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Antarctic sea ice prediction has garnered increasing attention in recent years,
particularly in the context of the recent record lows of February 2022 and 2023.
As Antarctica becomes a climate change hotspot, as polar tourism booms, and as
scientific expeditions continue to explore this remote continent, the capacity to
anticipate sea ice conditions weeks to months in advance is in increasing
demand. Spurred by recent studies that uncovered physical mechanisms of
Antarctic sea ice predictability and by the intriguing large variations of the
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observed sea ice extent in recent years, the Sea Ice Prediction Network South
(SIPN South) project was initiated in 2017, building upon the Arctic Sea Ice
Prediction Network. The SIPN South project annually coordinates spring-to-
summer predictions of Antarctic sea ice conditions, to allow robust evaluation
and intercomparison, and to guide future development in polar prediction
systems. In this paper, we present and discuss the initial SIPN South results
collected over six summer seasons (December-February 2017-2018 to 2022-
2023). We use data from 22 unique contributors spanning five continents that
have together delivered more than 3000 individual forecasts of sea ice area and
concentration. The SIPN South median forecast of the circumpolar sea ice area
captures the sign of the recent negative anomalies, and the verifying
observations are systematically included in the 10-90% range of the forecast
distribution. These statements also hold at the regional level except in the Ross
Sea where the systematic biases and the ensemble spread are the largest. A
notable finding is that the group forecast, constructed by aggregating the data
provided by each contributor, outperforms most of the individual forecasts, both
at the circumpolar and regional levels. This indicates the value of combining
predictions to average out model-specific errors. Finally, we find that dynamical
model predictions (i.e., based on process-based general circulation models)
generally perform worse than statistical model predictions (i.e., data-driven
empirical models including machine learning) in representing the regional
variability of sea ice concentration in summer. SIPN South is a collaborative
community project that is hosted on a shared public repository. The forecast and
verification data used in SIPN South are publicly available in near-real time for
further use by the polar research community, and eventually, policymakers.

KEYWORDS

sea ice, seasonal prediction, Southern Ocean, Antarctica, forecasting & simulation

1 Introduction

Antarctic sea ice rarely fails to spur our curiosity. By the mid-
2000s, sea ice extent anomalies (Figure 1) had exhibited no
substantial change despite the global warming context. By
contrast, in the Northern Hemisphere, significant reductions in
Arctic sea ice extent were already evident year-round (Cavalieri
etal, 2003). From 1979 to the mid-2010s, there was a positive trend
in Antarctic sea ice extent, leading to a series of hypotheses that
could explain such unexpected behavior (see, e.g., Hobbs et al.
(2016) for a review). However, in spring-summer 2016-2017, the
sign of sea ice anomalies drastically switched from positive to
negative, canceling the gradual accumulation that had prevailed
since the late 1970s (Parkinson, 2019). Sea ice extent conditions
have remained low since then for all months of the year, with an
absolute record low set in February 2022 and then in February 2023
(Raphael & Handcock, 2022; Wang et al., 2022; Liu et al., 2023). The
interpretation of the summer 2022 and 2023 records is not obvious,
given the strong positive phase of the Southern Annular Mode in
summer 2021-2022, a mode that is normally associated with
positive sea ice extent anomalies (Verfaillie et al., 2022; their
Figure S2). Several ocean and atmospheric mechanisms have been
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hypothesized to explain the 2016-2017 chain of events (Stuecker
et al., 2017; Schlosser et al., 2018; Meehl et al., 2019; Purich and
England, 2019; Zhang et al., 2022). It is speculated that the recent
decline of Antarctic sea ice extent could foreshadow more profound
changes in the Southern Ocean system (Eayrs et al., 2021).

Sea ice is a key variable of the high-latitude Southern
Hemisphere. While the Southern Ocean is known as a major
carbon sink for the atmosphere, having accounted for up to 40%
of the uptake of cumulative anthropogenic carbon emissions
(DeVries, 2014), sea ice processes can act both as a source or a
sink of atmospheric carbon depending on the season (Delille et al.,
2014; Gray et al., 2018). Sea ice growth (melt) is associated with salt
(freshwater) fluxes to the upper ocean that directly control its
stratification on seasonal to decadal timescales (Martinson, 1990;
Goosse and Zunz, 2014; Goosse et al., 2018). Sea ice also dampens
horizontal ocean transport processes such as storm-generated
waves (Kohout et al., 2014). Recent sea ice loss around the
Antarctic Peninsula, for example, has been identified as a possible
cause of ice shelf disintegration through enhanced ocean swells
(Massom et al., 2018). Finally, sea ice mitigates heat transfers
between the ocean and the atmosphere and, as such, plays a key
role in the energy balance in polar regions. The year-to-year
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Antarctic monthly sea ice extent
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FIGURE 1

(Left) Antarctic monthly mean sea ice extent anomalies relative to the 1981-2010 mean seasonal cycle, from January 1979 to December 2022 (OSI-
SAF sea ice index OSI-420; Lavergne et al., 2019). (Right) The 1979-2015 February climatological sea ice edge, defined as the 15% sea ice
concentration contour of the average sea ice concentration field (light blue line), and the February mean 2023 sea ice conditions (white shading).

The names of the regions introduced in Section 2.5 are given on this map.

fluctuations of sea ice at the regional and circumpolar levels might
thus have consequences on a longer term and on a global scale. In
view of this, the recent sequence of negative anomalies (Figure 1),
and our ability to predict these anomalies ahead of time, should be
given increased attention.

The interest for sea ice is not limited to the physical
environments. Sea ice hosts a stock of bacteria, algae, and grazers
which, upon melting, are released in the upper ocean and impact
the biological activity including phytoplankton blooms (Brierley
and Thomas, 2002). The variations in Antarctic sea ice extent
significantly affect marine productivity and fisheries (Liu et al,
2022). Besides, sea ice conditions represent a real risk for all vessels
operating in high-latitude marine areas (COMNAP, 2015). This is
especially true for commercial operations - most notably fisheries
(e.g. krill) and tourism - which tend to use ice-strengthened vessels
rather than icebreakers. As the number and variety of tourist
activities increase in the high-latitude Southern Ocean (Tejedo
et al, 2022), considering sea ice related hazards, even in the
middle of austral summer, has become a priority. For all these
applications (and many more not mentioned here), a short-term
notice (say, a few weeks to months) of the anomalous character of
sea ice conditions in a given region would likely represent
significant added value over the currently used information that
consists of climatological forecasts or interpretation of real-time ice
charts. Such information could be valuable as the system appears to
be in a non-stationary state where climatology is, by definition,
not meaningful.

The feasibility of skillful seasonal sea ice predictions rests on
predictability mechanisms operating at sub-seasonal to seasonal
time scales. In contrast to historical Arctic sea ice, Antarctic sea ice
is almost entirely seasonal and is thinner on average, suggesting
possibly different mechanisms. The first estimates of initial-value
predictability (i.e., predictability associated with initial conditions
or ‘of the first kind’) of Antarctic sea ice are credited to Holland
etal. (2013). They investigated the characteristics of an ensemble of
sea ice trajectories of the Community Climate System Model
version 3 (CCSM3), each initialized on January 1lst from the
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model’s own state but subject to small perturbations at the initial
time. They identified an eastward traveling signal of predictability of
the Antarctic sea ice edge position with an associated timescale of 3-
9 months depending on the region considered. They also noticed a
temporary loss of predictability during the ice retreat season
followed by an increase in predictability in the second year
during the ice advance season. This phenomenon of ‘re-
emergence’ of predictability was confirmed in other model setups
(Marchi et al.,, 2019): significant correlations between sea surface
temperature (SST) anomalies in two successive winter seasons were
diagnosed in a six-model ensemble despite the absence of
correlation during summer. The re-emergence phenomenon is
explained by the storage of surface information below the ocean
mixed layer in the spring and summer seasons and the fact that
these anomalies resurface when the mixed layer deepens in autumn
and winter. A key finding of the Marchi et al. study is that the
predictability horizon appears to be mean-state dependent: climate
models with deeper oceanic mixed layers tend to exhibit longer
predictability. In an Arctic-Antarctic intercomparison, Ordofiez
et al. (2018) showed that Antarctic sea ice area predictability is
less influenced by the initial sea ice volume anomalies than in the
Arctic. Sea ice predictability is inherently tied to the vertical
structure of the properties of the underlying ocean (Libera et al.,
2022), which can explain why different estimates of predictability
have been obtained with different general circulation models but
also why these estimates may vary from one region to another.

