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In fair division applications, agents may have unequal entitlements reflecting their different contributions. Moreover, the contributions
of agents may depend on the allocation itself. Previous fairness notions designed for agents with equal or pre-determined entitlements
fail to characterize fairness in these collaborative allocation scenarios.

We propose a novel fairness notion of average envy-freeness (AEF), where the envy of agents is defined on the average value of items
in the bundles. Average envy-freeness provides a reasonable comparison between agents based on the items they receive and reflects
their entitlements. We study the complexity of finding AEF and its relaxation, average envy-freeness up to one item (AEF-1). While
deciding if an AEF allocation exists is NP-complete, an AEF-1 allocation is guaranteed to exist and can be computed in polynomial
time. We also study allocation with quotas, i.e. restrictions on the sizes of the bundles. We prove that finding an AEF-1 allocation
satisfying quotas is NP-hard. Nevertheless, in the instances with a fixed number of agents, we propose polynomial-time algorithms to

find an AEF-1 allocation with quotas for binary valuation and an approximated AEF-1 allocation with quotas for general valuation.
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1 INTRODUCTION

Fair division aims to allocate items to a group of agents with different preferences and achieve fairness among the
agents. It is a classical yet heating topic that has wide application in real-world scenarios including peer review [25],
cloud computing [28], and healthcare resource distribution [26]. In fair division applications, it is often the case that
agents are asymmetric, i.e. having unequal entitlements. For example, in a food bank allocation, a family with more
population requires more food to feed themselves. Asymmetric agents characterize a wide range of scenarios where
agents have different contributions in a collaboration or agents represent groups with different populations.
Extending fairness notions to agents with different entitlements, Chakraborty et al. [14] proposes weighted envy-
freeness (WEF), where the entitlements of agents are characterized by predetermined weights, and envy is defined on the

weighted margin. Its relaxation, weighted envy-freeness up to one item (WEF-1), is guaranteed to exist and has been
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applied to paper-reviewer matching mechanisms [25]. However, agents’ entitlement and contribution depend on the
allocation in many scenarios. This happens in collaborations on productive activities whose outputs depend on the

resource allocated, and in allocating human resources, as shown in the following example.

EXAMPLE 1. Research resource allocation. Multiple research labs decide to start an interdisciplinary research collabo-
ration. They need to allocate the research resources (e.g. funding, computing resources, assistants) and assign tasks to each
lab. A lab’s contribution (task) depends on the resource it gets, so both plans should be determined simultaneously. Different
labs have expertise in different areas and have different preferences for resources. A computer science group would prefer
more computing resources while a biological group would prefer more research assistants. Furthermore, the labs want the
resources allocated fairly based on their expected contributions. How should they fairly allocate the resources?

Human resource allocation. Several team leaders in a company are allocating new employees. Employees can make
different levels of contribution to different teams based on the compatibility of their skills to the team’s task. Team leaders
earn credits based on their total contribution and the employees they occupy. A large team occupies more human resources
and is expected to make a larger contribution. Particularly, the value of a team leader is the average contribution of his/her
team members. The department wishes to work out an allocation plan so that no team leader would perceive another team

with a higher value than his/her own team. How should the department fairly allocate the employees?"

There are two challenges in characterizing fairness in such scenarios. Firstly, agents (team leaders and labs) have
unequal entitlements, as an agent with more resources ought to have a larger contribution. Secondly, the allocation
and the entitlements are decided simultaneously, and the entitlements of the agents depend on the allocation. More
specifically, in both scenarios, the value of a bundle of resources is the average value of all its items (research/human
resources). Under such a challenge, neither EF nor WEF is able to characterize fairness. EF designed for equal entitlement
cannot directly extend to different entitlements. WEF requires a predetermined weight for each agent. When the
entitlements change with the allocation, a fixed weight is unable to represent them.

Based on the challenges, the following question remains unanswered: what is a proper fairness notion for fair

division with variable entitlements?

1.1 Average Envy-freeness

We propose the notion of average envy-freeness (AEF), where envy between agents is defined on the average value of

the items in the bundles.

DEFINITION 1 (AVERAGE ENVY-FREENESS (AEF)). An allocation A is said to be average envy-free if for any pair of agents

. i(A;) 0; (Ap)
i,heN, i (Ai) > 2ildn)
[Ail = [An]

In average envy-freeness, the entitlement of each agent is the number of items they received. For example, in the
research resource allocation scenario, the contribution of a lab will depend on the research resource they receive. The

labs with more resources are expected to make a larger contribution and deserve larger entitlements.

EXAMPLE 2. Suppose in the human resource allocation problem, there are five employees to be assigned to two teams.
The level of contribution of each agent to each team is shown in Table 1, as well as a possible allocation. For Team 1, the
leader’s utility will be (9 + 6 + 6) /3 = 7, and his/her perceived value for Team 2 is (4 + 2) /2 = 3. Therefore, the leader of
Team 1 will not envy the leader of Team 2. Similarly, the leader of Team 2 will not envy the leader of Team 1. Therefore, the

allocation is average envy-free.

