-
lated ORFs within each study.
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Translation was assessed as follows: for each codon in each candidate ORF, the position within the codon with the most reads was
noted, if any. The number of times each codon position had the highest read count across the ORF was then counted. The binomial
test was then used to calculate a p-value for the null hypothesis that all positions were equally likely, against the alternative that the
first position was favored. This p-value is an indicator of the strength of evidence for triplet periodicity favoring the first codon position.

To estimate the false discovery rate (FDR), a set of ORFs corresponding to the null hypothesis was constructed. For each ORF, the
ribo-seq reads were scrambled randomly position by position (not read by read); e.g., if 10 reads mapped to the first base on the
actual ORF, a random position in the scrambled ORF was assigned 10 reads, and so on. In this way the read distribution across po-
sitions was maintained but the spatial structure was eliminated. The same binomial test as used for the actual reads was then used on
all scrambled-read ORFs. For every p-value threshold, the FDR can then be calculated as the number of scrambled ORFs with
p-value below the threshold divided by the number of actual ORFs with p-values below the threshold. For each list of translated
ORFs, the p-value threshold was set to give a 5% FDR among noncanonical ORFs; all ORFs with p-values below this threshold
were then included in the translated set, whether canonical or noncanonical.

Estimating translation rates across genomic contexts

All NORFs were partitioned into genomic contexts, with nonoverlapping nORFs classified by the relation between the nORF and any
cORF located on the same transcript and antisense nORFs classified by partial or complete overlap of the opposite strand gene. The
transcripts reported in Pelechano et al.*” based on TIF-seq data were used for this analysis. An nNORF was considered antisense if it
overlapped an ORF annotated as “verified”, “uncharacterized”, “transposable element” or “blocked” on SGD on the opposite
strand and nonoverlapping otherwise (ORFs overlapping annotated genes on the same strand were excluded from analysis, as
described above). A nonoverlapping nORF was considered to share a transcript with a cORF or annotated non-coding RNA if any
transcript fully contained both the nORF and the cORF or annotated RNA sequence; the ORF was then further classified as being
either a UORF or dORF based on whether it was upstream or downstream of the cORF or RNA. If an nORF shared a transcript
with both its upstream and downstream neighboring cORFs, it was classified according to the cORF that was closer.

Identifying ORF homologous sequences

Genomes were obtained from seven relatives of S. cerevisiae within the Saccharomyces genus: S. paradoxus from Liti et a
S. arboricolus from Liti et al.,%° S. jurei from Naseeb et al.,®® and S. mikatae, S. bayanus var. uvarum, S. bayanus var. bayanus,
and S. kudriavzevii from Scannell et al.>" Alignments were constructed between each S. cerevisiae ORF and its homologs in each
Saccharomyces relative using synteny information. To identify anchor genes for syntenic blocks, BLASTP was run for each annotated
ORF in S. cerevisiae against each ORF in the comparison species. Identified homolog pairs with e-value < 107 were selected as po-
tential anchors. For each ORF in the S. cerevisiae genome, the upstream anchor G, and downstream anchor G; were selected that
minimized the sum of the distance between the anchors in S. cerevisiae and the distance between the anchors in the comparison
species; this sum was required to be less than 60 kb. The sequence between and including Gg and G4 were then extracted from
both the S. cerevisiae genome and the comparison species and a pairwise alignment of the syntenic region was generated using
MUSCLE 3.8.31.%"

To confirm that the ORF was matched to genuinely homologous DNA, the alignment of the S. cerevisiae ORF along with its 50 bp
flanking regions was extracted from the full syntenic alignment. The extracted region was then realigned using the Smith-Waterman
algorithm®® with a match bonus of 5, a mismatch penalty of 4, and a gap penalty of 4. To test homology, 1000 alignments were con-
structed using the same score system in which the sequence of the comparison species was shuffled at random, reflecting a null
hypothesis that the region was not homologous. The proportion of times the alignment of the real sequence scored better than
the shuffled ones is a p-value indicating the strength of the null hypothesis against the alternative that the region is homologous. Ho-
mology was accepted as confirmed if the p-value was less than 1%, and alignments were excluded from analysis if homology was not
confirmed.

