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ABSTRACT

Bidirectional quantum teleportation is a fundamental protocol for exchanging quantum information between two parties. Specifically, two
individuals make use of a shared resource state as well as local operations and classical communication (LOCC) to swap quantum states. In
this work, we concisely highlight the contributions of our companion paper [A. U. Siddiqui and M. M. Wilde, arXiv:2010.07905 (2020)]. We
develop two different ways of quantifying the error of nonideal bidirectional teleportation by means of the normalized diamond distance and
the channel infidelity. We then establish that the values given by both metrics are equal for this task. Additionally, by relaxing the set of
operations allowed from LOCC to those that completely preserve the positivity of the partial transpose, we obtain semidefinite programing
lower bounds on the error of nonideal bidirectional teleportation. We evaluate these bounds for some key examples—isotropic states and
when there is no resource state at all. In both cases, we find an analytical solution. The second example establishes a benchmark for classical
versus quantum bidirectional teleportation. Another example that we investigate consists of two Bell states that have been sent through a
generalized amplitude damping channel. For this scenario, we find an analytical expression for the error, as well as a numerical solution that

agrees with the former up to numerical precision.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0135467

I. INTRODUCTION

Quantum teleportation is one of the most prominent protocols in
quantum information due to its ability to communicate a quantum state
between two individuals who share entanglement. In this protocol, there
is no need to transmit the physical system. While direct transmission of
a qubit is possible (shown in Fig. 1), its fragile nature is well known.
Environmental noise will either corrupt the information encoded in the
qubit or prevent it from arriving at its destination altogether. As a result,
the quantum teleportation protocol serves as an alternative to physical
transmission and utilizes shared entanglement as well as local opera-
tions and classical communication (LOCC) to achieve this goal.
Teleportation is now commonly used as a fundamental building block
in quantum information science with applications in quantum commu-
nication, quantum error correction, and quantum networking.

As a reminder, the procedure of standard quantum teleportation
is as follows:

1. Two parties, Alice and Bob, are spatially separated and share a
maximally entangled state @ ; defined as

1 1
Dy 1252\%\/; @ i) (jlg- 1)
ij=0

2. Alice wishes to send her system A to Bob. So, she performs a
projective Bell measurement on her systems A and A.

3. Alice obtains two classical values from her measurement and
transmits them to Bob via a classical communication channel.

4. Bob, based on the classical results, performs corrective opera-
tions on his system B of the shared entangled state to recover the
original state Alice wished to transfer.

See Fig. 2 for a quantum circuit depiction of the teleportation protocol.

Teleportation has been extended in various ways, and one way is
through bidirectional quantum teleportation. It should be noted that
standard quantum teleportation—also known as unidirectional
teleportation—realizes a one-way ideal quantum communication chan-
nel from one party Alice to another party Bob. The idea of bidirectional
teleportation is to provide a two-way quantum communication chan-
nel. Instead of only Alice having the ability to transmit quantum
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Fie. 1. Ideally, we would want to send quantum information from one party to
another directly via a quantum channel.

information to Bob, individuals can now exchange quantum informa-
tion. In the ideal version of this protocol, our two parties share two
pairs of maximally entangled qubits (ebits) and teleport qubits to each
other, performing standard quantum teleportation twice in opposite
directions. We will refer to any state shared by individuals to perform
any variation of teleportation as a resource state. The ideal protocol,
therefore, utilizes two ebits as its resource state and is equivalent to a
perfect swap channel between two individuals, as shown in Fig. 3. This
extension of teleportation was observed early on in Ref. 1, and it was
subsequently considered in Refs. 2 and 3. There has, recently, been a
flurry of research on the topic with various proposals for bidirectional
teleportation.”” There has been even more interest in a variation called
bidirectional, controlled teleportation, using five qubit," 0 six
qubit," " seven qubit,'* '* eight qubit,"**’ and nine qubit”' entangled
resource states (see also Ref. 22). Bidirectional controlled teleportation
is a tripartite protocol in which three individuals, typically called Alice,
Bob, and Charlie, share an entangled resource state and use LOCC to
exchange qubits between Alice and Bob. In other words, Charlie is pre-
sent to assist Alice and Bob, who wish to swap quantum information.
See also Ref. 23 for other variations of bidirectional teleportation.