In parallel to idealized predictability studies that employ model
output without reference to the observed sea ice state, several studies
have attempted to determine predictability content using
observational and reanalysis datasets or using retrospective
predictions (hindcasts). Chen and Yuan (2004) developed the first
seasonal forecast for Antarctic sea ice concentration with a statistical
model using a reanalysis of atmospheric variables and satellite-
observed sea ice data. This linear Markov model showed
considerable skill in predicting the anomalous sea ice concentration
up to one year in advance in the western Antarctic, and especially
high skill in austral winter. Chevallier et al. (2019) estimated that

frontiersin.org


https://doi.org/10.3389/fmars.2023.1148899
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Massonnet et al.

Antarctic sea ice extent anomalies have a typical decorrelation time
scale of up to two months in all seasons, except in austral spring
(October to December) where it can drop to 3 weeks. Using
reanalyses and satellite products, Holland et al. (2017) identified a
5-month relationship between springtime (October) zonal wind
anomalies in the Amundsen-Bellingshausen Seas and the March
sea ice area in the western Ross Sea: stronger westerlies in spring
increase sea ice divergence, favor shortwave absorption and heat
storage in the upper ocean and delay autumn sea ice advance. Such a
coupled mechanism was, however, not found in state-of-the-art
climate models (Holland et al., 2017). Recently, Morioka et al.
(2019; 2021) reported skillful prediction of summertime sea ice
conditions in the Weddell Sea owing to the initialization of winter
sea ice concentration and thickness, pointing to the potentially
increased contribution of thickness/volume anomalies to
predictability at regional scales. Using a suite of coupled dynamical
models, Bushuk et al. (2021) found that predictions of wintertime sea
ice edge position are improved when taking into account the zonal
advection of upper-ocean heat content anomalies. They also found
that the initialization of sea ice concentration and thickness played a
key role in summer prediction skill. The Weddell Sea was found to be
a hotspot for summertime prediction (up to 9 months out) and less
skill was found in the Ross Sea. Payne et al. (2022) also found the
largest forecast skill in the Weddell Sea, with moderate skill in the
Ross, Amundsen and Bellinghausen Seas, and lowest skill in the
Indian and West Pacific sectors. They also found an important role of
initial sea ice thickness for August to December predictions. Finally,
Zampieri et al. (2019) found that current subseasonal to seasonal
(S2S) prediction systems, not specifically geared towards polar
prediction, display skill that rarely beats trivial forecasts beyond a
few weeks. A key aspect of the Zampieri et al. (2019) study is that they
apply a stringent skill metric that penalizes the spatial discrepancies
between forecast and observed sea ice edges.

In summary, only a few studies have examined seasonal Antarctic
sea ice predictability, and it can be summarized that: (1) predictability
estimates vary regionally and seasonally; (2) the upper ocean is key to
carrying sea ice predictability over seasons and regions; (3) ocean
stratification and the vertical structure of its properties affects
estimates of predictability in climate models; (4) predictability and
skill are likely conditionally dependent on the baseline mean state;
and (5) in model experiments, skill is generally high in the Weddell
Sea and varies from one study to another in the Ross Sea. We note
that the Weddell Sea is the sector of the Southern Ocean with the
largest summer sea ice extent on climatological average. This sector,
unlike the others, hosts at least 1 million km? of sea ice every summer,
approximately 50% of the circumpolar total (Parkinson, 2019).

The satellite record of observed sea ice extent anomalies
(Figure 1) suggests that, since the mid-2000s, Antarctic sea ice
could have entered a new regime characterized by increased
variance, increased persistence, and lower frequency. From the
angle of predictability, the current epoch could well be a ‘window
of opportunity’ in which longer-lived sea ice anomalies push the
horizon of predictability well beyond the levels that had been
prevailing before. Indeed, Payne et al. (2022) showed that
hindcast skill increased substantially when the hindcasts include
the 2010s.
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In that context, the objective of SIPN South is to quantify the
skill of the available sea ice prediction systems with a focus on the
recent summers. Specifically, we aim to provide an initial answer to
three scientific questions:

1. Does the SIPN South ensemble exhibit systematic forecast
errors?

2. Do SIPN South forecasts provide added value over a
climatological forecast?

3. Is there a relationship between the forecasting approach
and skill?

We discuss in Section 2 the SIPN South protocol and the
different forecasting approaches taken by the contributors. In
Section 3, we attempt to answer the three questions raised above
by analyzing the forecasts made from 2017 until 2023. We finish by
discussing the limitations of the study and avenues for future work.

2 Methods

We describe the historical context of the SIPN South project
and the generic protocol for contributions. Then, we briefly
review the different approaches followed by the SIPN South
contributors. Finally, we review the products and methods used
for forecast verification.

2.1 SIPN South background

SIPN South was initially designed to be a 3-yr (2017-2019)
activity taking place within the Southern Hemisphere component of
the Year of Polar Prediction (YOPP-SH) project (Jung et al., 2016;
Bromwich et al., 2020). SIPN South was created for the scientific
reasons described in the introduction, but also to initiate a parallel
effort to the (Arctic) Sea Ice Prediction Network (Steele et al., 2021).
The project was extended beyond the initial period and now runs
every year. SIPN South has briefly been described in Abrahamsen
et al. (2020) and Bromwich et al. (2020), and in technical reports
published after each forecasting season, all available on the project
website (see “Data and code availability” section below).

Around mid-November each year, a call for contributions is issued
on various mailing lists related to polar research, and on social media.
The call itself contains the protocols to be followed, which we now
briefly summarize. The forecasts cannot use data beyond the 1% of
December and must be submitted within the first 10 days of December.
The forecasts must cover the period 1% December to 28" February (90
days). The method of forecasting is free but must be documented. Up
to four diagnostics can be submitted, by order of descending priority
and for each of the 90 days of the forecasting period. These diagnostics
are: (i) the integrated Antarctic sea ice area, (ii) the sea ice area in each
successive 10° longitude band starting from 0° (iii), the sea ice
concentration (provided on the contributor’s native grid), and (iv)
the effective sea ice thickness, i.e. sea ice volume per unit grid cell area,
also provided on the contributor’s native grid. SIPN South allows the
submission of ensembles of forecasts to reflect aspects of uncertainty in
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the experimental setup. Finally, the call document specifies the two
observational products that will be used as references for verification,
(see “Observational references” section below).

There are several differences between the protocol followed in
the SIPN South protocol and that followed in the (Arctic) sea ice
outlooks (SIO) that have been conducted by the Sea Ice Prediction
Network (Hamilton and Stroeve, 2016; Steele et al., 2021; https://
www.arcus.org/sipn/sea-ice-outlook) since 2008. One difference is
the systematic request for daily data in SIPN South (versus monthly
in general for the SIO, up to a few exceptions). Having the daily
temporal resolution is key to diagnosing the biases that develop at
the sub-seasonal time scale, see Section 3.1. Another difference is
that SIPN South only issues one call per summer while the Arctic
SIO issues four (June, July, August, and September), which allows
studying the influence of lead time on the skill. Finally, SIPN South
requests explicit probability distributions estimates through
individual ensemble members, while the SIO requests aggregated
statistics (median and range). Several co-authors of this study are
also involved in the SIO and ensure frequent exchanges on best
practices in the respective communities.

The year-to-year evolution of the contribution statistics is shown
in Figure 2. The latest forecasting exercise documented in this
manuscript (2022-2023) has seen a record number of contributions
but a slight decrease in the number of files contributed compared to
the previous season, due to one group usually contributing more than
50 ensemble members for all diagnostics not being able to submit
forecasts for this latest exercise.

