
Automatica 153 (2023) 111046

Contents lists available at ScienceDirect

Automatica
journal homepage: www.elsevier.com/locate/automatica

Scale fragilities in localized consensus dynamicsI

Emma Tegling a,⇤, Bassam Bamieh b, Henrik Sandberg c

a Department of Automatic Control, Lund University, P.O. Box 118, SE 221 00, Lund, Sweden
b Department of Mechanical Engineering at the University of California at Santa Barbara, Santa Barbara, CA 93106, USA
c School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE 100 44, Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 14 March 2022
Received in revised form 2 February 2023
Accepted 16 March 2023
Available online 2 May 2023

Keywords:
Multi-agent networks
Large-scale systems
Fundamental limitations

a b s t r a c t

We consider distributed consensus in networks where the agents have integrator dynamics of order
two or higher (n � 2). We assume all feedback to be localized in the sense that each agent has
a bounded number of neighbors and consider a scaling of the network through the addition of
agents in a modular manner, i.e., without re-tuning controller gains upon addition. We show that
standard consensus algorithms, which rely on relative state feedback, are subject to what we term
scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n � 3),
we prove that no consensus algorithm with fixed gains can achieve consensus in networks of any
size. That is, while a given algorithm may allow a small network to converge, it causes instability
if the network grows beyond a certain finite size. This holds in families of network graphs whose
algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in
network size (e.g. all planar graphs). For second-order consensus (n = 2) we prove that the same scale
fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin
(e.g. directed ring graphs). The proofs for both results rely on Routh–Hurwitz criteria for complex-
valued polynomials and hold true for general directed network graphs. We survey classes of graphs
subject to these scale fragilities, discuss their scaling constants, and finally prove that a sub-linear
scaling of nodal neighborhoods can suffice to overcome the issue.

© 2023 Published by Elsevier Ltd.

1. Introduction

Characterizing the dynamic behaviors of networked or multi-
agent systems has been an active research area for many years. In
particular, since the works by Fax and Murray (2004), Jadbabaie,
Lin, and Morse (2003), and Olfati-Saber and Murray (2004), the
prototypical sub-problem of distributed consensus has been the
subject of significant research efforts. While the particular mod-
eling aspects vary, the consensus objective is to coordinate agents
in a network to a common state of agreement. Applications range
from distributed computing and sensing to power grid synchro-
nization and coordination of unmanned vehicles (Olfati-Saber,
Fax, & Murray, 2007).

The most traditional consensus problem is of first order, mean-
ing that agents are modeled as single integrators with a state
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that develops according to a weighted sum of differences be-
tween states of neighboring agents, that is, relative state feed-
back. Second-order consensus can model coordination of agents
with mass and is used to study formation control in multi-vehicle
networks. The corresponding higher-order problem, to which
most results in this paper pertain, has also received significant
attention, as in Jiang, Wang, and Jia (2009), Ni and Cheng (2010),
Radmanesh, Naghash, and Mohamadifard (2017), Ren, Moore, and
Chen (2007), Rezaee and Abdollahi (2015) and Zuo, Tian, Defoort,
and Ding (2018). Here, each agent is modeled as an nth order
integrator, and the control signal is a weighted sum of relative
feedback terms. This can be viewed as an important theoretical
generalization of the first- and second-order algorithms (Jiang
et al., 2009), but also has practical relevance. For example, po-
sition, velocity, as well as acceleration feedback play a role in
flocking behaviors, resulting in a model where n = 3 (Ren et al.,
2007).

Existing literature has typically focused on deriving conditions
for convergence of a given set of agents to consensus, and how
such conditions depend on various properties of the network.
For example, directed communication, a switching or random
topology (Ni & Cheng, 2010), or a leader–follower structure (Zuo
et al., 2018). This paper takes a different perspective and concerns
the scalability of given consensus algorithms to large networks

https://doi.org/10.1016/j.automatica.2023.111046
0005-1098/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.automatica.2023.111046
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.111046&domain=pdf
mailto:emma.tegling@control.lth.se
mailto:bamieh@engineering.ucsb.edu
mailto:hsan@kth.se
https://doi.org/10.1016/j.automatica.2023.111046


E. Tegling, B. Bamieh and H. Sandberg Automatica 153 (2023) 111046

under a modular design principle. That is, we assume that the
interaction rules between agents are fixed, (i.e., pre-designed)
and localized, and grow the network through the addition of
more and more agents. It has previously been observed that this
type of modular scaling can lead to poor dynamic behaviors in
first- and second-order consensus problems, such as a lack of
network coherence (Bamieh, Jovanovi¢, Mitra, & Patterson, 2012;
Patterson & Bamieh, 2014; Siami & Motee, 2016; Tegling, Mitra,
Sandberg, & Bamieh, 2019). These behaviors are a question of
control performance. In this paper, we show that the question
of scalability in high-order consensus is more fundamental: can
stability be maintained as the network grows?

This paper shows that both second- and higher-order consen-
sus (n � 2) are subject to scale fragilities in certain classes of
network graphs. These imply that stability (and thereby conver-
gence to consensus) is lost if the network grows beyond some
finite size. For n � 3, our result is particularly clear-cut: the
consensus algorithm treated in, for example, Ren et al. (2007)
does not scale stably in any family of graphs whose algebraic
connectivity decreases towards zero in network size.

The algebraic connectivity, that is, the smallest non-zero
eigenvalue of the graph Laplacian, decreases towards zero in
families of graphs where nodal neighborhoods are localized in
the sense that they are bounded in size and reach (the formal
definition is given through the graph’s isoperimetric, or Cheeger,
constant). Here, we review this property for graphs such as lat-
tices, trees, and planar graphs, and derive the rates at which their
respective algebraic connectivity decreases. In leader–follower
consensus of order n � 3, the scale fragility arises in any
undirected graph family where the neighborhood size is bounded.
This latter result was observed in the context of vehicular strings
by Barooah and Hespanha (2005) and Yadlapalli, Darbha, and
Rajagopal (2006). Here, we generalize that result to leaderless
consensus and general directed, weighted graphs.

For second-order consensus (n = 2), the scale fragility applies
only to particular classes of directed graphs. These are charac-
terized by a complex Laplacian eigenvalue that approaches the
origin as the network size grows. This applies, for example, to
directed ring graphs. The particular result for ring graphs has pre-
viously been reported in Cantos, Veerman, and Hammond (2016),
Herman (2016) and Stüdli, Seron, and Middleton (2017), but our
work provides a significant generalization. The result implies that
ring-shaped vehicular formations, such as those where adaptive
cruise control is used to regulate spacing and velocity to the
preceding vehicle, see Gunter et al. (2021), are at risk of becoming
unstable.

We remark that the phenomenon we describe in this paper
is distinct from the issue of string stability in vehicular strings.
String instability, see e.g. Seiler, Pant, and Hedrick (2004) and
Yadlapalli et al. (2006), implies that disturbances are amplified
along the string of vehicles, though the overall system dynamics
can be stable. It is therefore a notion of performance rather than
stability, see also Besselink and Knorn (2018). Here, we describe
a loss of closed-loop stability, subject to a modular scaling of the
network.

