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Abstract

For fixed positive integers k < n, given an n-dimensional random vector X(n), con-
sider its k-dimensional projection aᵀ

n,kX
(n), where an,k is an n× k-dimensional matrix

belonging to the Stiefel manifold Vn,k of orthonormal k-frames in Rn. For a class
of sequences {X(n)}n∈N that includes uniform distributions on suitably scaled `np
balls, p ∈ (1,∞], and product measures with sufficiently light tails, it is shown that
the sequence of projected vectors {aᵀ

n,kX
(n)}n∈N satisfies a large deviation principle

whenever the empirical measures of the rows of
√
nan,k converge, as n → ∞, to a

probability measure on Rk. In particular, this implies a (quenched) large deviation
principle for the sequence {aᵀ

n,kX
(n)}n∈N for almost every realization {an,k}n∈N of

{An,k}n∈N, where each An,k is a random matrix, independent of {X(n)}n∈N, that is
distributed according to the normalized Haar measure on Vn,k. Moreover, a varia-
tional formula is obtained for the rate function of the large deviation principle for the
annealed projections {Aᵀ

n,kX
(n)}n∈N, in terms of a family of quenched rate functions

and a modified entropy term. A key step in this analysis is a large deviation principle
for the sequence of empirical measures of rows of the random matrices

√
nAn,k,

n ≥ k, which may be of independent interest. The study of multidimensional random
projections of high-dimensional measures is of interest in asymptotic functional anal-
ysis, convex geometry and statistics. Prior results on quenched large deviations for
random projections of `np balls have been essentially restricted to the one-dimensional
setting.
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Large deviation principles induced by the Stiefel manifold

1 Introduction

1.1 Background

The study of high-dimensional measures and their lower-dimensional projections is a
central theme in high-dimensional probability, asymptotic functional analysis and convex
geometry, where in the latter case the measures of interest are distributions on convex
bodies, which are compact, convex sets with non-empty interior (see, e.g., [21, 25]).
Multidimensional projections of high-dimensional random vectors are also relevant in
statistics, data analysis and computer science [8, 13]. Recent work has shown that large
deviation principles (LDPs) that capture the tail behavior of lower-dimensional random
projections can provide more interesting information about the original high-dimensonal
measures than central limit theorem type results on fluctuations that capture universal
phenomena. For example, in the case of `np balls, p ∈ [1,∞), which are fundamental
objects in convex geometry, this was first illustrated by LDPs for one-dimensional pro-
jections obtained in [10, 18], and subsequently by LDPs for norms of samples from `np
balls and their multidimensional projections in [2, 15, 20], as well as corresponding
refined large deviation estimates obtained in [22, 23, 17]. LDPs of random projections
of high-dimensional measures are broadly of two types, the terminology arising from
statistical physics: so-called “quenched” LDPs, where one conditions on the choice of
the (sequence of) sub-spaces, bases or directions onto which one projects; or “annealed”
LDPs, which average over the randomness arising in the choice of the projection. While
most of the work described above on `np balls focused on one-dimensional LDPs (either
for one-dimensional projections or norms of higher-dimensional projections), in [20] an-
nealed LDPs were also established for multidimensional projections of high-dimensional
measures that satisfy a general condition called the asymptotic thin shell condition, and
associated refined annealed LDPs (under additional conditions) were obtained in [23].
The asymptoptic thin shell condition and its refinement were shown to be satisfied in
[20, 23] by several classes of measures, including product measures with polynomial tail
decay, `np balls, p ∈ [1,∞], and classes of Orlicz balls and Gibbs measures.

In this article, we establish quenched LDPs for multidimensional random projections
of a class of n-dimensional measures onto a subspace of fixed dimension k, as n goes
to infinity. Quenched LDPs and their refinements can often provide more geometric
information than annealed LDPs because they can be sensitive to projection directions,
and thus distinguish how the high-dimensional body looks along different directions.
For example, it was shown in [10, Theorem 2.6] that the large deviation decay rate of
the tail probabiilty for scaled one-dimensional projections of a vector distributed on
a normalized `n1 ball depends on a certain scaled limit of the maximum coordinate of
the projection directions. More significantly, the refined estimates of quenched tail
probabilities for one-dimensional projections of `pn balls and spheres obtained in [22]
show a dependence, for all 2 < p < ∞, on the sequence of projection directions, in a
way that provides insight into their geometry (see [22, Theorem 2.4 and Remark 2.7] for
further discussion). However, the analysis of quenched LDPs is typically more difficult
than annealed LDPs because one can no longer exploit symmetry properties of the
random projection measure that are available in the annealed setting.

To state our results more precisely, for k ∈ Rn, let Ik denote the k × k identity matrix,
and for n > k, let

Vn,k := {A ∈ Rn×k : AᵀA = Ik} (1.1)

denote the Stiefel manifold of orthonormal k-frames in Rn. Observe that the set Vn,n

can be identified with the set O(n) of n× n orthogonal matrices with columns of norm 1.
Also, note that for k, n ∈ N, k < n, any element an,k ∈ Vn,k defines a linear projection
from n to k dimensions. Fixing a probability space (Ω,F,P), we consider sequences of
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Large deviation principles induced by the Stiefel manifold

random vectors {X(n)}n∈N defined on this space that satisfy a certain set of conditions
(see Assumption 2.1), which includes, for example, X(n) uniformly distributed on an
`np ball of radius n1/p, p ≥ 2, or X(n) distributed according to a product measure with
sufficiently light tails. For any fixed k ∈ N, let Nk := {n ∈ N : n > k}, and consider the
sequence of k-dimensional projections

{n−1/2aᵀn,kX
(n)}n∈Nk

, (1.2)

with an,k ∈ Vn,k for each n ∈ Nk. Also, denoting a := {an,k}n∈Nk
, let Lan,k be the

associated sequence of empirical measures of the rows
√
nan,k(i, ·), 1 ≤ i ≤ n, of

√
nan,k:

Lan,k :=
1

n

n∑
i=1

δ√nan,k(i,· ), n ∈ Nk, (1.3)

where δy represents the Dirac delta measure at y. Our first result, Theorem 2.4,
shows that whenever {Lan,k}n∈Nk

converges to a probability measure ν on Rk in the
q?-Wasserstein topology for a suitably chosen q∗ > 0 (see Definition 1.1), then the se-
quence of random projections {n−1/2aᵀn,kX

(n)}n∈Nk
, satisfies an LDP on Rk with a rate

function that we denote by Jquν . In particular, this implies a quenched LDP for the
sequence {Aᵀ

n,kX
(n)}n∈Nk

, where the random matrix

An,k = [An,k(i, j)]i=1,...,n; j=1,...,k

is independent of {X(n)}n∈N and distributed according to σn,k, the normalized Haar
measure on Vn,k (i.e., the unique probability measure on Vn,k that is invariant under the
group O(n) of orthogonal transformations). In [20], it was shown that {Aᵀ

n,kX
(n)}n∈Nk

also satisfies an annealed LDP. Our second result, Theorem 2.7, establishes a variational
formula for the annealed rate function Jan in terms of the quenched rate functions Jquν .
Along the way, we establish a result that may be of independent interest (see Theo-
rem 2.8), which states that for any q ∈ (0, 2), an LDP in the q-Wasserestein topology for
the random empirical measure sequence {LAn,k}n∈Nk

, where LAn,k is defined as in (1.3)
but with A := (An,k)n∈N in place of a. Subsequent to the appearance of this work, the
article by [14] used projective limits to establish an LDP for the sequence of random ma-
trices themselves (An,k)n∈N (rather than just the empirical measures of their rows) and
applied that to study LDPs for the laws of the images of product distributions under An,k.
Another related work that appeared subsequent to this work is [24], which establishes a
quenched LDP for projections of random vectors X(n) uniformly distributed on scaled `np
balls onto spaces of possibly growing dimension kn when kn is growing sublinearly.

In the next section, we introduce some basic notation and terminology that will be
used throughout, and then provide precise statements of our main results in Section 2,
with proofs presented in Sections 3–6.

1.2 Notation, basic definitions and classical results

For p ∈ [1,∞], let ‖ · ‖p denote the `kp norm on Rk. When p = 2, and when clear from
the context, we will omit the subscript and simply write ‖ · ‖ for the Euclidean norm. Let
P(Rk) denote the space of probability measures on the Euclidean space Rk, endowed
with its Borel σ-algebra. By default we will assume P(Rk) is equipped with the topology
of weak convergence. We also consider the following restricted subsets of probability
measures: for q > 0, let

Pq(R
k) :=

{
ν ∈ P(Rk) :

∫
Rk

‖x‖qν(dx) <∞
}
.
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Definition 1.1 (Wasserstein topology). For q > 0, we say a sequence of probability
measures {νn}n∈N ⊂ Pq(R

d) converges to a limit ν with respect to the q-Wasserstein
topology if we have both weak convergence, denoted νn ⇒ ν, as well as convergence
of q-th moments

∫
Rd ‖x‖qνn(dx) →

∫
Rd ‖x‖qν(dx). As noted in [33, Section 6], the q-

Wasserstein topology is metrizable through the q-Wasserstein metric, which we denote
by Wq.

Next, we recall the definition of an LDP; see [7, Section 1.2].