In order to avoid over-interpretation of the results there are
four caveats to the structure of SIPN South that need to be
acknowledged before any comparison to observations is
performed. First, only six years are available, which is very
limiting when meaningful statistics need to be drawn. With so
few data points, systematic inconsistencies between forecasts and
verification datasets can be difficult to detect. Second, an agreement
between forecasts and verification data is not a guarantee that the

Evolution of input statistics to SIPN South
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FIGURE 2

The number of individuals or groups that contributed forecasts to
the SIPN South project for each of the austral summers since the
beginning of the project (bars, left y-axis) and the total number of
files contributed by all groups over the same period (line with
squares, right y-axis).
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skill is obtained for good reasons. Besides the issue of limited
statistical sampling, the SIPN South ensemble can be viewed as an
‘ensemble of opportunity’, ie., a set of forecasts obtained after
asking for output from anyone who is willing to contribute
(Tebaldi and Knutti, 2007). The implication is that the range of
forecasts contributed to SIPN South is not necessarily
representative of the full range of uncertainty for all prediction
systems that exist. The results presented here might be updated
when more groups contribute to the effort. Third, because
forecasting systems are constantly improving and evolving (e.g.,
physical models, data assimilation methods, observations used,
ensemble perturbation methods), contributions labeled identically
might correspond to slightly different underlying methods. Finally,
no constraint was imposed regarding important aspects that make
up prediction systems such as the dataset used for initialization or
to train statistical models, the method of ensemble perturbation or
uncertainty estimation, the values of specific parameters, or the
application of bias correction step. The reason is that SIPN South
aims to intercompare prediction systems each with its own design
choices. This approach is similar to what has been done in the
Arctic SIO (Blanchard-Wrigglesworth et al., 2015; Hamilton and
Stroeve, 2016; Blanchard-Wrigglesworth et al., 2023).

2.2 Description of the forecasting systems

Since the approach to forecast is at the discretion of each
contributing group, unsurprisingly there is a large variety in the
types of forecasting systems used. Other initiatives to collect real-
time seasonal predictions like the Seasonal Hurricane Prediction
project (https://seasonalhurricanepredictions.bsc.es) and the Arctic
Sea Ice Outlook introduced above also face a high diversity in
forecasting approaches. For these two projects, forecasts have been
categorized as either ‘dynamical’ or ‘statistical’ approaches (Caron
et al,, 2020; Steele et al, 2021). Dynamical approaches gather
predictions made using process-based models, i.e., models based
on first physical principles, that are initialized from observationally
constrained initial states. These dynamical approaches include
general circulation models (GCMs), either only for the ocean
(including sea ice) or also coupled to an atmospheric model. By
contrast, statistical approaches gather predictions made using data-
based models, i.e., exploiting statistical predictor-predictand
relationships in past data. This characterization onto dynamical
and statistical models could be criticized, since in practice
dynamical model predictions are often corrected a posteriori with
statistical methods, and statistical forecasts often draw from climate
model output or reanalyses to build empirical relationships. A
description of the approach followed by SIPN South contributors
is given in Table 1. For simplicity, we have assigned a group to
‘dynamical’ approach if it uses a GCM as the foundation of their
prediction system, and to ‘statistical” approach otherwise.

A group forecast is finally included in the analyses. The group
forecast is constructed as an ensemble forecast of size n with n the
number of contributors that provided data for a given year. For
contributors providing ensemble members, these ensemble
members are first averaged together.
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TABLE 1 List of contributors to the SIPN South austral summer forecasts over the six seasons 2017-2018 to 2022-2023 and description of the method.

Long (+
short) name,
country,
approach

type

AWI-SDAP,
Germany,
Statistical

Sandra Barreira
et al. (barreira),
Argentina,
Statistical

Barcelona
Supercomputing
Center (BSC),
Spain,
Dynamical

Environment
and Climate
Change Canada
(CanSIPSv2 and
Modified-
CanSIPS),
Canada,
Dynamical

Centro Euro-
Mediterraneo sui
Cambiamenti
Climatici (cmcc),
Italy, Dynamical

Centre National
de Recherches
Meéteorologiques
(CNRM),
France,
Dynamical

European Centre
for Medium-
Range Weather
Forecasts SEAS5
(ecmwf), Europe,

Brief method description

The forecast consists in a gridded probability of sea ice presence (presence defined as sea ice concentration (SIC) >15%) based on Spatial Damped
Anomaly Persistence (SDAP) using observed OSI-SAF (Lavergne et al., 2019) SIC of the previous ten years. A distinctive feature of the SDAP method
is that it does not operate on individual grid cells. Instead, initial-state anomalies of the ice-edge are spatially “inherited” from the initial ice-edge
location to the surroundings, gradually relaxing from the binary initial state towards the climatological probability of sea-ice presence while
accounting for the seasonal migration of the climatological ice-edge location distribution, as detailed in Niraula and Goessling (2021). This
contribution could not be used for diagnostics involving sea ice areas because it is not possible to derive sea ice area from the probability of ice
presence; see more comments in the discussion. No bias-correction is applied.

The model is a three-level (two-level for the earlier version) neural network based on a principal component analysis (PCA). The first level has 17
neurons (i.e., principal components) and the second has 2204 neurons (each PCA separated in 12 different months). The third level has 18336
neurons but only 1344 had enough data until now to be trained. Each neuron was trained with a backward-forward learning technique: the neurons
learn how a month has a determined PCA pattern according to what had happened the months before the occurrence of this pattern (the backward
process); and the neurons also learn what will happen after a given pattern over the next three months (the forward process). After this supervised
learning, the forecast system continues the training automatically (the automatic learning). No bias-correction is applied. The initial data are obtained
from the NSIDC every month (monthly and daily data). The results of the operative version of the model are published every month at the SHN
webpage: http://www.hidro.gov.ar/smara/SB/sb.asp

The forecast is taken from the BSC Decadal Prediction System based on the EC-Earth3 Earth System Model in its standard resolution. The
atmospheric component is the IFS (from the ECMWEF) with a T255 horizontal resolution (approximately 80 km) and 91 vertical levels, and the ocean
component is NEMO3.6 and the LIM3 sea ice model, both run with an ORCA1 configuration (1° horizontal nominal resolution) and 75 vertical
levels. The forecast system consists of a 10-member ensemble of 10-year-long predictions initialized every year in November from 1960 to present.
The components have been initialized using full-field initialization: the atmospheric initial conditions are from the ERA5 reanalysis and the oceanic
initial conditions come from a NEMO3.6-LIM3 simulation forced with historical ERA5 surface fluxes that assimilates ORA-S5 ocean temperature and
salinity at the surface and EN4 temperature and salinity below the surface. The procedure is very similar to the one described in Bilbao et al. (2021)
but with different observational products. The daily Antarctic values were produced by quadratically interpolating the monthly values. No bias
correction was applied to the forecasts.

Three distinct contributions have been submitted to SIPN South.

Modified-CanSIPS provided forecasts for 2017-2018, 2018-2019 and 2019-2020 based on two fully coupled models, CanCM3 and CanCM4, described
in Merryfield et al. (2013). The atmospheric component of CanCM3 is CanAM3 with T63 horizontal resolution and 31 levels, and that for CanCM4
is CanAM4, also T63, with 35 levels. Sea ice is represented on the atmospheric grid for both models, and both employ the CanOM4 ocean component
with 1.41°/0.94°resolution in longitude/latitude and 40 vertical levels. Initial conditions for the atmosphere, sea ice concentration and ocean
temperature are drawn from ECCC'’s operational analyses, whereas sea ice thickness is initialized using the SMv3 statistical model described in
Dirkson et al. (2017).

CanSIPSv2, which provided forecasts for 2020-2021 and 2021-2022, is also based on two fully coupled models, CanCM4i and GEM-NEMO, described
in Lin et al. (2020). CanCM4i employs the same model and initialization as CanCM4 in Modified-CanSIPS, whereas GEM-NEMO is based on the
GEM atmospheric model with 1.41° resolution and 79 vertical levels, and the NEMO version 3.1 ocean model with nominal 1° resolution and 50
vertical levels. GEM-NEMO atmosphere, ocean and sea ice initial conditions are drawn from ECCC’s operational analyses. Forecasts from all of these
models employed 10 ensemble members for each model, and were initialized on 30th of November. Daily values for integrated Antarctic sea ice area
and the sea ice area in 10° longitude bands until 28th of February are bias corrected by adding daily anomalies calculated for each ensemble member
to the NSIDC Climate Data record observed 1981-2010 daily climatology.

