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Ajna: Generalized deep uncertainty for minimal
perception on parsimonious robots
Nitin J. Sanket1,2†, Chahat Deep Singh1*†, Cornelia Fermüller1, Yiannis Aloimonos1

Robots are active agents that operate in dynamic scenarios with noisy sensors. Predictions based on these noisy
sensor measurements often lead to errors and can be unreliable. To this end, roboticists have used fusion
methods using multiple observations. Lately, neural networks have dominated the accuracy charts for percep-
tion-driven predictions for robotic decision-making and often lack uncertainty metrics associated with the pre-
dictions. Here, we present amathematical formulation to obtain the heteroscedastic aleatoric uncertainty of any
arbitrary distribution without prior knowledge about the data. The approach has no prior assumptions about
the prediction labels and is agnostic to network architecture. Furthermore, our class of networks, Ajna, adds
minimal computation and requires only a small change to the loss function while training neural networks to
obtain uncertainty of predictions, enabling real-time operation even on resource-constrained robots. In addi-
tion, we study the informational cues present in the uncertainties of predicted values and their utility in the
unification of common robotics problems. In particular, we present an approach to dodge dynamic obstacles,
navigate through a cluttered scene, fly through unknown gaps, and segment an object pile, without computing
depth but rather using the uncertainties of optical flow obtained from a monocular camera with onboard
sensing and computation. We successfully evaluate and demonstrate the proposed Ajna network on four afore-
mentioned common robotics and computer vision tasks and show comparable results tomethods directly using
depth. Our work demonstrates a generalized deep uncertainty method and demonstrates its utilization in ro-
botics applications.
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INTRODUCTION
As an old saying goes, “If knowledge is power, knowing what you
don’t know is wisdom” (1). It is as important to know when the
agent is unsure as much as the correctness of the prediction. Espe-
cially in the case of neural network predictions, estimating the un-
certainty associated with these predictions aids in making better
decisions rather than blindly relying on these predictions based
on the assumption that they are correct. Roboticists have remarked
on this observation, and this led to the approach of combining mul-
tiple measurements using uncertainties, which has become the
gold-standard approach in robotics. Fundamentally, these measure-
ments are combined using Bayesian formulations and propagating
the distribution statistics.

Although uncertainties are very useful for combining multiple
measurements, we believe that they are underused in robotics.
This is because uncertainties also provide contextual cues/informa-
tion. Before we provide examples of the previous statement, let us
discuss two kinds of common uncertainties: (i) aleatoric or obser-
vational data uncertainty and (ii) epistemic or model uncertainty.

The aleatoric uncertainty models the inherent bias in the way a
sensor collects data, and the epistemic uncertainty models the in-
herent bias in the scenarios used to collect the training data. For
example, the aleatoric uncertainty would be high for transparent
or dark regions for RGB-Depth data, and the epistemic uncertainty
of a network trained indoors would be high when tested on
outdoor data.

The contextual information that an epistemic uncertainty model
provides is that the trained model requires more data to improve
accuracy for the particular input sample. Such information is
useful to know whether one is operating “out of domain” and
whether online learning is required for a desirable operation. On
the contrary, contextual information from aleatoric uncertainty
when studied more carefully is more intriguing because it helps
unravel information about the scene based on the sensor character-
istics. For example, cameras cannot see through objects; hence, one
would expect high aleatoric uncertainty at the object’s depth bound-
aries, which can act as a powerful cue for performing various robot-
ics tasks.

Furthermore, from a pragmatic viewpoint, estimating epistemic
uncertainty requires variational inference and multiple runs of the
neural network, making it ineffectual for real-time applications
unless multiple neural network accelerators are used. On the con-
trary, aleatoric uncertainty is highly suited for real-time applications
because it requires a minor increase in the number of parameters
and requires a single pass of the network to predict the uncertainty.
In this work, we focus on estimating the heteroscedastic aleatoric
uncertainty or observational uncertainty with respect to the
input data.