Definition 1.2 (Large deviation principle). Let X be a topological space with Borel sigma-
algebra B. A sequence of probability measures {Pn}n∈N ⊂ P(X) is said to satisfy a large
deviation principle (LDP) in X with rate function I : X→ [0,∞] if for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1
n logPn(B) ≤ lim sup

n→∞
1
n logPn(B) ≤ − inf

x∈B̄
I(x),

where B◦ and B̄ denote the interior and closure of B, respectively. We say I is a good
rate function (GRF) if it has compact level sets. Analogously, a sequence of X-valued
random variables {Yn}n∈N is said to satisfy an LDP with GRF I if the sequence of their
laws {P ◦ Yn}n∈N does.

We now recap some standard results from large deviations theory that we will
frequently invoke. We start with the contraction principle (see, e.g., [7, Theorem 4.2.1])
that allows one to transfer LDPs for one sequence to another related sequence.

Theorem 1.3 (Contraction principle). Let X and X′ be Hausdorff topological spaces and
f : X→ X′ a continuous map. Suppose I : X→ [0,∞] is a GRF on X, and define

I ′(x′) := inf{I(x) : f(x′) = x, x′ ∈ X′},

where as usual the infimum over an empty set is taken to be infinity. Then I ′ is a GRF
on X′ and moreover, if {Pn}n∈N ⊂ P(X) satisfies an LDP on X with rate function I then
{Pn ◦ f−1}n∈N satisfies an LDP on X′ with rate function I ′.

Next, we state a result that allows one to strengthen the topology with respect to
which an LDP is established. We start with the notion of exponential tightness.

Definition 1.4 (Exponential tightness). Let X be a topological space equipped with a
σ-algbera that contains the Borel σ-algebra. The sequence of probability measures
{Pn}n∈N on X is said to be exponentially tight if for every α <∞, there exists a compact
set Kα ⊂ X such that

lim sup
n→∞

1

n
logPn (Kc

α) < −α.

Theorem 1.5 (LDP on a finer topology). Suppose {Pn}n∈N satisfies an LDP on X with
respect to a Hausdorff topology τ on X, and suppose τ ′ is a finer topology on X. If
{Pn}n∈N is an exponentially tight family of probability measures on X with respect to τ ′,
then {Pn}n∈N also satisfies an LDP on X equipped with the topology τ ′, with the same
rate function.

We now introduce some preliminary definitions. Given a function f : Rm → [−∞,∞]

for some m ∈ N, we recall that its Legendre transform f∗ is defined as follows:

f∗(t) := sup
s∈Rm

[〈s, t〉 − f(s)] , t ∈ Rm.

Also, given an (extended real-valued) function f defined on a Euclidean space X, its
domain, denoted as Df , is defined to be the subset of points in X for which f is finite.
We now state the definition of an essentially smooth function; see, for example, [7,
Definition 2.3.5].
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Definition 1.6 (Essentially smooth functions). An extended real-valued function f :

Rm → [−∞,∞] is said to be essentially smooth ifDf 6= ∅, f is differentiable in the interior
D◦f of Df , and f is “steep” (i.e., if Df has a boundary ∂Df , then limt→∂Df

||∇f(t)|| =∞).

We conclude by stating a basic LDP result, namely Cramér’s theorem, in the generality
that we need (see, e.g., [7, Corollary 6.1.6]).

Theorem 1.7 (Cramér’s theorem). Let {Yn} be a sequence of independent and identi-
cally distributed (i.i.d.) Rm-valued random vectors with common log moment generating
function (mgf) M(t) := E[etX1 ], t ∈ R, such that 0 lies in the interior D◦M of DM . Then
the sequence of empirical means Sn := 1

n

∑n
i=1 Yi, n ∈ N, satisfies an LDP with rate

function M∗.

2 Main results

We now provide a precise statement of our results. For the quenched LDP, we impose
the following assumption, noting that only a subset of the enumerated conditions will be
used for some of the results.

Assumption 2.1 (Assumptions on the high-dimensional vectors). The sequence of ran-
dom vectors {X(n)}n∈N satisfies the following properties:

(i) Representation: there exists a sequence of i.i.d. real-valued random variables
{ξj}j∈N, a Borel measurable function r : R → R+, and a continuous function
ρ : R+ → R+ such that

X(n) (d)
= ξ(n) · ρ

(
1

n

n∑
i=1

r(ξi)

)
, n ∈ N,

where ξ(n) := (ξ1, . . . , ξn). Let Λ denote the log mgf of (ξ1, r(ξ1)):

Λ(s1, s2) := logE [exp (s1ξ1 + s2r(ξ1))] , s1 ∈ R, s2 ∈ R. (2.1)

(ii) Growth of the log mgf: There exists q? > 0 such that for every s2 ∈ {s ∈ R : (s1, s) ∈
DΛ for some s1 ∈ R}, there exists a finite constant Cs2 > 0 (depending only on s2)
such that

Λ(s1, s2) ≤ Cs2(1 + |s1|q?), for every (s1, s2) ∈ DΛ. (2.2)

Furthermore, there exists T ≤ ∞ such that DΛ = R× (−∞, T ).

(iii) Regularity of the integrated log mgf: For any ν ∈ P(Rk), the function Ψν : Rk+1 →
R obtained as an integrated form of the log mgf,

Ψν(t1, t2) :=

∫
Rk

Λ (〈t1, x〉, t2) ν(dx), t1 ∈ Rk, t2 ∈ R, (2.3)

contains 0 in the interior of its domain, is lower semicontinuous, and is essentially
smooth in the sense of Definition 1.6.

(iv) Properties of a related log mgf: The log mgf Λ̄ of (ξ2
1 , r(ξ1)), given by

Λ̄(s1, s2) := logE[exp(s1ξ
2
1 + s2r(ξ1))], s1 ∈ R, s2 ∈ R, (2.4)

is finite in a non-empty neighborhood of the origin (0, 0).

(v) Tail Bound: The exponent q? of part (ii) is bounded above, q? < 2.
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Remark 2.2. The inequality (2.2) in Assumption 2.1(ii) implies that for t1 ∈ Rk and
t2 ∈ (−∞, T ), the map ν 7→ Ψν(t1, t2) is continuous with respect to the q?-Wasserstein
topology. Further, for t2 ≥ T , we have Λ(y, t2) =∞ for all y ∈ R, and hence, (2.3) shows
that Ψν̄(t1, t2) =∞ for all t1 ∈ R, t2 ≥ T and ν ∈ P(Rk).

Remark 2.3. A wide class of product measures satisfy Assumption 2.1 with ρ ≡ r ≡ 1;
namely those that have sufficiently light tails, in the sense of parts (iv) and (v). Examples
of sequences of non-product measures satisfying Assumption 2.1 are `np spheres. More
precisely, fix p ∈ [1,∞), and for n ∈ N, let Dn,p := {x ∈ Rn :

∑n
i=1 |xi|p ≤ n} be the

scaled `np ball in Rn, let Sn−1
p := ∂Dn,p be the scaled `np sphere in Rn, let ηn,p be the cone

measure on Sn−1
p : for Borel subsets S ⊂ Sn−1

p ,

ηn,p(S) :=
voln({cx : x ∈ S, c ∈ [0, n1/p]})

voln(Dn,p)
,

with voln denoting Lebesgue measure on Rn, and let X(n) = X(n,p) be distributed
according to ηn,p. When p = 2, we will simply write Sn−1 for Sn−1

2 . Then we have the
following observations on properties (i)–(v) of Assumption 2.1:

(i) for p ∈ [1,∞), the representation follows from results in [30, 28], with {ξj}j∈N
being the i.i.d. sequence with common law equal to the generalized p-normal
distribution (namely, the probability measure on R with density proportional to
e−|y|

p/p), r(x) = |x|p, and ρ(y) = y−1/p;

(ii) for p ∈ (1,∞), the growth conditions on the log mgf Λ are satisfied by [10, Lem-
ma 5.7]; further, Λ is symmetric in its first argument due to the symmetry of the
generalized p-normal distribution;

(iii) for p ∈ (1,∞), the conditions on the integrated log mgf were established in [10,
Lemma 5.9];

(iv) for p ∈ [2,∞), the log mgf condition is easily verified;

(v) for p ∈ (2,∞), the precise tail bound exponent was established in [10, Lemma 5.5].

We now our state our first result, whose proof is deferred to Section 5. Recall the
q-Wasserstein metric Wq specified in Definition 1.1. Also, for any ν ∈ P(Rk), we let Ψ∗ν
denote the Legendre transform of Ψν ,

Ψ∗ν(τ1, τ2) := sup
t1∈Rk,t2∈R

{〈t1, τ1〉+ t2τ2 −Ψν(t1, t2)}, τ1 ∈ Rk, τ2 ∈ R. (2.5)

Also, let γ denote the standard Gaussian distribution on R, and γ⊗k its k-fold product.