For 2022-23, CanSIPSv2.1 was used, which differs from CanSIPSv2 in that GEM-NEMO has been updated to GEM5-NEMO.

CMCC-SPS3.5 is a fully coupled seasonal forecasting system, based on the CMCC-CM2 coupled climate model (Cherchi et al., 2019). CMCC-SPS3.5
consists of CAM (atmosphere), CLM (land), NEMO (ocean), and CICE (sea ice) sub-components, coupled using the cpl7/mct coupler. CMCC-SPS3.5
forecasts cover a 185-day forecast period, with an ensemble size of 50 members. The system is initialized using ten atmospheric EDA analyses, three
land-analyses (CLM stand-alone forced runs) and nine 3D-var ocean analyses. The 50 initial conditions are randomly chosen among the 270 available
uniquely defined. Sea ice concentration and thickness are assimilated through a nudging scheme. No bias correction is used.

The forecast is based on Météo-France seasonal forecasting system 8, which is based on a high-resolution version of the CNRM-CM GCM (Voldoire
et al,, 2019). The model uses the ARPEGE-Climat atmospheric model, the SURFEX surface component, the NEMO ocean component, and the
GELATO sea ice component that are coupled through the OASIS coupler. A full description of the model and the system is described in a technical
documentation available here: http://www.umr-cnrm.fr/IMG/pdf/system8-technical.pdf. A summary of System 8 characteristics can be found on the
C3S Confluence website: https://confluence.ecmwf.int/display/ CKB/Description+of+System8-v20210101+C3S+contribution. Sea ice concentration is
corrected using a simple per-pair bias correction method using the 1993-2016 re-forecast period and NSIDC data https://nsidc.org/data/G02202/
versions/3. Bias correction was applied for the 2020-2021 season but not for other seasons, as the bias correction appeared to have undesirable effects
due to the non-stationarity of the observed mean state over the past years.

The forecast is based on the ECMWF seasonal forecasting system SEAS5 as described in Johnson et al. (2019). The atmospheric component of SEAS5
is the IFS model cycle 43R1 on a cubic octahedral T319 grid (ca. 36 km horizontal resolution) and 91 vertical levels. The ocean component is
NEMO3.4 with LIM2 as a sea-ice model, using the ORCA025 grid (ca. 25 km spatial resolution) with 75 vertical levels. The forecast is an ensemble of
51 members. Initial conditions for the atmosphere come from the ECMWF ensemble of data assimilations (EDA) augmented with singular vectors,
and initial conditions for the ocean come from the 5-member ECMWF ocean reanalysis/analysis system OCEANS5. Model uncertainty is represented

Dynamical by applying stochastic perturbations to the physical tendencies (SPPT) in the atmosphere. No bias correction has been applied to the daily sea-ice
concentration fields prior to computing regional and pan-Antarctic sea ice extent.
(Continued)
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TABLE 1 Continued

Long (+
short) name,
country,
approach

type

National Centers
for
Environmental
Predic-ion -
CFSv2 (emc),
USA, Dynamical

First Institute of

Brief method description

The forecast is based on CFSv2, a fully coupled sub-seasonal to seasonal forecast system which was implemented for operation in April 2011 (Saha

et al,, 2014). CFSv2 consists of the component models of the NCEP GFS atmosphere with a T126 horizontal resolution (approximately 100 km) and
64 vertical levels, NOAH land (the same model grid as the atmospheric model), GFDL MOM4 ocean model and sea ice simulator (with slight
modifications). The ocean model uses tripolar grids, northward of 65°N it uses a rotated bipolar grid that places two poles over land, thus eliminating
the singularity in the northern ocean, while southward of 65°N it uses a regular latitude x longitude grid. The horizontal layout is a staggered
Arakawa B grid. The zonal resolutio¥ss 1/2°, the meridional resolutio¥s 1/4° between 10°S and 10°N, gradually increasin’zo 1/2° poleward of 30°S and
30°N. There are 40 layers in the vertical. The sea ice grid is the same as the ocean. CFSv2 is run daily with 16 ensemble ensembles for 45 days, 7
ensemble members for 3 months and 4 members for 9 months, with 6-hourly output. No bias correction is applied to the forecast.

Satellite-derived daily sea surface temperature and sea level anomaly are assimilated into the fully-coupled model FIO-ESM using an Ensemble

Oceanography adjustment Kalman Filter (Qiao et al., 2013; Chen et al., 2016) to initialize the model. The FIO-ESM is based on the CAM3.0 atmospheric model, on
Earth System the CLM3.5 land model, on the CICE4 sea ice model and on the POP2.0 ocean model. 10 ensembles were generated by a tiny-perturbing method.
Model (FIO- Bias correction is used through removing the monthly sea ice area biases.

ESM), China,

Dynamical

Antarctic The historical seasons (Jun-Oct) with the most similar sea ice area growth rates as the current ones are retained. These seasons are then used these to
Gateway extrapolate to February next year.

Partnership

(Gateway),

Australia,

Statistical

Geophysical The forecast is based on the fully-coupled global atmosphere-land-ocean-sea ice model SPEAR_MED (1° ice-ocean resolution, 0.5° atmosphere-land
Fluid Dynamics resolution; see Delworth et al. (2020)) that is initialized on December 1 using a weakly coupled ensemble data assimilation system (Lu et al., 2020). 30
Laboratory ensemble members are integrated for one year. Daily sea ice area predictions are bias corrected using a lead-dependent linear regression adjustment
(gfdl), USA, based on a suite of retrospective seasonal predictions (Bushuk et al., 2021). Sea ice concentration predictions are not bias corrected.

Dynamical

Columbia The forecast consists of a linear Markov model that predicts Antarctic SIC at the seasonal timescale using monthly atmospheric reanalysis variables
University Sea and satellite-observed sea ice concentration data. The model was trained in the multivariate space of seven NCEP/NCAR atmospheric variables (SAT,
Ice Group SLP, Uslp, Vslp, 300mb heights and U300, V300) and NASA-Team SIC for the period of 1980 to 2000. The predictions were made by the linear
(Lamont), USA, Markov process for several leading MEOF modes. Cross-validated model experiments evaluated the prediction skill (Chen and Yuan, 2004). No bias
Statistical correction is applied to the forecast. The daily values are obtained by quadratic interpolation of the monthly values provided.

NSIDC Meier
(Meier-NSIDC),
USA, Statistical

The model extrapolates daily sea ice loss from the initialization date through the end of the season. Daily sea ice loss for the extrapolation is based on
the average daily loss from 2007 through the most recent year. Because there is high variability in ice daily ice loss, early season (e.g., 3-month)
predictions are not expected to have high skill, but skill increases with shorter forecast times. The method provides a shrinking envelope of the likely
range of values and provides a baseline for comparison of more sophisticated methods. The source data are the NSIDC Sea Ice Index (http://
nsidc.org/data/seaice_index/). Daily extent values are used here because concentration/area are underestimated by the NASA Team algorithm used in
the Sea Ice Index; thus, extent likely provides a better indication of true ice coverage. No bias-correction is applied.

Met Office The forecasts are obtained from the fully coupled seasonal forecasting system GloSea based upon the HadGEM3 coupled climate model (MacLachlan

GloSea et al,, 2015). GloSea uses the MetUM (atmosphere) and JULES (land) models at N216 resolution (~60 km in midlatitudes), coupled to the NEMO

(MetOffice), UK, (ocean) and CICE (sea ice) models (~1/4° resolution) coupled using OASIS. GloSea forecasts are run daily out to 210 days and initialized using Met

Dynamical Office operational analyses (mixed 4DVar and 3DVar). Sea ice concentration is assimilated but not yet sea ice thickness. GloSea uses a lagged
ensemble approach where 2 ensemble members are run each day and combined with members from previous days to create a 42-member ensemble.
No bias correction is used.