The applications of bidirectional teleportation align with those of
standard teleportation. Specifically, it applies in a basic quantum net-
work setting in which two parties would like to exchange quantum
information. Although the ideal version of bidirectional teleportation
is a trivial extension of the original protocol in which the latter is sim-
ply conducted twice (but in opposite directions), the situation becomes
less trivial and more relevant to experimental practice when the quan-
tum resource state deviates from the ideal resource of two maximally
entangled states. Much of the prior work focuses on precisely this kind
of case, when the resource state is different from two maximally
entangled states, either by being a different pure state (such as cluster
states), a mixed state, or a state with insufficient entanglement to
accomplish the task. These kinds of investigations are essential for
understanding ways to simulate or mimic the ideal protocol approxi-
mately in an experimental setting.

M2
),
M1
@:
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P

27w,

Fie. 2. Due to the fragile nature of quantum bits, the unidirectional quantum telepor-
tation protocol (shown above) was devised as a method for simulating an ideal uni-
directional quantum channel, i.e., to transmit quantum information from one party
Alice, to another party Bob.
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Fic. 3. Ideal swap channel between two parties, Alice and Bob, realized by ideal
bidirectional teleportation. This is a two-party generalization of the ideal unidirec-
tional channel depicted in Fig. 1. Ideal bidirectional quantum teleportation realizes a
perfect SWAP channel between two parties.

Despite the many works listed above on the topic of bidirectional
teleportation, which try to perform the protocol using various resource
states, a systematic method for quantifying its performance has been
missing. In other words, there is no procedure to concretely determine
how well a certain protocol of bidirectional teleportation performs in
comparison with the ideal protocol. How shall we know we have
found our perfect imposter? Any experimental implementation of
bidirectional teleportation will necessarily be imperfect, and therefore,
there is a need for such a metric. Indeed, entangled states generated in
experimental settings using methods, such as spontaneous parametric
down-conversion, are only approximations to ideal maximally
entangled states.” Our aim in Ref. 25 and in the present paper is to fill
this void.

While this paper will give basic insight into the work, all proofs
and additional material are present in our main paper. The present
paper instead aims to highlight the essential contributions of our com-
panion paper”” and give some additional clarification.

Il. PRELIMINARIES

Before proceeding further, we establish some notation and con-
cepts that will be used throughout this paper. In our work, instead of
considering only qubits, we generalize all of our scenarios to
qudits with dimension d. Specifically, we consider two different
dimensions—the dimension of the resource state and the dimension
of the unitary swap channel we are trying to mimic. Given two parties
Alice and Bob, the dimension of Alice’s qudit that she wishes to send
is denoted as d4 (similarly dg for Bob). The dimensions of Alice and
Bob’s qudits are also equivalent to the dimension of the swap channel
d. The dimension of the shared resource state when Bob’s system is
discarded is denoted as d; (similarly dj if Alice’s system was dis-
carded). While we consider the case where d4 = dg = d, we make no
assumptions about d; and dj other than the fact that they are finite-
dimensional. In other words, it need not be the case that d; = dj.
Additionally, instead of maximally entangled qubits, individuals will
now share maximally entangled qudits (e-dits).

We also make use of the following bilateral unitary twirl channel
in our paper

T ep(Xep) = de (Uc @ Up)(Xe), @)

where U(-) := U(-)UT, U(-) := U(-)UT (the overline indicates the
complex conjugate), Xcp is the bipartite quantum state, and dU
denotes the Haar measure (uniform distribution on unitary operators).
The bilateral twirl channel is an LOCC channel, in the sense that Alice
can pick a unitary at random according to the Haar measure, apply it

AVS Quantum Sci. 5, 011407 (2023); doi: 10.1116/5.0135467
Published under an exclusive license by AIP Publishing

5, 011407-2

9€:/¥:1T ¥20z Aenuer L0


https://scitation.org/journal/aqs

AVS Quantum Science ARTICLE

to her system, report to Bob via a classical channel which one she
selected, and Bob can then apply the complex conjugate unitary to his
system.