In particular, we propose a generalized loss function formulation
to estimate the heteroscedastic aleatoric uncertainty that can be
used to model various probability distributions and relate it to the
works in the past decade. This demonstrates that previous works are
special cases of our generalized formulation. Furthermore, we
present a theoretical analysis of what information/cues this uncer-
tainty formulation provides for various prediction modalities. Last,
we apply our predicted uncertainty to perform various robotic tasks
and demonstrate the unification such a methodology can bring to
various classes of robotics problems. We call our class of networks
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Ajna, which is named after the third eye of Lord Shiva from Hindu
mythology and refers to the eye of wisdom/consciousness/intuition
because our networks can “see” (predict) where they might not
work well. We denote the uncertainty of predicted values as ϒ
because it represents the Greek letter for u standing for uncertainty
and resembles the shrug emoji. We formally define the problem
statement and a list of our contributions next.

Problem formulation and contributions
We address the following questions: How do you estimate the het-
eroscedastic aleatoric uncertainty of a neural network? What infor-
mational cues does it provide for various robotic tasks? Given an
input x, label ŷ, and prediction ~y, we predict the heteroscedastic ale-
atoric uncertainty ϒ by minimizing the proposed generalized loss
function. This loss function reduces to classical statistical properties
of variance for common distributions, such as Gaussian or Lapla-
cian. Furthermore, we use this loss function to learn the uncertainty
of optical flow and apply it for four example robotic tasks—navigat-
ing through a scene with static obstacles, dodging unknown
dynamic obstacles, detecting and flying through unknown shaped
gaps, and segmenting an unknown object pile (see Fig. 1). A
summary of our contributions is as follows: We propose a general-
ized heteroscedastic aleatoric uncertainty formulation for neural
networks, provide the analysis of informational cues provided by
heteroscedastic aleatoric uncertainty for robotic tasks, and
perform extensive real-world experiments demonstrating how
such uncertainty can be used for various robotic tasks (Movie 1).

Related work
Uncertainties and error statistics have been used for decades in ro-
botics. For the related work, we will present works that estimate

uncertainties in neural networks and applications of deep uncer-
tainty in computer vision and robotics.
Estimating uncertainties in neural networks
As we mentioned before, there are two types of uncertainties: alea-
toric or observational uncertainty and epistemic or model uncer-
tainty. Earlier works estimated either the aleatoric or epistemic
uncertainty alone. Previous works (2–4) estimated only epistemic
uncertainty by assuming a Gaussian prior distribution over
weights. Such a class of models is called Bayesian neural networks
(BNNs). The mathematical formulations of BNNs are simple, but
inference requires complex computing because one has to
compute marginal distributions across all neurons. Furthermore,
Gal and Ghahramani (5) introduced a dropout variational inference
to make the epistemic uncertainty estimation tractable by using sto-
chastic Monte Carlo dropout. Gal (6) introduced a method to
perform aleatoric uncertainty estimation alone, which was later
combined with epistemic uncertainty to obtain the total uncertainty
in Kendall and Gal (7). These methods, however, were too slow to
run on a robot or not accurate enough; to this end, Gast and Roth
(8) introduced lightweight probabilistic deep networks by propagat-
ing uncertainties using assumed density filtering and an even faster
variant by directly predicting the uncertainties only in the final
layer. This work was further extended to be agnostic to the
network architecture and loss function in Loquercio et al. (9). A
review of more works can be found in (10), and we redirect the
keen reader to this work for a more detailed summary of prior work.
Applications of deep uncertainty in robotics and
computer vision
In robotics, uncertainties and their statistics have been commonly
used to fuse multiple measurements from either a single sensor or
multiple sensors. Recently, the domination of the accuracy charts by

Fig. 1. Unification of common robotics problems using our generalized uncertainty formulation.
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deep learning approaches has shifted research focus toward the
fusion of uncertainties in neural networks. TLIO (11) presented a
method to fuse multiple inertial measurements to estimate odome-
try using the predicted uncertainties coupled to an extended
Kalman filter. KFNet (12) introduced the concept of fusion of mea-
surement and process model based on the classical Kalman filter
formulation (13) in the form of a neural network and applied it
to the problem of camera relocalization. IVOA (14) fused the pre-
dicted uncertainties into the navigation stack for robust perfor-
mance. Furthermore, Loquercio et al. (9) presented a general
framework for uncertainty estimation by combining both aleatoric
and epistemic uncertainties and applied it to three tasks: end-to-end
steering angle prediction, object motion prediction, and closed-
loop control of a quadrotor.