MPAS CESM The CESM-CAM-MPAS v1.4.b7 is run as a fully-coupled atmosphere-land-ocean-sea ice model with MPAS as the atmospheric dynamical core on a

(mpas-cesm),
USA, Dynamical

NASA GMAO
(nasa-gmao),
USA, Dynamical

quasi-uniform 60km grid and the rest of the components ~1 degree grid spacing. Forecasts are initialized on "°c 1st using GFS analysis for the
atmosphere and analog restarts from the CESM Large Ensemble for the other components.

The NASA GMAO seasonal forecasts are produced with the Goddard Earth Observing System (GEOS) AOGCM (GEOS-S2S_2.1) (Rienecker, 2008;
Molod et al., 2015). The atmospheric component is a recent version of the GEOS atmospheric model, run at 0.5°horizontal resolution with 72 vertical
layers. This version includes two-moment cloud microphysics and an interactive aerosol chemistry model. The ocean component is version 5 of the
GFDL Modular Ocean Model (MOMS5) (Griffies, 2012) implemented here at a horizontal resolution of 0.5 degree with 40 vertical layers. The land
component is the Catchment Land Surface Model (Koster et al., 2000). Sea ice is represented with the Los Alamos Sea Ice model (CICE4) (Hunke
and Lipscomb, 2010). The system is initialized using MERRA-2 atmospheric reanalysis (Gelaro et al., 2017) and the GMAO Interim Ocean Analysis.
The analysis incorporates sub-surface temperature and salinity data from available CTDs and Argo floats, temperature data from XBTs and moored
arrays, and along-track altimetry. The analysis is nudged to the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, Donlon et al.
(2012)) sea surface temperatures, and uses the EUMETSAT OSI-SAF sea ice concentration provided with OSTIA. Ensemble members are produced
with initializations on 12-Nov, 17-Nov, 22-Nov, and 27-Nov. An additional 6 ensemble members are initialized on 27-Nov using ocean and/or
atmosphere analysis perturbations.

(Continued)
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TABLE 1 Continued

Long (+ Brief method description

short) name,

country,

approach

type

NASA-GSFC, The forecast is obtained from a statistical model that uses monthly sea ice concentration (SIC) data (1979-present day), derived from passive

USA, Statistical microwave brightness temperatures using the NASA Team algorithm. The historical SIC data for the given forecast month are detrended in-time for
each grid-cell using linear regression as is the historical sea ice extent (SIE) for the month being forecast. A least-squares linear regression model is fit
from the detrended SIE data and the mean detrended SIC data (weighted by the correlation coefficient to focus on regions of higher predictability).
The monthly mean/detrended SIC data from the given forecast year are applied to the linear regression model to produce a seasonal forecast. The
approach is the same as in the seasonal Arctic forecasts of Petty et al. (2017). To produce the daily Antarctic forecasts, multiple months are forecast
and a quadratic curve is fit to interpolate the monthly values to daily.

Nico Sun The forecast model is based on sea ice persistence. It uses incoming solar radiation and sea ice albedo derived from a predicted Sea Ice Concentration

(NicoSun), (SIC) value to calculate daily thickness losses for every NSIDC 25km grid cell. The initial thickness is calculated from GIOMAS sea ice volume and

Europe, NSIDC SIC data. The mean forecast uses the mean SIC over the previous 10 years (1/3 weight) and mean SIC change per day (2/3 weight) to predict

Statistical future SIC. The low forecast reduces the predicted SIC by 0.25 standard deviation for previously observed SIC for this day. The high forecast
increases the predicted SIC by 0.33 standard deviations.

SINTEX-F2, The forecast is based on the fully coupled seasonal prediction system based on ECHAMS5 (~1 deg, 31 levels) atmospheric model and NEMO3 (0.5

Japan, deg, 31 levels) ocean-sea ice model (Doi et al., 2016). SINTEX-F2 seasonal prediction system used in this study was run monthly on Earth Simulator

Dynamical with SST and sea ice concentration (SIC) initializations, in which the model’s SST and SIC are nudged to the OISSTv2 dataset. 24 ensemble members
with SST (12 members) and SST-SIC (12 members) initializations are analyzed.

Sun-Yat Sen Three distinct contributions have been submitted to SIPN South.

University SML-KNN: A machine learning algorithm (kNN for K-Nearest Neighbors) is used in this prediction. The model was trained using daily Antarctic SIC

(SYSU), China, in a 25 x 25 km grid obtained from the NSIDC for the period of January 1989 to March of the initialization year. The climatological annual cycle of

Statistical SIC had been subtracted at each grid point prior to the training. To produce the daily Antarctic forecasts, the principle is to find the K nearest
neighbors of the input variables from the training library. The prediction is then obtained by point-by-point calculation, and the Euclidean distance
was set as distance weighting. No bias correction is applied to the forecast.
SML-ConvLSTM: A Convolutional Long Short-Term Memory networks (ConvLSTM)[1] is used in the way of self-supervised learning in this
prediction. ConvLSTM combines the (Convolutional Neural Network) CNN which can extract the spatial information, with LSTM, which is a kind of
Recurrent Neural Network(RNN) and can extract the time information. In this way, ConvLSTM networks are powerful tools for intricate spatial-
temporal sequence prediction problems. The NSIDC-0051/0081 SIC data are used in this experiment. The model tries to extract the spatial-temporal
relationship from 15861 samples of 90days-90days sequence, in which the later 90-day is 90-day lag for the former 90-day. After training, we use the
90-day data before 1st December, 2022 as the feature data, and acquire the label data predicted from 1st December, 2022 to 28th February, 2023. We
also acquire the long term by the same way, changing the time resolution from daily to monthly, initializing in November, 2022, and changing the
length of time series from 90-day to 24-month. Our long-term prediction period is from December, 2022 to December, 2024. Reference: (Shi et al.,
2015)
SML-MLM: A multivariate linear Markov model is used in this prediction. The model use sea ice concentration, surface air temperature, sea level
pressure, surface winds,300-hPa winds and 300-hPa geopotential height as predictors. We use the above parameters from 1989 to 2019 to train our
model.

UCLouvain An ocean-sea ice model (NEMO3.6 ocean model, LIM3 sea ice model, ~1° resolution; Barthélemy et al. (2018)) simulation is forced by atmospheric

(ucl), Belgium, reanalyses (JRA-55) until the 1st of November. Then, 10 ensemble members are integrated until 28th of February. Each member is using a distinct

Dynamical atmospheric forcing from the 10 previous years. No bias correction is applied to the forecast. The method is similar to that applied to the Arctic Sea
Ice Outlook.

University of The UW forecast is made with the CESM1-CAMS5 fully-coupled model at a nominal 1-degree resolution and 30 layers in the vertical in the

Washington atmosphere model. We run the model up to Nov 30, 2022, under RCP8.5 forcing and with winds above the boundary layer nudged to observations

(UW), United (ERA-5 reanalysis) poleward of 45 degrees (extending the runs described in Blanchard-Wrigglesworth et al, 2021). The nudged runs capture a

States, significant portion of sea ice and SST variability, and serve to ‘initialize’ the forecast runs, which are run from November 30, 2022, to Dec 2024 in a

Dynamical ‘free-running’ mode (without nudging). The SIPN South forecasts are computed by calculating a sea ice area forecast anomaly of the forecast runs
with respect to CESM1-Large Ensemble, and then the forecast anomaly is applied to the observed climatology of sea ice area.

Note that not all contributors participated in all six forecasting seasons.

2.3 Observational references area and concentration) on the choice of the reprocessing
algorithms (NASA Team vs Bristol/Bootstrap). Our choice of

Two observational references were used for verification of the  using two products for forecast verification is motivated by the

forecasts: the NSIDC-0081 product using the NASA Team
algorithm for sea ice concentration reprocessing (Meier et al,
2022) and the OSI-401b product using the Bristol/Bootstrap
algorithm (Tonboe et al,, 2017). The choice of these products was
made based on the near-operational availability of the datasets, but
also to test the possible dependence of target diagnostics (sea ice
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fact that observational errors introduce variability in skill metrics
(Massonnet et al., 2016; Ferro, 2017; Mortimer et al., 2020; Lin
et al., 2021).