The bilateral twirl is typically utilized to symmetrize quantum
states. Specifically, depending on the type of twirl performed, the out-
put state will be invariant under any unitary channel of the form I/ ®
U or the form U ® U. For example, given a quantum state G 5 pre-
pared by the isotropic bilateral twirl

JdU (Us @ Up)(aB) = Gas, (3)
the following holds for every unitary channel ¢/

(UL RUB) (G a) = Gap- (4)

Additionally, states prepared by this operation can be described by
fewer parameters. Therefore, the twirled state G5 now has a sparse
density matrix and can be characterized by fewer variables.

lll. IDEAL BIDIRECTIONAL TELEPORTATION

Let us first examine the case of ideal bidirectional teleportation
on two qudits, in detail. Doing so is helpful in establishing a basic met-
ric for when we consider nonideal bidirectional teleportation later. As
stated in the introduction, a trivial way to conduct quantum teleporta-
tion bidirectionally between two spatially separated parties, Alice and
Bob, is by performing two standard quantum teleportations, once in
each direction. This method uses entanglement—specifically two pairs
of e-dits—as well as local operations and classical communication
to behave like a unitary swap channel 84, of dimension d, shown in
Fig. 3.

Since we are examining ideal bidirectional teleportation, each
teleportation between the two parties is perfect and equivalent to an
identity channel from Alice to Bob and vice versa

Sig =idsp ®idp_4. (5)

The proof for (5) is outlined in our companion paper.”” Even though
our choice of notation might suggest that the swap channel is a tensor
product of local identity channels, we should note that this is not the
case. The swap channel is a global channel that cannot be realized by
local actions alone. Our notation id4_.p instead indicates that Alice’s
input system A is placed at Bob’s output system B, and the notation
idp_,4 indicates that Bob’s input system B is placed at Alice’s output
system A. In other words, Alice’s input is perfectly recovered on Bob’s
end and vice versa.

IV. QUANTIFYING THE PERFORMANCE OF NONIDEAL
BIDIRECTIONAL TELEPORTATION

Now that we have established that ideal bidirectional quantum
teleportation is equivalent to the unitary swap channel, it is time to
explore nonideal bidirectional quantum teleportation. The goal of
nonideal bidirectional teleportation is to become an “imposter” of the
swap and simulate a d-dimensional unitary swap channel as closely as
possible using a resource state other than the one required. In other
words, the probability of being able to distinguish the swap channel
Sap from the simulation S 45 should be, thus, as small as possible.

The nonideal bidirectional teleportation protocol is as follows:
There are two systems A and B, which serve as inputs for Alice and
Bob, respectively. They then act with an LOCC channel £ 535,45 00

scitation.org/journallaqs

their input systems A and B and their shares of the resource state p 5
to produce the output systems A and B. The simulation channel is
depicted in Fig. 4.

The expression for the overall channel realized by the simulation is

Sap(wap) = Lypag_.ap(@wa8 @ pi3), (6)
where w,p describes the state of Alice and Bob’s input qudits. Note
that for the simulation, we allow classical communication between
Alice and Bob for free and that £,p;5 5 can be considered a free
channel, as is common in the resource theory of entanglement.Z("Z/

A. Quantifying error with normalized diamond
distance

Let us now discuss how to quantify the simulation error between
the swap channel and the simulation channel. The metric for doing so
is the normalized diamond distance,”” a standard metric in both quan-
tum computation”® and quantum information.””” Intuitively, the dia-
mond distance can be thought of as a way to characterize the
distinguishability—or quantify the distance—between two quantum
channels. Mathematically speaking, this metric quantifies the maxi-
mum absolute deviation between the probabilities of observing the
same outcome when each quantum channel is applied to the same
input state and the same measurement is made.

The formal definition of the normalized diamond distance for
two quantum channels N and V is given by

1 ~
-1,
where the diamond distance ||\ — N | is defined as
IV =Nl := sup[INc-p(prc) = Nc-nlprc)lli:  ®

Pre
and the trace norm of an operator X is given by ||X||, := Tr[vX"X].
The calculation for the diamond distance in (8) can simplify to

W = Nllo = sup N c—p(¥re) = N c—pWro)ll1, ©)
Yre

where, instead of arbitrary states prc, the optimization is with respect to
every pure bipartite state i gc with system R isomorphic to the channel
input system C. This simplification is explained in Sec. 3.5.3 of Ref. 31.
The normalized diamond distance can be computed through a semide-
finite program (SDP) (definition recalled in Sec. IV A of our companion
paper”). Returning to our case of interest, the simulation error of the
swap channel, depicted in Fig. 4, is quantified as follows:

1 _
eLOCC(Sti Pags Lapisap) = EHSd = Sllo, (10)

A YL e A 4
SWAP = 38 LOCC

B B' B — BI

Fic. 4. The diagram depicts a general framework (shown on the right) for under-
standing the simulation of bipartite quantum channels, realized by combining an
LOCC protocol and a quantum resource state p; . In experimental implementa-
tions, the resource state p; 5 is imperfect. In our work, we use this framework to
simulate the swap channel (left) up to some error e.
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where S? is the ideal swap channel, and S is the simulation channel
[see 8% defined in (5) and S defined in 6)].

Since we wish to find the smallest simulation error possible, we
minimize (10) over all LOCC channels. In other words, using the
resource state p; , if we substituted an LOCC channel in the bipartite
channel simulation framework shown in Fig. 4, calculated the error,
and repeated this procedure for all possible LOCC channels, what is
the smallest simulation error we can find? Mathematically, this ques-
tion is posed as

eLOCC(Sim Pap) = Leiﬁlofcc eLOCC(SiE Paps Lagigoap)- (1)
This simulation error is difficult to compute as d, d;, and dj become
larger. This computational strain is related to how it is difficult to opti-
mize over the set of LOCC channels. In Sec. V, we instead determine a
lower bound on the simulation error which can be computed by means
of semidefinite programing (SDP) and is, thus, efficiently computable.
It will be shown later that, for some states p; of interest, we can
determine the error of nonideal bidirectional teleportation exactly.

B. Quantifying error with channel infidelity

Another way to quantify error between quantum channels is by
utilizing the fidelity measure. Recall that fidelity of two arbitrary quan-
tum states w and 7 is defined as

F(o,7) == [[Vovi|}. (12)

This quantity is equal to one if and only if the states @ and 7 are
the same and is equal to zero if and only if w and 7 are orthogonal to
each other. If one of the two states is a pure state, then the definition of
fidelity reduces to the following expression:

E([y) (. o) = (dlely). (13)

Intuitively, fidelity measures the amount of overlap two quantum
states have with each other. In the case of (13), it has the operational
meaning that F(|y)(y/|, 1) is the probability with which the state t
passes a test for being the state |1//) (1. The test in this case is given by
the binary measurement {[\/) (|, I — |) (¥}, and the first outcome
corresponds to the decision “pass.” So the probability of passing is
equal to F([y) (4, 7).

We can now extend the fidelity measure of quantum states to
measure the similarity between two quantum channels N'c_.p and
N c_p as follows:

FN,N) = ipf;{f_F(N’CHD(PRC%NCHD(PRC))- (14)

This expression can be viewed as the fidelity counterpart of the dia-
mond distance in (8). Just like (9), the following simplification holds

FIN,N) = i//nfF(NCHD(‘//Rc)vNCHD(l//Rc))v (15)
Wre
where the optimization is with respect to all pure bipartite states /e
with system R isomorphic to the channel input system C. In our work,
we make use of channel infidelity which will quantify the error
between the two quantum channels N'¢c_.p and A ¢c—.p. The channel
infidelity is defined as

scitation.org/journallaqs

1—F(WN,N). (16)

[In Sec. IV B of our main paper,” we recall a semidefinite program to
calculate the root fidelity of quantum channels, the latter defined as
the square root of (14), i.e., VF(N, N').]

Using the fidelity of channels, we can define an alternate notion
of simulation error as

e{OCC(SzB7pAB7£ABAB~>AB) =1-= F(5d73)7 (17)

where d is the dimension of the swap channel S¢. Minimizing this
error with respect to all LOCC channels, we arrive at the following:

elocc(Sis Pas) = ceiLnofcc elocc(Sis Pass Lapas—as)-  (18)
For the same reasons given previously in Sec. IV A, this quantity is dif-
ficult to compute, and so we seek alternative ways to estimate it.
Remark 1. Even though we have defined two different notions of
LOCC simulation error of bidirectional teleportation based on the
normalized diamond distance and channel infidelity, the error values
they give are equivalent for the simulation of the swap channel. This
result follows as a consequence of the swap channel S in (5) having
the following symmetry (shown pictorially in Fig. 5)