'We thank an anonymous reviewer for providing this example.
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Employees ‘ 1 2 3 4 5
Team 1 @ @ @ 4 2
Team 2 4 2 4 & (@

Table 1. The levels of contribution of employees to each team. The circles represent the allocation.

The major difference between WEF and AEF is the modeling of the entitlements. In WEF, the entitlement of each
agent is their weight, which is pre-determined and independent of the allocation. In AEF, on the other hand, the
entitlement or contribution of an agent is reflected by the size of their bundle. In a scenario where the allocation and
the entitlements are decided simultaneously, predetermined weights cannot characterize entitlements that depend
on the allocation. On the other hand, when there is no large difference between entitlements brought by different
items/individuals, the size of each bundle serves as a natural estimation of the entitlements of each agent.

We believe that average envy-freeness is a proper fairness notion for variable entitlement scenarios, especially for
the human resources allocation in Example 1, because it provides a reasonable comparison between the value of teams

based on their heterogeneous entitlements.

1.2 Average envy-freeness with a quota

We study the existence and the complexity of average envy-freeness and average envy-freeness up to one item (AEF-1).
Deciding whether an AEF allocation exists is NP-complete (Theorem 1), while an AEF-1 allocation always exists and
can be computed in polynomial time (Proposition 1). Unfortunately, AEF and AEF-1 allocations sometimes fail to
characterize real-world scenarios. AEF and AEF-1 allow allocations where all but one agent receives exactly one item

and the rest agent gets all other items, while there are many scenarios with restrictions on the sizes of bundles.

ExamPLE 3. We follow the employee allocation scenario in Example 2. Note that an allocation where Team 2 gets Employee
4 and Team 1 gets all other employees is also an AEF allocation. The value of Team 1 for leader 1is (9+ 6 + 6 + 2)/4 = 5.75,
while the value of Team 2 is 4. Therefore, leader 1 does not envy leader 2. Similarly, leader 2 does not envy leader 1 as well.
However, this allocation may not work in real-world human resource allocations, because the sizes of the teams are
usually restricted by the tasks. For example, the task for Team 2 requires at least two employees (leader excluded) so that
nobody is overburdened. How can the allocations take these requirements into consideration while achieving fairness on

average?

To model the restrictions in these scenarios, we study fair division scenarios with quotas, i.e. restrictions on the
size of the bundles. A quota reflects the requirements and capability of each agent in the allocation and occurs in
many real-world applications. For example, each team has a minimum and maximum requirement of employees. The

involvement of quotas allows AEF to be applied to a wider range of scenarios.

1.3 Our contribution

The summary of our result is shown in Table 2. We first consider the existence of AEF and AEF-1 without quotas.
Deciding whether an AEF allocation exists is NP-complete, while an AEF-1 allocation always exists and can be computed
in polynomial time. The problem becomes much more difficult when quotas are considered, as deciding whether there

exists an AEF-1 allocation satisfying the quota is NP-complete. Therefore, we consider the instances with a fixed number
3
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of agents. When the value of each item is either zero or one, we propose a polynomial-time dynamic programming
algorithm to decide the existence of an AEF-1 allocation satisfying the quota and find the allocation if it exists. On the
other hand, deciding the existence of an AEF-1 allocation satisfying the quota in general valuation is still NP-complete.
For the general valuation case, we give an approximation algorithm that finds an (1 - %)—AEF—l allocation, in which
agents value their bundles at least (1 — %) times of other agent’s bundles on the average value after removing one

item.

Criterion n Valuation Result Location
2 Identical
AEF General General NP-complete Theorem 1
AEF-1 General General Always Exists Proposition 1
Bi
General wary NP-complete Theorem 2
General
_AEF-l Binary InP Theorem 3
with quota Constant, > 3
> = NP-complete Theorem 4
General 4 L
(1 - 5-)-approximation ~ Theorem 5

Table 2. Result Summary of AEF and AEF-1. n and m are the number of agents and the number of items respectively.

2 RELATED WORKS

There is a large literature on the fair division problem with asymmetric agents, i.e. individuals or groups with heteroge-
neous entitlements. Chakraborty et al. [14] proposes the notion of weighted envy-freeness up to one item (WEF-1), where
predetermined weights of each agent represent their entitlements, and shows that a WEF-1 allocation always exists.
Payan and Zick [25] and Chakraborty et al. [15] focus on maximizing social welfare of WEF-1 allocations by select the
correct picking sequence in a Round-Robin-like mechanism. Chakraborty et al. [16] proposes a parameterized family of
weighted envy-freeness, where agents with large or small weights are favored by setting different parameters. Wu et al.
[29] studies WEF-1 allocation for indivisible chores. Other fairness notions on asymmetric agents include weighted
MMS [5, 6, 18], weighted proportionality [5, 24], and maximizing weighted Nash social welfare [27]. Nevertheless,
previous works focuses on fixed entitlements, and does not address scenarios when the entitlements depend on the
allocation.