Theorem 2.4 (Quenched LDP for multidimensional projections). Fix k ∈ N, and suppose
{X(n)}n∈N satisfies Assumption 2.1(i, ii, iii) with associated constant q? > 0 and inte-
grated log mgf functional ν → Ψν . Choose any sequence a = {an,k}n∈Nk

, an,k ∈ Vn,k,
n ∈ N, such that the sequence of empirical measures (Lan,k)n∈Nk

⊂ P(Rk) defined in (1.3)
satisfy

Wq?(Lan,k, ν̄)→ 0 as n→∞, (2.6)

for some ν̄ ∈ P(Rk). Then the following claims hold:

(i) The sequence {n−1/2aᵀn,kX
(n)}n∈Nk

satisfies an LDP in Rk with GRF J
qu
ν̄ : Rk →

[0,∞] defined by

J
qu
ν̄ (x) := inf

τ∈R+

Ψ∗ν̄

(
x
ρ(τ) , τ

)
, x ∈ Rk. (2.7)
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(ii) If σ is any probability measure on S := ⊗n>kVn,k whose n-th marginal coincides
with the Haar measure σn,k, then for σ-a.e. a = {an,k}n∈Nk

∈ S, the sequence
{n−1/2aᵀn,kX

(n)}n∈Nk
satisfies an LDP in Rk with GRF J

qu
γ⊗k .

(iii) Let U be a uniformly distributed random variable on [0, 1], independent of {X(n)}n∈N.
If the log mgf Λ of (2.1) is symmetric in its first argument, then the claims (i) and
(ii) also hold for the sequence {n−1/2aᵀn,kX

(n)U1/n}n∈Nk
.

Remark 2.5. Claim (iii) of Theorem 2.4 is motivated by the observation that if X(n,p) is
distributed according to the cone measure on the scaled `np sphere Sn−1

p , then the random

variable U1/nX(n,p) is uniformly distributed on the scaled `np ball Dn,p [30]. Since, as

noted in Remark 2.3, X(n,p) satisfies Assumption 2.1 across a wide range of p (with
symmetric Λ), Theorem 2.4(iii) allows an extension of the LDP results in (i) and (ii)
of Theorem 2.4 from `np spheres to `np balls, which are of greater interest in convex
geometry.

Note that the rate function J
qu
ν̄ depends only on the limit ν̄ in (2.6), and is insensitive

to further specifics of the projection matrix sequence a. For one-dimensional projections
(k = 1), Theorem 2.4 recovers both [9, Theorem 2], which addresses the case where X(n)

has a product distribution, and [10, Theorem 2.5 and Proposition 5.3], which consider
the case when X(n) is uniformly distributed on Dn,p or according to the cone measure
ηn,p (as defined in Remark 2.2). One setting of multidimensional projections (k > 1)
considered prior to the above result is the LDP for the projection of X(n) onto the first
k canonical directions, which corresponds to an,k being equal to the matrix of 1s on
the diagonal and 0s elsewhere, (more precisely, an,k(i, j) is equal to 1 if i = 1, . . . , k

and j = i, and is equal to 0 otherwise), for which (2.6) does not hold. More recent
work [16] establishes asymptotics (law of large numbers and LDPs) for the shape of
multidimensional projections of the uniform distribution on a cube or discrete cube. The
current article differs from these works by establishing almost everywhere quenched
LDP results, first reported in the PhD thesis [18] for multidimensional projections beyond
the particular cases of the canonical projection and product measures. Theorem 2.4
provides a potential starting point for obtaining asymptotic results for shapes and
instrinsic volumes of projections of non-product measures such as `np balls, as well as for
obtaining sharp quenched large deviation estimates for multidimensional projections
and their norms, which are relevant for understanding volumetric properties of convex
bodies and their intersections.

Our second main result concerns a variational representation of the annealed rate
function for the sequence of random multidimensional projections {Aᵀ

n,kX
(n)}n∈Nk

. We
start by stating an annealed LDP counterpart to Theorem 2.4, specialized to the setting
considered in this article.

Theorem 2.6 (Annealed LDP for multidimensional projections). Consider a sequence
{X(n)}n∈N that satisfies Assumption 2.1(i, iv) with associated {ξj}j∈N, ρ, and Λ̄. Then,
for any k ∈ N, {n−1/2Aᵀ

n,kX
(n)}n∈Nk

satisfies an LDP in Rk with GRF Jan : Rk → [0,∞]

defined by

Jan(x) := inf
c>0

{
JX

(
‖x‖2
c

)
− 1

2 log(1− c2)
}
, x ∈ Rk,

where JX is given, in terms of the Legendre transform Λ̄∗ of Λ̄, by

JX(x) := inf
(t1,t2)∈R2

+

{
Λ̄∗(t1, t2) : x = t

1/2
1 ρ(t2)

}
= inf
t2>0

Λ̄∗
(

x2

ρ2(t2)
, t2

)
.

Proof. It follows from [20, Theorem 2.7] that {n−1/2Aᵀ
n,kX

(n)}n∈Nk
satisfies an LDP

in Rk with GRF Jan as defined above whenever Assumption A* therein is satisfied
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with speed sn = n, namely, when the sequence of scaled norms {‖X(n)‖2/
√
n}n∈N

satisfies an LDP with GRF JX . Since the domain of Λ̄ contains a neighborhood of the
origin due to Assumption 2.1(iv), Cramér’s theorem (Theorem 1.7) implies that the
sequence {

(
1
n

∑n
i=1 ξ

2
i ,

1
n

∑n
i=1 r(ξi)

)
}n∈N satisfies an LDP in R2 with GRF Λ̄∗. Since

Assumption 2.1(i) implies

‖X(n)‖2√
n

(d)
=

(
1

n

n∑
i=1

ξ2
i

)1/2

ρ

(
1

n

n∑
i=1

r(ξi)

)
,

with ρ continuous, the contraction principle (Theorem 1.3) shows that the sequence
of scaled norms {‖X(n)‖2/

√
n}n∈N satisfies an LDP with GRF JX . This completes the

proof.

To state the variational representation for the rate function Jan, we first introduce
some notation. For k ∈ N and ν, µ ∈ P(Rk), define the relative entropy of ν with respect
to µ as

H(ν|µ) :=

∫
R

log
(
dν
dµ

)
dν (2.8)

if ν � µ, and H(ν|µ) := +∞ otherwise. Recall that γ denotes the standard Gaussian
measure on R, and for ν ∈ P(Rk), let C : P(Rk)→ Rk×k denote the covariance map,

C(ν) :=

∫
Rk

[x⊗ x] ν(dx), ν ∈ P(Rk). (2.9)

Recall that Ik denotes the k × k identity matrix, and write A � B if B − A is positive
semidefinite, and define the modified relative entropy functional:

Hk(ν) :=

{
H(ν|γ⊗k) + 1

2 tr(Ik − C(ν)) if C(ν) � Ik
+∞ else

, ν ∈ P(Rk). (2.10)

Theorem 2.7 (Variational formula for the GRF of the annealed LDP). Fix k ∈ N, suppose
that the sequence {X(n)}n∈N satisfies Assumption 2.1. Let Jquν̄ and Jan be defined as in
Theorems 2.4 and 2.6, respectively. Then we have the following variational formula:

Jan(x) = inf
ν̄∈P(Rk)

{Jquν̄ (x) + Hk(ν̄)} , x ∈ Rk. (2.11)

Note that Hk(ν̄) = 0 when ν̄ = γ⊗k, which implies Jan ≤ J
qu
γ⊗k , as would be ex-

pected from Jensen’s inequality given J
qu
γ⊗k is simply the GRF of the quenched LDP for

{Aᵀ
n,kX

(n)}n∈Nk
. More generally, the optimization problem (2.11) can be interpreted as

saying that at the large deviation level, the decay rate of the annealed probability of a
rare event is the infimum, over all random “environments” (in this case “sequence of
random projection matrices”, as captured by the limit ν̄ of the empirical measure of their
rows), of the decay rate J

qu
ν̄ of the quenched probability of the rare event conditioned on

that environment, plus the cost of the choice of the random environment which in this
case is measured by Hk(ν̄).

While such a relation is intuitive, rigorous proofs of such informal statements are
typically non-trivial. For example, such variational representations have been rigorously
established only in a few specific cases, such as LDPs for random walks in random
environments on Z in [6] and on supercritical Galton-Watson trees in [1]. The one-
dimensional case (k = 1) of Theorem 2.7 for `np balls recovers [10, Theorem 2.7]. The
proof of the the multidimensional case stated in Theorem 2.7), which is given in Section 6,
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Large deviation principles induced by the Stiefel manifold

is more involved and relies on an auxiliary LDP for the following sequence of random
empirical measures, analogous to those defined in (1.3):

Ln,k := LAn,k =
1

n

n∑
i=1

δ√nAn,k(i,·), n ∈ N. (2.12)

Theorem 2.8 (LDP for empirical measures of rows of Haar-distributed matrices). Fix
k ∈ N. Then Hk is a strictly convex GRF and for all q ∈ (0, 2), the sequence {Ln,k}n∈Nk

satisfies an LDP in Pq(R
k) with GRF Hk.

This theorem, which is established in Section 4, generalizes [5, Theorem 6.6], which
states an LDP for the empirical measure of coordinates drawn uniformly from the sphere
Sn−1, which corresponds to the case k = 1 in our work. In contrast to this case, the k > 1

case necessitates more extensive computations which arise due to the non-commutative
matrix setting, where the Bartlett decomposition of Proposition 3.2 replaces the usual
polar decomposition for a random vector from the sphere. Given that large deviation
perspectives have informed the analysis of asymptotics for spherical integrals [11, 26], it
is possible that a similar approach could inform asymptotics for integrals over the Stiefel
manifold, which arise, for instance, as the normalizing constant of the matrix Bingham
distribution [12], or in the study of multi-spiked random covariance matrices [27].