(Va @Up)Sty = 845U ® V) (19)

holding for all unitary channels ¢/, and V. The proof of the claim
can be found in Appendix A of our main paper.”” Essentially, by
exploiting the aforementioned symmetries of the swap channel, the
normalized diamond distance reduces to the trace distance of a prod-
uct of maximally entangled states and the same state but affected by
highly symmetrized noise; similarly, the channel infidelity reduces to
the infidelity of the same states. Whenever it is the case that we are
comparing a pure state to a convex combination of that same pure
state and a state on the orthogonal subspace, these measures coincide
and what we are considering is a special case of this scenario.

Remark 2. If one had to pick one error metric over the other, we
think the diamond distance is preferable for comparing general chan-
nels. It captures a notion of error that makes physical sense as the larg-
est deviation in outcome probabilities that could be observed by
performing the most general physical procedure to distinguish an ideal
channel from its simulation. Related to this, it has an operational inter-
pretation in terms of hypothesis testing of channels. It also has nice

A7 A A A’

B—U B B VB’

(@ (®)

Fic. 5. The symmetries of the SWAP channel are depicted in this figure. By exploit-
ing this unique property, (a) and (b) above are equivalent and the optimization prob-
lem for quantifying the performance of unideal bidirectional teleportation can be
greatly simplified. (a) Alice and Bob perform unitary operations V and U, respec-
tively, and then, a SWAP operation to exchange information. (b) Alice and Bob first
perform a SWAP operation and then unitary operations U and V, respectively, on
their individual qubits.
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CPPTP

(2) (b)

A

p. PPT
AB

B

Fic. 6. Optimizing over all LOCC channels is known to be computationally inten-
sive. (a) We utilize the fact that LOCC channels are a subset of channels that
completely preserve the positivity of the partial transpose (C-PPT-P). (b) Instead of
optimizing over all LOCC channels and the ensuing protocols depicted in Fig. 4, we
relax the optimization to the larger set of C-PPT-P channels. Conducting the optimi-
zation problem over this larger set can be solved in time polynomial in the dimen-
sion of the resource state and the swap channel to be simulated.

properties like the triangle inequality, data processing under the action
of a superchannel, and stability under tensoring with the identity. For
these reasons, it is the standard theoretical tool used in the study of
fault tolerant quantum computation, and one can consult Ref. 29 and
find it used to define quantum channel capacities. Thus, we are using
it here also. The channel fidelity has a sensible operational interpreta-
tion if the target channel is a unitary channel, as the probability with
which the simulation channel can pass a test for being the unitary
channel. It also possesses the properties of stability and data processing
mentioned above, and if one takes the square root of the infidelity
(often called sine distance), then it also obeys the triangle inequality.
So we view both of these error metrics as being important, and thus,
we have considered them both here. In light of the fact that these error
metrics are generally different, we find it an interesting conclusion that
the normalized diamond distance and the infidelity give the same
value when considering simulation of the SWAP channel.

V. SEMIDEFINITE PROGRAMMING LOWER BOUNDS

As discussed before, it is challenging to compute the simulation
errors mentioned in (11) and (18) because it is difficult to optimize
over the set of LOCC channels. Consequently, we follow the approach
of Refs. 32 and 33 and enlarge our optimization set from the set of
all LOCC channels to the larger set of completely positive-partial-
transpose-preserving channels instead (denoted as C-PPT-P or PPT for
short). We can then optimize with respect to this superset and, alterna-
tively, obtain a lower bound on the errors in (11) and (18). First, recall
that a bipartite channel A/43_.4'p is defined to be C-PPT-P*** if the
map

Ty o Nap—ap o Tp (20)

is completely positive, where T denotes the transpose map, defined by
Ty(ws) = D |i){jlpsli) 5, (1)
ij

and with Ty defined similarly on the system B'. According to Ref. 32,
the set of all LOCC channels is a subset of the set of channels that
completely preserve the positive partial transpose, but not every C-
PPT-P channel is an LOCC channel. Therefore,

LOCC C C-PPT-P (22)

as depicted in Fig. 6. Now that we have defined what C-PPT-P chan-
nels are, let us redefine the simulation error over these channels based
on diamond distance as

scitation.org/journallaqs

1 _
ePPT(SigvaB) = nf  ||Sup—an — Sap—awlle,  (23)

