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Abstract: Graphene nanocomposites are a promising class of advanced materials for sensing appli-
cations; yet, their commercialization is hindered due to impurity incorporation during fabrication
and high costs. The aim of this work is to prepare graphene—polysulfone (G—PSU) and graphene—
polyvinylidene fluoride (G—PVDF) nanocomposites that perform as multifunctional sensors and are
formed using a one-step, in situ exfoliation process whereby graphite is exfoliated into graphene
nanoflakes (GNFs) directly within the polymer. This low-cost method creates a nanocomposite while
avoiding impurity exposure since the raw materials used in the in situ shear exfoliation process
are graphite and polymers. The morphology, structure, thermal properties, and flexural properties
were determined for G—PSU and G—PVDF nanocomposites, as well as the electromechanical sensor
capability during cyclic flexural loading, temperature sensor testing while heating and cooling, and
electrochemical sensor capability to detect dopamine while sensing data wirelessly. G—PSU and
G—PVDF nanocomposites show superior mechanical characteristics (gauge factor around 27 and sig-
nificantly enhanced modulus), thermal characteristics (stability up to 500 °C and 170 °C for G—-PSU
and G—PVDE, respectively), electrical characteristics (0.1 S/m and 1 S/m conductivity for G-=PSU
and G—PVDF, respectively), and distinguished resonant peaks for wireless sensing (~212 MHz and
~429 MHz). These uniquely formed G—PMC nanocomposites are promising candidates as strain
sensors for structural health monitoring, as temperature sensors for use in automobiles and aerospace
applications, and as electrochemical sensors for health care and disease diagnostics.

Keywords: graphene; polymer; nanocomposite; sensing

1. Introduction

Multifunctional flexible sensors are gaining more and more importance these days due
to applications in the automotive, aerospace, bio, and structural health, marine, and energy
sectors [1-4]. Strain sensors can be made from different materials like metals and polymers
with different fillers. Polymers are intrinsically poor in electrical and thermal conductivity
and require conductive fillers to enhance those properties for sensing applications. Among
different conductive fillers, graphene (single, few, and multi-layer) and exfoliated graphite
are of great interest due to their exceptional mechanical properties [5], thermal and electri-
cal conductivities, stability, and large surface area [6,7]. This class of graphene-enhanced
thermoplastic polymer matrix composite, henceforth referred to as G—PMC, depends on
the unique properties of both graphene/graphite and the polymer to sense its environ-
ment. Graphene materials (graphene, graphene oxide, graphene composites) with varying
properties can be synthesized by electrochemical exfoliation [8]. Khakpour et al. exfoli-
ated a graphite source to deposit graphene oxide and reduced graphene oxide layers on
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conductive substrates [9]. Generally, methods utilized to produce graphene are multi-step,
expensive, and have the potential to include impurities during fabrication and transfer
to the target polymer matrix [5]. Moreover, the mixing of defect-free and inert pristine
graphene with polymers is inhomogeneous and can lead to agglomeration in the matrix.
Among these methods, melt processing shows the most potential for commercialization
with certain limitations (poor dispersion and material degradation) [6].

Nosker and Lynch et al. invented a method that describes the fabrication process of a
G—PMC formed by combining graphite and a thermoplastic polymer in a melt-processing
method that applies a succession of shear strain events to the molten polymer phase,
which exfoliates the graphite into graphene nanoflakes (GNFs) and distributes the GNFs
uniformly within the polymer matrix [10-16]. The shear rate induces a shear stress that
is higher than the interlayer shear strength of graphite in order to separate the graphene
layers within the molten polymer. Thus, graphite is converted to GNFs within the polymer,
GNFs are uniformly distributed within the polymer matrix, and there is ample opportunity
for in situ functionalization between newly created GNF edges and the polymer (i.e., during
processing, a fracture occurs across the graphene basal plane resulting in reactive edges
available to bond with the surrounding polymer while no other impurities are present to
bond with the GNF edges). Graphite is exfoliated to create GNF particles with a varying
degree of graphene layers in each particle. The degree of exfoliation increases with mixing
time during melt-processing (i.e., with increased exposure to shear strain events). This in
situ shear exfoliation method does not create graphene as a stand-alone material. Rather,
this in situ shear exfoliation method creates a nanocomposite with beneficial and tunable
properties at a low cost.

In previous work using this in situ shear exfoliation method, 35 wt. % graphite was
exfoliated within polyetheretherketone (PEEK) to create GNF-enhanced PEEK nanocom-
posites [17]. Morphology and X-ray diffraction results indicated surface crystallization of
PEEK on GNF surfaces, very good planar adhesion, and size reduction of GNFs in both the
c-axis direction and in diameter due to the fracture across the basal plane; spectroscopic
analysis from Raman and XPS spectra indicated in situ formation of chemical bonding
between created GNFs and PEEK, and mechanical property results showed a 400% increase
in tensile modulus.