Remark 2.9. The first term in the definition (2.10) of Hk is H(·|γ⊗k), the relative entropy
functional with respect to the k-dimensional standard Gaussian measure, which, by
Sanov’s theorem (see, e.g., [7, Theorem 6.2.10]), is the large deviation rate function
for the sequence of empirical measures of the rows of an n× k matrix of i.i.d. standard
Gaussian elements.

Remark 2.10. The second term in the definition (2.10) of Hk arises from the orthogo-
nality and normalization constraint defining the Stiefel manifold, and offers a way of
distinguishing between Haar-distributed matrices on the Stiefel manifold and matrices
with i.i.d. standard Gaussian entries at the large deviations scale. Note that because
P(Aᵀ

n,kAn,k = Ik) = 1, we have, P-a.s.,

tr(Ik − C(Ln,k)) = tr
(
Ik −Aᵀ

n,kAn,k

)
= 0, n ∈ Nk. (2.13)

Nonetheless, the definition of the rate function Hk includes the trace term tr(Ik − C(ν)),
and Hk(ν) is finite even for ν ∈ P(Rk) such that tr(Ik − C(ν)) 6= 0, due to the fact that
the statement of an LDP (Definition 1.2) involves infimization of the rate function Hk not
over a set like Vk := {ν ∈ P(Rk) : Ik = C(ν)}, but rather over its interior and closure (in
the space of probability measures). In particular, the example set Vk is neither open nor
closed with respect to the weak topology. In fact, it is possible to show from [34] that
Vk is neither open nor closed with respect to any topology for which the sequence of
empirical measures {Ln,k}n∈Nk

satisfies an LDP.
Outside of the large deviations literature, a different comparison between such Stiefel

and Gaussian matrices can be found in [32], which analyzes expectations of sublinear
convex functions of random matrices.

An immediate consequence of Theorem 2.8 is the following:

Corollary 2.11 (A LLN for the Empirical Measure Sequence). Fix k ∈ N. Then for all
q ∈ (0, 2), the sequence {Ln,k}n∈Nk

satisfies the strong law of large numbers in Pq(R
k).

That is, almost surely, as n→∞, we have Wq(Ln,k, γ
⊗k)→ 0.

Proof. By Theorem 2.8, Hk in (2.10) is a strictly convex rate function. Since Hk(γ⊗k) = 0,
Hk attains its unique minimum over Pq(R

k) at γ⊗k. For ε > 0, due to the LDP for
{Ln,k}n∈Nk

and the uniqueness of the minimum of Hk, there exists δ > 0 and N ∈ Nk
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Large deviation principles induced by the Stiefel manifold

such that for n > N , P(Wq(Ln,k, γ
⊗k) > ε) ≤ e−nδ, which when combined with the

Borel-Cantelli Lemma yields the almost sure convergence of Ln,k.

3 The Bartlett decomposition and its consequences

We start by recalling the QR decomposition of a matrix. Fix k, n ∈ N with 1 ≤ k ≤ n.
Let Uk denote the space of k × k upper triangular matrices, and recall that Vn,k denotes
the Stiefel manifold of orthonormal k-frames in Rn.

Definition 3.1 (QR Decomposition). The (thin) QR decomposition of an n × k matrix
Z ∈ Rn×k is the factorization Z = QR of Z as the product of a semi-orthogonal matrix
Q ∈ Vn,k ⊂ Rn×k and an upper triangular matrix R ∈ Uk ⊂ Rk×k. Moreover, when Z is
of rank k, there is a unique such decomposition with the diagonal elements of R being
all positive.

In fact, the well known Gram-Schmidt process for a matrix Z ∈ Rn×k provides an
explicit QR decomposition. Let the columns of Z be denoted by zi := Z(·, i) ∈ Rn, for
1 ≤ i ≤ k, and set

y1 := z1; q1 :=
y1

‖y1‖2
;

yi := zi −
i−1∑
m=1

〈qm, zi〉qm; qi :=
yi
‖yi‖2

, i = 2, . . . , k.

Then we have the decomposition Z = QR, where Q = (q1, . . . , qk) and

R =


〈q1, z1〉 〈q1, z2〉 〈q1, z3〉 · · · 〈q1, zk〉

0 〈q2, z2〉 〈q2, z3〉 · · · 〈q2, zk〉
0 0 〈q3, z3〉 · · · 〈q3, zk〉
...

. . .
...

0 〈qk, zk〉

 . (3.1)

Note that we have the following relation among the elements of R:

R11 = ‖z1‖1/2 (3.2)

and for 2 ≤ j ≤ k and 1 ≤ i ≤ j ≤ k,

Rij = 〈qi, zj〉 =
〈zi, zj〉 −

∑i−1
m=1〈qm, zi〉〈qm, zj〉(

‖zi‖2 −
∑i−1
m=1〈qm, zi〉2

)1/2
=
〈zi, zj〉 −

∑i−1
m=1RmiRmj(

‖zi‖2 −
∑i−1
m=1R

2
mi

)1/2
. (3.3)

Since an n× k matrix with i.i.d. standard Gaussian entries has rank k almost surely,
this immediately yields the following Bartlett decomposition.

Proposition 3.2 (Bartlett decomposition [4]). Let Zn,k be the n× k random matrix with
i.i.d. standard Gaussian entries. Then Zn,k = Qn,kRn,k has an (almost surely unique) QR
decomposition with the random matrix Rn,k having positive diagonal entries. The law of
Qn,k is σn,k, the Haar measure on Vn,k. Moreover, the diagonal entries of Rn,k satisfy
Rn,k(i, i) ∼ χn−i+1, the chi distribution with n− i+ 1 degrees of freedom, for i = 1, . . . , k.

Remark 3.3. In fact, the random matrices Qn,k and Rn,k of the Bartlett decomposition
are independent, and moreover, the marginal law of the off-diagonal entries of Rn,k are
also explicitly known; however, we will not need the latter facts for our analysis. Also,
note that when k = 1, the Bartlett decomposition corresponds to the classical polar
decomposition of the n-dimensional Gaussian measure.
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Let LZn,k denote the (random) empirical measure of the rows of Zn,k,

LZn,k :=
1

n

n∑
i=1

δZn,k(i,·) ∈ P(Rk).

Then, due to Proposition 3.2, for An,k distributed according to the Haar measure σn,k on
Vn,k, we have

An,k
(d)
= Qn,k = Zn,kR

−1
n,k. (3.4)

In the second equality, we use the fact that Rn,k is (almost surely) invertible, since it
is an upper triangular matrix with diagonal entries that are all (almost surely) positive.
Recalling the definition of Ln,k from (2.12), and using the representation (3.4), we have
for any Borel set B ⊂ Rk,

Ln,k(B)
(d)
=

1

n

n∑
r=1

δ√nZn,k(r,·)R−1
n,k

(B) = LZn,k

(
B

Rn,k√
n

)
. (3.5)

Fortuitously, the relation (3.3) tells us that each element of the matrix Rn,k can be
computed as a function of the rows of the matrix Zn,k, and can be written as the image
of a linear functional of the measure LZn,k. We now define this map precisely.

Definition 3.4 (Positive Definite Matrices). Let Symk be the space of real symmetric
k × k matrices. For L,M ∈ Symk, we write L � M (resp., L � M ) if L −M is positive
semi-definite (resp., positive definite).

We equip Symk ⊂ Rk×k with the induced Borel σ-algebra when viewing it as a
measurable space, and the Frobenius norm when viewed as a Banach space.

Definition 3.5. Define the map Γ : Rk×k → Uk according to the following iterative
procedure: for M ∈ Rk×k, set Γ(M)11 := M

1/2
11 and for j = 2, . . . , k and i = 1, . . . , j, set

Γ(M)ij :=
Mij −

∑i−1
m=1 Γ(M)mi Γ(M)mj(

Mii −
∑i−1
m=1 Γ(M)2

mi

)1/2
. (3.6)

Remark 3.6. Note that if M is symmetric and positive semi-definite, then Γ(M) com-
putes the Cholesky decomposition of M , so that Γ(M)ᵀΓ(M) = M .

Lemma 3.7. We have P-a.s., n−1/2Rn,k = Γ(C(LZn,k)), where C is the covariance map
of (2.9).

Proof. The result follows from Proposition 3.2, Definition 3.1 and (3.2)–(3.3) upon notic-
ing that for 1 ≤ i ≤ j ≤ k,

Cij(L
Z
n,k) =

1

n

n∑
r=1

Zn,k(r, i)Zn,k(r, j) =
1

n
〈Zn,k(·, i),Zn,k(·, j) 〉.

Example 3.8. For example, when k = 1, we have Rn,1√
n

= C11(Ln,1)1/2 =
‖Zn,1‖2√

n
, and for

k = 2, we have

Rn,2√
n

=

C11(Ln,2)
C12(Ln,2)

C11(Ln,2)1/2

0
(
C22(Ln,2)− C21(Ln,2)2

C11(Ln,2)

)1/2

 .
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Large deviation principles induced by the Stiefel manifold

4 Proof of the empirical measure large deviations

The representation (3.5) and Lemma 3.7 suggest our plan of attack for the proof of
Theorem 2.8: first prove a joint LDP for {LZn,k,C(LZn,k)}n∈Nk

; then establish an LDP for
{Ln,k}n∈Nk

. Note that we do not attempt to directly establish an LDP for {Ln,k}n∈Nk
from

that for {LZn,k}n∈Nk
, because the map LZn,k 7→ Ln,k is not continuous with respect to the

weak topology. Nor do we attempt to directly establish an LDP for {LZn,k,Γ(C(LZn,k))}n∈Nk
,

because the map Γ ◦ C is a nonlinear functional on the space of measures on Rk. In
contrast, our proposed first step is tractable precisely because C is a linear functional
and the following result, which is stated in [20, Corollary A.2] as a corollary of [5,
Proposition 6.4].