Another perception of average envy-freeness is exactly the envy-freeness under the setting where the valuation
functions of agents (rather than the envies) are average valuation, i.e. the value of a subset is the average value of
the items. This is related to fair division with non-additive and non-monotone valuation. In a non-additive valuation,
the value of a set may not be equal to the sum of the items in the set. In a non-monotone valuation, the value of a
set may be less than its subsets. Aziz et al. [1] study envy-freeness with a mixture of goods, chores, and mixed items.
Bhaskar et al. [9] shows the existence of an EF-1 allocation under the so-called doubly monotonic valuation. Bérczi et al.
[13] proposes an algorithm to find EF-1 allocation between to agents with arbitrary valuation. Other works include
envy-freeness with stochastic non-additive valuation [8] and MMS with non-additive valuation [21, 22]. In general, fair
division with non-additive and non-monotone valuation is a challenging topic, and so far we haven’t observed existing

work addressing the average valuation scenario.
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Another related line of work is fair division with cardinality constraints. Biswas and Barman [10] considers a scenario
where items are categorized into multiple groups, and each group has a capacity to contribute to each agent. They show
that an EF-1 allocation and a constant-factor approximation of MMS allocation always exist in such a scenario. They
also extend this type of constraint to be represented by a matroid. Biswas and Barman [11] designs a polynomial time
algorithm to find an EF-1 allocation satisfying the matroid constraint. Dror et al. [17] studies scenarios where agents
have heterogeneous matroid constraints, and provides an algorithm to find EF-1 allocations in certain circumstances.
Gan et al. [19] and Babaioff et al. [7] study fair division problem where agents have budget constraints on the items.
Aziz et al. [3] propose a mechanism that turns a welfare-efficient allocation into a fair allocation while preserving the

efficiency constraint.

3 PRELIMINARIES

Problem Instance. An instance of a fair division problem I = (N, M, V) is defined by a set of n agents N = [n], a set
of m items M, and a valuation profile V = {v1,02,- - - ,v,}. We use i to denote a generic agent in N and g to denote a

generic item in M.

Valuation and Average Value. Valuation functions represent the preferences of agents among the items. For each

agent i, v; is a mapping from a subset of M to a non-negative value. v; : 2Y — R (. We follow the convention to

assume additive valuation, i.e for any i € N and M’ C M, v;(M’) = 2gem vi(g). We say that an instance has binary

valuation if for any i € N and g € M, v;(g) € {0, 1}, and an instance has identical valuation if v; = vy = -+ - = v,. We
also define the average value of a subset of item M’ as u; (M’) = % i.e. the average value of the items in the subset.

Specifically, u; (0) = 0.

Allocation. An allocation A = (A1, Ay, - -, Ap) is a n-partition of the set of items M, where A; C M is the bundle
allocated to agent i. We sometimes abuse the notation and use A to denote a partial allocation, where there are items

unallocated to any agent.

Quota. A quota Q is a constraint on allocations. For each agent i, Q imposes an upper bound and a lower bound to
the size of the bundle A;. An allocation A satisfies a quota Q if all agents satisfy the constraint. A quota is said to be
exact if the upper bound equals to the lower bound for every agent. An exact quota regulates the exact number of items

in each bundle.

DEFINITION 1 (AVERAGE ENVY-FREENESS (AEF)). An allocation A is said to be average envy-free if for any pair of agents
i,h e N,ui(A;) > ui(Ap).

DEFINITION 2 (AVERAGE ENVY-FREENESS UP TO ONE ITEM (AEF-1)). An allocation A is said to be average envy-free up
to one item if for any pair of agents i, h € N, there exists an item g € A; U Ay, such that u; (A; \ {g}) = ui(Ap \ {g}).

By the definition of AEF-1, agents can remove an item from either bundle under comparison. This is because agents
can increase the average value of their own bundle by removing the least preferred item (if it’s not the only item). It
follows from the definition that an AEF allocation is always AEF-1. An example of an AEF allocation is the allocation in
Example 1.

We introduce the computational problems related to AEF and AEF-1.

DEFINITION 3 (AEF-EXISTENCE). Given an instance I, does there exist an allocation A such that A is an AEF allocation?
5
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DEFINITION 4 (AEF-1-EXISTENCE). Given an instance I, does there exist an allocation A such that A is an AEF-1

allocation?

DEFINITION 5 (AEF-EXISTENCE WITH QUOTAS). Given an instance I and a quota Q, does there exist an allocation A
such that A is an AEF allocation and satisfies Q7

DEFINITION 6 (AEF-1-EXISTENCE WITH QUOTAS). Given an instance I and a quota Q, does there exist an allocation A
such that A is an AEF-1 allocation and satisfies Q?

4 AVERAGE ENVY-FREENESS WITHOUT QUOTAS

This section focuses on finding AEF and AEF-1 allocations without quota constraints. We show that deciding the
existence of an AEF allocation is NP-complete, while an AEF-1 allocation always exists and can be found in polynomial

time.
THEOREM 1. AEF-EXISTENCE is NP-complete even for two agents with identical valuations.

ProorF SKETCH. We construct a reduction from PARTITION, which is known to be NP-complete [20]. An instance
of PARTITION consists of a multiset X = {x1,x2,- -+ ,x;} where x; € N. The goal is to determine whether X can be
partitioned into two subsets Y and X \ Y with equal sum T.