The fact that consensus may fail to scale stably to large net-
works has, to the best of our knowledge, not been observed in
literature apart from the aforementioned works. While it is noted
in Jiang et al. (2009) and Ren et al. (2007) that controller gains
in high-order consensus must be chosen with care to ensure
stability, we point out that no such choice can guarantee sta-
bility in a network that grows. For so-called open multi-agent
systems (Franceschelli & Frasca, 2021; Hendrickx & Martin, 2017),
where agents may come and leave while adhering to, e.g., a
consensus protocol, our results imply limitations on the allowable
size of the overall system (depending on the agent dynamics and
the degree of locality).

The scale fragilities we describe can in principle be attributed
to the relative state feedback upon which the consensus algo-
rithm is based. It is known that a restriction to relative feedback
imposes performance and design limitations; an issue that was
analyzed formally in Jensen and Bamieh (2022). In this paper, we
also discuss how the scalability can be achieved if the controller
has access to absolute feedback.

The locality property, that is, bounded nodal neighborhoods,
is also key for our results. A natural question is therefore how
nodal neighborhoods would need to scale to alleviate the scale
fragility. Interestingly, we prove using a ring graph topology that
it can suffice to grow neighborhoods as N2/3, where N is the net-
work size. We note that this only holds for leaderless consensus;
leader–follower consensus requires neighborhoods proportional
to N .

The present paper extends our preliminary work in Tegling,
Bamieh and Sandberg (2019), where the result on high-order
(n � 3) consensus was first reported. The corresponding result
herein is improved in its formalism and generalized to all directed
graphs families. Our characterization of graphs with decreasing
algebraic connectivity has been expanded with a general analytic
criterion. All other results are new.

The remainder of this paper is organized as follows. We next
introduce the nth order consensus algorithm along with impor-
tant definitions and assumptions. In Section 3 we give the result
for high-order consensus. We also discuss classes of graphs where
the result applies and give numerical examples. Section 4 then
presents corresponding results for second-order consensus. In
Section 5 we discuss ways to retrieve scalable stability, e.g. by
scaling nodal neighborhoods, and we conclude with a discussion
in Section 6.

2. Problem setup

We now introduce the network model along with the nth
order consensus algorithm. This algorithm is a straightforward
extension to standard first- and second-order consensus and has
previously been considered in Ni and Cheng (2010), Ren et al.
(2007) and Rezaee and Abdollahi (2015).

2.1. Network model and definitions

Consider a network modeled by the graph GN = {VN , EN} with
N = |VN | nodes. The set EN ⇢ VN ⇥ VN contains the edges, each
of which has an associated nonnegative weight wij. We generally
let the graph GN be directed, so the edge (i, j) 2 EN points from
node i (the tail) to node j (the head). The neighbor set Ni of
node i is the set of nodes j to which there is an edge (i, j) 2 E . The
outdegree of node i is defined as d+

i =
PN

j=1 wij and its indegree
is d�

i =
PN

j=1 wji (wij = 0 if (i, j) /2 E). The graph GN is balanced if
d+

i = d�

i for all i 2 VN and undirected if (i, j) 2 EN ) (j, i) 2 E for
all i, j 2 VN and wij = wji. It has a connected spanning tree if there
is a path from some node i 2 VN to any other node j 2 VN\{i}.
The r-fuzz of a graph GN is the graph obtained from GN by adding
an edge (u, v) for all v that are at most r steps away from u.

Going forward, we will model networks with an increasing
numbers of agents. We therefore consider GN as a member of a
sequence, or a family, of graphs {GN} in which the network size N
is increasing. We remark that GN need not be a subgraph of GN+1
for our results to hold.

The graph Laplacian L of GN is defined as follows:

[L]ij =

8
<

:

�wij if j 6= i and j 2 NiP
k2Ni

wik if j = i
0 otherwise.

(1)

2
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Denote by �l (or �l(GN ) where explicitness is needed) with l =

1, . . . ,N the eigenvalues of L. Zero is a simple eigenvalue of L if
and only if the graph has a connected spanning tree, which will
be the scenario of interest throughout. Remaining eigenvalues
are in the complex right half plane (RHP), and numbered so that
0 = �1 < Re{�2}  · · ·  Re{�N}. The graph Laplacian L is called
normal if LT L = LLT . If the graph is undirected, L is symmetric and
thereby normal. For a directed graph, normality of L implies that
GN is balanced.

2.2. nth order consensus

The local dynamics of each agent i 2 VN is modeled as a chain
of n integrators:

d
dt

x(0)i (t) = x(1)i (t)

...

d
dt

x(n�2)
i (t) = x(n�1)

i (t)

d
dt

x(n�1)
i (t) = ui(t)

where we assume a scalar state xi(t) 2 R (see Remark 1),
collected in the vector x = [x1, x2, . . . , xN ]T 2 RN . The notation
for time derivatives is such that x(0)i (t) = xi(t), x

(1)
i (t) =

d
dt xi(t) =

ẋi(t) etc. until x
(n)
i (t) =

dn
dtn xi(t). Going forward, we will often drop

the time dependence in the notation.
We consider the following nth order consensus algorithm:

ui = �

n�1X

k=0

ak
X

j2Ni

wij(x
(k)
i � x(k)j ) (2)

where the ak > 0 are fixed gains. The feedback in (2) is termed
relative as it is only based on differences between states of neigh-
boring agents. The impact of absolute feedback, where the con-
trollers have access to measurements of the absolute local state,
is treated in Section 5.

Defining the full state vector ⇠ = [x(0), x(1), . . . , x(n�1)]T 2 RNn,
we can write the system’s closed-loop dynamics as

d
dt
⇠ =

2

666664

0 IN 0 · · · 0

0 0 IN · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN

�a0L �a1L �a2L · · · �an�1L

3

777775

| {z }
A

⇠ , (3)

where the graph Laplacian L was defined in (1) and IN denotes
the N ⇥ N identity matrix.

Remark 1. We limit the analysis to a scalar information state,
though an extension to xi(t) 2 Rm is straightforward if the same
consensus algorithm is applied in all coordinate directions. In this
case, the system dynamics can be written ⇠̇ = (A ⌦ Im)⇠ , where
⌦ denotes the Kronecker product. Our results, which concern the
stability of A, would not change.

2.2.1. Leader–follower consensus
It will also be relevant to consider leader–follower consensus,

where the state of one agent (the leader) is fixed at a desired
setpoint and remaining agents converge to that same state (as-
suming there is a directed path to each of them from the leader
node). Without loss of generality, take Agent 1 to be the leader

and set x1 = ẋ1 = · · · = x(n)1 ⌘ 0. The closed-loop dynamics for
remaining agents can then be written

d
dt
⇠̄ =

2

6666664

0 IN�1 0 · · · 0

0 0 IN�1 · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN�1

�a0L̄ �a1L̄ �a2L̄ · · · �an�1L̄

3

7777775

| {z }
Ā

⇠̄ , (4)

where L̄ is the grounded graph Laplacian obtained by deleting the
first row and column of L, and ⇠̄ is obtained by removing the
states of Agent 1. Note that L̄ unlike L has all of its eigenvalues
in the right half plane (Xia & Cao, 2017).

