
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Proxy Hunting: Understanding and Characterizing
Proxy-based Upgradeable Smart Contracts

in Blockchains
William E Bodell III, Sajad Meisami, and Yue Duan, Illinois Institute of Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/bodell

Proxy Hunting: Understanding and Characterizing Proxy-based
Upgradeable Smart Contracts in Blockchains

William E Bodell III
Illinois Institute of Technology

wbodell@hawk.iit.edu

Sajad Meisami
Illinois Institute of Technology

smeisami@hawk.iit.edu

Yue Duan
Illinois Institute of Technology

yduan12@iit.edu

Abstract
Upgradeable smart contracts (USCs) have become a

key trend in smart contract development, bringing flexi-
bility to otherwise immutable code. However, they also
introduce security concerns. On the one hand, they re-
quire extensive security knowledge to implement in a se-
cure fashion. On the other hand, they provide new strate-
gic weapons for malicious activities. Thus, it is crucial
to fully understand them, especially their security im-
plications in the real-world. To this end, we conduct a
large-scale study to systematically reveal the status quo
of USCs in the wild.

To achieve our goal, we develop a complete USC tax-
onomy to comprehensively characterize the unique be-
haviors of USCs and further develop USCHUNT, an auto-
mated USC analysis framework for supporting our study.
Our study aims to answer three sets of essential research
questions regarding USC importance, design patterns,
and security issues. Our results show that USCs are of
great importance to today’s blockchain as they hold bil-
lions of USD worth of digital assets. Moreover, our study
summarizes eleven unique design patterns of USCs, and
discovers a total of 2,546 real-world USC-related secu-
rity and safety issues in six major categories.

1 Introduction
Smart contracts [19] are programs deployed to
blockchain networks that enable interactions be-
tween mutually distrusting parties without relying on a
trusted third party. Due to the underlying blockchains,
smart contracts are typically thought of as immutable
once deployed - not even the creator of a smart contract
can change its code. Therefore, smart contracts are
widely considered trustworthy and have revolutionized
or created many fast-growing businesses, including
Decentralized Finance (DeFi) (e.g., Uniswap [68]) and
NFT trading (e.g., OpenSea [51] and Looksrare [43]).
The total market capitalization of smart contract-based
assets is also booming and is expected to reach $770

million by 2028 [56]. While immutability is often
considered necessary for the trustlessness and security
of smart contracts [49], as is the case for the distributed
ledgers they run on, it could be a drawback in many
practical settings. For instance, like other programs,
smart contracts may require updates for security (e.g.,
bug fixes) and non-security (e.g., new feature implemen-
tation) reasons. To address these issues without the need
to migrate all activity to a new contract address, new
patterns, namely Upgradeable Smart Contracts [75]
(USCs), have become a trend of future smart contract de-
velopment and are widely adopted by many companies,
such as Compound Finance [13] and OpenSea [51].

Along with this trend, security problems are also
emerging. On the one hand, implementing USCs
in a secure fashion requires extensive security knowl-
edge [76]. Although certain Ethereum Improvement Pro-
posals (EIPs) [1–4] and some third-party libraries [16,
75] have been presented for implementing different up-
gradeable patterns, there is no de facto standard for de-
velopers to implement a USC correctly and efficiently.
Incorrectly implemented USCs can lead to serious se-
curity loopholes. For example, in certain USC pat-
terns [76], instead of using the standard constructors, de-
velopers should use self-defined initializers to initialize
global variables so as to avoid uninitialized variable vul-
nerabilities. On the other hand, USCs also provide new
strategic weapons for malicious activities. A recent 2020
report [5] has shown that attackers leveraged USCs to
launch sophisticated attacks and keep evolving their at-
tack schemes, resulting in huge financial loss. Clearly,
as USCs are getting increasingly prevalent, they have be-
come a new cybersecurity battleground for the security
community to fight against attacks and vulnerabilities.

Despite the fact that many research efforts have been
made on normal smart contracts to detect and allevi-
ate security problems, such as detecting smart contract
vulnerabilities [12, 14, 31, 32, 34, 36–38, 41, 44, 47, 48,
50, 61, 62, 65, 66, 70, 71, 73], mitigating security prob-

USENIX Association 32nd USENIX Security Symposium 1829

lems [33,57,58,77] and inspecting for fairness and safety
issues [18, 39, 54, 64, 67], no comprehensive study has
been conducted to help the community understand the
status quo of USCs in the real-world, which is crucial
to building practical defenses and mitigating the security
risks brought in by these techniques.

In this paper, we report our systematic study on USCs
in the real world which investigates a broad spectrum of
USCs and characterizes them in terms of their security
implications. Specifically, we seek to answer three sets
of essential research questions.
(1) Importance. First, we would like to find out the

importance of USCs for today’s blockchain world.
How widely used are USCs in today’s mainstream
blockchains? How much USD worth of cryptocur-
rencies and tokens is currently held by USCs? How
have these numbers changed over time?

(2) Unique Behaviors and Design Patterns. Second,
we dive into technical details and systematically re-
veal unreported unique behaviors and design pat-
terns. How can we characterize the uniqueness of
USCs in the real world? How are USCs imple-
mented? What are the unique behaviors and design
patterns?

(3) Security and Safety Risks. Third, we seek to study
the security implications of USCs in the wild. What
are the security and safety issues associated with
USCs? What is the possible impact of each issue?

To answer these essential research questions, we need
to effectively and automatically detect USCs in the wild
and perform further behavioral and security analyses in a
systematic way. To this end, we first develop a complete
taxonomy that can comprehensively characterize USCs
in terms of upgradeability, with syntactic and seman-
tic features derived from the Solidity programming lan-
guage specification [63]. Then, we report multiple types
of security issues that are associated with USCs. Finally,
we propose a novel system called USCHUNT, which is
a static analysis framework for automatically detecting
and analyzing USCs. To reliably detect USCs, capture
their unique behaviors and perform security analysis,
USCHUNT is equipped with cross-contract static anal-
ysis and inlined assembly modeling and relies only on
intrinsic characteristics of USCs rather than heuristics.
With it, we conduct our study on 861,657 smart contracts
from 8 mainstream blockchains [6–8,11,21,30,52,55] to
answer the aforementioned important research questions.
Here we highlight some interesting discoveries:
(1) Upgradeable smart contracts have become essential

in today’s blockchains as the numbers are growing
exponentially and the total value held is over $3B.

(2) We discover 11 distinct USC design patterns and
identify their unique strengths and weaknesses.

(3) We uncover and report a total of 2,546 real-world

USC-related security issues in six categories.1

Contributions. The contributions of the paper are sum-
marized as follows:

• We develop a USC taxonomy, starting from the set
of all elements that make up a smart contract, which
systematically characterizes the unique behaviors of
USCs at both syntactic and semantic levels.

• We design and implement a novel static analysis
framework USCHUNT, which relies on intrinsic
characteristics to detect and analyze USCs.

• We conduct a large-scale study on USCs with
source code from 861,657 smart contracts on 8
mainstream blockchains.

• We open-source the implementation of our proto-
type USCHUNT and all study data/artifacts to facil-
itate future research2.

2 Background and Related Work
2.1 Blockchains and Smart Contracts
A blockchain is a distributed ledger of transactions on
a cryptographically secured peer-to-peer network, orig-
inally proposed in 2008 [46]. The ledger consists of a
continuously growing list of ordered “blocks” that are
tamper-proof and support non-repudiation. Each block
contains transaction records and other state metadata, in-
cluding the creation timestamp, the Merkle hash of the
transactions, the hash of the previous block in the chain,
and smart contract code and data.

Although early blockchain networks were used exclu-
sively for recording cryptocurrency transactions, there
were several attempts to build more advanced functional-
ity on top of the Bitcoin blockchain. Ethereum [10] was
the first blockchain to allow anyone to write smart con-
tracts, where they can create their own arbitrary rules for
ownership, transaction formats and state transition func-
tions. Ever since, smart contracts have quickly become a
powerful technique driving the transformation of multi-
ple industries, such as NFT markets and DeFi.

2.2 Upgradeable Smart Contracts
Unlike typical software, smart contracts cannot be
patched when a vulnerability is discovered, as their code
is immutable. Also, while typical software can be taken
offline when a bug is being patched, smart contracts
run on decentralized networks that cannot be shut down
for maintenance, and therefore cannot be easily paused.

1The disclosure is done by contacting USC creators via EthMail
and their official communication channels when possible. Particularly,
we manually search for the official communication channels of the con-
tracts to report the issues. When we fail to find the official contact in-
formation, we use EthMail [15] service to send email alerts to inboxes
accessible to the addresses of the contract creators.

2https://github.com/USCHunt-Anon/USCHunt

1830 32nd USENIX Security Symposium USENIX Association

This makes performing smart contract upgrades nontriv-
ial compared to traditional software updates.

However, for various reasons (e.g., bug fixes and new
feature implementation), there has been a great demand
for methods of making smart contracts upgradeable. An
early strategy for upgradeability without the need for
state migration was the so-called data separation pat-
tern, which decoupled storage and logic by separating
them into two contracts. In this pattern, the storage con-
tract contains the state of the system, and only the logic
contract can modify the state. A drawback of this pattern
is the need to use a regular call from the logic to the stor-
age contract to store and retrieve data, which is costly as
each transaction requires a fee. The more common pat-
tern, which virtually all upgradeable contracts have used
in recent years, is the proxy-based upgradeability pattern.
In this pattern, the proxy is immutable and stores the state
of the system as well as a changeable pointer to the logic.

initiate call

Smart ContractUsers

Figure 1: Normal Smart Contract.

de
leg

ate
 ca

ll

Logic Contract V1

Users

Logic Contract V2

initiate call

Proxy
Contract

delegate call

addr_logic
setter
getter

Figure 2: Upgradeable Smart Contract.