Given an instance of PARTITION X, we construct an AEF-EXISTENCE instance with two agents and m = 2k items.
Two agents share the same value function v, and u is the average valuation function. For each x;, there exists two items
g; and gg such that v(g}) = (T%k%)E, and U(gg) = (T%k%)! + x;.

(=) Given Y and X \ Y being an equal-sum partition of X, we construct an allocation A. For each i, A gets gﬁ
ifx; € Yorg;ifx; € X\ Y. Az gets the rest of the items. It is not hard to verify that both agents get k items, and
v(A1) = v(Az). Therefore, u(A;) = u(Az), and A is an AEF allocation.

(&) If there exists an AEF allocation A, we show that A induces an equal-sum partition of X in four steps.

First, each agent gets exactly one of the largest items g; and g;c. Otherwise, the exponential term (T2k?)? guarantees
that the agent without the two items envies the other agent.

Second, each agent gets exactly k items. gi and gi guarantee that the additive value of bundles is at the same level,
and the agent with more items envies the agent with fewer items.

Third, for each i = 1,2, - - , k, each agent get exactly one of g and gf , following the similar reasoning of the first step.

Finally, the allocation induces an equal-sum partition of X. Let Y = {x;| gg € Ay},and Y and X \ Y is an equal-sum
partition of X. Given that each agent get exactly one of g} and gg, the difference between two bundles just come from
x; from each i. Therefore, the sum of x; in A; must equal to the sum of x; in Az, which implies Y and X \ Y be an

equal-sum partition of X. The full proof is available in the full version of this paper. O

The fact that AEF-EXISTENCE is already NP-complete without quotas directly implies that AEF-EXISTENCE with

quotas is NP-complete.
CoroLLARY 1. AEF-EXISTENCE with quotas is NP-complete even for two agents with identical valuations.
Despite that AEF allocation is hard to find, we show that AEF-1 allocation always exists just like EF-1.
PRroPoOsITION 1. For any instance I, an AEF-1 allocation always exists and can be found in polynomial time.

Proor. Consider the following allocation scheme:
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o If m < n, agents 1,2, - -, m get their favorite item among the unallocated items in turns. The rest agents get
nothing.

o Ifm>n,1,2,---,n—1 get their favorite item among the unallocated items in turns, and agent n gets the rest of
the items.

We show that allocation induced by this scheme is AEF-1. Consider two agents i and h. We show that i does not envy h

up to one item.

m < n. If i < m, then i does not envy any h > i because h gets either no item or an item inferior to i’s item under i’s
valuation. If h < i, then i and does not envy h by removing h’s only item. If i > m, then i does not envy any other A

after removing h’s item (if exists).

m > n. If h # n, i does not envy h after removing h’s only item. If 4 = n, note that i picks their favorite item among
all the rest of the items, including all &’s items. Therefore, for any g € Ay, v;(A;) > vi(g). Therefore, u; (A;) > u;i(Ap),

and i does not envy h. O

5 AEF-1 WITH QUOTAS

This section focuses on the complexity of AEF-1-EXIsTENCE with quotas. AEF-1 with quotas could cover a wider range
of real-world scenarios. Unfortunately, our first result shows that AEF-1-EXISTENCE with quotas is NP-complete even

for binary valuations.
THEOREM 2. AEF-1-EXISTENCE with quotas is NP-complete even for binary valuations.

ProOF. We show a reduction from EF-Ex1STENCE for binary valuations, which is known to be NP-complete [2, 23].

An EF-Ex1STENCE with binary value instance consists of a set of agents, N = [n], a set of items M (|]M| = m), and a
binary additive valuation profile V. The goal is to determine whether there is an envy-free allocation A such that for
any pair of agents i, h € N, v;(4;) > v;(Ap).

We construct a AEF-1-EXISTENCE with quotas instance as follows: N’ = N, M’ = MU D, where D is a set of (n—1)m
items with value 0 to all agents. Additive valuation profile V’ is defined as follows: for each agent i, and item g, if g € M,
0;(g) = vi(g); otherwise, v](g) = 0. 0](@) = 0. u’ is the average value function of o’. The quota Q requires every agent
to receive exactly m items.

(=) Suppose EF-EXISTENCE is a YES instance, and A* is an envy-free allocation under V. Then we show that
AFF-1-Ex1sTENCE with quotas is a YES instance. Let A” be an allocation in the AEF-1-EXISTENCE with quotas instance
where each agent i gets all the items in A} and fills up the quota with items in D. It follows from the definition that
A’ satisfies Q. Now we show that A’ is AEF-1. Note that for any agents i, h, u] (A;l) = %Ui(AZ). Since A* is envy-free,
i (A7) 2 Ui(AZ)- Therefore, u; (A7) > ul’(A;l) and A’ is an AFEF (thus AEF-1) allocation.