Here, we use this one-step, in situ shear exfoliation method to convert graphite into
multilayer graphene directly within polysulfone and within polyvinylidene fluoride (PVDF)
to prepare G—PSU and G—PVDF nanocomposites that perform as multifunctional sensor
materials. PSU is a thermoplastic that contains a characteristic aryl group connected by
sulfonyl and ether groups [18]. With different conductive fillers and in combination with
different metals, PSU has been used as a humidity sensor, gas sensor, strain sensor, and
biosensor [18-23]. However, the nanofiller that provides excellent functionalities to the
composite is expensive and makes the resultant sensor economically less attractive. PVDF
is a semi-crystalline thermoplastic polymer with favorable characteristics such as a low
cost, good mechanical properties, resistance to chemicals, thermal stability, and unique
pyroelectric and piezoelectric properties [24,25]. With enhanced properties, G—PSU and
G—PVDF nanocomposites show promise as materials for many sensor applications.

Traditional sensors require a battery power supply to acquire signals in monitoring
systems, which increases the complexity. Further, this battery-powered sensor cannot
always be easily adjusted, and so may not be feasible to employ in hostile situations or for
in vivo biomedical applications [26,27]. Thus, wireless sensing technology has become a
viable feature for avoiding active electronics and has drawn a lot of attention in recent years.
A passive resistive inductive capacitive (RLC) strain monitoring circuit based on flexible
electronics with a wireless readout mechanism eliminates any active circuit elements in the
implant. The method utilizes resonant frequency measurements with a network analyzer
or impedance analyzer, where the readout system and sensor communicate wirelessly
via electromagnetic inductive coupling. The sensor comprised a series RLC circuit with
variable resistance and capacitance that changes with strain. The corresponding shift in RLC
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from 20 to 40 wt. % graphite in PSU in two 500 g batch sizes to help distribute the graphite
amongst PSU pellets, added to the hopper of a modified injection molding machine with a
unique screw design by Randcastle Extrusion Systems, Inc. (Cedar Grove, NJ, USA), and

ic gravity of 1.24, a melting temperature of 149 °C,
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tensile specimens molded (ASTM D638 Type I with dimensions 3.4 mm by 12.5 mm by
165 mm and a gauge length of 70 mm), as shown in Figure 1d. Materials were processed
under a dry nitrogen blanket at 100 RPM and at processing temperatures of approximately
360 °C. The stainless-steel mold temperature was set at 105 °C using a PID temperature
controller. Prior to injection molding, PSU and graphite were placed in a furnace at 160 °C
for more than 12 h to remove volatiles. The unique screw design imparts uniform shear to
exfoliate graphene layers from the bulk-layered graphite material, converts graphite into
graphene nanoflakes (GNFs) with various numbers of layers in the c-axis direction, and
uniformly distributes GNFs within the PSU, in a similar manner to that described in the
previous work [17].

G—PVDF nanocomposites were prepared using a Randcastle micro-batch mixer that
imparts elongational flow, folding, and uniform shear to exfoliate graphite into GNFs
within PVDE. Prior to melt-processing, PVDF was placed under vacuum for more than
4 h, and graphite was placed in a convection oven at 185 °C for approximately 12 h to
remove volatiles. PVDF was added to the batch mixer using starve-feeding followed by
the proper graphite concentration, and the components were mixed under a dry nitrogen
environment at a processing temperature of approximately 204 °C (but varied slightly with
concentration) for a mixing time of 90 min (after the graphite was added). The shear rate
during processing is critical to allow exfoliation of nanoplatelets and to achieve uniform
distribution of the nanofiller within the polymer matrix [28,29]. Thus, the target processing
RPM was over 100 RPM in order to achieve sufficient shear stress to efficiently exfoliate
graphite into GNFs and varied as 150, 120, 120, 200, and 15 RPM for 0, 5, 10, 20, and 30 wt. %
GNFs in PVDE, respectively. The shear rate depends on RPM and the geometry of the
processing machine. The corresponding shear rate was calculated for each starting graphite
concentration in PVDF and is shown in Table 1. Notice that for 30 wt. % GNFs in PVDF, the
machine was limited to 15 RPM due to increasing viscosity at this high concentration and
the current (amp) limitation of this specific machine. The extrudate and bulk pieces from
the batch mixer were grounded, placed in a vacuum to remove volatiles for more than 4 h,
and molded into ASTM D638 Type V tensile specimens using a mini-molding machine.