2.3. Conditions for consensus and scalable stability

The network of agents is said to be achieving consensus if
x(k)i ! x(k)j for all i, j 2 VN , all k = 0, 1, . . . , n � 1, and for any
initial state. It is known that the algorithm (2) achieves consensus
if the eigenvalues of A are in the left half plane, apart from
exactly n zero eigenvalues that are associated with the drift of the
network average. This condition is in line with standard results
for first- and second-order consensus, and is shown in Ren et al.
(2007) for n = 3:

Lemma 2.1 (Ren et al., 2007, Theorem 3.1). In the case of n = 3,
the algorithm (2) achieves consensus exponentially if and only if A
has exactly three zero eigenvalues and all of the other eigenvalues
have negative real parts.

We also require the following lemma:

Lemma 2.2 (Ren et al., 2007, Lemma 3.1). In the case of n = 3, the
matrix A has exactly three zero eigenvalues if and only if L has a
simple zero eigenvalue.

The proofs in Ren et al. (2007) extend straightforwardly to
n > 3. This means that it suffices to verify that the (N � 1) · n
non-zero eigenvalues of A have negative real parts.

In this work, we describe systems where these conditions
may hold for small network sizes N , but where one or more
eigenvalues leaves the left half plane and causes instability when
the network grows beyond some N̄ . In these cases, we say the
control algorithm lacks scalable stability.

Definition 2.1 (Scalable Stability). A consensus control design
is scalably stable if the resulting closed-loop system achieves
consensus over any graph in the family {GN}.

2.4. Underlying assumptions: modularity and locality

The notion of scalable stability of a controller presumes a
modular design principle. This means that new agents are added
to the network with the pre-designed controller gains, which are
not re-tuned as the network grows. This means that the following
important assumptions will underlie our analysis of the control u
in (2):

Assumption A1 (Fixed and Finite Gains). The gains ak for all
k = 0, 1, . . . , n � 1 satisfy ak  amax < 1 and they do not
change if the underlying graph changes. That is, the gains are
fixed with respect to the graph family {GN}. In particular, they
are independent of N .

3
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When it comes to the network graph, our main result will
rely on the property that the algebraic connectivity decreases
in network size. When discussing families of graphs where this
property holds, we will impose the following assumptions, unless
otherwise stated:

Assumption A2 (Bounded Neighborhoods). All nodes in the graph
family {GN} have a neighborhood of size at most q, where q is
fixed and independent of N . That is,

|Ni|  q 8i 2 VN . (5)

Assumption A3 (Finite Weights). The edge weights in {GN} are
finite, that is, wij  wmax < 1 for all (i, j) 2 EN , where wmax is
fixed and independent of N .

Assumptions A2–A3 imply that we consider networks with
bounded nodal degrees.

3. Scale fragility in high-order consensus

This section is devoted to our first important result. We prove
that the high-order consensus algorithm (n � 3) lacks scalable
stability in graph families with what we term a decreasing alge-
braic connectivity. This applies to all graphs where connections
are, in a sense, localized.

3.1. Main result

This section’s main result can be stated as follows.

Theorem 3.1. If n � 3, no control on the form (2) subject
to Assumption A1, is scalably stable in graph families where the
sequence Re{�2(GN )} ! 0 as N ! 1.

Proof. The first step of the proof is a (generalized) block-
diagonalization of the system matrix A. Let T be an invertible
N⇥N matrix such that⇤ = T�1LT is on Jordan normal form. That
is, ⇤ = diag{⇤1, . . . ,⇤k}, where ⇤l, l = 1, . . . , k are rl⇥rl Jordan
blocks, in which the Laplacian eigenvalue �l is repeated along the
main diagonal and ones appear on the superdiagonal (see Horn
and Johnson (1985, Chapter 3) for details). The number k of
Jordan blocks is the number of linearly independent eigenvectors
of L, which may be less than or equal to its number of distinct
eigenvalues. If the graph GN is undirected, then L is symmetric
and thus diagonalizable. In this case, ri = 1 for i = 1, . . . , k = N .
Otherwise, we only impose that the eigenvalue �1 = 0 is simple,
which is equivalent to the graph having a connected spanning
tree. If this is not the case, the graph is disconnected, �2(GN ) = 0,
and the conditions in Section 2.3 do not hold. The system is then
by definition not scalably stable. By pre- and post-multiplying A

by the (Nn ⇥ Nn) matrix T = diag{T , T , . . . , T }, we get

T
�1

AT =

2

666664

0 IN 0 · · · 0

0 0 IN · · ·
...

...
. . .

...
0 0 0 · · · IN

�a0⇤ �a1⇤ �a2⇤ · · · �an�1⇤

3

777775

| {z }
Â

. (6)

By pre- and post-multiplying by a suitable permutation matrix,
the rows and columns of Â can be rearranged into the system

matrix diag{Â1, . . . , Âk} with

Âl =

2

666664

0 Irl 0 · · · 0

0 0 Irl · · ·
...

...
. . .

...
0 0 0 · · · Irl

�a0⇤l �a1⇤1 �a2⇤l · · · �an�1⇤l

3

777775

for l = 1, . . . , k. The eigenvalues of A, equivalently Â, are the
union of the eigenvalues of all Âl since these are decoupled from
each other. Clearly, the n zero eigenvalues of A are obtained from
Â1 since ⇤1 = �1 = 0. Therefore, to ensure scalable stability,
we must require all eigenvalues of all Âl, l = 2, . . . , k to have
negative real parts for any N .

The characteristic polynomial of each Âl is

Pl(s) = (sn + an�1�lsn�1
+ · · · + a1�ls + a0�l| {z }
pl(s)

)rl , (7)

whose roots are given by the roots of pl(s). In general, the eigen-
value �l appearing in pl(s) is complex-valued. We therefore apply
the Routh–Hurwitz criteria for polynomials with complex coeffi-
cients. As these criteria do not appear frequently in literature, we
re-state them in Appendix.

The first Routh–Hurwitz criterion applied to pl(s) reads

an�1Re{�l} > 0. (8)

Since Re{�l} > 0 for l = 2, . . . , k this is always satisfied when
an�1 > 0. The second criterion, given in (A.4), can after some
manipulation be written as

an�1(Re{�l})2(an�1an�2Re{�l} � an�3)
+an�2(Im{�l})2(a2n�1Re{�l} � an�2) > 0, (9)

which must hold for all l = 2, . . . , k. While the factors in front
of the brackets remain positive for all �l (recall, ak > 0), the
brackets themselves are negative if Re{�l} is sufficiently small. In
particular, the condition (9) is violated if Re{�2} = minl Re{�l} is
sufficiently small.

This means that if the criterion (9) is evaluated for a graph
family {GN} in which Re{�2(GN )} ! 0 as N ! 1, it will
eventually (for a sufficiently large, but finite, N) be violated.