Essentially, compared to a normal contract in Figure 1,
where end users directly call the functions that contain
actual business logic, a simple version of a proxy-based
USC (e.g., auction) splits one contract into two: a proxy
contract and a logic contract as shown in Figure 2. A
proxy contract contains four important parts: the address
of the current logic contract (denoted as addrlogic), the
address retrieving code (denoted as getter), the address
replacing function (denoted as setter), and a function
for handling calls to functions in the logic (denoted as
f allback). A proxy contract is responsible for interacting
with users and delegating users’ calls (e.g., place bid) to
the logic contract that contains the actual business logic
(e.g., the actual bid function). When upgrading, the de-
veloper deploys a new logic contract (Logic Contract V2)
and calls setter to replace the old address in the proxy
with the address of the new logic contract.

In general, USC proxy contracts use a special instruc-
tion (delegatecall) and a special function (fallback) to
implement upgradeability. A delegatecall instruction
will call an external function but execute the callee func-
tion in the caller’s context. A fallback function, defined
as function() or fallback() (since Solidity 0.6 [63]),
is a special function that is executed on a call to the con-
tract if none of the other function selectors (the first 4-
bytes of the hash of the function signature) match that
of the given function signature, or if no data was sup-
plied at all. Using a delegatecall in the fallback,
the proxy contract can forward users’ calls to functions
in logic contracts but execute them in its own context.
Therefore, logic contracts do not need to store any users’
data and hence, can be replaced easily. As shown in Fig-
ure 3, users call Inc() by providing its function selector
(0xccf19ee6) along with the proxy’s address. Since the
proxy does not contain a function with the same function
selector, the fallback function is executed, which uses
delegatecall to call the actual Inc() in the logic con-
tract and executes it in the proxy’s context, resulting in
an update of variable x in the proxy.

Users

delegateCall
to Inc()

Call proxy
for Inc()

Figure 3: delegatecall Instruction

It is worth noting that there are other ways of imple-
menting upgradeability, like the data separation pattern
mentioned above. Another alternative is the so-called
metamorphic pattern. It makes use of the special opcode
CREATE2, which deploys a contract to a predetermined
address, along with the SELFDESTRUCT opcode. This
pattern destroys the original contract and then redeploys
an upgraded version to the same address. It does not use
a proxy, and therefore has a reduced overhead. How-
ever, it is generally frowned upon for several reasons and
is extremely uncommon. As reported in the work [35],
out of 32M contracts examined, only 41 smart contracts
(0.00027%) have code updates using this pattern.

2.3 Security Analysis of Smart Contracts
Although little research has been done on USCs, a vari-
ety of techniques have been developed to perform analy-
sis on regular smart contracts for detecting and mitigat-
ing security issues. These issues in smart contracts can
be classified into two categories: low-level syntactic is-
sues (e.g., reentrancy vulnerability [17]) and high-level

USENIX Association 32nd USENIX Security Symposium 1831

semantic issues (e.g., unfair business models).

Syntax-Level Security Analysis. Smart contracts suf-
fer from multiple unique syntax-level security issues,
such as transaction-ordering dependence, timestamp de-
pendence, mishandled exceptions, unchecked low-level
calls, and reentrancy vulnerabilities.

While static analysis is commonly used for vulnerabil-
ity detection [36,61,62,65], some researchers adopt sym-
bolic execution to explore the state-space of a contract
and locate vulnerabilities [14, 31, 34, 41, 44, 48, 50, 66].
EthBMC [34], a bounded model checker, models EVM
transactions as state transitions. teEther [40] generates
constraints along a critical path that contains attacker-
controlled instructions. Another line of research is
leveraging fuzzing techniques for vulnerability detec-
tion [12,32,37,38,47,70,71,73]. Confuzzius [32] imple-
ments a hybrid fuzzer, and xFuzz [73] utilizes machine-
learning to guide the fuzzing.

For bug mitigation, Sereum [57] modifies the EVM to
defend against reentrancy attacks. EVMPatch [58] uses
hard-coded templates to convert regular contracts into
patched USC proxies. At the same time, Elysium [33]
combines template-based and semantic-based patching
and performs bytecode rewriting for a bug fix.

Semantic-Level Security Analysis. In comparison to
syntax-level security issues, semantic-level security is-
sues, such as unfair business models, are generally more
complicated to detect as it requires extra semantic-level
information. A series of research [9,18,39,54,60,64,67,
69] has been conducted to leverage formal verification to
verify the correctness of certain properties that include
semantic-level issues. Zeus [39] leverages abstract inter-
pretation and software model checking. VetSC [18] uses
natural language processing techniques to infer the se-
mantics of smart contract functions, and leverages static
analysis and model checking to model the business logic
and further check the semantic-level safety issues. Sail-
fish [9] focuses on checking state inconsistency bugs.

3 USC Taxonomy
To conduct the study, we develop a taxonomy to dif-
ferentiate and characterize USCs based on both syntac-
tic and semantic features derived from our deep domain
knowledge of USC and the Solidity language specifica-
tion. Please note that the development of USC taxonomy
is a one-time effort.

3.1 Syntactic Features
Our taxonomy development starts by dissecting every
element within a smart contract and enumerating all
possible values. According to the Solidity documenta-
tion [63]:

Definition 1. A smart contract can be defined as
S = (V,F,E,T, I),where : (1)

• V is a set containing all state variables in the smart
contract;
• F is a set that includes external and internal func-

tions, as well as modifiers;
• E is a set containing events and errors;
• T is a set of struct and enum types declared in the

smart contract;
• I denotes the inheritance of the smart contract.
To ensure completeness, we carefully examine each

element in this definition of a smart contract, to develop a
set of low-level syntactic features which covers all possi-
ble aspects related to upgradeability, depicted in Table 4
in Appendix. We propose 24 different syntactic features
that belong to six different feature sets, each of which is
derived from one or more elements in a smart contract.
The first column in the table shows the related elements
from the smart contract definition S = (V,F,E,T, I) and
the others are the feature sets, syntactic features within
each feature set and their possible values, respectively.
For instance, the second feature set, addrlogic, which is
one of the parameters of the delegatecall instruction,
contains four distinct syntactic features, namely Defini-
tion location, Type, Scope and Inheritance. We also list
all possible values for each. Based on the features and
their possible values, it is easy to observe that the feature
set is related to smart contract elements V , I, and T . Our
feature sets contain comprehensive syntactic information
of a USC since they cover every element in a smart con-
tract except E, events and errors, which are irrelevant to
upgradeability.

3.2 Semantic Features
Once all syntactic features and their possible values are
identified, we then organically combine them to form a
set of higher-level features – semantic features, each of
which is composed of one or more lower-level syntac-
tic features with specific values. These features contain
not only the syntax-level information, but more impor-
tantly, they carry higher-level semantic information of
USCs. We have identified 9 different semantic features
as shown in Table 5 in Appendix. In the table, we list
all the semantic features, their possible values, as well as
the associated syntactic feature values.

Each semantic feature characterizes a unique behavior
of a USC, and they fall into three major categories. First,
constant storage offset and storage layout coupling fea-
tures are related to how USCs define and store addrlogic.
Then, the next four features, namely simultaneous up-
grades, partially upgradeable, scattered logic implemen-
tations, and transparent admin check, denote how the up-
gradeability is implemented in a USC. Finally, the last
three features are related to whether the upgradeability
itself is modifiable or to the restrictions on upgradeabil-
ity. For instance, if the semantic feature removable up-
gradeability is detected in a USC, it indicates that the

1832 32nd USENIX Security Symposium USENIX Association

owner of the USC can choose to remove upgradeability
voluntarily, without any user awareness.

4 USCHUNT Design and Implementation
To perform the large-scale study, we propose USCHUNT,
an automated static analysis framework for detecting up-
gradeable proxy smart contracts, extracting both syntac-
tic and semantic-level features for behavior analysis and
vetting smart contracts for USC-related security analysis.

The reasons for detecting USC proxies are two-fold:
1) proxies have strong intrinsic characteristics that every
USC must possess (shown in Section 2.2), hence, can be
reliably detected; 2) once we have USC proxies, com-
bined with some extra information (e.g., transactions),
we can easily find their corresponding logic contracts.

4.1 Overview
USCHUNT performs static intra- and inter-procedural
context-sensitive, flow-insensitive analyses of the Solid-
ity program atop a state-of-the-art analysis framework
Slither [61]. It transforms the smart contract code into
a static single assignment IR named SlithIR for ease
of implementation while preserving semantic informa-
tion. As illustrated in Figure 4, as an analysis frame-
work, USCHUNT implements an analysis core and en-
ables three major analysis tools: USC detector, feature
extractor, and security analyzer. The system takes two
inputs, a smart contract source code and the developed
USC taxonomy, and outputs the analysis results with re-
spect to behavior and security. For a given smart con-
tract, the USC detector can reliably tell whether it is a
USC proxy. If yes, then USCHUNT will execute the fea-
ture extractor to extract syntactic and semantic features
to characterize the USC, and further leverage the security
analyzer to vet the smart contract and discover potential
upgradeability-related security issues.