If a syntenic alignment could not be constructed for a particular S. cerevisiae ORF and comparison species (because homology
failed or there were no appropriate anchors), BLAST was attempted as an alternative method of finding the homologous DNA
sequence. For these ORF sequences, BLASTN was run against the genome of the comparison species. For each reciprocal
best matching pair with e-value < 107, the matched sequences in both species were extracted, together with a 1000 bp flanking
region in both ends, and aligned using MUSCLE.?” DNA homology was then tested using Smith-Waterman alignment as
described above.

4
.2

Division of ORFs into sets

Evolutionary analysis of ORFs was done separately for those ORFs for which there existed substantial information to test selection
(“high information ORFs”) and those for which less information was available (“low information ORFs”). To be placed in the high in-
formation set, the ORF had to meet a homology criterion and a diversity criterion. The homology criterion required that DNA homology
was confirmed in either a synteny or BLAST-based pairwise alignment with at least four other species in the Saccharomyces genus.
For the diversity criterion, the number of single nucleotide differences (excluding gaps) was counted between the S. cerevisiae ORF
and all its aligned sequence with confirmed homology among Saccharomyces genomes. The diversity criterion was satisfied if the
median count of differences exceeded 20.
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Reading frame conservation

Reading frame conservation is a measure of conservation of codon structure developed by Kellis et al.>° and used here with some
modifications. Calculation of reading frame conservation was done on a pairwise alignment of a genomic region containing the
S. cerevisiae ORF (either a syntenic block between conserved genes or the 1000 bp flanking region around a BLAST hit). All sin-
gle-exon ORFs (ATG to stop codon) in the comparison species were identified across this region. For each ORF in the comparison
species, the reading frame conservation was calculated by summing up all points in the alignment where the pair of aligned bases are
in the same position within the codon (i.e., both are in either the first, second, or third position) and dividing by the length of the
S. cerevisiae ORF in nucleotides (including start and stop codons). Positions that align to gaps or are outside the range of the
S. cerevisiae ORF are always considered to be not in the same codon position and do not add to the numerator. The ORF in the com-
parison species with the highest reading frame conservation is considered the best match, and the reading frame conservation of the
S. cerevisiae ORF in relation to each other Saccharomyces species is defined as its reading frame conservation with its best match. In
addition to the pairwise reading frame conservation of each S. cerevisiae ORF in relation to its homologs in all other species, an index
of reading frame conservation (RFC) was defined equal to the average reading frame conservation of the S. cerevisiae ORF against all
species in the Saccharomyces genus for which homologous DNA could be identified.

Detecting distant homology among S. cerevisiae ORFs

The genomes of 332 budding yeasts were taken from Shen et al.*’ We applied TBLASTN and BLASTP for each S. cerevisiae translated
ORF against each genome in this dataset (excluding the Saccharomyces genus). Default settings were used except for setting an
e-value threshold of 0.1; results were then filtered by a stricter e-value threshold as described in each analysis. The BLASTP analysis
was run against the list of protein coding genes used in Shen et al.*" while the TBLASTN analysis was run against each entire genome.
Inthe TBLASTN analysis, scrambled sequences of each S. cerevisiae ORF were also included as queries to serve as a negative control.

Tests of selection using the dN/dS and pN/pS ratios

Variant call file data for 1011 S. cerevisiae isolates was taken from Peter et al.*® For each ORF, nucleotide diversity was estimated
from the full set of isolates. Nucleotide diversity was estimated as the mean number of differences per site in the ORF between any
pair of isolates. To calculate dN/dS, the consensus sequence among all isolates was determined. At each position in the consensus,
the three possible nucleotide variations were recorded as possible polymorphisms and distinguished by polymorphism type (12
possible combinations of consensus and variant nucleotide) and whether they would result in a synonymous or nonsynonymous dif-
ference from the consensus. If at least one isolate had the polymorphism, the polymorphism was also recorded as observed. All
possible and observed polymorphisms were counted among all considered ORFs.

The pN/pS ratio was calculated in a similar manner to Ruiz-Orera et al.?® and could be applied to either a single ORF or a group of
ORFs. For each ORF under consideration, the consensus sequence among all isolates was determined. At each position in the
consensus, the three possible nucleotide variations were recorded as possible polymorphisms and distinguished by polymorphism
type (12 possible combinations of consensus and variant nucleotide) and whether they would result in a synonymous or nonsynon-
ymous difference from the consensus. If at least one isolate had the polymorphism, the polymorphism was also recorded as
observed. All possible and observed polymorphisms were counted among all considered ORFs.