We can conclude that at least one root of the characteristic
polynomial p2(s) will have a nonnegative real part for sufficiently
large N . Lemma 2.1 is then not satisfied and the control is not
scalably stable for n � 3. ⇤

Remark 2. If the graph is undirected, then the polynomial (7) has
real-valued coefficients. The result can then be derived using the
standard Routh–Hurwitz criteria. This gives the simpler condition

an�1an�2�2(GN ) � an�3 > 0, (10)

which cannot remain satisfied if {�2(GN )} ! 0 as N ! 1.

Theorem 3.1 implies that high-order consensus does not scale
in certain graph families. Instability will occur at the smallest
size N for which the Routh–Hurwitz criteria are violated, and
at least one eigenvalue crosses to the right half plane. We will
denote this critical network size N̄ . In Fig. 1 we display N̄ for
n = 3, 4, 5 in an unweighted path graph.

3.1.1. High-order leader–follower consensus
Leader–follower consensus (4) in undirected graphs lacks scal-

able stability under a weaker condition, namely, under bounded
nodal degrees. This was also observed in Yadlapalli et al. (2006).

We first require the following Lemma:

4
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Fig. 1. Critical network size N̄ at which the stability conditions are violated for
an nth order consensus algorithm. The graph is an undirected path graph where
each node is connected to its q nearest neighbors. Increasing the neighborhood
size q here increases N̄ faster than linearly — Theorem 5.1 predicts N̄ = O(q3/2),
indicated by dashed lines in the plot. Also note that for higher model order n,
the stability conditions are violated at smaller N̄ .

Lemma 3.2. Consider the grounded Laplacian matrix L̄ of an
undirected graph GN and let Assumptions A2–A3 hold. The smallest
eigenvalue �̄1 of L̄ then satisfies

�̄1(GN ) 
q

N � 1
wmax. (11)

Proof. By the Rayleigh–Ritz theorem (Horn & Johnson, 1985,
Theorem 4.2.2) it holds

�̄1 
v⇤L̄v
v⇤v

, 8v 2 CN�1
\{0}.

This implies in particular that

�̄1 
1
T
N�1L̄1N�1

1
T
N�11N�1

=

P
k2N1

w1k

N � 1


qwmax

N � 1
,

where 1
T
N�1L̄1N�1 =

P
k2N1

w1k is the weight sum of all edges
leading to the leader node 1. The equality holds since each row k
of the grounded Laplacian L̄ sums to zero if the corresponding
node k has no connection to the leader, and otherwise to w1k 

wmax. ⇤
Clearly, �̄1(GN ) ! 0 as N ! 1. The next theorem therefore

follows.

Theorem 3.3. If n � 3, no leader–follower consensus algorithm
on the form (4) is scalably stable in undirected graph families {GN}

under Assumptions A1–A3.

Proof. The arguments in the proof of Theorem 3.1 apply. In this
case, N � 1 real-valued characteristic polynomials pl(s) as in (7)
are obtained. We can use the condition (10), which in this case
reads an�1an�2�̄l � an�3 > 0 for l = 1, . . . ,N � 1. By Lemma 3.2,
that requires

an�1an�2 >
1

qwmax
an�3(N � 1), (12)

which will be violated for sufficiently large N , preventing scalable
stability. ⇤

Remark 3. Assumption A2 of bounded neighborhoods can be
relaxed. As seen from (12), Theorem 3.3 holds if q/N ! 0 as
N ! 1. That is, if nodal neighborhoods have sublinear growth
in N .

3.2. Affected classes of graphs

We proved that high-order consensus lacks scalable stability
in any network where the underlying graph family is such that

Re{�2(GN )} is decreasing towards zero as N increases. For undi-
rected graphs, the smallest non-zero Laplacian eigenvalue �2 is
real-valued and known as the algebraic connectivity of the graph.
For directed graphs, the notion of algebraic connectivity is not
clear-cut, see e.g. Chung (2005). We can, however, make the
following statement:

Lemma 3.4. If L is normal, then Re{�2} = �s2, where �s2 is
the smallest non-zero eigenvalue of Ls = (L + LT )/2, that is, the
symmetric part of L.

Proof. With v an eigenvector, Lv = �2v, and since L is normal
LTv = �⇤

2v, where ⇤ denotes complex conjugate. Then, 1
2 (L +

LT )v =
1
2 (�2 + �⇤

2)v =
1
2 (2Re{�2})v. ⇤

For any balanced graph, the matrix Ls is the graph Laplacian
corresponding to the mirror graph ĜN of GN . The mirror graph (of
any directed graph) is the undirected graph obtained as ĜN =

{VN , EN [ ÊN}, where ÊN is the set of all edges in EN , but reversed,
and whose edge weights are ŵij = ŵji = (wij+wji)/2 (Olfati-Saber
& Murray, 2004). Clearly, the mirror graph of an undirected graph
is the graph itself. Lemma 3.4 implies that when L is normal,
Re{�2(GN )} is obtained as the algebraic connectivity of the mirror
graph ĜN .

We conclude that the result in Theorem 3.1 will apply to graph
families whose Laplacians are normal and where the corresponding
mirror graph family has a decreasing algebraic connectivity. That
is, where {�2(ĜN )} ! 0 as N ! 1. It is therefore meaningful
to identify this property in undirected graph families, which is
what the remainder of this section is devoted to. We first state a
general condition, and then survey particular classes of graphs.

Remark 4. For directed graph families with non-normal Lapla-
cians, a conclusion regarding the sequence Re{�2(GN )} cannot in
general be drawn from the mirror graphs. A notable counter-
example is the directed path graph on N nodes with the edge
set EN = {(i, i + 1) | i = 1, . . . ,N � 1}. Here, Re{�2(GN )} = 1 for
any N , while �2(ĜN ) = 1 � cos ⇡N . For general directed graphs, the
sequence Re{�2(GN )} must therefore be checked case by case.

3.2.1. Condition on the Cheeger constant
In general, the algebraic connectivity decreases in N in any

undirected graph family that is not an expander family. To define
expander families, we require the Cheeger constant (also called
isoperimetric constant), which for non-regular weighted graphs
can be defined as (Chung, 1997, Chapter 2):

h(G) = inf
X⇢V

|@X |d

min{|X |d, |X̄ |d}
. (13)

Here, X̄ = V\X and @X = {j 2 X̄ | (i, j) 2 E, i 2 X} is
called the the boundary set of X . Sets of nodes are measured here
as |W |d :=

P
i2W di, where the nodal degree di =

P
j2Ni

wij.
Loosely speaking, a large Cheeger constant implies that any sub-
set of nodes is well connected to the rest of the graph, and it
is not possible to find a ‘‘bottleneck’’ that separates two graph
partitions from each other as they grow. See Tegling, Middleton
and Seron (2019) for an elaboration and an algebraic condition.
Now, consider the following definition.

Definition 3.1 (Expander Family). Let {GN} be a graph family in
which N ! 1. If the sequence {h(GN )} is bounded away from
zero, {GN} is an expander family.