Lemma 4.1 (approximate contraction principle). Let Σ be a Polish space and X be a
separable Banach space with topological dual X∗. Let {Ln}n∈N be a sequence of P(Σ)-
valued random variables such that for each n ∈ N, Ln is the empirical measure of n i.i.d.
Σ-valued random variables s1, . . . , sn with common distribution µ (that does not depend
on n). For any continuous W : Σ→ R, define

Λ̂(W ) := logE[eW (s1)]. (4.1)

Also, let c : Σ 7→ X be a continuous map such that 0 lies in the interior D◦ of the set

D :=
{
α ∈ X∗ : Λ̂(〈α, c(·)〉) <∞

}
, (4.2)

and let Cn :=
∫

Σ
c(x)Ln(dx). Lastly, define F : X→ R as

F (x) := sup
α∈D◦

〈α, x〉, x ∈ X. (4.3)

Then, {Ln,Cn}n∈N satisfies an LDP with the GRF I : P(Σ)× X→ [0,∞] defined by

I(ν, x) :=

{
H(ν|µ) + F

(
x−

∫
Σ
c dν

)
if H(ν|µ) <∞,

+∞ else,
ν ∈ P(Σ), x ∈ X. (4.4)

Lemma 4.2. For any k ∈ N, the sequence {LZn,k,C(LZn,k)}n∈Nk
satisfies an LDP in P(Rk)×

Symk with GRF Jk : P(Rk)× Symk → [0,∞], defined, for ν ∈ P(Rk) and M ∈ Symk, to be

Jk(ν,M) :=

{
H(ν|γ⊗k) + 1

2 tr
(
M −

∫
Rk [z ⊗ z] ν(dz)

)
if
∫
Rk [z ⊗ z] ν(dz) �M,

+∞ else.
(4.5)

Proof. We invoke the approximate contraction principle of Lemma 4.1 with the following
parameters: Σ = Rk; X = Symk and X∗ = Symk; c(z) := [z ⊗ z] for z ∈ Rk; Ln :=
1
n

∑n
j=1 δsj for s1, s2, . . . i.i.d. random vectors with common distribution γ⊗k; and Cn :=∫

Rk c dLn. Note that

(LZn,k,C(LZn,k))
(d)
= (Ln,Cn), n ∈ Nk. (4.6)

With Λ̂ as defined in (4.1), the domain D specified in (4.2) takes the form

D =

{
ζ ∈ Symk : log

∫
Rk

exp (〈ζ, c(z)〉) γ⊗k(dz) <∞
}

=

{
ζ ∈ Symk : log

∫
Rk

1

(2π)k/2
exp

(
−zᵀ( 1

2Ik − ζ)z
)
dz <∞

}
=
{
ζ ∈ Symk : 1

2Ik − ζ � 0
}
.

This last expression indicates that D is a shifted reflection of the positive definite cone,
hence open, implying that D◦ = D. This expression for the form of D also makes it clear
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that 0 ∈ D◦. Lastly the value of the supremum in the definition of F takes an explicit
form due to the linearity of the trace functional and the fact that the constraint set D is
a cone (due to the positive definiteness constraint): for η ∈ Symk,

F (η) = sup
ζ∈Symk

{
Tr(ζη) : ζ ≺ 1

2Ik
}

=

{
1
2 Tr(η) if η � 0,

+∞ else.

Therefore, (4.6) and Lemma 4.1 together imply that {(LZn,k,C(LZn,k))}n∈Nk
satisfies the

stated LDP.

We now establish a relation between the GRF Jk of Lemma 4.2 and the GRF Hk of
Theorem 2.8.

Lemma 4.3. For any k ∈ N and ν ∈ P(Rk), given Hk of (2.10), Jk of (4.5), and Γ of (3.6),
we have

Hk(ν) = H̃k(ν) := inf
M∈Symk

Jk(ν( · × Γ(M)−1),M).

Proof. As noted in Remark 3.6, for M ∈ Symk and Γ as in (3.6), we have M =

Γ(M)ᵀΓ(M). Given this equality, the constraint M �
∫
Rk [x⊗ x] ν(dx× Γ(M)−1) in (4.5)

can be rewritten, using the notation C from (2.9), as

Ik �
∫
Rk

[x⊗ x]ν(dx) = C(ν).

If the preceding constraint is satisfied, then using the form of Jk in (4.5) in the first
equality below, the chain rule for relative entropy in the third equality, and then the form
of the Gaussian distribution γ⊗k, we obtain

Jk(ν( · × Γ(M)−1),M)

=
1

2

k∑
i=1

(
Mii −

∫
Rk

x2
i ν(dx× Γ(M)−1)

)
+H(ν( · × Γ(M)−1)|γ⊗k)

=
1

2

k∑
i=1

Mii −
1

2

∫
Rk

yᵀ Γ(M)Γ(M)ᵀy ν(dy) +H(ν|γ⊗k( · × Γ(M)))

=
1

2

k∑
i=1

Mii −
1

2

∫
Rk

yᵀ Γ(M)Γ(M)ᵀy ν(dy)−
∫
Rk

log(dγ
⊗k( ·×Γ(M))
dγ⊗k ) dν +H(ν|γ⊗k)

=
1

2

k∑
i=1

Mii −
1

2

∫
Rk

yᵀ Γ(M)Γ(M)ᵀy ν(dy) +
1

2
log det(Γ(M)−ᵀΓ(M)−1)

+
1

2

∫
Rk

yᵀ (Γ(M)Γ(M)ᵀ − Ik)y ν(dy) +H(ν|γ⊗k)

Due to the upper triangular structure of Γ(M), we have

1

2
log det(Γ(M)−ᵀΓ(M)−1) = − log det(Γ(M)) = −

k∑
i=1

log Γ(M)ii.

Also, note that Tr(Ik − C(ν)) = k −
∫
Rk y

ᵀy ν(dy). Hence, invoking the definition of Hk

in (2.10), we have

Jk(ν( · × Γ(M)−1),M) =
1

2

k∑
i=1

(Mii − 1)−
k∑
i=1

log Γ(M)ii + Hk(ν).
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Taking the infimum of the expression above over M ∈ Symk, we see that

H̃k(ν) = inf
M∈Symk

{
k∑
i=1

(
Mii − 1

2
− log Γ(M)ii

)}
+ Hk(ν). (4.7)

Note that by the definition of Γ in (3.6),

Γ(M)ii =

(
Mii −

i−1∑
h=1

Γ(M)2
hi

)1/2

,

and by the definition of the Gram-Schmidt process, we have Mii ≥
∑i−1
h=1 Γ(M)2

hi ≥ 0.
Thus, for all i = 1, . . . , k, for any fixed Mii, the maximum value of Γ(M)ii is attained when
Γ(M)hi = 0 for h = 1, . . . , i− 1. Therefore, once again using M = Γ(M)ᵀΓ(M), we obtain

inf
M∈Symk

{
k∑
i=1

(
Mii − 1

2
− log Γ(M)ii

)}
= inf
Mii≥0,i=1,...,k

{
1

2

k∑
i=1

(Mii − 1− logMii)

}

=
1

2

k∑
i=1

inf
Mii≥0

{Mii − 1− logMii} ,

which is clearly equal to zero. Together with (4.7), this shows that Hk = H̃k.

Lemma 4.4. Fix k ∈ N and consider the following set of probability measures,

K :=

{
ν ∈ P(Rk) :

∫
Rk

‖x‖2ν(dx) ≤ k
}
. (4.8)

For any q ∈ (0, 2), the set K ⊂ P2(Rd) is compact with respect to the q-Wasserstein
topology. In addition, K is convex and non-empty. Furthermore, Ln,k defined in (2.12)
satisfies P(Ln,k ∈ Kc) = 0 for every n ∈ N.

Proof. The proof of the first statement is an elementary modification of the proof of the
k = 1 case given in [19, Lemma 3.14]. For the second statement, note that since An,k is

almost surely supported on Vn,k,
∫
Rk |x|2Ln,k(dx) =

∑n
i=1

∑k
j=1 An,k(i, j)2 = k a.s., and

so P(Ln,k ∈ Kc) = 0.

Proof of Theorem 2.8. Let Γ be as defined in (3.6). Due to (3.5) and Lemma 3.7, we have

Ln,k
(d)
= LZn,k( · × Rn,k√

n
) = LZn,k

(
· × Γ

(
C(LZn,k)

))
.

The image of C is positive semi-definite matrices, so as noted in Remark 3.6, the map
Γ maps a matrix to its Cholesky decomposition, hence M 7→ Γ(M) is continuous. By
Slutsky’s theorem, the map

P(Rk)× Symk 3 (µ,M) 7→ µ( · × Γ(M)) ∈ P(Rk),

is also continuous. Since by Lemma 4.2 the sequence {LZn,k,C(LZn,k)}n∈Nk
satisfies an LDP

in P(Rk)× Symk with GRF Jk, an application of the contraction principle (Theorem 1.3)
to the map above yields an LDP for the sequence {Ln,k}n∈Nk

in P(Rk) (i.e., with respect
to the weak topology), with GRF

inf
ν∈P(Rk),M∈Symk

{Jk(µ,M) : ν = µ( · × Γ(M))} = inf
M∈Symk

Jk(ν( · × Γ(M)−1),M) = Hk(ν),

where the last equality is due to Lemma 4.3.