4.2 Analysis Core
As its name suggests, analysis core is an essential com-
ponent in USCHUNT. It performs a variety of analy-
ses on every component in a smart contract to collect
useful information for USC detection as well as behav-
ioral and security analysis. It contains four major parts,
namely fallback analysis, setter analysis, getter analy-
sis and other component analysis. The fallback analy-
sis seeks to locate fallback function within a given smart
contract and extracts useful information such as dele

gatecall information and condition checks within the
function. The setter analysis and getter analysis com-
ponents are for identifying setter and getter for a given
smart contract. We first extract the addrlogic from the
delegatecall, and perform inter-procedural backward
data-flow analysis to trace back to its data origin. From
there, we conduct forward data-flow analysis to find the

data retrieving code (getter) and the data replacing func-
tion (setter). For other components, such as other state
variables and external functions within the smart con-
tract, we also perform analysis to collect information.

To achieve this, there exist two major technical chal-
lenges. First, our observations show that many USCs
implement (at least part of) their fallback functions as
inlined assembly code, which hinders static analysis. To
tackle this challenge, we design a novel component in
USCHUNT, the assembly modeling component, to auto-
matically parse inlined assembly code, model it as dif-
ferent objects (e.g., variable objects, function call ob-
jects) and link them back to other contract code. Hence,
we can have a complete view of the contract, including
the inlined assembly. Second, major USC features, in-
cluding addrlogic, setter and getter can be defined and
stored in different smart contracts (e.g., proxy contract,
logic contract, or other external contracts) in some com-
plicated design patterns. As a result, we need to first
find these related smart contracts and develop a cross-
contract data-flow analysis to perform accurate analysis.
To this end, we introduce a component, explorer query-
ing, which queries the corresponding blockchain explor-
ers [22–29] and collects all related smart contracts. Then,
we instrument the original smart contract code to embed
the related smart contracts into the same compilation unit
and perform cross-contract analysis.

4.3 USC Proxy Detection
Given a smart contract, USCHUNT automatically detects
if it is a USC proxy. Our work builds upon the static ana-
lyzer Slither [61], which itself comes with a native USC
detector. However, it suffers some major shortcomings.
Generally, Slither’s upgradeability detection only checks
for the keywords “upgradeable” and “proxy”, and looks
for delegatecall in the fallback, and it does not handle
inlined assembly or cross-contract analysis.

In contrast, USCHUNT relies on the intrinsic charac-
teristics of USC (i.e., delegation behavior in the fallback
function, the setter, and the getter) to implement an ef-
fective detector. To capture these intrinsic characteris-
tics, we follow Algorithm 1, with additional details pro-
vided in section 4.5. Given a smart contract, we lever-
age the analysis core in USCHUNT to locate the fallback
function in which a delegatecall should reside (Ln.2-
5). If this fails, the smart contract is confirmed not to
be a USC proxy, and we return f alse. If it succeeds,
we perform cross-contract data-flow analysis (CC DFA)
to trace the data origin of addrlogic. To do so, we follow
an existing technique [72] to generate a cross-contract
interprocedural control flow graph (XCFG) and perform
data-flow analysis on top of it.

Once the origin of addrlogic is extracted, we further
call CC SetterAnalysis and CC GetterAnalysis

USENIX Association 32nd USENIX Security Symposium 1833

Smart Contract

USC Taxonomy USC
Detector

Feature
Extractor

Security
Analyzer

fallback
analysis

getter
analysis

setter
analysis

Assembly
Modeling

Explorer
Querying

UscHunt System

Analysis
Results

Analysis Core

other
component

analysis

Figure 4: USCHUNT System Overview

(Ln.11-12) to identify the setter and getter by examin-
ing the def-use chain of addrlogic. If the setter exists, we
can confirm that the given contract is indeed a USC proxy
and return true. Locating the getter is often necessary for
cross-contract analysis, i.e., when the setter is located in
another contract, the getter will typically contain a call
to this external contract.

Algorithm 1 USC Proxy Detection
1: procedure DETECTUSC(sc)
2: f b← FALLBACKANALYSIS(sc)
3: asm←MODELINLINEDASSEMBLY(f b)
4: f b← f b ∪asm
5: dc← EXTRACTDELEGATECALL(f b)
6: if f b is NULL OR dc is NULL then
7: return false
8: end if
9: EI← QUERYEXPLORER(sc)

10: addrlogicOrig← CC DFA(dc.tgt,EI)
11: setter← CC SETTERANALYSIS(addrlogicOrig,EI)
12: getter← CC GETTERANALYSIS(addrlogicOrig,EI)
13: if setter is NULL OR getter is NULL then
14: return false
15: else
16: return true
17: end if
18: end procedure

4.4 Behavioral & Security Analyses
Besides USC detection, our system also performs behav-
ioral and security analyses on a given USC. The feature
extractor component in USCHUNT is responsible for ex-
tracting syntactic and semantic features from the given
USC, with the help of the USC taxonomy. To achieve
this, USCHUNT relies on its core capabilities and per-
forms a series of cross-contract static analyses including
control- and data-flow analyses, and taint tracking on the
given USC. Our system first scans over the contract to
extract syntactic features and their values. Then, based
on the mapping relationship between semantic and syn-
tactic features shown in Table 5, USCHUNT identifies all
the semantic features that are related to the given USC,
and further performs static analysis to obtain their values.
For instance, to extract the syntactic feature Timestamp-
related revert in the setter feature set as shown in Ta-
ble 4, our feature extractor first locates all revert()

statements within the setter function. Then, it performs
control-dependency analysis to collect all the conditional
checks, on which the revert()s have direct control de-
pendency. Furthermore, we run a backward data-flow
analysis on the conditions to see if they are timing-related
(i.e., comparison with time-related data such as now). If
so, the feature Timestamp-related revert is identified.

The security analyzer seeks to automatically detect
our discovered security issues (more details in Section
6.3). We leverage the analysis capabilities in USCHUNT
to extract features that are related to security issues,
and also synthesize the feature extraction results with a
built-in upgradeability checker tool in Slither [61], which
comes with methods for detecting storage layout clashes
and function selector collisions. Beyond these results,
USCHUNT also detects security issues that Slither’s tool
does not detect, such as missing or insufficient compati-
bility checks in the setter, while other issues are directly
related to semantic features which our tool extracts, such
as removable or time-delayed upgradeability.

4.5 Implementation Details

Here we elaborate on some important implementation
details of USCHUNT.

Cross-Contract Data-flow Analysis. Our cross-contract
data-flow analysis is built upon a cross-contract interpro-
cedural control flow graph (XCFG) proposed in [72].
Once we extract dc.tgt used in the delegatecall, we
then match it to either a StateVariable or LocalVariable,
the latter can either be in the body of the current function
or passed in as a parameter. If a StateVariable is found,
then we’ve already found the addrlogic. In case a Local-
Variable is located, we further perform backward inter-
procedural data-flow analysis on the local variable to
eventually extract the corresponding state variable which
is the data origin of the local variable dc.tgt used in
the delegatecall. If at any point we come across an
sload(slot), we return the constant storage slot, as
there is no other StateVariable.

1834 32nd USENIX Security Symposium USENIX Association

Fallback Analysis. For each node in the fallback func-
tion’s CFG, we first look for delegatecall in the
Slither IR, and then search the assembly, which may
be modeled as an ASSEMBLY node or as EXPRESSION
nodes. For an EXPRESSION node, we simply extract
the delegate variable. For an ASSEMBLY node, we need
to model the assembly first and return the modeled vari-
ables.

Inlined Assembly Modeling. We modify Slither’s solc
parsing for functions, so that for Solidity versions ≥
0.6.0, the ASSEMBLY node would contain the Yul (an
intermediate representation for EVM assembly) AST.
Then we parse it to find the delegatecall and extract
the target argument dc.tgt. For earlier versions of Solid-
ity where the assembly code is only a string, we modify
the function’s CFG based on a line-by-line interpretation
of the code string and match the variable names to the
original variable data structures.

delegatecall Target Extraction. If a delegatecall

is found in a non-assembly code region, or in an assem-
bly region modeled as an EXPRESSION node (for Solid-
ity versions ≥ 0.6.0), we parse the Slither IR to extract
the source variable directly. But when the function is
found in an ASSEMBLY node, we model the inlined as-
sembly to extract the name of the delegatecall target
variable. Once we have the name of the target variable,
we use CC DFA to trace this local variable to its source.

Getter Analysis. CC GetterAnalysis() iterates over all
functions in the given contract, looking for the getter for
a particular variable, skipping the fallback, receive, con-
structor and initializer functions. For each function, if
the variable is not declared in the function’s signature, it
searches the function’s CFG for either a RETURN node
which returns the variable in question, or an ASSEMBLY
node which uses sload to read from the implementa-
tion storage slot, if one was found during CC DFA. The
method halts and returns as soon as it finds the getter.

Setter Analysis. Similarly, CC SetterAnalysis, iterates
over all functions in the given contract, looking for the
setter for a particular variable, skipping the fallback, re-
ceive, constructor and initializer functions as well as in-
ternal functions. It searches each function’s CFG for ei-
ther an ASSEMBLY node which uses sstore to write to
the storage slot if one is given or a node containing an ex-
pression assigning a value to the addrlogic variable. The
method halts and returns as soon as it finds the setter.

4.6 Evaluation of USCHUNT
Next we evaluate the effectiveness and efficiency of
USCHUNT with respect to USC detection. We use
the contracts from Ethereum mainnet, which the origi-
nal Slither identified as upgradeable proxies, to form a
dataset that contains contracts with varying complexity.