(<) Suppose AEF-1-ExISTENCE with quotas is a YES instance, and A” is an AEF-1 allocation satisfying Q. We first
show that A must also be an AEF allocation. Suppose this is not the case, and agent i envies agent h. We show i envies
h even after removing one item. From binary valuation, we have v (A}) < 0] (A;i) — 1. If agent i removes one item from
Ap, the average value of A} is not smaller than A}, and A} has fewer items than A}. Therefore, A} still has a higher

average value than A}, and i envies h. If agent i removes one item from Aj, the average value will be no more than

T(A))— (A
% 4 (m’l) for 0j(A}) < m.If v(A}) = m, then v](A]) = 0 since M’

contains at most m valuable items for i. Therefore, i still envies h after removing any item. This is a contradiction.

Therefore, A” must also be AEF allocation.

. This value is strictly less than ui(A;1) =
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Now we show that EF-Ex1STENCE with binary value is also a YES instance. Let A* be a allocation in EF-EXISTENCE
instance such that A} = A} N M for every i € N. Similarly, with relationship u] (A;l) = %U,‘(A;), the AEF-ness of A

implies the envy-freeness of A*. O

Due to the hardness of the problem, we turn to consider AEF-1 allocation with a fixed number of agents n. We show
that, for binary valuations, AEF-1-EXISTENCE with quotas for a fixed number of agents is in P, in contrast with the

hardness in the variable n case.

THEOREM 3. There exists a polynomial-time algorithm that, given any instance of AEF-1-EXISTENCE with quotas for a
fixed number of agents and binary valuations, decides if there exists an AEF-1 allocation satisfying the quota, and outputs

an allocation if there exists.

Aziz et al. [4] proposes a pseudo-polynomial time dynamic programming algorithm to find an EF-1 allocation
maximizing social welfare given a constant number of agents. We apply their technique and propose Algorithm 1 to

compute AEF-1-EXISTENCE with quotas for binary valuations.

State. A state in Algorithm 1 is a triplet (W, H, k). Suppose A is a partial allocation of M = {g1,92, - - - , gm} where
91,92, - - » g has been allocated. W is a n-vector that records the number of items each agent is allocated, i.e. W; = |A;|
for each i. H is a n X n-matrix that records the additive value of each agent toward each bundle, i.e. H(i, h) = v;(Ap).
W and H together record each agent’s average value on each bundle. For any pair of agents i, h, u;(Ap) = %}fl)
k=0,1,2---,mindicates that item g1, g2, - - - , g has been allocated while other items are not. k = 0 means no item
has been allocated yet. For each state, we maintain two values. VId(W, H, k) € {0, 1} indicates whether this state is
reached, which stands for there exists a partial allocation of whom the state is (W, H, k). Prev(W, H, k) € N records
the agent that item gy, is allocated to reach the current state. For any allocation, it is sufficient to judge whether it is

AFEF-1 and satisfies Q from its corresponding state.

State Transition. For a given state (W, H, k) with k < m and VId(W, H, k) = 1, we enumerate the agent to whom
item gy, is allocated. For each agent i, we find the updated state (W’,H’, k + 1) after gi, is allocated to i and
set VId(W/,H’,k + 1) = 1 and Preo(W’,H’,k + 1) = i. The algorithm start from (0", 0"*",0) and iterated for k =
0,1,---,m — 1. The search space of W is W = {0,1,--- ,m}", and the search space H is H = {0, 1,- - - , m}"™*". Finally,
the algorithm finds if there is a state VId(W, H, m) = 1 that is AEF-1 and satisfies Q. If so, the algorithm outputs YES
and constructs the allocation backward with Prev. Otherwise, the algorithm outputs NO.

The technique of enumerating all possible values in Algorithm 1 can be extended to valuations where a bundle has
at most Poly(m) different (additive) values. However, for general valuation, a bundle can have exponentially many

values. In fact, we show that AEF-1-EXISTENCE with quotas with fixed n > 3 is NP-complete.
THEOREM 4. AEF-1-EXISTENCE with quotas with fixed n > 3 is NP-complete.

PRroor SKETCH. We propose a reduction from the computation problem of EQUAL-CARDINALITY PARTITION, a variation
of PARTITION that requires equal size between two subsets and is also NP-complete [20]. An instance of EQUAL-
CARDINALITY PARTITION consists of a multiset X = {x1, xy, - - - , xor. } where x; € N. The goal is to determine whether X
can be partitioned into two subsets Y and X \ Y with equal size k and equal sum T.

Given an EQUAL-CARDINALITY PARTITION instance, we construct a AEF-1-EXISTENCE with quotas instance with three

agents and 3k + 6 items. (If n > 3, we add agents that value all items as 0 and are required to receive no items by the
8
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Algorithm 1 DP for AEF-1 with quota with binary valuation

Require: Agent set N, Item set M, binary valuation profile V, and quota Q.
Ensure: An AEF-1 allocation satisfying Q if it exists.

1: Initialization: VId(0™, 0™%", 0) « 1.

2: fork=0,1,--- ,mdo

3 for W € W and H € ‘H such that VId(W,H, k) = 1 do

4 fori=1,2---ndo

5 Update W', H after assigning g, to i.

6 VId(W',H ,k+1) « 1.

7 Preo(W,H',k+1) « i.

8: for W € W, H € H such that VId(W,H,m) = 1do
9. if (W,H, m) is AEF-1 and satisfies Q then

10: Construct the allocation from Prev backwards.
11: return the allocation.