The two products also display non-negligible differences in
land-sea masks: for instance, the area covered by ocean south of
60°S differs by about 7.5% between the two products (46.93 million
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km? for NSIDC-0081 vs 50.76 million km? for OSI-401b), likely due
to differences in spatial resolution and in the treatment of landfast
ice and ice shelves. These differences in land-sea masks and in
reprocessing algorithms in observational references are to be kept in
mind when interpreting SIPN South forecast errors, as these
forecast errors can also have a component originating from the
verification data itself.

NSIDC-0081 does not extend back prior to 2015 and OSI-401b
does not extend back prior to 2005. Long-term climatologies were
thus estimated with a third product, namely the OSI-450 dataset
(Lavergne et al., 2019) recently superseded by the OSI-450a
product, over the period 1979-2015. Note that the estimated
climatologies are relatively insensitive to the choice of the
observational product (see, e.g., Figure 1A of Roach et al. (2020)
or Figure 3B of Lin et al. (2021)).

2.4 Climatological forecast

When assessing forecast skill, it is advisable to define a
benchmark forecast (also known as the ‘baseline’ or ‘reference’
forecast) that is cheap to construct. The goal of such a benchmark
forecast is to help establish whether the other forecasts outperform a
naive prediction. In our case, the benchmark forecast is defined as
the climatological forecast, comprising a 30-member ensemble
corresponding to the 30 sea ice states of the 30 years preceding
the target season. For example, the benchmark forecast for the
2020-2021 December-January-February forecasting season consists
of the observed sea ice areas and concentrations of the December-
January-February 1990-1991, 1991-1992, ... 2019-2020 seasons.
The climatological forecast is based on the OSI-401b product of
sea ice concentration after 2015, and on the OSI-450 product before
2015. It is labeled “climatology” in the figures.

We are aware that other benchmark forecasts could have been
introduced at this stage, such as: the trend extrapolation (sea ice
area at day D is extrapolated from the linear or quadratic trend
fitted to the previous areas at day D from previous years), the
persistence forecast (sea ice area at day D is equal to the sea ice area
at the initial time, 1., 1st of December), the anomaly persistence
forecast (sea ice area at day D is the sea ice area anomaly at the
initial time added to the climatological sea ice area at day D), the
damped anomaly persistence forecast (wherein the previous
forecast is weighted by the auto-correlation of the time series),
and many more. While looking simple in their formulations, these
alternative benchmark forecasts are not always straightforward to
implement for timeseries that are characterized by marked seasonal
cycles in the mean, in the trend, and in the variability of sea ice
concentration. In addition, producing ensembles of forecasts is not
straightforward as these alternative benchmarks are deterministic
by nature. Constructing ensemble statistics for these alternative
benchmarks would require making assumptions on the statistical
structure of the anomalies (e.g., accounting for autocorrelation in
the time series, gaussianity or not, heteroscedasticity or not), which
would in turn mean that we have created a new statistical model in
its own right. For these reasons, we stick to the climatological
forecast that requires no assumptions other than the number of
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years included. Note also that, since the long term trend of Antarctic
sea ice extent is near-zero, a climatology benchmark is appropriate
(unlike in the Arctic).

2.5 Domain boundaries

For regional analyses, we split the Southern Ocean into five
regions following common definitions used in previous studies
(Massonnet et al., 2013). The relevant regions are the Weddell
Sea sector (60W-20E), the Indian sector (20E-90E), the West Pacific
sector (90E-160E), the Ross Sea sector (160E-130W), and the
Amundsen-Bellingshausen Seas sector (130W-60W). We refer to
“Antarctic” or “circumpolar” when we mean the full 180W-180E.
The five regions are shown on the map of Figure 1.

2.6 Data and code availability

The SIPN South project is intended to be a community project
whereby anyone can produce diagnostics and analyses based on the
data contributed. All the scripts, codes, and data are available from
the SIPN South GitHub repository. The figures shown in this paper
were generated from the release https://github.com/fmassonn/sipn-
south-public/releases/tag/published.

3 Results and discussion

3.1 Does the SIPN South ensemble exhibit
systematic forecast errors?

To answer that first question, we consider the forecast
distribution of February mean sea ice area at the regional and
circumpolar scales, along with the two verification datasets
introduced in Sec. 2.3 (Figure 3). The plots presented in the
figure summarize the bulk of the forecast distribution (group
median and 10-90% range) as well as forecasts outside this range.
Figure 3 also displays the historical distribution of the
corresponding observed sea ice areas (1979-2015) following the
same conventions as the forecast distributions. These historical
distributions confirm that sea ice area in the six previous years has
been anomalously low, in line with Figure 1. All regions have
contributed to create these circumpolar negative anomalies. The
Ross Sea has featured the largest reductions.

The first result is that observational uncertainty (indicated by
the difference between the pair of black dots in Figure 3) is generally
small in comparison to forecast uncertainty, apart from the Indian
Sector, where it can be comparable to the 10-90% forecast range, as
in 2020. The Indian Sector is, however, the region with the smallest
climatological sea ice area (~5% of the circumpolar area). In
absolute value, the observational spread is comparable to the
observational spread in other sectors (~0.1 million km?
maximum), but the apparent spread is magnified by the fact that
the amount of sea ice to predict is very limited.
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Observed and SIPN South forecast February mean sea ice areas
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Distribution of the SIPN South forecasts and observed February mean sea ice areas for each of the forecasting seasons. The blue intervals represent
the SIPN South distribution (10-90%), with the blue square referring to the ensemble median. The blue dots are those forecasts falling outside the
10-90% bulk of the distribution. The two black crosses denote the observational references. The red interval, square, and dots are the corresponding
estimates for the climatological forecast. The light horizontal dotted line is drawn from the median to facilitate the comparison between the

forecasts and the climatological state.

A second result is that the circumpolar SIPN South range of sea
ice areas bracket observations for all years (Figure 3). The SIPN
South forecast ensemble is therefore not incompatible, in a
statistical sense, with the observations for the total sea ice area.
Interestingly, for each year, the medians lie below the 1979-2015
climatological median (horizontal dashed line), suggesting that as a
group, the SIPN South forecasts capture well the tendency since
2015 of sea ice area to lie on the low side of the climatological
distribution. This gives credit to the SIPN South forecast ensemble
having added value over a trivial climatological forecast. We note
finally that the historical climatological distribution would be a poor
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forecast given that all six recently observed states lie below the 10th
climatological percentile.

Analyzing regional forecasts allows us to establish whether the
total circumpolar sea ice area forecast skill is obtained for the right
reasons or thanks to error compensations at the regional scale. The
SIPN South forecasts perform generally well in the Weddell Sea, in
the West Pacific, and in the Amundsen-Bellingshausen Seas sectors:
in those regions, the two observational datasets fall within the
forecast range. We have deliberately not reported skill statistics as
the sample size (n = 6 years) is very low. The Ross Sea stands out as
the region with large systematic errors. The median systematically
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overestimates the observed values and the observations lie at the
edge, if not outside, of the 10-90% forecast range, for reasons that
we will discuss in the next section.

Since Figure 3 displays February means, it does not convey
information about how the sea ice area was forecast between
initialization time (1st of December) and the target month of
February. Figure 4 shows the daily evolution of the circumpolar
sea ice area (forecast and observed) for the 2022-2023 exercise, for
the subset of statistical and dynamical contributions. A striking
pattern, also seen for all five previous forecasting seasons (see
Supplementary Material), is clear: on average, the SIPN ensemble
starts biased high for the circumpolar area; then, from mid-
December to mid-January, melt rates are largely overestimated
compared to observational references (Figure 4, right column).
This feature is particularly evident for dynamical model
contributions but is also shared by one statistical contribution.