We remove those which are not real proxies, and add
some others ourselves, bringing the dataset to 994 con-
tracts. Through manual investigation, we can confirm
that our dataset contains 825 USCs and 169 non-USCs,
and we use the information as ground truth. According to
our inspection, these 169 were false positives in Slither’s
original USC detection, while four of the 25 contracts we
manually added to this dataset were false negatives.

4.6.1 Effectiveness
We run USCHUNT on our dataset and report the false
positive rate (FPR) and false negative rate (FNR). Our
evaluation results show that our tool is able to correctly
identify 812 confirmed USCs and misses only 13, indi-
cating a rate of FNR of 1.30%. Moreover, the tool does
not mislabel any non-USC, therefore, has no false pos-
itive. This is is because USCHUNT is designed to ac-
curately find all of the intrinsic characteristics of USCs,
such as setter and getter, and then detect USCs.

We further investigate all 13 false negative cases to un-
derstand why they occur. All of them are related to cases
where addrlogic, setter or getter are defined in some ex-
ternal contracts. However, our tool fails to find the con-
tracts via transaction analysis and explorer querying, and
hence mislabels these cases as non-USC. In a nutshell,
USCHUNT can effectively detect USCs with very high
accuracy.

4.6.2 Efficiency
On average, USCHUNT takes 0.764696 seconds to ana-
lyze a contract. As illustrated in Figure 5, it can process
more than 83.6% of contracts (831 out of 994 contracts)
in less than one second. Therefore, we can conclude that
USCHUNT works efficiently enough to perform large-
scale smart contract analysis.

Figure 5: CDF diagram of USCHUNT execution time

5 Study Methodology
To answer the essential research questions brought up in
Section 1, our study follows a well-defined methodology.
This section elaborates on the methodology that we have
systematically identified and itemized to facilitate the an-
swers to each and every question.

USENIX Association 32nd USENIX Security Symposium 1835

To conduct the study, we use a large smart contract
dataset [53], which contains 800K+ contracts from 8
mainstream blockchains (Arbitrum, Avalanche, Binance
Smart Chain, Celo, Ethereum, Fantom, Optimism and
Polygon) with deploy dates ranging from 2017 to 2022.

5.1 Methodology
For each set of research questions, we elaborate our
methodology by listing four important aspects: 1) chal-
lenges, 2) solutions, 3) detailed analysis, and 4) limita-
tions. The challenges and solutions sections are to list all
the technical challenges to be addressed during the study
as well as our proposed solutions. The analysis section
describes the proposed analysis to be performed to ex-
plore the answer, while the limitations section is elabo-
rated to discuss the possible limitations of our analysis.

5.1.1 (RQ1) Popularity and Value Over Time
What is the popularity of upgradeable proxy contracts?
How much total value is held by upgradeable proxies?
How have these changed over time?

Challenges and Solutions. There exist two major tech-
nical challenges for answering RQ1. First is how to ef-
fectively identify USCs in our large dataset, and get the
total value held. The second challenge lies in how to
extract the changes in these numbers over time. To re-
solve the first challenge, we leverage the USC detector in
USCHUNT to detect the existence of USCs in our dataset
and add up the numbers. Further, to obtain the total value
held, we automatically scrape the blockchain explorers to
extract the current cryptocurrencies and tokens held by
each USC address and calculate the total value by their
exchange rate with USD.
Analysis. Having used USCHUNT to extract the subset
of the smart contracts in our dataset which are USCs, we
first run a simple script to count the total number of con-
tracts in our dataset, and the number of those which were
flagged as USC proxies, and compute the percentages for
each chain. We then compile a list of all the addresses of
these proxies, and then run a handful of scripts to collect
the deploy date and total value data for each chain.
Limitations. A major limitation is the missing USCs
since USCHUNT is based on source code static analy-
sis, therefore, cannot analyze smart contracts with only
bytecode. Moreover, USCHUNT may also impose cer-
tain false negatives.

5.1.2 (RQ2) USC Behaviors and Design Patterns
How can we characterize the uniqueness of USCs in the
real world? How are USCs implemented? What are the
unique behaviors and design patterns?

Challenges and Solutions. The biggest challenge for an-
swering RQ2 is how to define USC behaviors and design
patterns. To this end, we consider both syntactic and se-
mantic features of a USC to uniquely characterize its be-

haviors. We first develop a list of syntactic features from
Solidity specification [63], and make sure our features
cover all major components in a smart contract. After
that, we enumerate all possible values of these features
and organically combine them to form a list of seman-
tic features that can narrate high-level behavioral infor-
mation of USCs, as our semantic features. Eventually,
we further enumerate all possible values of semantic fea-
tures and leverage real-world samples to summarize the
unique design patterns of USCs.
Analysis. By running the feature extractor in USCHUNT
on the USC dataset formed in RQ1, we perform auto-
matic analysis on USCs and extract all features and their
values based on the taxonomy. Once we have the fea-
tures and their values, we then distill higher-level design
pattern information by combining multiple features and
their values together and come up with a list of unique
design patterns of USCs.
Limitations. Although the syntactic and semantic fea-
tures from the USC taxonomy are systematic since they
originate from the language specification, our design pat-
tern list is completely developed from the samples in our
dataset. Therefore, the list may not be exhaustive.

5.1.3 (RQ3) Security Risks
What are the security and safety issues associated with
USCs? What is the possible impact of each issue?

Challenges and Solutions. There are several challenges.
First, we need to identify a set of upgradeability-related
security issues. Second, it can be challenging to automat-
ically detect these issues as there exists no existing tool
available. To handle the first challenge, we systemati-
cally examine every aspect of USC and summarize five
different security issues with respect to upgradeability.
For the second challenge, we develop a security analyzer
that can leverage the analysis core in USCHUNT to auto-
matically perform security analysis on USCs.
Analysis. To conduct the study, we feed all the dis-
covered USCs from RQ1 into the security analyzer in
USCHUNT to discover potential security issues. Then,
based on different security issues, we investigate the dis-
covered issues and try to find the real-world impact that
these issues could possibly bring to all parties including
end users, developers, and other contracts.
Limitations. Compilation errors may occur when instru-
menting the proxy source code with the logic contract,
thus, preventing us from analyzing them for security is-
sues. Also, some security issues–such as storage layout
clashes–are so well documented that we rarely find them
manifested as bugs in real-world contracts. Others–such
as function selector collisions–are prevented by design
in most USC patterns and are particularly rare even in
non-standard USC designs.

1836 32nd USENIX Security Symposium USENIX Association

6 Findings
Below, we present our findings with regard to the re-
search questions described in the previous section.

6.1 RQ1: Importance
Table 1 shows the total number of USC proxies that
USCHUNT detected, and the percentage of the contracts
in our dataset for each chain.

Table 1: Percentage of USCs on Each Blockchain

Chain Total
Count

USC Proxy
Count

USC Proxy
Percent

Ethereum 482,889 5,384 1.11%
Arbitrum 4,684 189 4.04%
Avalanche 29,759 282 0.95%

BSC 261,068 1,507 0.58%
Celo 917 56 6.11%

Fantom 16,893 218 1.29%
Optimism 960 60 6.25%
Polygon 64,487 1,119 1.74%

Total 861,657 8,815 1.02%

To answer the remaining questions in (RQ1), we turn
to the corresponding blockchain explorers [22–29]. Ta-
ble 2 shows the total value held by USC proxies on
each chain, including their native coins (e.g., ETH for
Ethereum, BNB for Binance Smart Chain) as well as
ERC-20 tokens, at USD prices as of Sept. 30, 2022. We
note that the value of ERC-20 token holdings is typically
orders of magnitude greater than the native coin value. In
addition to this value held in the proxies themselves, we
manually locate an additional $443.5M held in related
contracts accessible to the proxies on Ethereum, and an
additional $89M on BSC.

Table 2: Total value held in USCs

Chain Native
Value

Token
Value

Total
Value

Ethereum $68.1M $2.6B $2.7B
Arbitrum $16.1K $2.5M $2.5M
Avalanche $6.9K $4.7M $4.7M

BSC $177K $12.5M $12.7M
Celo $322.6M $106.2M $428.8M

Fantom $304.6K $3M $3.3M
Optimism $0 $425.5K $425.5K
Polygon $43.3K $1.4M $1.4M

Figure 6 plots the change in the number of USC prox-
ies deployed over time. The blue line indicates the total
number in our dataset across all mainnet chains, which is
the sum of the eight lines below it. The first USC con-
tracts deployed from 2018 to mid-2020 coincide approx-
imately with the introduction of the unstructured storage
pattern in OpenZeppelin’s earliest upgradeable contracts,
as well as the initial submissions of the EIP-1822 [2] and
EIP-1967 [3] standards.

Figure 8 in the appendix answers the additional ques-
tion, how often are these USCs upgraded? We run

Figure 6: Number of USCs Deployed By Date

USCHUNT, which identifies the addrlogic setter func-
tion, and use this knowledge to search the transaction
history of each USC.

By answering RQ1, we can see several notable inflec-
tion points: first, USCs have been increasingly popular
in the past two years. Especially, around July 2020 we
note a substantial increase in the rate of USC proxy de-
ployment, which we attribute to the release of OpenZep-
pelin’s Upgrades plugin, which makes the USC proxy
easier to implement. Second, USCs currently are holding
billions of USD worth of cryptocurrencies and tokens.
Consequently, we can conclude that USCs are really im-
portant in today’s blockchain world.

6.2 RQ2: Patterns and Behaviors
By detecting and combining semantic and syntactic fea-
tures from real-world USCs, we discover unique design
patterns in the wild. In total, we have discovered 11 USC
design patterns. Table 6 in Appendix presents the dis-
covered USC design patterns, each of which is defined
by the combination of several semantic and syntactic fea-
tures. Figure 7 further displays the numbers of each USC
proxy pattern detected on each chain in our dataset.