EJP 28 (2023), paper 169.
Page 14/23

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1023
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviation principles induced by the Stiefel manifold

Fix q ∈ (0, 2). In order to establish the LDP for {Ln,k}n∈Nk
in Pq(R

k) (i.e., with
respect to the stronger q-Wasserstein topology), by Theorem 1.5 it suffices to show
exponential tightness of {Ln,k}n∈Nk

in the q-Wasserstein topology. Let K be the set
defined in (4.8). By Lemma 4.4, K is compact (with respect to the q-Wasserstein topology)
and P(Ln,k ∈ Kc) = 0 for every n ∈ N, which together trivially imply the exponential
tightness of {Ln,k}n∈Nk

; see Definition 1.4.
Lastly, the strict convexity of Hk follows from the strict convexity of the relative

entropy H(·|γ⊗k) and the linearity of the covariance map C.

5 Proof of the quenched large deviation principle

In this section, we present the proof of Theorem 2.4. As a precursor, we state two
lemmas that will assist with part (iii) of the theorem.

Lemma 5.1. Fix m ∈ N, and let F be a set of functions from Rm to R such that every
f ∈ F is symmetric about 0 and convex. Then, defining g : Rm → R as

g(x) := inf
f∈F

f(x), x ∈ Rm,

the function g is monotone with respect to scaling in the sense that for all x ∈ Rm, the
mapping

R+ 3 c 7→ g(cx) ∈ R (5.1)

is non-decreasing.

Proof. Fix x ∈ Rm and c1 < c2 ∈ R+. For any f ∈ F, the symmetry about 0 and convexity
of f implies that f has a global minimum at 0, hence

f(c1x) = f( c1c2 × c2x+ c2−c1
c2
× 0)

≤ c1
c2
f(c2x) + c2−c1

c2
f(0)

= f(c2x) + c2−c1
c2

(f(0)− f(c2x))

≤ f(c2x),

where the first inequality follows from convexity, and the second inequality is due to
the global minimum at 0. Taking the infimum over all f ∈ F on both sides, we find that
g(c1x) ≤ g(c2x), completing the proof.

Lemma 5.2. Fix m ∈ N, and let Y = {Yn}n∈N denote a sequence of Rm-valued random
variables that satisfies an LDP with GRF IY. Let U be a uniformly distributed random
variable on [0, 1] independent of {Yn}n∈N. If for all y ∈ Rm, the mapping R+ 3 c 7→
IY(cy) ∈ [0,∞] is non-decreasing, then the scaled sequence {U1/nYn}n∈N satisfies an
LDP with GRF IY.

Proof. Due to [10, Lemma 3.3], the sequence {U1/n}n∈N satisfies an LDP with the good
rate function

IU (u) :=

{
− log u u ∈ (0, 1];

+∞ else.

By independence, the sequence {U1/n, Yn}n∈N satisfies a joint LDP with the GRF IU,Y :

R×Rm defined as IU,Y(u, y) := IU (u)+ IY(y). By the contraction principle (Theorem 1.3),
the scaled sequence {U1/nYn}n∈N satisfies an LDP with the rate function I, where for
x ∈ Rm,

I(x) := inf
u∈R, y∈Rm

{IU (u) + IY(y) : uy = x} = inf
u∈(0,1]

{− log u+ IY(xu )}.
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The mapping u 7→ 1/u is monotonically decreasing, which when combined with the
assumption on IY implies that u 7→ IY(x/u) is monotonically decreasing. Since u 7→
− log u is also monotonically decreasing, the infimum above is attained at u = 1, hence
I(x) = IY(x) for all x ∈ Rm. This concludes the proof of the lemma.

Proof of Theorem 2.4. Suppose Assumption 2.1 holds for some {ξj}j∈N, r, ρ, q? > 0, and
T ≤ ∞, all as defined in the statement of the assumption. Due to the representation of
X(n) given by Assumption 2.1(i), we have

n−1/2aᵀn,kX
(n) (d)

= ρ
(

(W (n)
a )2

)
(W (n)

a )1, n ∈ N, (5.2)

where W (n)
a is the Rk+1-valued random variable given by

W (n)
a = ((W (n)

a )1, (W
(n)
a )2) :=

(
n−1/2 aᵀn,kξ

(n),
1

n

n∑
i=1

r(ξi)

)
, n ∈ N. (5.3)

Thus we first prove an LDP for {W (n)
a }n∈N. In terms of the log mgf Λ of (ξ1, r(ξ1)),

recalling our notation ξ(n) = (ξ1, . . . , ξn), the scaled log mgf of W (n)
a takes the following

form: for t1 ∈ Rk and t2 ∈ R,

1

n
logE

[
exp(n 〈t,W (n)

a 〉)
]

=
1

n
logE

[
exp

(
n∑
i=1

(√
n ξi〈t1,an,k(i, ·)〉+ t2 r(ξi)

))]

=
1

n
log

n∏
i=1

E
[
exp

(√
n ξi〈t1,an,k(i, ·)〉+ t2 r(ξi)

)]
=

1

n

n∑
i=1

Λ
(
〈t1,
√
nan,k(i, ·)〉, t2

)
= ΨLa

n,k
(t1, t2),

where ΨLa
n,k

is equal to the integrated log mgf functional defined in (2.3), with ν = Lan,k.

Fix t1 ∈ Rk. For t2 ≥ T , both sides are equal to +∞ due to Remark 2.2. For t2 < T ,
due to the q?-Wasserstein continuity of ν → Ψν pointed out in Remark 2.2, together with
the q?-Wasserstein convergence of Lan,k to ν̄ in (2.6), we take the limit as n→∞ of both
sides of the last display to find

lim
n→∞

1

n
logE

[
exp(n 〈t,W (n)

a 〉)
]

= lim
n→∞

ΨLa
n,k

(t1, t2) = Ψν̄(t1, t2).

Due to the lower semicontinuity and essential smoothness of Ψν̄ on Rk+1, which follow
from Assumption 2.1(iii), the Gärtner-Ellis theorem (see, e.g., [7, Theorem 2.3.6]) yields
the LDP for the sequence {W (n)

a }n∈N in Rk+1 with the GRF Ψ∗ν̄ from (2.5). Also, note that

since (W
(n)
a )2 is supported on R+, Ψ∗ν̄(τ1, τ2) =∞ whenever τ2 < 0.

The LDP for {W (n)
a }n∈N and the contraction principle (Theorem 1.3) applied to the con-

tinuous mapping Rk×R+ 3 (τ1, τ2) 7→ ρ(τ2)τ1 ∈ Rk yield an LDP for {n−1/2aᵀn,kX
(n)}n∈Nk

in Rk with GRF J̄
qu
ν̄ defined to be

J̄
qu
ν̄ (x) := inf

τ1∈Rk, τ2∈R+

{Ψ∗ν̄(τ1, τ2) : τ1ρ(τ2) = x} , x ∈ Rk.

Substituting the constraint τ1ρ(τ2) = x and using (2.7), we see that

J̄
qu
ν̄ (x) = inf

τ∈R+

Ψ∗ν̄

(
x

ρ(τ)
, τ

)
= J

qu
ν̄ (x), x ∈ Rk. (5.4)
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This proves part (i) of the theorem.
In turn, the LDP from part (i) implies part (ii) of the theorem since by (2.12) and

Corollary 2.11, almost surely, Wq?(LAn,k, γ
⊗k) = Wq?(Ln,k, γ

⊗k)→ 0 as n→∞.
We turn to the final claim (iii). Given the assumption on symmetry of Λ, it is apparent

from the definition (2.3) that Ψν̄ is symmetric in its first argument, and then from the
definition of the Legendre transform (2.5) that Ψ∗ν̄ is also symmetric in its first argument.
Applying Lemma 5.1 with dimension m = k, the set of symmetric convex functions
F = {Rk 3 x 7→ Ψ∗ν̄( x

ρ(τ) , τ) ∈ R}τ∈R+
, and g = J

qu
ν̄ , we find that the mapping R+ 3 c 7→

J
qu
ν̄ (cx) ∈ [0,∞] is non-decreasing. An application of Lemma 5.2 with Yn = n−1/2aᵀn,kX

(n),
n ∈ N, and IY = J

qu
ν̄ , completes the proof.

6 Proof of the variational formula

In this section, we prove Theorem 2.7, primarily through an application of Theo-
rem 2.8 and Sion’s minimax theorem [31]. We start with preliminary results in Lemma 6.1,
Lemma 6.2 and Lemma 6.3. Throughout, recall the definition of Hk from (2.10).