Consider a variant X— Y where X is the consensus at a site and Y is a possible variant. The probability of observing variant Y at a
position with consensus X, px_,y was estimated as the observed count of X—Y variant sites divided by the possible count of X—Y
variant sites. Under neutrality, the expected count of either synonymous or nonsynonymous X —Y variant sites is then the product of
Px—y and the number of possible synonymous or nonsynonymous X—Y variant sites. In this manner the expected and observed
counts of synonymous and nonsynonymous variants were calculated. The pN/pS ratio is then estimated as:

NONSYNobs /NONSYNexy
SYNops / SYNexp

Under neutrality, then, the expected count of X—Y nonsynonymous variant sites is the number of possible such variant sites times
the expected probability of this variant. In this manner the expected and observed counts of all synonymous variant types were calcu-
lated. To test for deviation from neutrality, we used a chi-squared test with one degree of freedom to compare observed vs. expected
counts of synonymous and nonsynonymous variants. Standard errors for the pN/pS ratio in group analyses were estimated by boot-
strapping: the ORFs in the group were resampled with replacement 1000 times and the pN/pS ratio was calculated each time. The
standard error was then estimated as the sample standard deviation among the 1000 pN/pS ratios.

The dN/dS ratio was calculated based on differences in the pairwise ORF alignments S. cerevisiae and its closest relative
S. paradoxus. Each S. cerevisiae ORF was associated with an S. paradoxus ORF for which the pair had the highest reading frame
conservation (or none if homology with S. paradoxus was not confirmed or the highest reading frame conservation was 0). Counts
of differences were made only for codons that shared the same frame between these ORFs and with at most one nucleotide differ-
ence between the codons. For every eligible position in the S. cerevisiae ORF, each possible S. paradoxus difference was counted
and distinguished by whether the difference was synonymous or nonsynonymous and by type (four S. cerevisiae nucleotides, each
with three possible S. paradoxus differences). These observed and possible differences were then used to estimate the dN/dS ratio in
the same way as described above for the pN/pS ratio.
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Among nORFs with high RFC, the strong conservation in Saccharomyces permitted calculation of dN/dS over the entire Saccha-
romyces tree, and so this was done as an additional test of selection (as reported in Table 1). For this analysis, ancestral reconstruc-
tion of the Saccharomyces phylogeny was conducted using PRANK®® with parameters -showanc -showevents -once -prunetree
-keep. Ancestral reconstruction included all species in which DNA homology was confirmed. Codons were only used for counting
substitutions if they shared frame conservation among all species. Observed and possible substitutions were counted across
each branch and distinguished by substitution type and whether the substitutions were synonymous or nonsynonymous. Then,
dN/dS was estimated in the same way as described for pN/pS above.

Classification of ORFs into transient and conserved

All high-information nonoverlapping translated ORFs with RFC > 0.8 were classified as conserved (Figure 4A). An nORF was also
classified as conserved if it overlapped no annotated feature on SGD, had TBLASTN matches with e-value < 107 with at least
two species outside the Saccharomyces genus and showed at least one additional signature of purifying selection (RFC > 0.8 or
a p-value < 0.05 in a test of neutrality using dN/dS or pN/pS) (Figure S6A).

Nonoverlapping ORFs were excluded from classification in the transient set if they showed homology to an ORF classified as
conserved in S. cerevisiae (e-value < 10 using BLASTP) or to any sequence among budding yeasts outside Saccharomyces”’
(e-value < 10 using TBLASTN). Among remaining translated ORFs, all high-information ORFs with RFC < 0.6 were classified as tran-
sient. Low information ORFs were divided into groups and classified as transient if no group they belonged to showed evidence of
selection in dN/dS analysis, pN/pS analysis, or weak homology matching analysis. Two low-information groups were cORFs and
antisense nORFs. Low information nonoverlapping nORFs were each assigned to three groups corresponding to deciles of transla-
tion rate, coding score and ORF length. Analyses of dN/dS and pN/pS are described above. For weak homology detection, the num-
ber of ORFs with at least two weak TBLASTN matches (e-value < 0.05) to budding yeast genomes collected by Shen et al.*’
(excluding Saccharomyces species) was counted for both actual and scrambled ORF sequences. Selection was inferred if actual
matches significantly (p < 0.05) exceeded scrambled matches using Fisher’s exact test. Only ORFs that did not overlap any anno-
tated feature on SGD were included in weak homology detection analysis.