Figure 7: Number of USC Design Patterns Detected

Storage Patterns. Different patterns have their own
motivations and address different upgradeability-related
concerns. The first five patterns in Table 6 deal primarily
with storage layout compatibility. Inherited Storage
dictates that both proxy and logic should inherit the

USENIX Association 32nd USENIX Security Symposium 1837

same base storage contract, with any additional storage
variables being appended to the prior storage contract
via inheritance. Eternal Storage uses mappings for each
type of Solidity variable, as values stored in mappings
do not take up slots at the beginning of the storage
space [20]. However, we find that Eternal Storage is
almost always combined with Inherited Storage, with
the addrlogic typically stored as a state variable rather
than in the address mapping. Unstructured Storage,
with its three sub-patterns, uses a specific storage
slot at an arbitrarily high offset for each variable that
must be accessed by the proxy, such that the logic
contract requires no knowledge of the proxy’s storage
layout. The earliest Unstructured Storage proxies,
introduced by OpenZeppelin, used the keccak256 hash
of org.zeppelinos.proxy.implementation as
the implementation storage slot, and other projects
replace this with their own strings. EIP-1967 in-
troduces a set of standardized storage slots, using
bytes32(uint256(keccak256(’eip1967.proxy.

implementation’)) - 1) for the implementa-
tion. EIP-1822, a.k.a, the Universal Upgradeable
Proxy Standard (UUPS), predates EIP-1967 and uses
keccak256(’PROXIABLE’).
Function Selector Patterns. Three of the patterns are
motivated by the need to avoid function selector colli-
sions between the proxy and logic contracts. EIP-1822
is a variant of Unstructured Storage, in which no func-
tions other than the constructor and f allback are de-
clared in the proxy contract, whereas the setter is located
in the logic, and in place of a getter, the implementation
storage slot is hard-coded in the f allback. The Master-
copy/Singleton pattern takes a similar approach, includ-
ing only a f allback and constructor in the proxy code,
though it stores its implementation in a state variable lo-
cated at slot 0, thus requiring that the logic contract al-
ways declare the same variable in the first storage slot, so
there is a strong coupling between the two. The Trans-
parent Proxy pattern takes a different approach to avoid-
ing function selector collisions: it requires that the proxy
also stores an admin address, and only allows calls to the
proxy’s external functions by the admin while disallow-
ing calls from the admin being handled by the f allback.
Thus, if a function in the proxy and another in the logic
both share the same function selector, the admin account
can only ever execute the former, while calls from any
other address will always be routed to the latter. The
Transparent Proxy pattern and EIP-1822 (UUPS) fre-
quently use the standard storage slots of EIP-1967.
Atomic Implementation Patterns. The following two
columns in Table 6, EIP-1538 [1] and EIP-2535 [4],
make use of mappings with 4-byte function selectors
as keys, such that each function can be associated with
a separate implementation contract, effectively skirting

the limitation on smart contract size enforced by the
EVM while allowing atomic upgrades limited to individ-
ual functions. EIP-2535, a.k.a, Diamond or Multi-Facet
Proxy standard, introduces a solution to prevent function
selector collisions and a novel approach to storage lay-
out, which is similar to Unstructured Storage but packs
several variables and mappings into a struct, and then
stores it at a specific storage slot.
Registry Patterns. While the preceding patterns typi-
cally only allow one proxy to be upgraded at a time, the
last two patterns (Beacon and Registry) allow any num-
ber of proxies to be upgraded at once by having them
retrieve their implementation address from an external
contract, which contains the upgrade functionality rather
than the proxy itself. These patterns are characterized
by the presence of a call to an external contract address
other than the delegatecall target in either the getter
or the f allback, which should return an address value
that is stored in the external contract. In our detection,
we differentiate between Registry and Beacon Contracts
based on the presence or absence of arguments passed
into the external call, as well as how the implementa-
tion address(es) are stored in the contract. By defini-
tion, a Beacon contract should store only one implemen-
tation address, obviating the need for arguments in the
getter, whereas a Registry may store many implemen-
tations, typically in a mapping, and returns the one as-
sociated with a given key. The Beacon Proxy pattern is
very often combined with EIP-1967, using the hash of
eip1967.proxy.beacon for the Beacon’s address.

6.3 RQ3: Security and Safety Issues
We follow the study methodology to answer RQ3,
and discover 2,546 real-world USC-related security and
safety issues in six major categories, as shown in Table 7
in Appendix. Note that these issues may not be directly
exploitable, but could become serious bugs if the contract
admin is not careful or less experienced. Our findings
can be broken down into two categories: issues related
to the implementation of upgradeability itself, and pol-
icy issues related to how or when upgrades can occur.

6.3.1 Implementation Issues

Storage layout clashes. Storage layout clashes can man-
ifest in two ways: between the proxy and logic contract,
or between two logic versions. From an EVM storage
perspective, the first state variable assigns to slot zero,
the next to slot one, and so on. If a contract uses inheri-
tance, state variables in the inherited contracts are stored,
according to these rules in the order of inheritance, be-
fore those declared in the contract itself. Storage clashes
between proxy and logic occur if both declare state vari-
ables in a typical way, and the logic contract can acci-
dentally overwrite the values of those in the proxy since

1838 32nd USENIX Security Symposium USENIX Association

delegatecall executes in the caller’s context. A stor-
age layout clash happens between two logic versions if
a USC upgrades to a new logic with the variable order
changed. The proxy’s storage layout will not reflect these
changes and values may be overwritten.

Listing 1 presents a simplified version of the former,
derived from a real-world DeFi Synthetix. The storage
layout clash is in the first lines of each contract: the
Proxy contract stores its addrlogic as a Logic contract-
type state variable in the first storage slot (Ln.2), while
the logic contract declares another variable (otherAddr)
in the same position (Ln.13). The second example (List-
ing 2), also derived from a real-world USC DexProxy,
exhibits both sorts of storage layout clashes, between
proxy and logic as well as between two logic versions,
causing the proxy to become impossible to upgrade.
1 contract Proxy {

2 Logic public target;

3 function setTarget(Logic _target) {

4 target = _target;

5 }

6 function () external payable {

7 ...

8 delegatecall(gas ,sload(target), ...)

9 }

10 }

11
12 contract Logic {

13 address public otherAddr;

14 function setOtherAddr(address _other) {

15 otherAddr = _other;

16 }

17 }

Listing 1: Synthetix Proxy and Logic Contracts

To implement the Inherited Storage pattern correctly,
it is essential that the different versions of logic contracts
follow the same order of inheritance. Even the earli-
est logic contract for this proxy was implemented incor-
rectly, as its declaration read contract Dex is Own

able, DexStorage, such that the two slots occupied by
the variables in ProxyBaseStorage, inherited first by the
proxy, were replaced by the single variable declared in
Ownable, inherited first by the logic. This had the effect
of shifting the storage locations of all variables declared
in DexStorage up by a slot.

The problem happens when the developer upgrades
to a new logic implementation, which adds several new
variables to the DexStorage contract, as shown in List-
ing 3. Note the new variable (ln. 2) added before the
two pre-existing ones, and more importantly, the new
boolean variable openForSale (ln. 6) now clashes with
the proxy’s owner address (ln. 10) in the previous list-
ing. Thus, when the owner proceeded to call the new set

SaleClose() function, they overwrote the last digit of
the owner address with a zero. Because only the owner
is authorized to upgrade the contract, thus made upgrad-
ing effectively impossible.

Function Selector Collisions. A function selector,
which is the first 4-bytes of the hashed function signa-
ture, is needed for making a function call. Function

selector collisions occur when two functions happen to
have the same function selector. It becomes a security is-
sue when it happens between a function in the logic and
one in the proxy, where attempts to call the logic func-
tion can unintentionally be handled by the proxy func-
tion instead. If the proxy function in question happens to
be setter, it sets addr logic to an undetermined address
when trying to call a different function provided by the
logic contract.
1 contract ProxyBaseStorage {

2 mapping(bytes4 => address) delegates;

3 bytes[] public funcSignatures;

4 }

5 contract DexStorage {

6 address payable public platform;

7 uint256 internal platformPerecentage;

8 }

9 contract Ownable {

10 address internal _owner;

11 }

12 contract DexProxy is ProxyBaseStorage ,

DexStorage , IERC1538 , Ownable {

13 function () external payable {

14 address deleg = delegates[msg.sig];

15 assembly {

16 ...

17 let res:= delegatecall(gas ,deleg ,...)

18 ...

19 }

20 }

21 }

Listing 2: DexProxy and its inherited storage

1 contract DexStorage {

2 address nft;

3 address public platform;

4 uint256 internal perecentage;

5 mapping (address => bool) collections;

6 bool openForSale;

7 }

8 contract Dex is Ownable , DexStorage {

9 ...

10 function setSaleClose () public {

11 require(admin ==msg.sender ,"not admin");

12 openForSale = false;

13 }

14 ...