Lemma 6.1. Suppose Assumption 2.1 holds, with associated quantities T and Ψν , ν ∈
P(Rk), and recall the empirical measure Ln,k from (2.12). For t1 ∈ Rk, t2 < T , and
0 < δ <∞, the following condition holds:

lim sup
n→∞

1

n
logE

[
eδnΨLn,k

(t1,t2)
]
<∞ . (6.1)

Proof. Let Θ(n) := (Θ
(n)
1 , . . . ,Θ

(n)
n ) denote a random vector distributed uniformly on Sn−1,

the Euclidean sphere in Rn of radius 1. For t1 ∈ Rk, the random vector An,kt1 lies on the
Euclidean sphere in Rn of radius ‖t1‖2 and has a law invariant to orthogonal transforma-
tion (due to the law of An,k being invariant under orthogonal transformations); hence,

An,kt1
(d)
= ‖t1‖2Θ(n). Fix t1 ∈ Rk and t2 < T , let Ct2 and q? be as in Assumption 2.1(ii),

and define g : R+ → R+ as

g(x) := exp (δCt2 [1 + ‖t1‖2x)q? ]) , x ∈ R+.

When combined, the relation An,kt1
(d)
= ‖t1‖2Θ(n), the bound of Assumption 2.1(ii), the

fact that each gi is an increasing function and the sub-independence of (|Θ(n)
1 |, . . . , |Θ

(n)
n |)

established in [3, Theorem 2.11(2)] with p = 2 therein, yield

E
[
eδnΨLn,k

(t1,t2)
]

= E

[
n∏
i=1

exp
(
δΛ(
√
n‖t1‖2Θ

(n)
i , t2)

)]
≤ E

[
n∏
i=1

g(|
√
nΘ

(n)
i |)

]

≤
n∏
i=1

E
[
g(
√
n|Θ(n)

i |)
]
. (6.2)

Now, let {Zi}i∈N be i.i.d. standard Gaussian variables, as usual set Z(n) := (Z1, . . . , Zn),

and note that for each i = 1, . . . , n,
√
nΘ

(n)
i

(d)
=
√
nZ1/‖Z(n)‖2 and further,√

nZ1/‖Z(n)‖2
a.s.−−→ Z1 as n → ∞, and hence almost surely,

√
n|Z1|/‖Z(n)‖2 ≤ 2|Z1|

for all sufficiently large n. Therefore, first dividing both sides of (6.2) by n, then taking
the limit superior, as n→∞, and applying the reverse Fatou lemma, which is applicable
since E[exp(δCt2‖t1‖

q?
2 |2Z1|q?)] <∞ because q? < 2, we obtain

lim sup
n→∞

1

n
logE

[
eδnΨLn,k

(t1,t2)
]
≤ lim sup

n→∞
logE

[
exp

(
δCt2 [1 + (‖t1‖2

√
n|Z1|
‖Z(n)‖2

)q? ]
)]

≤ δCt2 + logE [exp(δCt2‖t1‖
q?
2 |Z1|q?)] .
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Since the last term on the right-hand side is finite for all t1 ∈ Rk, once again because
q? < 2, (6.1) follows.

Lemma 6.2. Suppose Assumption 2.1 holds, with associated quantities {ξj}j∈N, r, T , and
Ψν , ν ∈ P(Rk), and let An,k be drawn from the Haar measure σn,k on Vn,k, independently
of {ξj}j∈N. For n ∈ N, define

Φn(t1, t2) :=
1

n
logE

[
exp

(
√
n ξ(n)An,kt1 + t2

n∑
i=1

r(ξi)

)]
, t1 ∈ Rk, t2 ∈ R, (6.3)

where ξ(n) := (ξ1, ξ2, . . . , ξn). Then for t1 ∈ Rk and t2 ∈ R,

Φn(t1, t2) =
1

n
logE

[
exp

(
nΨLn,k(t1,t2)

)]
, (6.4)

where Ln,k and Ψν are as defined in (2.12) and (2.3), respectively. Moreover,

lim
n→∞

Φn(t1, t2) = Φ(t1, t2),

where, with K equal to the set defined in (4.8), we have

Φ(t1, t2) := sup
ν∈P(Rk)

{Ψν(t1, t2)−Hk(ν)} = sup
ν∈K
{Ψν(t1, t2)−Hk(ν)} . (6.5)

Proof. Due to the independence of ξ1, ξ2, . . . , and their independence from An,k, we can
write, for n ∈ N, t1 ∈ Rk and t2 ∈ R,

Φn(t1, t2) =
1

n
logE

[
n∏
i=1

E
[
exp

(√
n ξi (An,kt1)i + t2r(ξi)

) ∣∣An,k

]]

=
1

n
logE

[
exp

(
n∑
i=1

Λ(
√
n 〈An,k(i, ·), t1〉, t2

)]
,

where Λ is as in (2.1). Then (6.4) follows immediately from the definitions of Ln,k and Ψν

in (2.12) and (2.3), respectively. where Λ is as in (2.1) Now, let T ≤ ∞ and q? ∈ (0, 2) be
as specified in (ii) and (v) of Assumption 2.1. For t2 ≥ T , by Remark 2.2, both Φn(·, t2)

and Φ(·, t2) are identically equal to infinity, and so the limit Φn(t1, t2) → Φ(t1, t2) holds
trivially for all t1 ∈ Rk. On the other hand, suppose t2 < T . Then, again from Remark 2.2
Assumptions 2.1(ii)–(iii) imply that the map Pq∗(Rk) 3 ν 7→ Ψν(t1, t2) ∈ R is continuous
(with respect to the q?-Wasserstein topology). Moreover, from Theorem 2.8 that the
sequence {Ln,k}n∈Nk

satisfies an LDP in Pq(R
k) for all q ∈ (0, 2), with the GRF Hk. Since

q∗ ∈ (0, 2) by Assumption 2.1(v), by Varadhan’s lemma [7, Theorem 4.3.1], which is
applicable due to the integrability estimate (6.1) of Lemma 6.1, it follows that the limit
of Φn(t1, t2) is given by Φ(t1, t2) defined in (6.5).

To complete the proof of the lemma, it only remains to establish the last equality
in (6.5), but this is an immediate consequence of the definitions of K and Hk in (4.8)
and (2.10), respectively, which directly imply Hk(ν) =∞ for ν /∈ K.

Lemma 6.3. Suppose Assumption 2.1 holds, and for each ν ∈ P(Rk), let Ψν be as defined
in (2.3), let Ψ∗ν denote its Legendre transform, as specified in (2.5), and let K ⊂ P(Rk)

be the set defined in (4.8). Then the Legendre transform Φ∗ of the function Φ defined
in (6.5) satisfies, for τ1 ∈ Rk and τ2 ∈ R,

Φ∗(τ1, τ2) = inf
ν∈K
{Ψ∗ν(τ1, τ2) + Hk(ν)} = inf

ν∈P(Rk)
{Ψ∗ν(τ1, τ2) + Hk(ν)} . (6.6)
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Proof. First, note that the second equality in (6.6) holds because Hk(ν) =∞ for ν 6∈ K

due to (4.8) and (2.10). Next, fix the following:

• let Λ, T be as in Assumption 2.1(ii), and define DT := Rk × (−∞, T );

• let q? ∈ (0, 2) be as in Assumption 2.1(ii), and let Mq?(Rk) denote the space of finite
signed measures (not necessarily probability measures) on Rk, equipped with the
q?-Wasserstein topology.

Fix τ = (τ1, τ2) ∈ Rk ×R. Then by the definition (2.5) of Ψ∗ν ,

Ψ∗ν(τ1, τ2) = sup
(t1,t2)∈Rk×R

{〈τ1, t1〉+ τ2t2 −Ψν(t1, t2)}

= sup
(t1,t2)∈DT

{〈τ1, t1〉+ τ2t2 −Ψν(t1, t2)}, (6.7)

where the second equality holds because, by Remark 2.2, Ψν(t1, t2) =∞ if t2 ≥ T . Thus,
the right-hand side of (6.6) is equal to infν∈K supt=(t1,t2)∈DT

Fτ (ν, t), where

Fτ (ν, t) := 〈τ1, t1〉+ τ2t2 −Ψν(t1, t2) + Hk(ν), ν ∈ P(Rk), t = (t1, t2) ∈ Rk ×R.

On the other hand, by the definition of Φ∗ and the representation (6.5) for Φ,

Φ∗(τ1, τ2) = sup
(t1,t2)∈Rk+1

{〈τ1, t1〉+ τ2t2 − Φ(t1, t2)}

= sup
t=(t1,t2)∈Rk+1

inf
ν∈K

Fτ (ν, t),

= sup
t=(t1,t2)∈DT

inf
ν∈K

Fτ (ν, t),

where the last equality uses the fact that for t2 > T , Ψν(t1, t2) =∞ and hence, Fτ (ν, t) =

−∞ (see Remark 2.2). Thus, to prove the first equality in (6.6), it suffices to show that
for all (τ1, τ2) ∈ Rk ×R,

inf
ν∈K

sup
(t1,t2)∈DT

Fτ (ν, (t1, t2)) = sup
(t1,t2)∈DT

inf
ν∈K

Fτ (ν, (t1, t2)). (6.8)

To justify the exchange of infimum and supremum in (6.8), we verify the conditions of
Sion’s minimax theorem [31, Corollary 3.3]. That is, for (τ1, τ2) ∈ Rk ×R, we note that

• the set DT = Rk × (−∞, T ) is a convex subset of the topological vector space Rk+1;

• due to Lemma 4.4 and the fact that q∗ ∈ (0, 2), K is a convex compact subset of the
topological vector space Mq?(Rk);

• for t = (t1, t2) ∈ DT : the lower semicontinuity of Fτ (·, t) follows from the lower
semicontinuity of ν → Ψν(t) due to Assumption 2.1(iii) and of Hk (as it is a GRF);
the convexity of Fτ (·, t) follows from the linearity of ν 7→ Ψν(t) and the convexity of
Hk, which was established in Theorem 2.8;

• for ν ∈ K: the lower semicontinuity of t → Ψν(t) on DT follows from Assump-
tion 2.1(iii); the convexity of Ψν on DT follows from linearity of expectation, the
definition (2.3), and the fact that Λ is convex since it is a log mgf by (2.1);

• the convexity of Λ also implies that for each ν ∈ P(Rk) (t1, t2) 7→ Psiν(t1, t2) is
convex and it is also lower semicontinuous by Assumption 2.1(iii); together with
the fact that for each τ = (τ1, τ2) ∈ Rk × R, (t1, t2) 7→ 〈τ1, t1〉 + τ2t2 is continuous
and linear, it follows that Fτ (ν, ·) is upper semicontinuous and concave on DT .
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Due to the conditions verified above, the minimax theorem can be applied to estab-
lish (6.8) and hence, the first equality in (6.6). This completes the proof of the lemma.