Table 1. Batch mixer processing RPM and corresponding shear rates for each starting graphite
concentration in PVDFE

% Graphite in PVDF RPM Shear Rate (1/s)
0 150 1202
5 120 962
10 120 962
20 200 1602
30 15 120

Material characterization of the G-PMCs included morphology, structure, thermal
properties, and mechanical properties. Morphology was viewed using a Zeiss field emission
scanning electron microscope (SEM). G—PSU and G—PVDF samples were cold fractured,
mounted on typical aluminum studs with carbon black tape, and gold coated with a
thickness of 5 nm. Raman data were collected using a Renishaw inVia reflex system with
a 633 nm laser and 50 x magnification, and the 40 wt. % G—PSU results are presented.
Raman specimens were cut from the tensile specimens to approximate dimensions of
10 mm X 10 mm X 3 mm with the top surface investigated after polishing with a course
grade emery paper. Thermogravimetric analysis (TGA) was performed using a TA Instru-
ment Q5000 under a nitrogen atmosphere up to 1000 °C with a ramp rate of 5 °C/min
and results for 35 wt. % G—PSU sample are presented. TGA Specimens were cut from
tensile specimens having a mass of approximately 35.6 mg. Mechanical properties were
determined using an MTS Qtest/25 Elite Controller. G—PSU samples were tested in flex-
ural according to ASTM D790 at a crosshead speed of 1.34 mm/min. G—PVDF Type
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V specimens were tested in tension according to ASTM D638 using an extensometer to
measure strain.

The electromechanical sensor capability of G—PSU and G—PVDF samples was tested
by cyclically loading and unloading specimens in 3-point flexural loading using an Instron
5982 universal testing system while simultaneously monitoring the current as a function of
time under a potential of 10 volts using a Keithley 2450 source measure unit. Cyclic loading
of 40G—PSU was performed over 50 cycles at a 10 N load followed by 50 cycles ata 20 N
load, and specimens were manually loaded and unloaded. For G-=PVDF sensor testing,
G—PVDF extrudate was compression molded into thin sheets and attached to a tensile
bar composed of PEEK. The tensile bar was cyclically loaded, and the G-PVDF acted as
the sensor to measure the resistance over time during the cyclic loading and unloading
procedure. One loading cycle was approximately 1 min and 30 s, which included loading to
20 N (approximately 30 s), holding the 20 N load for 30 s, unloading to 0 N (instant de-load
and manual force zero), and holding 0 N for 30 s.

Temperature sensor testing was performed on 40G—PSU, a high GNF concentration,
since GNFs enhance thermal conductivity. Thus, 40 G—PSU specimens (dimensions ac-
cording to ASTM D 638 Type 1 tensile specimens) were subject to heating with a heat gun
up to 80 °C and cooling down to 10 °C by evaporating liquid nitrogen under the sample
while monitoring the temperature with a thermal imager (RSE600, Fluke Corporation,
Everett, WA, USA) and simultaneously measuring the change in resistance using Keithley
2450 source measure unit under the voltage potential of 10 V.

To monitor the sensor data wirelessly, a passive wireless resonant circuit was fabricated,
and the bending data were obtained from the resonant frequency. For the inductor coil of
the sensor and readout system, a copper coil with a wire diameter of 1.5 mm was used.
The coil inductances of the sensor and readout side were 11.6 pH and 11 uH, respectively.
The frequency response of the sensor was remotely monitored through the minimum of the
input return loss (511) in the readout device using an HP8752C network analyzer.

Electrochemical sensing was performed using a three-electrode system where the
working electrode was G—PSU (or G—PVDE, respectively), silver wire was the counter
electrode, and platinum wire was the reference electrode. The dimensions of the G—PSU
and G—PVDF specimens were 10 mm x 10 mm X 1.5 mm. Electrochemical impedance
spectroscopy (EIS) was used to evaluate the performance of G-PSU and G—PVDF as
electrochemical sensors for dopamine detection. To evaluate the performance of G—PVDF
and G—PSU as electrochemical sensors, we used the experimental setup shown in Figure
S2. We measured impedance with Fe* /Fe3* redox couple as analytes. Then, dopamine
was added with concentrations of 1 mM, 2 mM, and 3 mM while running an EIS test in the
frequency range from 10 to 105 Hz.