15 }

Listing 3: Upgraded logic and storage for DexProxy

Although we have not detected any real-world exam-
ples of function selector collisions in our dataset, we can
easily form a possible scenario. Take the function set

Target(target) from Listing 1 as an example. It has
the 4-byte selector 0x776d1a01, and it is the same as for
the function signature unvest(uint256, uint256,

uint256, uint256, uint256, bool). If this func-
tion were added in a future upgrade to the logic contract,
it would not be callable, as all attempts to call the new
function would be handled by setTarget(target),
which is the setter in the proxy. If the contract’s owner
tries to call the unvest function they could end up over-
writing addrlogic with the value of the first argument.
Insufficient Compatibility Checks. When performing
an upgrade, certain compatibility checks need to be en-

USENIX Association 32nd USENIX Security Symposium 1839

Table 3: Detected Compatibility Checks by Class

Chain

Checks
contract

call
result

Checks
address

is a
contract

Checks
address
is not
zero

Checks
new not
same as
the old

Missing
checks

Ethereum 28 1337 79 219 694
Arbitrum 0 80 9 2 76
Avalanche 6 78 5 17 99

BSC 10 295 36 41 260
Celo 0 11 6 0 19

Fantom 0 65 14 1 151
Optimism 0 23 1 1 31
Polygon 5 242 37 65 281

Total 49 2131 187 346 1611

forced in the setter to ensure that the new target is com-
patible with the USC, otherwise, an upgrade may replace
the existing target with a pointer to an arbitrary address.
In some cases, this may cause storage layout clashes if
the new target contract uses an incompatible storage lay-
out. In the worst case, if the setter is meant to be in
the logic contract but an upgrade sets the target to some
other address, such an upgrade can make the USC com-
pletely unusable. Note that the compatibility checks we
discuss do not consider the business logic or semantic
structure of the contract, only matters related to preserv-
ing upgradeability and overall functionality.

Through our study, we detect a substantial number of
USCs which are either missing a compatibility check or
have some form of checks that are insufficient to prevent
erroneous upgrades. Based on the compatibility checks
extracted during our analysis, we categorize the checks
into four types and provide an example of each below.
Table 3 gives the number of each class of compatibility
check detected on each mainnet.
(1) Checks contract call result. In the best case, the

setter should attempt to call a function that is ex-
pected to be in the new logic contract, and verify
that it returns the correct value, as EIP-1822 does:
require(bytes32(PROXIABLE MEM SLOT) ==

Proxiable(newAddress).proxiableUUID())

(2) Checks address is a contract. It may be sufficient
to check that the new address is indeed a contract:
require(extcodesize(newLogicAddr) > 0)

(3) Checks address is not zero. A common yet insuf-
ficient check ensures the new address is not zero:
require(implementation != address(0))

(4) Checks new address is not the same as old. The
least sufficient check, no bearing on compatibility:
require(currentImpl != newImpl)

In addition to these common classes of compatibility
checks, we also discover another related issue. While
Listing 1 appears to check the type of the new target con-
tract, due to its function signature setTarget(Logic

target) using a specific contract-type argument, inter-
nally no type checking is ever performed. Once the con-
tract is deployed, the EVM treats such variables just as it
would an ordinary address, so this contract actually has
no compatibility check. In total, we detect a whopping
2,243 real-world samples with this security issue.

6.3.2 Policy Issues
Upgradeability Can Be Removed Accidentally. If the
setter exists outside of the proxy contract (i.e., either
in the logic or an external contract), the upgradeability
could be accidentally eliminated permanently. While this
may also occur intentionally, it is a potential safety issue
for USCs using a pattern in which the setter is located in
either the logic or an external contract.

Considering how prevalent the insufficient compatibil-
ity checks are, this issue certainly is worth reporting. As
shown in Table 7, we detect 213 such cases. It simply
reflects the total number of contracts in our dataset that
exhibit the removable upgradeability semantic feature,
as this safety issue is directly related to that feature. It
also comes to our attention that while some EIPs, such
as EIP-1822, warn that the setter must be present in the
logic contract to retain upgradeability, others (e.g., EIP-
2535) take a different stance, arguing that the ability to
make their code immutable is a feature, not a bug.
1 contract EnclavesDEXProxy {

2 address public proposedImpl;

3 uint256 public proposedTimestamp;

4
5 function propose(address _proposed) {

6 ...

7 proposedImpl = _proposed;

8 proposedTimestamp = now + 2 weeks;

9 }

10 function upgrade () {

11 ...

12 require(proposedTimestamp < now);

13 impl = proposedImpl;

14 }

15 }

Listing 4: Example of a USC proxy with a time-delay.

Vulnerabilities Can’t Be Patched On-time. This specific
security issue is a direct result of the time-delayed up-
grades high-level semantic feature presented in Section
3. As shown in Listing 4, it is defined by a timestamp
variable declared in the proxy contract, which is checked
in the setter function before performing the upgrade op-
eration. In this case, if a vulnerability is discovered in
the USC and needs to be patched, a malicious user has
this time window before the next upgrade to exploit it.

This issue has caused real-world attacks. In Sep 2021,
an upgrade was performed on Compound [13], which is a
popular DeFi protocol with a total value locked (TVL) of
$10.2 billion [42]. The upgrade introduced a logical bug
in the protocol’s Comptroller contract [74]. However,
since upgrades require a seven-day time delay, develop-
ers could not fix it immediately, causing $100 million
loss in tokens. Therefore, developers should always ei-
ther include an emergency upgrade/rollback function, or
a means to pause the system until a fix goes into effect.

6.3.3 False Positives and False Negatives

We manually inspect all contracts that are flagged as hav-
ing security issues and confirm that there exists no FP.

1840 32nd USENIX Security Symposium USENIX Association

Similarly, we rule out all FNs other than those stemming
from a failure to identify a contract as an upgradeable
proxy, such as cases where we are unable to obtain the
source code of the logic contract for an apparent UUPS
proxy, and thus unable to locate the setter. For this rea-
son, the false negative rate w.r.t. security issues is the
same as what is reported in section 4.5.1.

7 Discussion
In the following section we present some final observa-
tions regarding USCs, based on findings from the study.

7.1 Trade-Offs
Choosing the Right Pattern. Through the study, we ob-
serve a number of trade-offs being made by USC devel-
opers in choosing between patterns. For instance, when
deciding how to address storage layout concerns, each
pattern has its pros and cons. Inherited Storage is cer-
tainly the most intuitive, and it allows the proxy to have
access to as many state variables as a developer may feel
necessary, yet it can easily be implemented incorrectly
with dire consequences, as can Eternal Storage. Unstruc-
tured Storage has the drawback of requiring blocks of as-
sembly code to read and write storage variables, but the
standards in place have been well-tested.
To Upgrade or Not to Upgrade? Can we trust the
developers authorized to perform a smart contract up-
grade? This question naturally leads to perhaps the
biggest trade-off: immutability or flexibility. There is al-
ways the opinion that smart contracts should not be made
upgradeable [45]. One common compromise is the fea-
ture time-delayed upgrades, which is itself a trade-off.

7.2 Related Work
A prior work [35] studies the CREATE2 usage, which
includes some discussion on upgradeability, specifi-
cally about the metamorphic contract pattern. Another
work [59] conducts a study on the access control of up-
gradeability in smart contracts. Rather than static analy-
sis, it uses dynamic transaction traces to detect USCs.
While this approach works without source code and
could thus be promising, it does not work if a contract
is not yet deployed or has few transactions. The authors
further use this method to conduct a study primarily on
‘who has admin rights to perform an upgrade’. In com-
parison, our research aims to answer three research ques-
tions with a more fine-grained view of real-world USCs.

In addition, the authors present an overview of up-
gradeability patterns, including a high-level overview
of delegatecall-based patterns and different ways to
avoid function selector clashes, as well as a number of
other uncommon patterns which do not use a proxy. In
contrast, our study focuses on the delegatecall-based
patterns that have become the industry standard. By dis-
secting the complete set of elements that make up a smart

contract and identifying all elements which could possi-
bly relate to proxy-based upgradeability, we build a tax-
onomy of proxy-based USCs and thus are able to detect
a comprehensive set of upgradeability-related security is-
sues via static analysis before a contract is deployed.

7.3 Limitations and Future Directions
With more adoption of multi-implementation patterns
like Diamonds, USCHUNT should do cross-contract
analysis not only with one logic contract but with many.
As UUPS proxies become prominent, it becomes even
more important for USCHUNT to reliably retrieve and
analyze logic contracts with their proxies, even when the
two use incompatible compiler versions.

Another limitation is USCHUNT’s inability to analyze
closed-source contracts or those written in languages
other than Solidity. For instance, Vyper is a Python-
like language for smart contracts. Built atop Slither,
USCHUNT supports any language that it does, yet for
now efforts to add Vyper support have stalled.

Beyond improving USCHUNT, we believe there are
other promising directions related to USC security, such
as differential fuzzing between multiple logic versions.
As Compound’s token distribution bug demonstrates, up-
grading a smart contract can introduce new bugs unre-
lated to any USC feature or pattern. Catching such bugs
before an upgrade goes live can be critical.

8 Conclusion
In this work, we conduct the first large-scale study on
proxy-based upgradeable smart contracts to uncover the
status quo and report the related security issues. To do so,
we develop a thorough taxonomy of proxy-based USCs
that can uniquely characterize their behaviors based on
both syntactic and semantic features. We further design
and implement USCHUNT, a novel static analysis frame-
work for detecting and analyzing USCs. With it, we con-
duct the study with 800K+ smart contracts in eight main-
stream blockchains. We report multiple important find-
ings that include 11 unique USC design patterns and 6
different types of security and safety issues.

References

[1] Eip-1538: Transparent contract standard. https:

//eips.ethereum.org/EIPS/eip-1538, 2022.

[2] Eip-1822: Universal upgradeable proxy standard
(uups). https://eips.ethereum.org/EIPS/

eip-1822, 2022.

[3] Eip-1967: Proxy storage slots. https://eips.

ethereum.org/EIPS/eip-1967/, 2022.