Daily mean Southern Ocean sea ice area, 2022-2023
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In dynamical model contributions, several reasons can explain this
general overestimation of sea ice area at initial time: issues in the
initialization procedure or biases in the winter mean state. Regarding
the initialization procedure, at least one group (Met Office) follows a
“lagged” approach meaning that the ensemble of initial conditions is
drawn from the 21 previous days (twice a day) states before the
initialization date (1st of December). Due to the seasonality of the sea
ice area, all corresponding 42 states display a larger sea ice area than the
one on Dec 1. For other contributions (e.g, ucl), the source of the
problem is different. The ocean-sea ice model exhibits a well-known
positive late winter bias in sea ice area (Barthélemy et al., 2018; Massonnet
et al, 2019) causing excessive melt rates during the spring season. The
origins of this winter bias have not been identified yet but appear to be
common to other dynamical models. In statistical contributions, the
initial overestimation is less evident: the forecasts appear to be more
clustered around the observed state at initial time. An interesting feature

Weekly running melt rates, 2022-2023
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(Left column) Daily Antarctic sea ice area forecast by the groups participating in the 2022-2023 exercise, separated in (top) statistical contributions
and (bottom) dynamical contributions. When several ensemble members are submitted by a group, the mean of the distribution is considered. The
verifying observational references are shown as thick black lines. The climatological forecast is shown as the black dotted line. (Right column)
Running weekly melt rates, computed for day d as the value of the timeseries of the left panel at day d minus the value at day d — 7. The same

figures for previous years are shown in the Supplementary Material
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is that the climatological forecast itself is biased high on December Ist,
consistently with the recent negative anomalies displayed in Figure 1.

3.2 Do SIPN South forecasts provide added
value over climatological benchmarks?

With only six seasons of forecasts (2017-2018 to 2022-2023),
delivering firm statements on the ability of forecasts to predict
interannual variations in sea ice area skill is beyond reach. However,
most contributions consist of ensembles of forecasts, so a few
conclusions can at least be drawn on the appropriate dispersion
properties of individual submissions. To exemplify several aspects
of forecast characteristics, we show in Figure 5 the fitted probability
density functions of the February mean sea ice area for all groups
that participated in the 2022-2023 forecasting season as well as for
the climatological forecast. We first note that, in general, statistical
model contributions provide fewer ensemble members than
dynamical model contributions. A possible reason is that
delivering ensemble forecasts has long been standard practice in
the weather and climate prediction communities, which frequently
construct ensembles to produce probabilistic assessments. Statistical
approaches are based on simpler models where it is not always clear
how uncertainty should be sampled. All members (colored crosses)
in Figure 5 should be viewed as equally plausible forecasts within
each submission, except for the NicoSun contribution where each
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FIGURE 5

Distribution of the February mean circumpolar sea ice areas forecast
by the groups participating in the 2022-2023 season and the
verifying observations (vertical dashed lines). The color coding
follows the same conventions as in Figure 4. The probability density
functions are drawn with a kernel-density estimate using Gaussian
kernels.
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member corresponds to three scenarios of high melt, medium melt,
and low melt, respectively.

The first feature that is apparent from Figure 5 is the large
variability in the shapes of the forecast distributions. Several
contributions are underdispersive (or overconfident) in the sense
that the observed value is statistically incompatible with the forecast
distribution (e.g., barreira, gfdl). The lack of bias correction is one
plausible reason for this behavior. Other contributions are
overdispersive (or underconfident) in the sense that the forecast
distribution is much wider than the climatology (e.g., SINTEX-F2).
Neither underdispersive nor overdispersive ensemble forecasts are
desirable from a decision-making point of view: underdispersive
forecasts are sharp but most often do not include the actual
outcome, while overdispersive forecast distributions most often
include the actual outcome but are overly flat.

Striking a good balance between bias (i.e., how far the forecast
mean is compared to the verification value) and spread (i.e., how
uncertain is the forecast) is essential in ensemble forecasting. The
ability to reach a good tradeoff can be measured with a single metric,
namely the continuous rank probability (CRPS). The CRPS is a
generalization of the Brier Score to continuous variables (Jolliffe and
Stephenson, 2003) and measures the area under the squared
difference between the cumulative density function of the forecast
distribution and the cumulative density function of the
observations, i.e., a step function at the observed value. The CRPS
is a convenient metric because it penalizes forecasts that are
systematically biased high or low, but also forecasts that are
excessively spread out. According to the definition, a CRPS value
of zero is obtained for a perfect forecast with the mass of the
distribution centered at the verifying observation value, and larger
CRPS values correspond to less skillful forecasts.

The CRPS values for all six forecasting seasons are reported in
Table 2. Caution should be exercised when interpreting the results
in this table since the CRPS, like any metric of performance, is
sensitive to sampling issues. Nevertheless, several interesting
features are noted. First, no obvious relationship emerges between
the type of forecasting approach and the CRPS metric: the statistical
and dynamical sub-groups score an average value of 0.57 and 0.49
million km? squared for the six forecasting seasons, respectively.
Second, we note that 51% (42 out of 82) predictions are superior, in
a CRPS sense, to the climatological forecast. This proportion raises
to 65% (22 out of 34) for the last two seasons when an all-time
minimum occurred (2021-2022 and then 2022-2023). Several
individual contributions systematically outperform that
benchmark forecast. Finally, the group forecast, obtained by
aggregating individual forecasts (see Sec. 2.3) is systematically
more skilled than the climatological forecast and more skilled
than most of the individual forecasts. We also note that the CRPS
of the statistical and dynamical sub-group forecast is more skilled
than the average CRPS within each respective group. This behavior
is reminiscent of what is observed with the multi-model mean in
climate change simulations, and is likely explained by the
cancellation of random errors that characterize individual forecasts.
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TABLE 2 Continuous Rank Probability Scores (CRPS) for the February mean Antarctic sea ice area forecasts, for each of the forecasting seasons of the
SIPN South project.

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
climatology 0.37 0.20 0.19 0.24 0.51 0.66
Statistical models
barreira / 1.64 0.41 0.51 0.80 1.02
Gateway 0.71 / / / / /
Lamont 0.22 0.79 0.17 0.42 0.77 1.54
Meier-NSIDC / / / / 0.69 1.17
NASA-GSFC 0.47 0.15 0.42 0.38 0.51 0.59
NicoSun 0.22 0.20 0.15 0.12 0.25 0.22
SYSU-SML-KNN / / / 0.18 0.49 0.63
SYSU-SML-ConvLSTM / / / / / 0.53
SYSU-SML-MLM / / / / / 1.22
Statistical group forecast 0.18 0.30 0.21 0.20 0.52 0.65
Dynamical models
BSC / / / / 0.10 0.88
CanSIPSv2 / / / 0.13 0.14 0.05
cmec / 0.12 / 0.65 0.57 0.43
CNRM / / 0.08 1.68 1.61 /
ecmwf 0.49 0.92 0.43 0.32 0.69 0.56
emc 1.14 / / / / 1.89
FIO-ESM 0.52 0.30 0.57 0.31 0.44 0.46
gfdl / / / / 0.49 0.60
MetOffice 0.04 0.45 0.26 0.08 0.51 0.39
Modified-CanSIPS 0.21 0.20 0.36 / / /
mpas-cesm 0.70 / / / / /
nasa-gmao 0.28 0.56 0.79 / / /
SINTEX-F2 / / / 1.36 0.39 0.86
ucl 0.09 0.13 0.10 0.13 0.28 0.16
uw / / / / / 0.23
Dynamical group forecast 0.19 0.27 0.18 0.20 0.17 0.22
Group forecast 0.18 0.19 0.13 0.15 0.24 0.31

Units are million km? squared. The contributions are separated into statistical and dynamical sub-groups. The CRPS are in bold font when the forecast performs better than the climatological

forecast. The “Statistical group forecast”, the “Dynamical group forecast” and the “Group forecast” rows show the CRPS obtained by aggregating the data from the corresponding sub-groups or

entire ensemble, respectively (see Sec. 2.2).