The following well-established result relates expander families
to our problem:

5
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Fig. 2. Simulation of 3rd order consensus over graph depicted in (a) subject to random initial accelerations. In (b) the network’s 34 agents converge to an equilibrium.
In (c) a 35th node has been added, indicated by red color in the graph. This addition leads to instability. The plots (b) and (c) show position trajectories relative to
Agent no. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Lemma 3.5. The sequence {�2(GN )} is bounded away from zero as
N ! 1 if and only if {GN} is an expander family.

See e.g. Krebs and Shaheen (2011, Chapter 1) for a proof.
Lemma 3.5 implies that a bounded-degree graph family can have
an algebraic connectivity that does not decrease towards zero,
if the same holds for the Cheeger constant. Eq. (13) reveals that
this requires edges to connect across the entire network. In other
words, that feedback is non-localized.

Expander graphs with bounded degrees are difficult to con-
struct explicitly, but they may arise through random processes.
For example, the regular random graph family constructed by
assigning edges through equally likely permutations of the node
set VN , will almost surely be an expander family (Friedman, 1991).

Next, we turn our attention to typical graph families that are
non-expanding and thus have a decreasing algebraic connectiv-
ity.

Remark 5. It is noteworthy that Theorem 3.3 for leader–follower
consensus applies even though {GN} is an expander family. This
means that leaderless consensus, despite being scalably stable
in expander graphs, will be destabilized if one agent becomes
a leader (‘‘is grounded’’). This fragility is described in detail
in Tegling, Middleton et al. (2019).

3.2.2. Lattices, fuzzes and their embedded graphs
Consider a graph over the d-dimensional periodic lattice Zd

M
with N = Md nodes, and let each node be connected to its r
neighbors in each lattice direction. We term this graph, which is
the Cartesian product of d r-fuzzes of ring graphs, a d-dimensional
r-fuzz lattice. This graph is regular and the neighborhood size is
q = 2rd.

Lemma 3.6 (Algebraic Connectivity of r-Fuzz Lattices). For undi-
rected d-dimensional r-fuzz lattices

�2(GN ) = O

✓
1

N2/d

◆
(14)

Proof. See Tegling et al. (2019). ⇤

The decay rate (14) also holds for any subgraph of the r-fuzz
lattice, that is, any graph that is embeddable in it. In particular,
lattices without periodic boundary conditions. This follows from
the following important lemma:

Lemma 3.7. Adding an edge to an undirected graph GN , or
increasing the weight of an edge, can only increase (or leave un-
changed) �2(GN ), and vice versa.

Proof. Adding an edge: See Mohar (1991, Theorem 3.2). Increasing
edge weight: If the weight of the edge (i0, j0) is increased by

�w, the new graph Laplacian can be written L0 = L + �L,
where �L is also a positive semidefinite graph Laplacian (of a
disconnected graph). By Brouwer and Haemers (2012, Theorem
2.8.1) this implies that �0

l � �l for each l = 1, . . . ,N , and in
particular �0

2 � �2. ⇤

3.2.3. Planar graphs
Planar graphs are embeddable in two-dimensional lattices, so

Lemma 3.6 applies. For this important case, however, a more
precise bound is available:

Lemma 3.8 (Algebraic Connectivity of Planar Graphs). For undi-
rected planar graphs,

�2(GN ) 
8qwmax

N
. (15)

Proof. See Spielman and Teng (2007, Theorem 6). ⇤

3.2.4. Tree graphs with growing diameter
The diameter diam{G} of a graph G is defined as the longest

distance between any two nodes in the graph. If we let G be a
tree graph, then, by Grone, Merris, and Sunder (1990, Corollary
4.4) it holds �2  2wmax

⇣
1 � cos

⇣
⇡

diam(G)+1

⌘⌘
. This allows us to

show the following lemma.

Lemma 3.9 (Algebraic Connectivity of Tree Graphs). For undirected
tree graphs,

�2(GN ) 
⇡2wmax

(diam(GN ) + 1)2
. (16)

Proof. Follows from the relation above and the fact that 1 �

cos x 
x2
2 for any x. ⇤

In our case, the tree diameter will always increase in N as
a consequence of Assumption A2. Therefore, {�2(GN )} ! 0 as
N ! 1.

3.3. Numerical examples

We next provide two numerical examples to illustrate the
issue of scalable stability in high-order consensus.

3.3.1. Critical network size, locality and model order
Consider a family of undirected path graphs where each node

is connected to its q/2 nearest neighbors in each direction (i.e., a
q/2-fuzz of a path graph). For any given N , the graph’s connec-
tivity is greater, the greater q is. Increasing q thus delays the
violation of the stability criteria in Theorem 3.1.

In Fig. 1, we depict the critical network size N̄ as a function
of the neighborhood size q. Here, we have selected a consensus
algorithm where a0 = 0.1, a1 = 0.8, a2, a3, a4 = 1, and all edge

6
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weights wij = 1. The plot shows that increasing q increases
the critical network size, faster than linearly. In Section 5 we
discuss the precise scaling of q in N required to defer instability
completely.

We also note that as the model order n increases, the sys-
tem becomes unstable at smaller N̄ . This is because the higher-
order Routh–Hurwitz conditions in (A.2) are violated before the
lower-order ones. It is also in line with common control-theoretic
intuition.

3.3.2. Instability through node addition
Our second example illustrates the phase transition – from

consensus to instability – that the system experiences as the
critical network size is reached. Fig. 2(a) shows a planar graph
that has been randomly generated by means of triangulation.
Here, the maximum neighborhood size is q = 8 and the median
is 5. All edge weights are set to 1.

We consider a third-order consensus algorithm:

x(3)i = �

X

j2Ni

⇥
0.5(xi � xj) + (ẋi � ẋj) + (ẍi � ẍj)

⇤
,

which by Lemma 2.1 will achieve consensus if �2 > 0.5. With 34
nodes, the graph in Fig. 2(a) has �2(G34) = 0.536 and the system
achieves consensus, as seen from the simulation in Fig. 2(b). We
then add a 35th node along with 4 connecting edges, as indicated
in red color in the graph in Fig. 2(a). Now, �2(G35) = 0.493 and
the system becomes unstable.1 Fig. 2(c) shows how the agents’
positions x oscillate at an increasing amplitude.

4. Scale fragility in second-order consensus

Next, we turn our attention to consensus in second-order inte-
grator networks (n = 2). This case is particularly relevant as this
model is used in formation control problems (Olfati-Saber, 2006).
Scalable stability is easily satisfied in second-order consensus if
the underlying graph family is undirected2 (though performance
issues like string instability (Swaroop & Hedrick, 1996) and lack of
coherence (Bamieh et al., 2012) may still be a concern). We show
here, however, that it fails to scale stably in certain families of
directed graphs with complex eigenvalues. More precisely, graph
families where the real part of one or more Laplacian eigenvalues
approaches zero as N grows and at least one of these eigenvalues
has a relatively large imaginary part. The precise condition, which
is illustrated in Fig. 3, is stated in Theorem 4.1. First, we remind
the reader that the Laplacian eigenvalues are ordered as 0 =

�1(GN ) < Re{�2(GN )}  · · ·  Re{�N (GN )}.