[4] Eip-2535: Diamonds, multi-facet proxy. https:

//eips.ethereum.org/EIPS/eip-2535, 2022.

USENIX Association 32nd USENIX Security Symposium 1841

[5] anchain.ai. anchain.ai: Last winner attack
report. https://anchainai.medium.com/

largest-smart-contract-attacks-in-block\

\chain-history-exposed-part-1-93b975a374d0/,
2020.

[6] Arbitrum. https://arbitrum.io//, 2022.

[7] Avalanche. https://www.avax.network/,
2022.

[8] bnb. https://www.bnbchain.org/en, 2022.

[9] Priyanka Bose, Dipanjan Das, Yanju Chen,
Yu Feng, Christopher Kruegel, and Giovanni Vi-
gna. Sailfish: Vetting smart contract state-
inconsistency bugs in seconds. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 161–
178. IEEE, 2022.

[10] Vitalik Buterin. Ethereum: A next-generation
smart contract and decentralized applica-
tion platform. https://ethereum.org/

669c9e2e2027310b6b3cdce6e1c52962/

Ethereum_Whitepaper_-_Buterin\

_2014.pdf, 2014.

[11] Celo. https://celo.org/, 2022.

[12] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gus-
tavo Grieco, Alex Groce, and Sang Kil Cha.
Smartian: Enhancing smart contract fuzzing with
static and dynamic data-flow analyses. In 2021
36th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 227–
239. IEEE, 2021.

[13] Compound. Compound.finance. https://

compound.finance/, 2022.

[14] ConsenSys. Mythril: security analysis tool for evm
bytecode. https://github.com/ConsenSys/

mythril/, 2022.

[15] CryptoverseCC. Ethmail.cc: Email services for
ethereum community. https://ethmail.cc/,
2020.

[16] Daonomic. Daonomic/contracts-upgradeable.
https://github.com/daonomic/

contracts-upgradeable/, 2022.

[17] Michael del Castillo. The dao attacked: Code issue
leads to $60 million ether theft. 2016.

[18] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Ming-
hao Li, Fengyuan Xu, and Mu Zhang. Towards au-
tomated safety vetting of smart contracts in decen-
tralized applications. In Proceedings of the 29nd

ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2022.

[19] Ethereum. Ethereum smart contract document.
https://ethereum.org/en/developers/

docs/smart-contracts/, 2020.

[20] Ethereum. Solidity documentation: Lay-
out of state variables in storage. https:

//docs.soliditylang.org/en/v0.8.15/

internals/layout_in_storage.html, 2021.

[21] Ethereum. https://ethereum.org/en/, 2022.

[22] Etherscan. Arbitrum one explorer. https://

arbiscan.io, 2022.

[23] Etherscan. Avalanche c-chain explorer. https:

//snowtrace.io, 2022.

[24] Etherscan. Binance smart chain explorer. https:

//bscscan.com, 2022.

[25] Etherscan. A block explorer and analytics platform
for celo. https://celoscan.io, 2022.

[26] Etherscan. A block explorer and analytics platform
for ethereum. https://etherscan.io, 2022.

[27] Etherscan. Fantom blockchain explorer. https:

//ftmscan.com, 2022.

[28] Etherscan. The optimism explorer. https://

optimistic.etherscan.io, 2022.

[29] Etherscan. Polygon pos chain explorer. https:

//polygonscan.com, 2022.

[30] Fantom. https://fantom.foundation/, 2022.

[31] Yu Feng, Emina Torlak, and Rastislav Bodik. Pre-
cise attack synthesis for smart contracts. arXiv
preprint arXiv:1902.06067, 2019.

[32] Christof Ferreira Torres, Antonio Ken Iannillo, and
Arthur Gervais. Confuzzius: A data dependency-
aware hybrid fuzzer for smart contracts. In Euro-
pean Symposium on Security and Privacy, Vienna
7-11 September 2021, 2021.

[33] Christof Ferreira Torres and Hugo Jonker. Elysium:
Context-aware bytecode-level patching to automat-
ically heal vulnerable smart contracts. In Interna-
tional Symposium on Research in Attacks, Intru-
sions and Defenses, Limassol, Cyprus 26-28 Oc-
tober 2022, 2022.

[34] Joel Frank, Cornelius Aschermann, and Thorsten
Holz. Ethbmc: A bounded model checker for smart
contracts. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2757–2774, 2020.

1842 32nd USENIX Security Symposium USENIX Association

[35] Michael Fröwis and Rainer Böhme. Not all code
are create2 equal. In 6th Workshop on Trusted
Smart Contracts (WTSC ’22), 2022.

[36] Neville Grech, Michael Kong, Anton Jurisevic,
Lexi Brent, Bernhard Scholz, and Yannis Smarag-
dakis. Madmax: Surviving out-of-gas conditions
in ethereum smart contracts. Proceedings of the
ACM on Programming Languages, 2(OOPSLA):1–
27, 2018.

[37] Shelly Grossman, Ittai Abraham, Guy Golan-
Gueta, Yan Michalevsky, Noam Rinetzky, Mooly
Sagiv, and Yoni Zohar. Online detection of ef-
fectively callback free objects with applications to
smart contracts. In Procceedings of The 45th ACM
SIGPLAN Symposium on Principles of Program-
ming Languages (POPL 2018), 2018.

[38] Bo Jiang, Ye Liu, and Wing Kwong Chan. Con-
tractfuzzer: Fuzzing smart contracts for vulnera-
bility detection. In 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engi-
neering (ASE), pages 259–269. IEEE, 2018.

[39] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Sub-
odh Sharma. Zeus: analyzing safety of smart con-
tracts. In Ndss, pages 1–12, 2018.

[40] Johannes Krupp and Christian Rossow. {teEther}:
Gnawing at ethereum to automatically exploit
smart contracts. In 27th USENIX Security Sym-
posium (USENIX Security 18), pages 1317–1333,
2018.

[41] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bang-
dao Chen, and Bill Roscoe. Reguard: finding reen-
trancy bugs in smart contracts. In 2018 IEEE/ACM
40th International Conference on Software Engi-
neering: Companion (ICSE-Companion), pages
65–68. IEEE, 2018.

[42] DeFi Llama. Defi llama - defi dashboard. https:
//defillama.com, 2021.

[43] looksrare. Looksrare nft marketplace. https://

looksrare.org/, 2022.

[44] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek
Saxena, and Aquinas Hobor. Making smart con-
tracts smarter. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communica-
tions security, pages 254–269, 2016.

[45] Steve Marx. Upgradeability is a bug.
https://consensys.net/diligence/blog/

2019/01/upgradeability-is-a-bug/, Jan-
uary 2019.

[46] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. http://www.bitcoin.org/

bitcoin.pdf, May 2009.

[47] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin,
and Quang Tran Minh. sfuzz: An efficient adaptive
fuzzer for solidity smart contracts. In Proceedings
of the ACM/IEEE 42nd International Conference
on Software Engineering, pages 778–788, 2020.

[48] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek
Saxena, and Aquinas Hobor. Finding the greedy,
prodigal, and suicidal contracts at scale. In Pro-
ceedings of the 34th annual computer security ap-
plications conference, pages 653–663, 2018.

[49] Trail of Bits. Contract upgrade anti-patterns.
https://blog.trailofbits.com/2018/09/

05/contract-upgrade-anti-patterns/,
2018.

[50] Trail of Bits. Manticore: symbolic execution
tool for smart contract. https://github.com/

trailofbits/manticore/, 2022.

[51] OpenSea. Opensea nft marketplace. https://

opensea.io/, 2022.

[52] Optimism. https://www.optimism.io/, 2022.

[53] Martin Ortner and Shayan Eskandari. Smart con-
tract sanctuary.

[54] Anton Permenev, Dimitar Dimitrov, Petar Tsankov,
Dana Drachsler-Cohen, and Martin Vechev. Verx:
Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP), pages
1661–1677. IEEE, 2020.

[55] Polygon. https://polygon.technology/,
2022.

[56] Valuates Report. Smart contract market
size. https://reports.valuates.com/

market-reports/QYRE-Auto-31L1599/

global-smart-contracts/, 2021.

[57] Michael Rodler, Wenting Li, Ghassan O. Karame,
and Lucas Davi. Sereum: Protecting existing smart
contracts against re-entrancy attacks. In Proceed-
ings of the 2019 Network and Distributed System
Security Symposium, 2019.

[58] Michael Rodler, Wenting Li, Ghassan O Karame,
and Lucas Davi. Evmpatch: timely and automated
patching of ethereum smart contracts. In 30th
{USENIX} Security Symposium ({USENIX} Secu-
rity 21), 2021.

USENIX Association 32nd USENIX Security Symposium 1843

[59] Mehdi Salehi, Jeremy Clark, and Mohammed Man-
nan. Not so immutable: Upgradeability of smart
contracts on ethereum. In 6th Workshop on Trusted
Smart Contracts (WTSC ’22), 2022.

[60] Evgeniy Shishkin. Debugging smart contract’s
business logic using symbolic model checking.
Programming and Computer Software, 45(8):590–
599, 2019.

[61] Slither. Slither, the solidity source analyzer.
https://github.com/crytic/slither/,
2022.

[62] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee,
and Hakjoo Oh. Verismart: A highly precise safety
verifier for ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP), pages
1678–1694. IEEE, 2020.

[63] Solidity. Solidity documentation. https://docs.
soliditylang.org/en/v0.8.16/, 2022.