12: return NO

quota.) Agents share the same valuation function v and average value function u. The quota Q requires every agent to

be allocated exactly k + 2 items. The item set M = M; U My U M3 consists of three parts:

o My ={g1,92.-- . gak}, where 0(g;) = xj + k*T2.
Let T" = § Sgem, 0(9) = T +K>T2,

e M, contains k + 1 copies of b with v(b) = (k+2)T’

(k+1)% -

e M3 contains five copies of 0 with v(0) = 0.

We state that the value of b is smaller than any item in Mj. (Proof in the full version of this paper.)
LEmMMA 1. Foranyg € My, v(b) < v(g).

(=) If EQUAL-CARDINALITY PARTITION is a YES instance, and Y and (X \ Y) are an equal-size and equal-sum partition,

we show the following allocation A is AEF-1 and satisfies Q.

(1) Ay ={gj | xj € Y} U{0,0}.

@ 42 ={g; | xj € (X\ 1)} U {0,0}.

(3) Az = My U {0}.

It’s not hard to verify that each agent gets exactly k + 2 items, u(A;) = u(Az) = kLJrlz, and u(As) = kT_+/1 Agent 1 and 2
does not envy each other, and agent 3 does not envy agent 1 and 2. When comparing with agent 3, agent 1 and agent 2
can remove an item 0 in their own bundle, and u(A; \ {0}) = u(Az \ {0}) = u(A4s3) = kT—+/1 Therefore, A is AEF-1 and
satisfies Q.

(&) If AEF-1-Ex1sTENCE with quotas is a YES instance, and A is an AEF-1 allocation satisfying Q. We show that
EQUAL-CARDINALITY PARTITION is a YES instance in three steps.

First, no agent can have more than two item 0 in their bundles. Otherwise, the agent get at least three 0 envies the
agent get at most one 0 even after removing one item.

Second, the agent with exactly one item 0 (agent 3, with loss of generality) must have all the item b. Otherwise, since
v(b) < v(g) for any g € Mj, the average value of A3 will exceed kTT, and one of A; and Ay will have average value
strictly less than kT—J:z Then the owner of this bundle will envy agent 3 even after removing one item.

Finally, agent 1 and agent 2’s bundles must derive a equal-cardinality partition of X. Otherwise, the average value of

the less-valuable bundle will be strictly less than kT—J:Z With the same reasoning as the second step, the owner of this
9
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bundle will envy agent 3 (with u(As) = kTT/) even after removing one item. Therefore, EQUAL-CARDINALITY PARTITION

is a YES instance. The full proof is available in the full version of this paper. O

6 APPROXIMATION ON AEF-1 WITH QUOTAS

The NP-hardness on AEF-1-EXISTENCE with quotas urges us to look into approximation results. A natural idea is to
round the value of items so that a bundle can have at most Poly(m) different values and apply the procedure of
Algorithm 1.

For simplicity of calculation, we assume max; g4 v;(g) = 1. We propose two approximation notions of AEF-1 based on

the additive error and multiplicative ratio respectively.

DEFINITION 7 (¢-ERROR AEF-1). Given ¢ > 0, an allocation A is e-error AEF-1 if for any pairs of agentsi,h € N, there
exists an item g € A; U Ay, such thatu;(A; \ {9}) > ui(Ap \ {g}) —¢.

DEFINITION 8 (a-AEF-1). Given 0 < a < 1, an allocation A is a-AEF-1 if for any pairs of agents i, h € N, there exists
an item g € A; U Ay, such that u; (A; \ {g}) = a - ui(Ap \ {g}).

PROPOSITION 2. Given the assumption that max; g v;(g) = 1, if an allocation is a-AEF-1, then it is (1 — a)-error AEF-1.
ProoF. From a-AEF-1 we know that u;(A; \ {g}) > a - u;(Ap \ {g}). Therefore,

ui(Ai\{g) = a-ui(Ap\{g})
= ui(Ap\{g}) - (1 -a) - ui(Ap \ {g})
ui(Ap \ {g}) = (1 - a).

\2

The last inequality comes from u; (A, \ {g}) < 1. O

Proposition 2 tells us that a-AEF-1 implies e-error AEF-1 given bounded valuations. However, ¢-error AEF-1 does
not guarantee a-AEF-1, as shown in the followings (Example 4). Our goal is to find an approximation algorithm that

returns an a-AEF-1 with « close to 1 if possible. We first introduce our rounding scheme.

Rounding. Given the rounding parameter r € N* and the upper bound a > 0, we divide [0, a] into r + 1 intervals
{0}, (0, %], %, 27“], s ((r_—rl)a,a]. Fork =1,2,---r, a positive value @ <x < k—r“ is rounded to k—r“. 0 is rounded
to 0.