Theorem 4.1. If n � 2, no control on the form (2), subject to
Assumption A1, is scalably stable in graph families where, for a fixed
index l̄ 2 {2, 3 . . . ,N},

(1) Re{�l̄(GN )} ! 0 as N ! 1, and
(2) for each N and at least one l 2 {2, 3, . . . , l̄} it holds

arg{�l(GN )} >  , where  2 (0,⇡/2) is a constant angle
independent of N.

Proof. For n � 3 the result follows immediately from
Theorem 3.1 (note, Re{�l̄(GN )} ! 0 ) Re{�2(GN )} ! 0). For

1 This particular value for �2(G35) depends on the placement of the 35th
node. Other placements can allow the critical N̄ > 35, but instability occurs
eventually.
2 This is evident from the upcoming proof of Theorem 4.1. Consider (17)

and note that if GN is undirected, �l(GN ) are real-valued and positive. Since
a1, a0 > 0, all roots of pl(s) are then in the left half plane for any N .

Fig. 3. Illustration of the conditions in Theorem 4.1. If a Laplacian eigenvalue
approaches the origin at an angle greater than some  as the network grows,
then second-order consensus lacks scalable stability. The example trajectory
illustrates �2 of a family of directed ring graphs.

n = 2, we proceed as in the proof of Theorem 3.1 to obtain the
characteristic polynomials

pl(s) = s2 + a1�ls + a0�l, (17)

for l = 2, . . . ,N . The Routh–Hurwitz criterion derived from �4 >
0 in (A.2) with fn�3 = gn�3 = 0 becomes

a21Re{�l}[(Re{�l})
2
+ (Im{�l})2] � a0(Im{�l})2 > 0.

If Im{�l} = 0, this is clearly satisfied since Re{�l} > 0. For
all l 2 {2, . . . ,N} where Im{�l} 6= 0 we can re-formulate the
condition as

a21Re{�l}

"✓
Re{�l}
Im{�l}

◆2

+ 1

#
� a0 > 0. (18)

If the expression in brackets is upper bounded by some con-
stant, this condition will be violated whenever Re{�l} is suffi-
ciently small. Therefore, if the condition (18) is evaluated for
a graph family {GN} in which there are eigenvalues for which
Re{�l(GN )} ! 0 as N ! 1, and it holds

⇣
Re{�l(GN )}
Im{�l(GN )}

⌘2
 const.

for at least one of them, then the condition is eventually violated,
and stability is lost. In our case, Re{�l̄(GN )} ! 0 for some index l̄
implies Re{�l(GN )} ! 0 for 2  l  l̄, so we must check all
eigenvalues 2  l  l̄.

Now,
⇣

Re{�l(GN )}
Im{�l(GN )}

⌘2
 const. is equivalent to having an upper

bound on Re{�l(GN )}
Im{�l(GN )} for an eigenvalue in the first quadrant (recall,

the Laplacian eigenvalues appear in conjugate pairs in the RHP).
This, in turn, is equivalent to having the argument arg{�l(GN )}
bounded away from zero. In other words, arg{�l(GN )} >  for
some fixed  2 (0,⇡/2), and the theorem statement follows. ⇤

A simpler statement pertaining to the special case of �2 can
be stated as follows:

Corollary 4.2. If n � 2, no control on the form (2), subject to
Assumption A1, is scalably stable in graph families where
Re{�2(GN )} ! 0 as N ! 1 while arg{�2(GN )} >  for some
constant  2 (0,⇡/2) that is independent of N.

4.1. Affected classes of graphs

Theorem 4.1 states that if at least one Laplacian eigenvalue is
complex valued and approaches the origin at a non-zero angle as
N ! 1, then second-order consensus fails to be scalably stable.
See also Fig. 3. A particular graph family where this applies
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is directed ring graphs3 with uniform edge weights, as already
observed by Cantos et al. (2016), Herman (2016) and Stüdli et al.
(2017). Here, we demonstrate that it applies to the more general
family of directed lattices with periodic boundary conditions.

4.1.1. Directed periodic lattices
Consider again the d-dimensional r-fuzz lattice from . We

impose location-invariant edge weights in the sense that, if d =

1, wi,i+k = wk for all i 2 ZM , k = ±{1, . . . , r}. This means
that the corresponding graph Laplacian for d = 1 is a M ⇥ M
circulant matrix. In the higher-dimensional case, the Laplacian
is the Kronecker sum of d such matrices (since the graph is the
Cartesian product of d one-dimensional lattices) and N = Md.
Here, we assume the Laplacian is asymmetric:

Assumption A4. The edge weight wk 6= w�k for at least one
k 2 ±{1, . . . , r}.

Lemma 4.3. For the d-dimensional r-fuzz lattice under
Assumption A4,

Re{�2(GN )} = O

✓
1

N2/d

◆
, Im{�2(GN )} = O

✓
1

N1/d

◆
.

Proof. The smallest (in real part) non-zero eigenvalue of the
r-fuzz lattice is given by

�2 =

rX

k=�r
k6=0

wi(1 � cos
✓
2⇡k
M

◆
) � j

rX

k=�r
k6=0

wi sin
✓
2⇡k
M

◆
, (19)

where M = N1/d is the lattice size (Tegling et al., 2019). The
expression (19) is easily obtained from the case d = 1, since the
Laplacian eigenvalues of a Cartesian product of any two graphs
are given by every possible sum of their respective Laplacian
eigenvalues (see e.g. Mohar, 1991), and one eigenvalue is zero
in each. Next, note that since sin(�x) = � sin(x), it is only
under Assumption A4 that Im{�2} 6= 0. Finally, recalling that r is
bounded by Assumption A2, the lemma follows from Maclaurin
series expansions of the real and imaginary parts. ⇤

Lemma 4.3 implies that arg{�2(GN )} ! ⇡/2 as N ! 1, so
the conditions in Theorem 4.1 clearly hold.

Remark 6. In fact, (19) will be an eigenvalue (though not nec-
essarily �2) of a graph that results from a Cartesian product of
any graph with a r-fuzz lattice. This follows from the proof of
Lemma 4.3. Such product graphs would thus also be affected by
Theorem 4.1.

4.1.2. General necessary condition — cyclicity
Characterizing the Laplacian spectra of general directed graph

families is a difficult and largely unsolved problem. Even deter-
mining the properties of graphs that have a real-valued spectrum,
and which are therefore certainly not affected by Theorem 4.1, is
an open problem.

A necessary condition, however, for GN having at least one
complex eigenvalue is that GN has a directed cycle. This is, how-
ever, not sufficient. The term essentially cyclic graphs has been
proposed for graphs with non-real spectra, and properties of
such graphs are examined in Agaev and Chebotarev (2010). To
determine the eigenvalue behavior in N for families of such
graphs, and thereby whether they are affected by Theorem 4.1,
is a graph-theoretical endeavor that is outside the scope of the
present paper.