Coding score calculation

The coding score, described by Ruiz-Orera et al.,’® is a measure of how close the hexamer (i.e., the nucleotide sequence of a pair of
adjacent codons) frequency of an ORF is to the hexamer of coding vs. noncoding sequences. Higher scores indicate a more gene-like
hexamer distribution. Coding hexamer frequencies were calculated among all ORFs annotated as “verified” or “uncharacterized” by
Saccharomyces Genome Database.*® Noncoding hexamer frequencies were calculated for all intergenic sequences (sequences in
between verified or uncharacterized ORFs) in the S. cerevisiae genome. As intergenic sequence has no codon structure, hexamer
frequencies for intergenic sequence were counted as if read in each possible coding frame. The score was then calculated as
described in Ruiz-Orera et al.*°

Analysis of published microscopy studies

Published results were examined from fluorescent tagging experiments where the expression of ORFs was driven by native pro-
moters and terminators. A list of ORFs detected in 15 GFP-tagged screens on wildtype strains in either normal conditions or with
chemical treatment (hydroxyurea or rapamycin) were retrieved from the CYCLoPs database.®®° Lists of ORFs detected in the
C-SWAT tagging library were taken from Meurer et al.®® and from YeastRGB.°' ORFs with fluorescent intensity below the reported
detection threshold in each screen were filtered out. Transient ORFs that showed detectable translation products in at least one
screen were considered as detected.

Literature analysis of transient ORFs
For each transient translatome cORF, we examined all publications listed on SGD as “primary” or “additional” literature for the ORF.
If the ORF had a phenotype in any listed publication, we noted the evidence for the phenotype (Table S6).

Genetic interaction analysis

Single mutant fitness and genetic interaction data were downloaded from TheCellMap.org.®" In this dataset, mutants of nonessential
genes are full deletions and mutants of essential genes are temperature-sensitive alleles. Transient ORFs were all nonessential.
Different temperature-sensitive alleles for the same essential gene were treated separately. We removed all genes or transient
ORFs with a genomic overlap to another genetic element from our analyses as it is not possible to assign the observed phenotypes
to either of the overlapping pairs.

We counted the number of transient ORF and nonessential genes that showed at least one genetic interaction with €<-.2 and
p-value < 0.05 (a negative genetic interaction) or £<-.35 with a p-value<0.05 (a synthetic lethal interaction). We then divided this num-
ber by the total number of transient ORFs or nonessential genes in the Costanzo et al.®° genetic interaction dataset to calculate the
percentage showing at least one genetic interaction. We used Fisher’s exact test to assess the significance of differences between
percentages of nonessential genes and transient ORFs.
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Gene ontology analysis of the interactors of each ORF was conducted with Ontologizer,” using Benjamini-Hochberg multiple
testing correction and the term-for-term calculation method. The gene association file was downloaded from SGD. Gene ontology
evidence codes relating to genetic interactions (IGl and HGI) were not used.

Creation of yeast strains

Deletion mutant strains for 49 transient nORFs and 3 transient cORFs were created by using homologous recombination to replace
the ORFs with a KanMX cassette. Transformations were done using the LiAc/PEG protocol®' in the background BY4741 strain, and
selected in media containing G-418. After an initial screen of these strains, a subset of the deletion strains that showed strong dele-
terious effects were transformed a second time, also using the LiAc/PEG protocol,®’ to replace the KanMx cassette with either an
intact copy of the original ORF, or a mutant copy of the ORF with the start codon ATG and (in some cases) additional in-frame
ATG codons mutated to AAG to prevent translation. This was accomplished by using homologous recombination to replace the
KanMx cassette with a construct containing the intact or mutant ORF followed by a hygromycin resistance cassette. These con-
structs were synthesized by IDT (Integrated DNA Technologies). The resulting transformants were selected in agar plates containing
hygromycin. All positive clones were sequenced to confirm presence of either the restored wildtype ORF or the ORF with a mutated
start codon.