Proof of Theorem 2.7. Let {ξj}j∈N, ρ and r be as in Assumption 2.1, let ξ(n) := (ξ1, . . . , ξn)

and consider the sequence {W (n)}n∈N in Rk+1, where W (n) = W
(n)
A is defined by

W (n) = (W
(n)
1 ,W

(n)
2 ) :=

(
n−1/2 Aᵀ

n,kξ
(n),

1

n

n∑
i=1

r(ξi)

)
, n ∈ N. (6.9)

Then by Assumption 2.1(i) we can write

√
nAᵀ

n,kX
(n) = W

(n)
1 ρ(W

(n)
2 ), (6.10)

where ρ is continuous. Analogous to the proof of Theorem 2.4 we will start by first
establishing an LDP for {W (n)}n∈N.

Note that the functional Φn defined in (6.3) is the scaled mgf of W (n):

Φn(t1, t2) =
1

n
logE

[
exp

(
n〈(t1, t2),W (n)〉

)]
, (t1, t2) ∈ Rk+1, (6.11)

and hence, by Lemma 6.2 it follows that for every (t1, t2) ∈ Rk ×R,

lim
n→∞

1

n
logE

[
en〈(t1,t2),W (n)〉

]
= Φ(t1, t2), (6.12)

where Φ is as in (6.5). Also, note that the law of An,k is invariant to orthogonal trans-

formation and independent of ξ(n), hence Aᵀ
n,k

ξ(n)

‖ξ(n)‖2
(d)
= An,k(1, ·) and Aᵀ

n,k
ξ(n)

‖ξ(n)‖2
is

independent of ξ(n); we refer to [10, Lemma 6.3] for the proof of the simpler case when
k = 1. As a consequence,

W (n) (d)
=

(
n−1/2An,k(1, ·)‖ξ(n)‖2,

1

n

n∑
i=1

r(ξi)

)
.

Define the Rk+2-valued sequence of random variables,

S(n) :=

(
An,k(1, ·), 1

n
‖ξ(n)‖22,

1

n

n∑
i=1

r(ξi)

)
, n ∈ N.

Since by part (iv) of Assumption 2.1, the domain of Λ̄, the log mgf of (ξ2
1 , r(ξ1)), con-

tains a neighborhood of the origin, by Cramér’s theorem (Theorem 1.7) {(‖ξ(n)‖22,
1
n

∑n
i=1 r(ξi))}n∈N satisfies an LDP in R2 with the convex GRF Λ̄∗, equal to the Legendre

transform of Λ̄. The independence of An,k from {ξj}j∈N, along with [3, Theorem 3.4]
(applied to the case of p = 2 therein, with their canonically projected X(k) equivalent to
our An,k(1, ·)) then implies that the sequence {S(n)}n∈N satisfies an LDP with the convex
GRF J : Rk+2 → [0,∞] defined by

J(a, b, c) := − 1
2 log(1− ‖a‖22) + Ĵ(b, c),

for a ∈ Rk such that ‖a‖22 < 1 and b, c ∈ R, for some function Ĵ : R2 → [0,∞]. Then,
by the contraction principle (Theorem 1.3), {W (n)}n∈N satisfies an LDP with the GRF
JW : Rk+1 → R defined as follows:

JW (x, z) := inf
y∈R:y>‖x‖2

J(xy−1/2, y, z), x ∈ Rk, z ≥ 0.

Note that JW is convex due to [10, Lemma 6.2] and [29, Theorem 5.3].
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We now claim that

Φ(t1, t2) = lim
n→∞

1

n
logE[en〈t,W

(n)〉] = sup
τ1∈Rk,τ2∈R

{〈t1, τ1〉+ t2τ2 − JW (τ1, τ2)}. (6.13)

The first equality is just (6.12). To justify the second equality in (6.13), let T be as in
Assumption 2.1(ii) and first fix t1 ∈ Rk, t2 < T , and let t = (t1, t2). For 0 < δ <∞, (6.11)
and (6.4) together imply

E[eδn〈t,W
(n)〉] = enΦn(δt1,δt2) = E

[
enΨLn,k

(δt1,δt2)
]
.

Since t2 < T , there exists δ > 1 such that δt2 < T and so the last relation and Lemma 6.1
imply

lim sup
n→∞

1

n
logE[eδn〈t,W

(n)〉] <∞ for some δ > 1. (6.14)

Hence, (6.12), the fact that {W (n)}n∈N satisfies an LDP with rate function JW and Varad-
han’s lemma [7, Theorem 4.3.1], whose application is justified by (6.14), imply (6.13)
holds for all t1 ∈ Rk and t2 < T .

Now fix t1 ∈ Rk and t2 ≥ T . We claim that (6.13) continues to hold, but now with
both sides equal to infinity. The fact that Φ(t1, t2) =∞ follows from the definition (6.5)
of Φ and the observation that Φν(t1, t2) = ∞ for every ν ∈ P(Rk) when t2 ≥ T (by
Remark 2.2). To show that the term on the right-hand side of (6.13) is also equal to
infinity, for s2 ∈ R, define Λ̃(s2) := Λ(0, s2). Note that Λ̃ is the log mgf of r(ξ1). Due to
Assumption 2.1(iv), the domain of Λ̃ contains a non-empty neighborhood around 0, hence
by Cramér’s theorem (Theorem 1.7) the sequence { 1

n

∑n
i=1 r(ξi)}n∈N satisfies an LDP in R

with GRF Λ̃∗. However, due to the contraction principle (Theorem 1.3) and the continuity
of the coordinate projection map, we also know that Λ̃∗(τ2) = infτ1∈Rk JW (τ1, τ2) for all
τ2 ∈ R. Note that this infimum is attained at some τ∗1 ∈ Rk because, as a GRF, JW
is lower semicontinuous with compact level sets. Therefore, on the right-hand side
of (6.13), if t2 ≥ T , then

sup
τ1∈Rk,τ2∈R

{〈t1, τ1〉+ t2τ2 − JW (τ1, τ2)} ≥ sup
τ2∈R
{〈t1, τ∗1 〉+ t2τ2 − JW (τ∗1 , τ2)}

= 〈t1, τ∗1 〉+ sup
τ2∈R
{t2τ2 − Λ̃∗(τ2)}

= 〈t1, τ∗1 〉+ Λ̃(t2)

= 〈t1, τ∗1 〉+ Λ(0, t2)

=∞,

where the first equality used the definition of τ∗1 , the second equality used the identity
(Λ̃∗)∗ = Λ̃, which holds since Λ̃ is convex, the third equality uses the definition of Λ̃, and
the last equality follows from Remark 2.2. Hence, (6.13) holds for all t1 ∈ Rk and t2 ∈ R.

Note that (6.13) shows that Φ = J∗W . Due to the convexity of JW and Legendre duality

(see, e.g., [7, Lemma 4.5.8]), we also have JW = Φ∗. Moreover, since W (n)
2 is supported

on R+, clearly Φ(τ1, τ2) =∞ whenever τ2 < 0. By the representation for
√
nAᵀ

n,kX
(n) in

terms of W (n) in (6.10), invoking the LDP for {W (n)}n∈N and applying the contraction
principle (Theorem 1.3) to the continuous map Rk × R+ 3 (w1, w2) 7→ w1ρ(w2) ∈ Rk

(recall that ρ is continuous), we find that the annealed rate function Jan for
√
nAᵀ

n,kX
(n)
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in Theorem 2.6 can be written as

Jan(x) = inf
τ1∈Rk,τ2∈R+:τ1ρ(τ2)=x

Φ∗(τ1, τ2)

= inf
τ1∈Rk,τ2∈R+:τ1ρ(τ2)=x

inf
ν∈P(Rk)

{Ψ∗ν(τ1, τ2) + Hk(ν)}

= inf
ν∈P(Rk)

inf
τ1∈Rk,τ2∈R+:τ1ρ(τ2)=x

{Ψ∗ν(τ1, τ2) + Hk(ν)}

= inf
ν∈P(Rk)

{
inf
τ∈R+

Ψ∗ν

(
x

ρ(τ)
, τ

)
+ Hk(ν)

}
= inf
ν∈P(Rk)

{Jquν (x) + Hk(ν)},

where the second equality invokes (6.6) of Lemma 6.3, and the last equality relies
on (2.7). This completes the proof of Theorem 2.7.
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