~- i

2 PeC-PPT-P
where the optimization is with respect to C-PPT-P channels
P 4pis g and the simulation channel is now defined as

Sap-an (0ap) = Papip ap (©0ap ® pag)- (24)

Furthermore, as a result of the containment in (22), the error in simu-
lating the swap channel when optimizing over PPT channels serves as
a lower bound on the error when optimizing over LOCC

eppr(Sap—aps Pap) < eLocc(SaB—aB s Pap)- (25)

Let us now discuss how the error defined in (23) can be computed by
means of a semidefinite program. To do so, we apply semidefinite con-
straints for optimization over C-PPT-P channels and utilize the sym-
metry property of the SWAP channel given in (19), as well as the fact
that it commutes with itself, to produce the following semidefinite
program.

Proposition 3. The semidefinite program for the error in simu-
lating the unitary SWAP channel % in (5) by using a resource state
p,p and an arbitrary C-PPT-P channel is as follows:

epp1(Sip pap) =1 — sup Trlps3K;3] (26)
S

subject to

Ly; N;;
Ty Ky + 25+ —225) >0,
B( AB d+1 (d+1)2

1
=7 Tp(Las + Nap) = Ty(Kzp), 7)
N 1
TE <KAB +ﬁ > HTE(LAB%

Kip +Lap + Nap = Izp,

where K, Lz, and N are the positive semidefinite Hermitian
matrices and elements of a positive operator-valued measure (POVM),
and d is the dimension of the SWAP channel to be simulated.

The proof for Proposition 3 is given in our companion paper.””

Remark 4. As shown in the proof of Proposition 3, an optimal
C-PPT-P channel for simulating the unitary swap channel has the fol-
lowing structure:

P asisap(@ap @ p33)
L.
= SiB(U)AB)TI'[KAB[)AB] + E (ldA*)B ® DBHA
+ Dyp ®idpa)(@ap)Tr[Liz045]

+ (Da—p ® Dp—a)(@wap) Tr[NigP45]; (28)
where D denotes the following generalized Pauli channel:
1 Z,X z,x\T
D(o) := 71 Z W= g(W**)", (29)
(x2)7(0,0)

and W** is a generalized Pauli operator (Heisenberg-Weyl). Thus,
the interpretation behind the simulating channel is that it first mea-
sures the resource state pj; according to POVM {K;3,L;5, N4}
which is subject to the inequality constraints shown in Proposition 3.
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Each POVM element is associated with a measurement outcome.
After measurement, the simulating channel takes the following action:

1. If the outcome corresponding to POVM element K;; occurs,
then apply the ideal swap channel to the input state w4p.

2. If the outcome corresponding to POVM element Lj; occurs,
then with probability (1/2), apply the identity channel idg_.4 to
transfer Alice’s input system A to Bob, but then corrupt Bob’s
input system B by applying the channel D and transfer the
resulting system to Alice; with probability (1/2), apply the iden-
tity channel idg_.4 to transfer Bob’s input system B to Alice, but
then corrupt Alice’s input system A by applying the channel D
and transfer the resulting system to Bob.

3. If the outcome corresponding to POVM element N;; occurs,
then apply the corrupting channel D to both Alice and Bob’s sys-
tems individually and exchange them.

The fact that the measurement operators obey the inequality con-
straints in Proposition 3 implies that the quantum channel P35 . 45 is
C-PPT-P. We have now found our PPT imposter channel for the swap!

It should be briefly noted that in our companion paper,” we
derive a semidefinite program to calculate the error for simulating the
swap channel in terms of channel infidelity. It turns out that the opti-
mal value of this semidefinite program simplifies to the expression
from Proposition 3. Consequently, there is no need to consider differ-
ent notions of simulation error when considering the simulation of the
unitary swap channel using C-PPT-P channels. That being said, it is
not necessarily true that these two distance metrics lead to the same
simulation error or even the same semidefinite program when the goal
is to simulate a general bipartite channel other than the swap channel.

VI. EXAMPLES

In this section, we consider several examples of resource states
that can be used for bidirectional teleportation, and using the SDP
established in Proposition 3, we evaluate the performance of the proto-
col when it employs these states. For several cases of interest, we estab-
lish an exact evaluation not only for the error when using a PPT
simulation but also when using an LOCC simulation.