3 More precisely, a ring graph that is not undirected.

Fig. 4. Theorem 4.1 reveals a scale fragility in the vehicle formation dynamics
ẍi = �a0(xi � xi�1) � a1(ẋi � ẋi�1), where xi is vehicle i’s displacement. These
dynamics can model adaptive cruise control in commercial vehicles (Gunter
et al., 2021). If the vehicles drive in a circle (let x�1 = xN ), the formation is
destabilized at some size N̄ . The same issue does not apply to the line formation.

4.2. Implications and numerical example

These results have interesting implications. First, that circu-
lar formations based on the consensus algorithm (2) are scale
fragile. For example, vehicles driving with adaptive cruise con-
trollers available in modern commercial vehicles can indeed be
modeled as our second-order consensus with unidirectional nearest-
neighbor connections, see Gunter et al. (2021, §II-A) (a constant
reference spacing term can be eliminated by translating the
state). If they drive in a circle, as on a ring road or as in many
experimental set-ups (see e.g. Stern et al., 2018), our results show
that the formation may be destabilized if too many vehicles join.
See also Fig. 4. In such settings, however, it can be possible to
recover scalable stability by including absolute feedback.

Second, we can note that even if the feedback in a ring for-
mation is bidirectional, that is, if the graph is undirected, it can
be destabilized if a slight change in the weights renders the
graph directed. Therefore, formations on undirected ring graphs
are also fragile. We note that the same issues do not apply
to formations on a line. The two therefore have fundamentally
different scalability and robustness properties.

Fig. 5 shows a simulation of a growing circular vehicle for-
mation to illustrate this section’s results. Here, each vehicle’s
displacement xi is controlled with respect to the preceding ve-
hicle so that ẍi = �wi,i�1(xi � xi�1) � 3wi,i�1(ẋi � ẋi�1) for
i = 1, . . . ,N . Let x�1 = xN . We relax the assumption of
location-invariant edge weights wij used for Lemma 4.3. Instead,
as vehicles are added, the edge weights take random values in
the interval (0, 1). In this example, the formation is destabilized
at N̄ = 14 and the vehicles collide.

5. Retrieving scalable stability

Having been presented with fundamental limitations to the
scalability of modular, localized consensus, an obvious question
is how to change the algorithm, or relax assumptions on the
network topology, to retrieve scalability. We next address this
question by pinning down on two key model assumptions.

5.1. Relaxing the locality assumption

Underlying our analysis was the assumption of locality in
the sense of bounded nodal degrees, Assumption A2. Recall that
under this assumption, all undirected graph families except ex-
pander families have decreasing algebraic connectivity and are
thus affected by Theorem 3.1. If this assumption is relaxed, so
that nodal neighborhoods are allowed to grow with N , the alge-
braic connectivity can remain bounded away from zero. Scalable
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Fig. 5. Simulation of a circular vehicle formation with unidirectional feedback
and random edge weights. Each line represents a vehicle’s position relative to
vehicle 1, which has a step change in its velocity at time t = 0. The formation
is stable when N = 13, but the addition of a 14th vehicle destabilizes it.

stability can then be retrieved. Interestingly, even though weights
are fixed, it can suffice to grow neighborhoods sub-linearly.

We show this for a ring graph topology, but note that the
same result applies to any graph that is better connected due to
Lemma 3.7.

Theorem 5.1. Let {GN} be a family of undirected 1-dimensional
q/2-fuzz lattices (q even), that is, ring graphs with edges between
each node and its q nearest neighbors. Then, if

q � cN2/3,

with c > 0 a constant independent of N, the sequence {�2(GN )} is
bounded away from zero as N ! 1.

Proof. The algebraic connectivity of GN is �2(GN ) =
Pq/2

k=�q/2
w(1 � cos 2⇡k

N ) if edge weights are uniform, i.e., wij = w for
all (i, j) 2 EN . The derivation of this expression is based on
the Discrete Fourier Transform, see e.g. Tegling et al. (2019).
Therefore, in a graph with non-uniform weights, but with wij �

wmin, we have

�2(GN ) �

q/2X

k=�q/2

wmin

✓
1 � cos

2⇡k
N

◆

= 2wmin

✓
1 � cos

2⇡
N

◆
+ · · · + 2wmin

✓
1 � cos

2⇡
N

◆

� 2wmin
2
⇡2

 ✓
2⇡
N

◆2

+

✓
2⇡ · 2
N

◆2

+ · · · +

✓
2⇡ · q
N

◆2
!

=
16wmin

N2

�
12

+ 22
+ · · · + q2

�

=
16wmin

N2

q(q + 1)(2q + 1)
6

, (20)

where the first inequality follows from Lemma 3.7 and the second
from the fact that 1 � cos x �

2
⇡2x2 for x 2 [�⇡ ,⇡]. The last

equality is a standard result for sums of sequences of squares.
Now, if q � cN2/3, where c is a positive constant, then (20)
is lower bounded by 16wmin

N2
2cN2

6 =
16c3wmin

6 , which is a positive
constant independent of N . The theorem follows. ⇤

The sub-linear scaling in Theorem 5.1 is surprising in light
of well-known bounds on algebraic connectivity, which appear
to require a linear scaling. One example is the bound based on
the edge connectivity e(GN ): �2(GN ) � 2e(GN )(1 � cos ⇡N ) (Fiedler,
1973, §4.3). Since the edge connectivity grows quadratically with
the number of nearest-neighbor connections q and (1� cos ⇡N ) =

O( 1
N2 ), this bound requires q = O(N).
It is also notable that leader–follower consensus indeed re-

quires a linear scaling of q. This is evident from (12), which is a
necessary stability condition. This again highlights an important
difference in scalability between leaderless and leader–follower
consensus.

Remark 7. Theorem 5.1 is stated for a ring graph family that
lets �2(GN ) be expressed as a fairly simple function of q and N .
Numerical evaluations show, however, that the same result holds
in path graphs, see also Fig. 1. For more connected graph families,
Lemma 3.7 applies, making the result conservative.

5.2. Impact of absolute feedback

Scalable stability can be retrieved if the control includes ab-
solute state feedback (equivalent to non-zero self-weights), if
this feedback is carefully designed. To highlight this result while
keeping the section brief, we consider the case of n = 3 and
undirected graph families. In this case, the control algorithm
becomes

ui = �

2X

k=0

0

@ak
X

j2Ni

wij(x
(k)
i � x(k)j ) � aabsk x(k)

1

A , (21)

and we say that absolute feedback from the state x(k) is available
if one can set aabsk > 0. The closed-loop system dynamics become

d
dt
⇠ =

2

4
0 IN 0
0 0 IN

�a0L � aabs0 IN �a1L � aabs1 IN �a2L � aabs2 IN

3

5 ⇠ .

The following proposition lines out that absolute feedback from
certain states is particularly important to retrieve scalable stabil-
ity.

Proposition 5.2. Let {GN} be an undirected graph family in which
{�2(GN )} ! 0 as N ! 1. Then, a necessary condition for scalable
stability of the controller (21), subject to Assumption A1, is that at
least one of aabs1 , aabs2 > 0.