[64] Jon Stephens, Kostas Ferles, Benjamin Mariano,
Shuvendu Lahiri, and Isil Dillig. Smartpulse: au-
tomated checking of temporal properties in smart
contracts. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 555–571. IEEE, 2021.

[65] Sergei Tikhomirov, Ekaterina Voskresenskaya,
Ivan Ivanitskiy, Ramil Takhaviev, Evgeny
Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In
Proceedings of the 1st International Workshop
on Emerging Trends in Software Engineering for
Blockchain, pages 9–16, 2018.

[66] Christof Ferreira Torres, Julian Schütte, and Radu
State. Osiris: Hunting for integer bugs in ethereum
smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages
664–676, 2018.

[67] Petar Tsankov, Andrei Dan, Dana Drachsler-
Cohen, Arthur Gervais, Florian Buenzli, and Mar-
tin Vechev. Securify: Practical security analysis of
smart contracts. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 67–82, 2018.

[68] Uniswap. Uniswap protocol. https://uniswap.
org/, 2022.

[69] Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen,
Rong Pan, Isil Dillig, Cody Born, and Immad
Naseer. Formal specification and verification
of smart contracts for azure blockchain. arXiv
preprint arXiv:1812.08829, 2018.

[70] Valentin Wüstholz and Maria Christakis. Harvey:
A greybox fuzzer for smart contracts. In Proceed-
ings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
1398–1409, 2020.

[71] Valentin Wüstholz and Maria Christakis. Targeted
greybox fuzzing with static lookahead analysis. In
2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pages 789–800.
IEEE, 2020.

[72] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui,
Jiaming Ye, and Tianyong Peng. Cross-contract
static analysis for detecting practical reentrancy
vulnerabilities in smart contracts. In Proceedings
of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 1029–
1040, 2020.

[73] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei
Ma, Haijun Wang, and Jianjun Zhao. xfuzz: Ma-
chine learning guided cross-contract fuzzing. IEEE
Transactions on Dependable and Secure Comput-
ing, 2022.

[74] ZenLedger. Compound’s defi bug.
https://www.zenledger.io/blog/

compounds-defi-bug-what-happened-how-to\

\-handle-erroneous-transfers/, 2021.

[75] Zeppelin. Openzeppelin: Upgrading smart
contracts. https://docs.openzeppelin.com/

learn/upgrading-smart-contracts/, 2022.

[76] Zeppelin. Openzeppelin: Writing upgradeable con-
tracts. https://docs.zeppelinos.org/docs/

2.1.0/writing_contracts, 2022.

[77] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya
Nepal, and Dawu Gu. Smartshield: Automatic
smart contract protection made easy. In 2020 IEEE
27th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pages
23–34, 2020.

A Appendix

1844 32nd USENIX Security Symposium USENIX Association

Table 4: Low-Level Syntactic Features Related to Upgradeability
Related Contract

Elements Feature Set Syntactic Features Possible Values

Contains delegatecall Y / N
Reverts for specific address Y / N

Loads target address from hard-coded storage slot Y / N

delegatecall dominated by conditional check
Y / N

If yes, is condition modifiable?

F fallback
function

Checks function selector in calldata before loading target address Y / N

Definition location
Proxy contract

Proxy and logic contracts
External contract

Type

address type
contract type

bytes32 type (constant storage slot)
address array

mapping(=>address)

Scope

State variable
Local variable

Structure variable
Literal / constant variable

V, I, T
delegatecall

target addrlogic

Inheritance
Inherited by proxy

Inherited by proxy and logic
None

Definition location

Proxy contract
Logic contract

Inherited contract
External contract

Timestamp-related revert Y / N

F, I setter

Writes to storage slot using sstore Y / N

Definition location

Proxy contract
Logic contract

Inherited contract
External contract

Contains external call Y / N

F, I getter

Reads from storage slot using sload Y / N
External functions in proxy other than fallback/receive Y / N
External functions in proxy unrelated to upgradeability Y / N

External functions require specific caller Y / NF External
functions

External functions contain delegatecall Y / N
Mappings for each variable type Y / N

Stores contract address other than addrlogic Y / N
Stores timestamp variable to check in setter Y / N

Stores conditional variable to check in fallback function Y / N
V Other state

variables

Stores admin address variable for access control Y / N

0 10 20 30 40 50 60

100

101

102

103

104

105

(a) Arbitrum

0 20 40 60 80 100

100

101

102

103

104

105

(b) Avalanche

0 25 50 75 100 125 150 175 200

100

101

102

103

104

105

(c) BSC

0 200 400 600 800 1000

100

101

102

103

104

105

(d) Ethereum

0 10 20 30 40 50 60 70

100

101

102

103

104

(e) Fantom

0 50 100 150 200 250

100

101

102

103

104

105

(f) Polygon

Figure 8: Upgrade Frequency: setter calls (orange) compared to total transaction count (blue)

USENIX Association 32nd USENIX Security Symposium 1845

Table 5: High-level Semantic Features
Category Semantic Features Possible Values Related Syntactic Features

addr logic type: bytes32 constant storage slot
setter writes to storage slot using sstore: yesConstant storage

offset

Y / N
If yes, which slot?

What is the hashed string? getter reads from storage slot using sload: yes
addr logic definition location: proxy and logic contracts

(separate definitions) or inherited contract (shared by proxy and logic)

Data Definition
and Storage Storage layout

coupling Y / N
addr logic scope: state variable

addr logic definition location: external contract
setter definition location: same external contract
getter definition location: same external contract

Simultaneous
upgrades Y / N

getter (or fallback function) contains external call: yes
addr logic type: mapping(bytes4 =>)

addr logic scope: state variable or structure variableScattered
implementations Y / N

Fallback function checks function selector before loading target: yes
External functions in proxy other than fallback/receive: yesPartially

upgradeable Y / N External functions contain delegatecall: optional
External functions require specific caller address: yes

Upgradeability
Implementation

Transparent
admin check Y / N Fallback function reverts for specific caller address: yes, same address

Stores timestamp variable to check in setter: yesTime-delayed
upgrades

Y / N
If yes, how long? setter has timestamp-related revert: yes

Toggleable
delegatecall Y / N delegatecall in fallback function dominated by conditional check: yes,

and condition is modifiableModifiability
Removable

upgradeability
Y / N

If yes, how?
setter definition location: logic contract or external contract

(external contract address must not be constant)

Table 6: USC Design Pattern Definition

Pattern Name Inherited
Storage

Eternal
Storage Unstructured Storage Mastercopy

/ Singleton
Transparent

Proxy
Multiple

Implementations Registry Proxies

Sub-Pattern - -
Non-

standard

EIP-1967:
Standard

Storage Slots

EIP-1822:
UUPS - -

EIP-1538:
VTable

EIP-2535:
Diamond Beacon Registry

Target
location

Inherited
contract -

Proxy
contract

Proxy
contract

Proxy
and logic

Proxy
and logic

Proxy
contract

Proxy
contract

Proxy
contract

External
contract

External
contract

Target
type - - bytes32 bytes32 bytes32 address -

mapping
(bytes4 =>

address)

mapping
(bytes4 =>
Facet struct)

address
mapping
(=>
address)

Target
scope

State
variable

State
variable Constant Constant

Literal in
fallback

State
variable -

State
variable

Structure
variable

State
variable

State
variable

Target
inheritance

Inherited
by proxy
and logic

- - -
Logic must

inherit
Proxiable

- - - - - -

Setter
location - -

Proxy
contract

Proxy
contract

Logic
contract

Logic
contract

Proxy
contract

Proxy
contract

Logic
contract

External
contract

External
contract

Getter
location - -

Proxy
contract

Proxy
contract

Proxy
contract

(fallback)

Proxy
contract

(fallback)

Proxy
contract

Proxy
contract

(fallback)

Proxy
contract

(fallback)

External
contract

External
contract

Sy
nt

ac
tic

Fe
at

ur
es

Mappings
of each type - Yes - - - - - - - - -

Constant
storage offset No No

Yes, slot
varies

Yes, hashed string
is eip1967.proxy
.implementation

Yes, hashed
string is

PROXIABLE

No - No

No, but
struct may
be stored in
storage slot

No, but
beacon address
may be stored
in storage slot

No, but
registry address
may be stored
in storage slot

Storage layout
coupling Yes Yes No No No Yes - - - - -

Simultaneous
upgrades - - - - - - - - - Yes Yes

Removable
upgradeability - - No No

Upgrade
to logic

w/o setter

Upgrade
to logic

w/o setter
- -

Remove
Diamond
CutFacet

Update to
beacon

w/o setter

Update to
registry

w/o setter
Transparent
admin check - - - - - - Yes - - - -

Se
m

an
tic

Fe
at

ur
es

Scattered
implementations - - - - - - - Yes Yes - -

Table 7: Detected USC-related Security Issues
Implementation Issues Policy Issues

Chain
Storage Layout

Clashes (Between
Proxy and Logic)

Storage Layout
Clashes (Between
Logic Versions)

Function
Selector

Collisions

Insufficient
Compatibility Checks

In Logic Setter

Vulnerabilities
Cannot Be Patched

Immediately

Upgradeability
Can Be Removed

Accidentally
Ethereum 36 3 0 1,017 24 150
Arbitrum 1 0 0 87 0 12
Avalanche 1 1 0 137 3 12

BSC 7 0 0 337 0 23
Celo 0 0 0 25 0 0

Fantom 3 0 0 166 0 2
Optimism 0 0 0 33 0 5
Polygon 8 0 0 441 3 9

Total 56 4 0 2,243 30 213

1846 32nd USENIX Security Symposium USENIX Association