Strains containing an mNeonGreen tag for microscopy purposes were also made by homologous recombination using the LiAc/
PEG protocol® in the BY4741 background. The mNeonGreen and hygromycin cassette sequences were amplified from a plasmid
using primers containing homology to the 3’ of each ORF. The primers were designed to remove the STOP codon of each ORF and
place the mNeonGreen in frame with the ORF, to be expressed under its native promoter. Positive clones were selected on agar
plates containing hygromycin.

All strains were kept in glycerol stocks at —80 °C in 96 and 384-well format until used for screening. Strain genotypes are listed in
Table S10.

Screening strategy for fitness estimation

Both rounds of deletion screening were conducted at 1536 colony density, with 1 in 4 colonies on the plate being reference strains
used to correct for spatial biases as described in Parikh et al.”® In the initial deletion screen, each mutant strain was tested using 12
replicates; 72 replicates were tested per strain in the start codon mutant screen. Conditions tested were YPDA and YPDA+DMSO as
unstressed conditions and five stress conditions: YPDA supplemented with 1M NaCl, 100mM Hydroxyurea, 0.6puM Tunicamycin,
25ug/ml Fluconazole, or 30mM Hydrogen peroxide (H2O.). Agar plates were incubated and imaged periodically until the colonies
reached saturation. The plate handler Singer ROTOR (Singer Instrument Co. Ltd) was used to prepare all plates starting from glycerol
stocks. Serial imaging of the plates was conducted using the splmager Automated Imaging System (S & P Robotics Inc., Ontario,
Canada). The images were analyzed in bulk using a custom script made using functions from the MATLAB Colony Analyzer Toolkit"°
to provide colony size estimations. The LI Detector analytical pipeline’® was used to correct for spatial biases in colony size and
obtain colony fitness estimates. Strain fitness was estimated as the median of bias-corrected colony size among replicates of the
strain at 40 hours in the initial screen and 90 hours in the start codon mutant screen. In the LI Detector pipeline,70 sets of reference
colonies are treated as if they were replicates of a mutant strain, with their median fitness calculated in order to construct an empirical
null distribution of median fitness values to compare with estimated strain fitness. Strains were called as beneficial or deleterious
using a 5% false discovery rate threshold based on this empirical null distribution. For any selected fitness threshold used to infer
deleterious strains, the false discovery rate can be calculated as the proportion of null distribution fitness values below that threshold
divided by the proportion of mutant strain fitness values below the threshold. Thus, fitness thresholds were selected such that a 5%
FDR was obtained and strains with fitness below that threshold were inferred to be deleterious. In the same manner, a list of beneficial
strains at 5% FDR was also selected.

Liquid growth assay

For liquid growth assays, cells were first grown in liquid YPDA media overnight at 30°C in a 96-density microplate. These were then
used to inoculate a new 96-density microplate with 150ul YPDA+ stress conditions (1M NaCl, 100mM Hydroxyurea)) using the Singer
ROTOR (Singer Instrument Co. Ltd). This microplate was incubated at 30°C with constant double orbital shaking for a period of 72h
on microplate reader Biotek Synergy H1 (Aligent Technology Inc.). Optical density readings at 600nm (ODggo) were taken every
15 minutes.

Microscopy

The strains containing the ORFs tagged with mNeonGreen were imaged on a Nikon TiE2 inverted A1R confocal microscope. A first
screening was done at high density in 96-well plates with a 40x water objective, to assess the success of the transformations. Plates
were incubated with CellTracker Blue CMAC Dye (Invitrogen) and MitoTracker Red CMXRos Dye (Invitrogen) at least 10 min prior to
imaging. Plates were then imaged in 4 channels (405, 488, 561, and DIC), and 3 fields of view were taken for each strain that contained

e7 Cell Systems 14, 363-381.e1-e8, May 17, 2023



Cell Systems ¢ CellPress

OPEN ACCESS

many cells. Strains that demonstrated visibly higher signal in the green channel (488nm) compared to a non-transformed background
strain were selected to examine in single dishes under a 100X oil objective to more accurately evaluate sub-cellular localization. All
strains were imaged in triplicate at high density and triplicate in dishes (once without CMAC and MitoTracker and two times with
the dyes).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R version 4.1.2. Details for each statistical test and analysis can be found in the results section
and figure legends.
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