Proof. The proof follows that of Theorem 3.1, with modifica-
tions lined out as follows. With absolute feedback terms, the
characteristic polynomial corresponding to (7) becomes

pl(s) = s3 + (a2�l + aabs2 )s2 + (a1�l + aabs1 )s + (a0�l + aabs0 ),

and the relevant stability condition is obtained from (9) by substi-
tuting (akRe{�l}+aabsk ) for akRe{�l}. Since we let GN be undirected,
�l are real-valued, and the condition for l = 2 simplifies to

(a1�2 + aabs1 )(a2�2 + aabs2 ) � a0�2 � aabs0 > 0 (22)

(which compares to (10)). If both aabs1 = aabs2 = 0, (22) is
eventually violated as �2 ! 0, regardless of aabs0 . However if at
least one of aabs1 , aabs2 > 0 the condition can stay satisfied, e.g. if
aabs1 a2 > a0 or aabs2 a1 > a0 while aabs0 = 0. If both aabs1 , aabs2 > 0, it
is also allowed to set aabs0 > 0. ⇤

This implies that absolute feedback from the high-order terms,
that is, velocity or acceleration, is necessary to render the third-
order consensus algorithm scalable. Reading the proof in more
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detail also reveals the interesting observation that absolute feed-
back from positions cannot be included unless there is also ab-
solute feedback from both velocity and acceleration (it will ruin
scalable stability if included with only one of the two). This is
somewhat counter-intuitive, as absolute feedback is usually ben-
eficial for performance and stability, though often more difficult
to implement (Jensen & Bamieh, 2022).

6. Discussion

This paper’s results show that there is an important differ-
ence between the well-studied standard first-order consensus
algorithm and the corresponding second- and higher-order algo-
rithms, in that the latter are not always scalable in a modular
manner to large networks. When subject to locality constraints,
formally expressed through the network’s Cheeger constant (13),
high-order consensus will stop converging and become unstable
at some finite network size. We remark that this result contra-
dicts a statement made in Ren et al. (2007, §V), that convergence
to consensus of a high-order multi-vehicle network ‘‘will not
be impacted as the number of vehicles increases’’ (though the
authors clearly note that controller gains must be chosen to
ensure stability.) Second-order consensus is subject to the same
scale fragility in certain families of directed networks, such as
directed ring graphs.

An interesting consequence of both results is that, at some
given network size, the addition of only one agent to a multi-
agent network renders a previously converging system unstable.
This can be thought of as a type of phase transition. For open
multi-agent systems (Franceschelli & Frasca, 2021; Hendrickx &
Martin, 2017) that obey a high-order consensus protocol, e.g. for
flight formation, our results imply that special care must be taken
to avoid this phase transition by limiting the network size or
avoiding a localized network topology. We next discuss some
further implications of our results.

6.1. Implications for distributed integral control

If distributed integral control is applied to a lower-order con-
sensus network with relative feedback, the closed-loop dynamics
can be formulated analogously to the high-order consensus al-
gorithm. Our results can be used to reveal conditions on such
integral control for scalable stability.

One example of such an integral controller is the distributed-
averaging proportional–integral (DAPI) controller proposed for
frequency control in electric power grids, see Andreasson, Di-
marogonas, Sandberg, and Johansson (2014) and Simpson-Porco,
Dörfler, and Bullo (2013). While in frequency control, absolute
frequency feedback helps ensure scalable stability, the analogous
control design based on relative feedback would lack scalable
stability. In earlier work (Tegling et al., 2019, Theorem 5.4) we
have stated a particular stability result for distributed integral
control, but the topic is far from fully explored.

6.2. Asymptotic performance analysis

A further interesting consequence of our results is that an
analysis of the asymptotic (in network size) performance of local-
ized, consensus-like feedback control is only possible in first- and
second-order integrator networks. This means that the analysis
on coherence scaling in large-scale networks in Bamieh et al.
(2012) cannot, as was conjectured there, be extended to chains of
n > 2 integrators. We also note that the analysis for second-order
networks in that work hinges on the assumption of symmetric
feedback, since the scale fragility from Theorem 4.1 applies in
directed tori.

6.3. Modular design vs. controller re-tuning

In order to be able to discuss a given controller’s scalability
in a network of increasing size, the assumption that it be fixed
is necessary. This presumes a modular design, implying that the
controller cannot be re-tuned as the network grows. By re-tuning
the consensus algorithm from this paper, either by changing the
gains ak, weights wij, or by relaxing the locality assumption,
consensus can be achieved also as the network grows.

Changing gains or weights would require adapting to the
graph’s changing algebraic connectivity. While this can indeed
be estimated in a decentralized manner (Yang et al., 2010), dy-
namic weight re-tuning algorithms as in Kempton, Herrmann,
and Bernardo (2018) require the entire network to participate in
tuning to improve the connectivity. Still, the design of controller
re-tuning protocols – which this paper shows to be necessary
for scalable stability – is a highly interesting direction for future
research.
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Appendix. Routh–Hurwitz criteria

We state the Routh–Hurwitz criteria for polynomials with
complex coefficients as they appear in Tondl (1965, pp 21f).

Lemma A.1. Consider the polynomial

p(µ) = µn
+ (fn�1 + jgn�1)µn�1

+ · · · (f0 + jg0) = 0, (A.1)

where j =
p

�1 denotes the imaginary unit. The roots µ will be
such that Im{µ} > 0 if and only if all inequalities

��2 = �

����
1 fn�1
0 gn�1

���� > 0, �4 =

�������

1 fn�1 fn�2 fn�3
0 gn�1 gn�2 gn�3
0 1 fn�1 fn�2
0 0 gn�1 gn�2

�������
> 0

, . . . ,

(�1)n�2n =

(�1)n

��������������

1 fn�1 · · · f0 0 · · · · · · 0
0 gn�1 · · · g0 0 · · · · · · 0
0 1 · · · f1 f0 0 · · · 0
0 0 · · · g1 g0 0 · · · 0

...
0 · · · · · · 0 1 · · · f1 f0
0 · · · · · · 0 0 · · · g1 g0

��������������

> 0 (A.2)

are satisfied.

Evaluating the determinants, the first two inequalities (which
suffice to prove the theorems in this paper) read

gn�1 < 0, (A.3)

fn�1gn�1gn�2 � fn�2g
2
n�1 + gn�3gn�1 � g2

n�2 > 0, (A.4)

for n � 3.
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Note that Lemma A.1 gives a condition for all roots being in
the upper half of the complex plane. To obtain a condition for
poles in the left half plane (Re{s} < 0), we substitute µ = �js
in (A.1) and identify the coefficients with the polynomial

p(s) = sn + bn�1sn�1
+ · · · + b1s + b0. (A.5)

Those coefficients that appear in (A.3)–(A.4) are then fn�1 =

Im{bn�1}, gn�1 = �Re{bn�1}, fn�2 = �Re{bn�2}, gn�2 =

�Im{bn�2}, fn�3 = �Im{bn�3}, gn�3 = Re{bn�3}. Note that
these identifications hold regardless of n, as the coefficient of the
highest order term is set to 1 in both (A.5) and (A.1).
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