3.3 Is there a relationship between
forecasting approach and skill?

The previous section has hinted at the fact that, from a circumpolar
point of view, no sub-group of forecasts (statistical or dynamical)
outperforms the other. The results have also suggested the value of
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aggregating the individual forecasts to produce a group forecast. On the
other hand, Section 3.1 has shown that the skill is region-dependent in
the SIPN South ensemble. To assess the ability of the prediction systems
to capture the regional distribution of sea ice concentration, we compute
the Integrated Ice Edge Error (IIEE, Goessling et al. (2016)). The IIEE is
the areal integral of all grid cells where the forecast and the verification
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disagree on a certain event, defined here as sea ice presence (SIC > 15%).
For one-member forecasts, the calculation of the IIEE is straightforward:
the spatial fields of SIC are converted to 1 or 0 based on the 15% SIC
threshold and the resulting binary field is compared to the observed
binary field of ice presence. The areas of grid cells where sea ice is
present in observations but absent in the forecasts, or absent in
observations but present in the forecasts are then summed. For multi-
member forecasts, the calculation is slightly different: binary fields of sea
ice presence are defined for each member individually, and a probability
of sea ice presence is calculated by averaging the binary fields across the
ensemble. The areas of grid cells where sea ice present in observations
but present with < 50% probability in the ensemble, or absent in
observations but present with > 50% in the ensemble, are then summed.
To compute the IIEE, all forecasts and verification data were first
remapped (nearest-neighbor interpolation) to a 2° by 2° regular grid.

The IIEEs for the 2022-2023 forecasting season are shown in Figure 6.
In line with Figure 4 (circumpolar sea ice area daily time series), dynamical
predictions in general exhibit larger initial errors than statistical predictions.
These initial errors in dynamical predictions develop throughout the
melting season until ~1Ist of January, before a sharp reduction towards
the month of February. For that month, no type of prediction appears to be
superior to another for the ITEE metric. The group forecast has an IIEE that
is among the lowest from early February, confirming at the regional scale
the conclusions obtained at the circumpolar scale.

4 Conclusions, perspectives,
and recommendations

The SIPN South project was initiated in 2017, i.e., one year after the
beginning of a series of anomalously low sea ice conditions in the
Southern Ocean (Figure 1). The non-stationary character of sea ice area
anomalies suggests that climatological forecasts could be of limited value
for seasonal prediction. An important finding of this study is that several

Integrated Ice Edge Error (2022-2023)
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climatology

group forecast

= = = alternative verification
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FIGURE 6

Integrated Ice Edge Error (see the text for definition) for the
contributions providing the sea ice concentration information. The
color coding follows the same conventions as in Figure 4. The black
curve is the benchmark climatological forecast (see Section 2.4) and
the thick blue curve is the IIEE of the group forecast. The reference
product for the IIEE calculation is the NSIDC-0081 product, and the
grey curve shows the IIEE of the alternative verification product
OSI-401-b.
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prediction systems, based on both statistical and dynamical modeling,
are consistently more skillful than the climatological forecast. The group
forecast, obtained by aggregating all individual forecasts, is found to
outperform the climatological forecast and the majority of individual
forecasts themselves for two standard metrics of performance, the
continuous rank probability score and the integrated ice edge error.

The Ross Sea appears to be the sector where sea ice prediction is the
most challenging and where spread is the largest, although a recent
study (Payne et al., 2022) demonstrates moderate skill in the sector with
a dynamical model. While we have not attempted here to understand
the sources of prediction errors and why they vary regionally, we can
formulate hypotheses. The Ross Sea summer sea ice concentration
anomalies are linked to the spring sea ice drift and thickness anomalies
in the neighboring Amundsen Sea sector. In observations, westward
coastal currents transport sea ice toward the Ross ice shelf during the
spring season, and sea ice is then advected offshore by the dominant
southerly winds (e.g., Holland and Kimura, 2016). This coupled
dynamical process is difficult to simulate at the resolution of current
ocean-sea ice dynamical models (Holland et al,, 2014). In addition, the
statistical models participating in SIPN South (Table 1) do not consider
the initial sea ice thickness as a predictor except for one (NicoSun),
which turns out to be performing relatively well. The poor performance
of forecasts in the Ross Sea could also be explained by the fact that
predictability is inherently lower there compared to other sectors. In
dynamical model predictions, ensemble spread is usually the largest in
the Ross sea (not shown), which supports this idea of limited initial-
value predictability in that sector.

Several studies have reported long-range (>1 yr) sea ice
predictability thanks to mechanisms of reemergence (e.g, Holland
et al,, 2013; Marchi et al,, 2019) and the results of SIPN South might
appear disappointing, at least in light of the initial prospects raised in
these perfect predictability studies. The ocean-to-sea ice connection
that brings the long-range predictability of surface conditions is more
direct in winter (since the deep mixing causes direct interaction),
whereas the summer connection requires simulation of more complex
process (mixed layer shoaling, ice-albedo feedback, vertical mixing,
etc.), which is likely not captured by the current models.

The results of this study have highlighted that dynamical models,
even when they are initialized with observed or reanalyzed ocean-sea ice
states, exhibit a positive bias in sea ice area at initial time but no bias at
the sea ice minimum, implying excessive sea ice area losses during the
melting season. The reason could be that the dynamical contributions
are initialized with different products from the ones used for verification.
More diagnostics (e.g., tendencies in sea ice concentration due to
thermodynamic and dynamic processes) would be required to
pinpoint the deficient physical mechanisms in these models.

For the metrics of performance introduced in this paper, the
statistical models appear to perform better than the dynamical models
for predicting the spatial information during the melting season
(December and January, see the IIEE curves in Figure 6).
Nonetheless, a limitation of statistical contributions is that most of
them are deterministic, i.e., provide only one prediction (the NicoSun is
an exception, providing forecasts as a range of three scenarios: low melt,
medium melt, high melt). The deterministic nature of most statistical
forecasts is contrasted by the large ensemble size in dynamical models,
exceeding 50 ensemble members for several dynamical contributions,

frontiersin.org


https://doi.org/10.3389/fmars.2023.1148899
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Massonnet et al.

and can be regarded as a serious limitation to the use of these statistical
predictions by stakeholders. Stakeholder-relevant diagnostics like the
probability of sea-ice presence (ie., the probability of observing sea ice
concentration above 15% at a given point at a given day) cannot be
reliably estimated with statistical models alone when they provide only
one or even three ensemble members. In this context it is worth
mentioning that one of the statistical SIPN South contributions,
AWI-SDAP, provided just that probability of sea ice presence instead
of sea ice concentration (although only for one year). However, this
contribution could not be included in all analyses because it is not
possible to derive sea-ice area from the probability of ice presence. In
future intercomparison studies, we might thus recommend submitting
forecasts of the probability of sea ice presence directly.

The conclusions presented here draw on six seasons of
coordinated sea ice predictions since 2017. One of the novel
aspects of SIPN South is that it collects predictions done in a
real-time context with the best possible information available at
the time of submission by each group. These predictions
differ from hindcasts (retrospective forecasts) that are less
constrained by data unavailability (since ocean/atmosphere/
sea ice reanalyses are released with a couple of weeks or
months of delay). Also, hindcasts might exhibit larger skill
than real-time forecasts due to the fact that the models are,
consciously or not, continuously adapted and tuned to represent
new climatic situations.

The principal value of the SIPN South community effort is to
identify and engage contributors on best practices, while exploring the
current skill in forecasting austral summer sea ice conditions. We are
aware that we might miss potential contributions from individuals,
groups, or institutions that are not registered on those lists or on social
media. We will continue to regularly collect forecasts for the summer
season, and are currently expanding the protocol for other seasons. The
possibility to submit more diagnostics such as sea ice drift and
thickness, oceanic mixed layer depth and heat content, will be added
to the SIPN South protocol to better partition forecast errors between
initial-condition uncertainty and model uncertainty. We will also
consider developing near-operational benchmark datasets beyond
simple climatology. Future work will also include a more systematic
evaluation of skill at the regional scale, will accept longer forecasts (out
to fall and winter), and will allow contributors to re-submit forecasts in
a hindcast context, i.e. when all datasets at initial times are available.
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