If we apply the same rounding scheme to each v;(g) and directly apply Algorithm 1, we will be able to find an
2T‘I—error AEF-1 allocation, because an AEF-1 allocation in the original valuations implies an £-error AEF-1 allocation
in the rounded valuations, and an £-error AEF-1 allocation in the rounded valuations in turn implies an 27“-error AFF-1
allocation in the original valuations. However, there is no guarantee on a-AEF-1, because the value of an item can be
rounded from arbitrarily small to 4. Example 4 shows a case where an AEF-1 allocation in the rounded valuation turns

out to be a poor approximation in the original valuation.

ExAMPLE 4. Given any rounding parameters a,r (assuming a < r), consider an instance with more than two agents and
more than three items. The table below describes an allocation where the first two agents 1 and 2 are allocated the first three
items g1, 92, g3.

For item g3, a € (0, 1) is an arbitrarily small positive value. It is not hard to verify that A is not AEF-1, as agent 2 envies

agent 1 even after removing an item. Moreover, the allocation is no better than a-AEF-1. However, after rounding, the value
10
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‘ g1 g2 g3
I e
AN

Table 3. Allocation A where rounding leads to poor approximation.

of g1 and g, is unchanged while the value of g3 is rounded to %. Then A is AEF-1 in the rounded valuation. Therefore, if
Algorithm 1 finds (the state of) A, it returns an a-AEF-1 allocation where a can be arbitrarily small.

Although the instance has an AEF-1 allocation A’ where agent 1 gets g1 and g3 and agent 2 gets ga, the algorithm may
not find A’. Note that after rounding g> and g3 both have value of %. This means that A and A’ share the same state in
Algorithm 1. Which allocation is constructed depends on the Prev record. By carefully manipulating the order of items, we

can let the algorithm returns A rather than A’.

Therefore, we need a more refined rounding and searching scheme that can distinguish between A and A’ to ensure
a closer approximation ratio between the original and the rounded valuation. The rounding of each agent should be
proportional to their valuations so that the rounding error is not too large compared with the value of their own bundles.
Bu et al. [12] proposes a bi-criteria approximation algorithm to maximize EF-1 ratio and social welfare simultaneously.

We follow their techniques to enumerate all items being removed in the envy comparisons, i.e. the “1” in “AEF-1".

Removing matrix. A removing matrix R is a n X n matrix recording the items to remove when agents compare bundles
with each other. For every pair of agents i, b, R(i, h) = (g,1) € (M U {0}) X {i, h}. The first value g is the item to remove
when agent i compares their bundle with h’s bundle, and the second value [ indicates whether g belongs to i or h.
g = 0 means i does not remove any item when comparing with h. In this case, I makes no difference. Specifically,
R(i, i) = (0,i) for each agent i. A removing matrix is valid if it derives a partial allocation of M. That is, it does not
contain two entries (g, 1) and (g, I2) such that I; # .

Our algorithm runs in four steps. We enumerate all valid removing matrices R. For each R, we first allocate the items
that have been pre-allocated by R. Next, we round the values of the unallocated items based on each agent’s valuation.
Then, we run the dynamic programming search on the unallocated items under the rounded valuation to validate all
possible states. Finally, we search states where an agent will not envy another agent by their rounding error under the
rounded valuation after removing one item. If such a state exists, the algorithm returns the corresponding allocation.

Otherwise, the algorithm returns NO. A detailed description of the algorithm is available in the full version of this
paper.

Step 1: pre-allocation. Given an removing matrix R, let MR be the set of item g such there there exists an entry
(9,i) € R. We allocate items in MR according to R. Let WOR and H(‘)re be the vector of bundle sizes and the valuation
matrix after MR has been allocated.

Step 2: rounding. For each agent i, let MIR be the set of i’s removing items, and Let M] = M \ MiR. For each agent i, we

2

set the rounding upper-bound a = max e M 0;(g). r = m?n? is the same for all agents. We create the rounded valuation

05 by rounding the values for all items in M;. That is, for any agent i, vf (9) =vi(g)ifg e Mf, and UIB (g) is rounded to
the closest larger @ if g € M. Let uf2 be the average value function of le . Given a fixed MlR , each bundle will have at

most Poly(m) possible values. Precisely, Uf takes value from {0, %, @, e M- i)
11
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Step 3: dynamic programming. The dynamic programming follows the same procedure of Algorithm 1 that enumerates
and iteratively validates states. The difference is that we run the dynamic programming only on M’ = M \ MR ie. the
unallocated items in step 1. The start state is (WR, H(If, 0) which represent the state where all items in MR and no items

in M’ has been allocated.

Step 4: searching. Finally, we search if there is a state that satisfies two conditions. (1) The state satisfies the quota Q.
(2) For any agent i and h, i does not envy h by more than % under the rounded valuation u?, after removing one item,
ie. u(A;i\{g}) = u(A;i\{g}) - % for some g. If such a state exists, the algorithm constructs the allocation backward and
returns it. If such allocation does not exist for any state and any R, the algorithm returns NO. The reason for searching
a bounded envy allocation rather than an AEF-1 allocation is to guarantee that the algorithm will always return NO if
there does not exist an AEF-1 allocation (Theorem 5).

The following lemma shows that, by rounding the value function of each agent based on the most valuable item in

My], the average value of an agent’s bundle is lower bound by the average value of M;.