A. No resource state: Benchmark for classical versus
quantum bidirectional teleportation

One key example of a resource state is when there is in fact no
resource state at all. In other words, what if the two parties Alice and
Bob did not share any quantum resource state or, in another case, a sep-
arable state? How well could they perform bidirectional teleportation?
In this case, both parties can only employ a PPT or LOCC simulation of
bidirectional teleportation and can prepare a separable state for free.

Proposition 5. If there is no resource state, then the error in sim-
ulating the unitary SWAP channel 8% in (5) is equal to 1 — 1/d?, ie.,

1
ﬁ7

where the notation ¢ indicates the absence of a resource state.

The importance of this result is that it establishes a worst-case
scenario for performing bidirectional teleportation. It creates a divid-
ing line between a classical and a quantum implementation of this pro-
tocol, which can be used by experimentalists to assess the performance
of an implementation of bidirectional teleportation. Essentially, all

eppr (S, &) = erocc(Shp &) =1 — (30)
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bidirectional teleportation protocols must have a performance with an
error less than the bound above to be considered useful. The bound
1 — 1/d? acts as both an upper and lower bound on eppr(S%;, &) as
well as eLOCC(SiB, ). The proof for this can be found in our com-
panion paper.”” Note that, while this error holds true for the case
where the resource state is a separable or non-entangled state, the error
can become smaller if the parties were to share an entangled state (as
one would expect).

B. Isotropic states

Another class of bipartite states we are interested in studying are
isotropic states. A fascinating fact is that any arbitrary state of systems
AB, satisfying d; = dj, can be twirled to an isotropic state using the
channel in (2), making the evaluation of this class particularly impor-
tant. These states are characterized by two parameters: the fidelity to
the maximally entangled state F € [0, 1] and the dimension d; € {2,
3,4,...}. For isotropic states, note that d; = dj. These states are
defined as follows:

(Fdy) Lig — Paj
A

(31
[Recall the definition for a maximally entangled state @ ; given in (1),
but here we are using the more generally maximally entangled qudit
state, defined just as in (1), but with an upper limit of d—1 on the sum.]

The following proposition establishes a simple expression for the
simulation error when using an isotropic state for bidirectional tele-
portation. It is given exclusively in terms of the dimension d of the
swap channel that is being simulated and the two parameters F and d;
that characterize the isotropic resource state. A proof is available in
Appendix E of our companion paper.”” The proof exploits the symme-
tries of an isotropic state (similar to the symmetries of the swap chan-
nel shown in Fig. 5) to reduce the semidefinite program in Proposition
3 to a linear program, which we then solve analytically.

Proposition 6. The simulation error for the unitary swap channel

over all PPT channels when using an isotropic resource state pgpédA) is
1 1
— ifF<—,
d? —d A
Fd;

1
——A ifF>— and d; <d*
da d? d; A="0
eppr (Simpfg DE 4

(17—)(171?)
2
N B ps ! and dy >d>.

1— L d;
dy
(32)
We also have that
erpr(Sip, P,(g‘FédA)) = erocc (St PE;F;A)) (33)

if F < (1/d;) orif F > (1/d;) and d; < d*.

Equation (33) shows that for certain parameter regimes of this
class of states, the LOCC simulation error and the PPT simulation
error (from the SDP) coincide. In more detail, in these special cases,
our proof demonstrates that one can employ an LOCC protocol to
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achieve the PPT simulation error. This occurs by performing the stan-
dard teleportation protocol with a maximally entangled resource state
twice but substituting the resource states with the isotropic state. See
Eqgs. (E72)—(E83) of Ref. 25 for more details.

It is an open question to determine if the equality in (33) holds
when F > (1/d;) and d; > d?. Figure 7 plots the expression given in
(32) for the simulation error.