3. Results and Discussion
3.1. Material Characterization

The morphology of 40G—PSU is displayed in Figure 2a,b, with SEM images showing
GNFs uniformly distributed in the polymer matrix. No filler agglomeration was observed
from the SEM images. This uniform distribution of GNFs within PSU is similar to our pre-
vious work investigating in situ exfoliation of graphite into GNFs within an Ecoflex 00-30
using an infrared thermography approach [30,31]. The original graphite flake diameter
was ~300 pum; however, the GNF size measured in SEM images is ~10 um, indicating a
shear-induced fracture across the basal plane resulting in edge sites that are available to
form covalent bonds with surrounding polymer molecules. The conformal coating of the
GNFs by the polymer indicates strong interfacial adhesion between them (Figure 2b). The
morphology of 30 wt. % GNFs in PVDF is shown in the SEM micrographs at different mag-
nifications in Figure 2¢,d. At high magnification (20,000x), the particle-matrix interaction
between GNFs and PVDF is visible in Figure 2d. There is very good adhesion between
GNF planar surfaces and the PVDF matrix, as well as between visible GNF edges and the
PVDF matrix. There is some gap spacing between GNFs and PVDF, which is due to the
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Flexural mechanical properties are shown for G-PSU in Figure 4a,b, and tensile me-
chanical properties are shown for G-PVDF in Figure 4c,d. The flexural modulus increases
with GNF concentration in PSU by 67%, 130%, and 190% for 20, 30, and 40 wt. % GNFs in
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3.2. Electromechanical Strain Sensing

Under an external load, the distance between graphene in the composite and the
structure of the hexagonal honeycomb will change, resulting in a change in resistance and
therefore current flow through the composite sensor [34]. Electrons tunnel or hop from
one graphene flake to another (if the filler content is above the percolation threshold in the
composite), and that is why the change in distance between graphene flakes changes the
resistance to electron flow [31].

To determine the repeatability of the sensor strain performance, a 40 wt. % G—PSU
sample was subjected to 10 and 20 N load (within the elastic regime) 50 times, as shown
in Figure 5a. The experimental setup for this test is shown in Figure S4. An ASTM D
638 Type I sample with silver paint contact pads and the copper electrode was subjected
to cyclic loads that were manually operated. Results show the consistent amplitude of
resistance change for 50 cycles at 10 N load and 20 N load with a slight variation due to
the manual loading technique, indicating the durability of the 40 G—PSU sensors during
long service life. The sensor showed reversible and self-sensing behavior, which has
been described as an advantage of 2D nanofillers (e.g., graphene) vs. 1D nanofillers (e.g.,
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3.3. Temperature Sensmg
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in resistance change at the same temperature during heating and subsequent cooling)
can be as high as ~20%, whereas in our case it was only 0.42% [23]. Thermal images
(from thermal video recording during the entire test) show a uniform temperature profile
across the sample area being heated, indicating uniform dispersion of the nanofillers in the
polymer composite (Figures 7b and 8b) [30,31].

Since G—PSU is stable up to 500 °C (3b), the potential of the sensor under different
temperature regimes and harsh conditions (like corrosive environments) will be tested in the
future. Polysulfone is already a widely accepted material used in the automotive industry
(steering column lock switches, relay insulators, and pistons) and in medical equipment
(nebulizers and dialysis components) [8]. Therefore, G—PSU, with its excellent temperature
sensing properties, can be a suitable strain and temperature sensor for the automotive,
medical, and aerospace industries. Additionally, the nanocomposites” good electrical and
thermal properties and chemical stability make them an economically viable material for
molded interconnect devices for consumer electronic, telecommunication, automotive,
and medical technologies, as well as lightweight structural parts for collaborative robots
(i.e., Cobots).
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input, during which the sample returns back to its initial thermal state.

Since G-PSU is stable up to 500 °C (3b), the potential of the sensor under different
temperature regimes and harsh conditions (like corrosive environments) will be tested in
the future. Polysulfone is already a widely accepted material used in the automotive in-
dustry (steering column lock switches, relay insulators, and pistons) and in medical equip-
ment (nebulizers and dialysis components) [8]. Therefore, G-PSU, with its excellent tem-
perature sensing properties, can be a suitable strain and temperature sensor for the auto-
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4. Conclusions
4. Conclugioasclusion, by in situ exfoliation of graphite into graphene within PSU and PVDF
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able to detect dopamine as an electrochemical sensor in the millimolar range. We believe
that this research will open the door for commercially viable electrically and thermally
conductive graphene thermoplastic nanocomposites with uniform nanofiller dispersion
and distribution for application in different industries such as the automotive, medical,
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conductive graphene thermoplastic nanocomposites with uniform nanofiller dispersion
and distribution for application in different industries such as the automotive, medical,
aerospace, robotics, consumer electronics, and telecommunications industries.

5. Patents

U.S. Patent Application Reference: Lynch-Branzoi, Jennifer K.; Ashraf, Ali. Conduc-
tive Polymer Nanocomposites Enhanced with In Situ Formation of 2D Nanoparticles for
Structural Sensors and Smart Materials, US 2022/0112340, 14 April 2022.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcs7080309/s1, Figure S1: Schematic of a passive wireless sensor
with a readout system; Figure S2: Experimental setup for electrochemical sensing of dopamine with
G—PSU and G—PVDF, Figure S3: First heating curve; Figure S4: Experimental setup used for cyclic
loading test; Table S1: Thermal property results for G—PVDF obtained using a DSC.
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