LEMMA 2. Given any removing matrix R and allocation A, and for any agent i, if i does not envy any other agent by

more than ¢ > 0 under R and uX, then uf(A,-) > %ulR(le) —¢.

PROOF SKETCH. Suppose this is not true, and agent i has a bundle A; with average value less than %ufz (M) — . We
consider the agent h that takes the share of M with the largest average value under i’s valuation. Then i envies h by
more than ¢ even after removing one item, which is a contradiction. The full proof is available in the full version of this

paper. O

Lemma 2 guarantees that the rounding error is small compared with the bundle’s average value. Note that M;

contains at most m items, and the largest item has a value of a;. Therefore, (in i’s valuation,) the average value of M is

at least % and the average value of A; is at least % — &. On the other hand, the rounding error is % = % Witha
men
lower bound of average value and a bounded error, a reasonably good approximation ratio can be guaranteed, as shown

in Theorem 5.

THEOREM 5. Given any instance of AEF-1-EXISTENCE with quotas (1, Q),

(1) if the algorithm returns NO, then (I, Q) does not have an AEF-1 allocation satisfying Q.
(2) if the algorithm returns YES, it gives a (1 — -.—)-AEF-1 allocation satisfying Q.

ProoF SKETCH. (NO case) We turn to prove the equivalent statement that if (7, Q) exists an AEF-1 allocation
satisfying Q, then the algorithm always returns YES. Suppose A is an AEF-1 allocation satisfying Q, and R is a removing
matrix of A that achieves AEF-1. We show that any agent i will not envy another agent h by more than % under uR
after removing one item. For the original valuation u, we have u;(A; \ {g}) = ui(Ap \ {g}) for any i, h and some g. For
the rounded valuation, we have v;(g) < Ufz (9) <0i(g) + %. Therefore, the average value of any bundle will neither
decrease nor increase more than 4 in the rounded valuation. Therefore, uf (Ai\{g}) - uf (Ap\{g}) = —%, and agent
i does not envy agent h by more than %, In the process of the algorithm, the state of A will be validated in Step 3 and
found in Step 4, and the algorithm will return YES.

(YES case) We show that if an allocation A satisfies that any agent i will not envy another agent A by more than
% under uR after removing one item, then A will be (1 — %)—AEF—I under u. Consider any pair of agent i and h and
suppose i still envies h even after removing one item under the original valuation u. (If such a pair does not exist,

then A is an AEF-1 allocation, and the statement holds.) For simplicity, let A} and A;l be the bundles after agent i
12
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removing item g. Since envy is bounded by % in the rounded valuation uR, it is also bounded in the original valuation:

ui(A}) 2 ui(A;l) - %. On the other hand, since i envies h, ui(A;l) > u;(A}). Consider two subcases.

(1) ui(A}) = u;(A;). In this case agent i either remove an item in Ay, or an item with a value lower than average in
Aj. In this case, we have u,-(A;l) > u;(A;). With the rounding, we know u; (A;) > uf (Aj) - %. And from Lemma
2, uf (Ay) > %uf(Mi’) -4 > AL _ % Aggregating all these inequalities, we get

mn
2a;
ui(A}) 2u;(A}) - Tl
1 1 2a;
=(1 - —)u;(A}) + —u;(A}) - —
(1= - u(Ag) + ——ui(4y) - =
1 a; 4a;

1
>(1- —)u(A))+ —  — - =2
(1= —)ui(4})

l ’
=(1- M)ui(Ah)-

(2) ui(A}) < uij(A;). In this case, i removes an item in A; with a value higher than average. With a similar reasoning,

we turn to show that u; (4;) > (1 - ﬁ)ui(Ah).

Therefore, A is an (1 — %)-AEF-I allocation under the original valuation u. ]

7 CONCLUSION AND FUTURE WORK

In this paper, we propose average envy-freeness where envy is defined on the average value of a bundle. AEF provides
a fairness criterion for allocation problems in scenarios where agents have different entitlements and the entitlements
depend on the allocation itself. We study the existence and complexity of AEF and AEF-1. While deciding the existence
of an AEF allocation is NP-hard, an AEF-1 allocation always exists and can be computed in polynomial time. We
also study the complexity of AEF-1 with quotas. While AEF-1 with quotas is NP-complete to decide, we provide
polynomial-time algorithms for instances with a constant number of agents to find AEF-1 allocation under binary
valuation and approximated AEF-1 allocation under general valuation.

The notion of average envy-freeness can be extended in multiple aspects. One extension is scenarios with multiple
copies. For example, in a paper review scenario, a paper should be reviewed by multiple papers, but a reviewer cannot
review a paper multiple times. Another extension is scenarios where items bring different entitlements to agents. We
expect the entitlement of agents to be the sum of entitlements of items in their bundles, and envy is defined on the sum
of values divided by the entitlement of the agent. It is also an intriguing direction to find relaxations of AEF other than
AEF-1. An interesting observation is that “AEF-X” is an even stronger notion than AEF since agents should not envy

each other even if their bundle’s average value is decreased by removing the most valuation item.
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