It should be noted that an isotropic state can in fact realize ideal
bidirectional quantum teleportation as described in Sec. III when its
fidelity F is one. As shown in Fig. 7, when fidelity is one and the
dimension of the isotropic state d; reaches four and beyond, it encom-
passes multiple e-dits which Alice and Bob can locally separate out to
perform bidirectional teleportation. In the case of d; = 4, for example,
the two parties can separate out CD4A 5 to two e-dits @} 5 @D} 5, and
they are then able to perform the ideal bidirectional protocol. As a
result, for the case of F=1and d; € {4,5,6, ...}, the error in simu-
lating the swap channel with the isotropic state eppr(Siy, ngédA ))
reduces to zero. A perfect imposter needs the perfect disguise, which
isotropic states indeed prove to be in the limit F — 1.

C. Resource state resulting from generalized
amplitude damping channel

In this section, we consider a numerical example in which we can
apply the semidefinite program from Proposition 3. This example
involves a resource state resulting from two Bell states affected by noise
from a generalized amplitude damping channel (GADC), a common
scenario in most experimental settings. The GADC can be understood
as a qubit thermal channel, in which the input qubit interacts with a
thermal qubit environment according to a beamsplitter-like interaction,
after which the environment qubit is discarded.” Intuitively, it models
energy relaxation from the excited state to the ground state. In more
detail, recall that the GADC has the following form (see, e.g., Ref. 34):

4
-A}',N(p) = ZA,-[)A:-T, (34)
-1

Fic. 7. Plot of the simulation error of bidirectional teleportation when using the iso-
tropic resource state defined in (31), where F is the fidelity parameter and d is the
dimension of Alice’s system of the resource state.
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where y € [0,1] is the damping parameter, N € [0,1] is the noise
parameter, and the Kraus operators are defined as

A= VI=N(j0) (0] + v/ T= 7)1, (3)
Ay = 1/y(1 = N)|0)(1], (36)

Az = VN(VI=70)(0] + 11 @)
Ay == \/yN|1)(0). (38)

The resource state we consider is then
AN (@72). (39)

The resource state in (39) is equivalent to two ebits, consisting of four
qubits in total, each of which is acted upon by a GADC with the same
parameters y and N. When y and N are both equal to zero, the
resource state is equivalent to two ebits and perfect bidirectional tele-
portation is possible. As the noise parameters increase, the bidirec-
tional teleportation is imperfect and occurs with some error.

By evaluating the semidefinite program in Proposition 3 for this
resource state, we obtain a lower bound on the simulation error of
bidirectional teleportation. We obtain an upper bound by demonstrat-
ing a protocol that uses this resource state. If Alice and Bob perform a
bilateral twirl on their state—specifically, the channel in (2)—where U
is a unitary that acts on two qubits, then the resulting state is an isotro-
pic state of the form

15

i I®4 (I)®2
F(y, N)®*2 + (1 = F(3,N)) (40)
where

F(y,N):=Tr [@WA%(@@Z)} (41)
- [1 +%(7 —2[1+9N(1 —N)})r. (42)

By applying Proposition 6 and noting that d; = d* = 4 for this exam-
ple, we find that the simulation error when using this protocol is given
by

1— max{F(y,N),i}. (43)
16

Up to numerical precision, we find that the upper bound in (43) and

the SDP lower bound from Proposition 3 match, so that (43) should

in fact be an exact analytical expression for the simulation error when

using this resource state.

Figure 8 plots the expression in (43) for the simulation error. The
simulation error tends to zero as the damping parameter y approaches
zero (so that the channel A,y is converging to an identity channel
and thus the resource state to two ebits). For fixed y and the noise
parameter N converging to 1/2, the simulation error increases.

VIl. CONCLUSION

In this paper, we provided a systematic approach for quantifying
the performance of bidirectional teleportation. We established a
benchmark for classical versus quantum bidirectional teleportation,
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Fic. 8. Plot of the simulation error of bidirectional teleportation when using the
resource state in (39), for all y, N € [0, 1].

and we have evaluated semidefinite programing lower bounds on the
simulation error for some key examples of resource states. Going for-
ward from here, there are several avenues for future work. First, we can
consider other unitary channels besides the swap channel, and the line
of thinking developed here could be useful for related scenarios consid-
ered in Refs. 35 and 36. Rather than just impersonating the swap, we
can pick many other quantum channels to impersonate. We can also
consider applying the framework used here to analyze multidirectional
teleportation between more than two parties. We also wonder whether
there is an LOCC simulation that achieves a performance matching the
lower bound found here, for all parameter values for isotropic states.
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