In computer vision, using deep uncertainty predictions to
improve performance has gained center stage in the past half
decade. Various applications, such as object detection, estimation
of optical flow, visual odometry monocular depth, stereo depth/dis-
parity, and surface normal, have leveraged uncertainties as a regu-
larizer for improving robustness. Feng et al. (15) presented a
method to improve the robustness of three-dimensional (3D)
object detection using light detection and ranging (LiDAR) data
by learning to ignore being trained from noisy samples. The
authors in (8, 16–19) used either a generative adversarial model
or aleatoric uncertainty model to estimate uncertainties that were
used as regularizers to train the optical flow model, which has
been proven empirically to improve performance. In our work,
we present theoretical reasoning as to why this is occurring—due
to loss attenuation at optical flow discontinuities. The authors in
(20–23) presented methods to estimate dense depth from either
stereo- or monocular views by improving accuracy at the boundar-
ies using an uncertainty metric. Furthermore, Martin-Brualla et al.
(24) used the same aleatoric uncertainty formulation to improve the
results of volumetric color rendering in a NeRF model by rejecting
dynamic objects using uncertainty. In (25), uncertainty was used to
perform self-supervised depth completion and resulted in state-of-
the-art performance. Similar to (25), the authors in (26) also used

uncertainty obtained by image flipping to improve the results in
monocular depth estimation. Costante and Mancini (27) presented
a method to estimate and incorporate total uncertainty into a deep
visual odometry pipeline. Furthermore, Kawashima et al. (28) pre-
sented an alternative method for aleatoric uncertainty estimation
using virtual residuals to tackle the problem of overfitting and
showed state-of-the-art results in age and monocular depth estima-
tion. Alternatively, uncertainty has also been indirectly learned as
the probability of outlier/inlier in SFMLearner (29). All in all, the
utilization of generalized uncertainty has been widely used to
improve various kinds of predictions.

RESULTS
Quadrotor platform
The quadrotor used in the experiments is a custom-built platform
called PRGLabrador500 (30). The platform was built on an X-
shaped 500-mm-sized (motor-to-motor dimension) frame. Each
of the four T-Motor F80 Pro 2500KV motors was mated to 6042
× 3 propellers to provide thrust in the system. The position-hold
and lower-level controllers were handled by the ArduPilot.1.4 firm-
ware running on the Holybro Kakute F7 flight controller coupled
with a GL9306 optical flow sensor and Benewake TFMini-S
LiDAR as the altimeter source. The higher-level navigational com-
mands were processed on and sent by the companion computer
NVIDIA Jetson TX2 (31) using RC-Override to the flight controller
running in Loiter mode using MAVROS. The TX2 runs the vision
and planning algorithms on board at around 8 Hz on Python 3.6.
The quadrotor take-off weight, including an 1800-mAh 3S LiPo
battery, was 1110 g, and the quadrotor had a thrust-to-weight
ratio of 4.9:1 and a flight time of about 10 min. All flight experi-
ments were performed in the Brin Family Aerial Robotics Lab at
the University of Maryland with a flying volume of 7.3 m by 5.5
m by 5 m.

Movie 1. Demonstration of real-world quadrotor experiments using uncertainty estimation in optical flow.
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Perception pipeline
In this section, we will describe the overall procedure for achieving
the proposed tasks. It involves two key steps: perception and control.
The perception pipeline was common for every task and is de-
scribed next.

The perception pipeline ran on consecutive RGB color frames at
an image size of 320 pixels by 240 pixels at a frame rate of 30 Hz.
These consecutive image frames were fed into our neural network
that was based on the EVPropNet architecture (32) with the only
change being the number of output channels, which in our case
was four rather than one (32). Our network Ajna has 2.72 million
parameters, uses about 6.3 GFLOPs for a forward pass, and is of
model size 10.40 MB, and each inference took about 49 ms (20.4
Hz) on a batch size of one. Ajna was trained in using the loss de-
scribed in Eq. 11, which used self-supervision to learn the uncer-
tainty and supervised labels to learn the target predictions. In
particular, our network was trained to predict dense optical flow
~_px and its dense heteroscedastic aleatoric uncertainty ϒx. Ajna
was trained on Flying Chairs 2 dataset (33, 34) for 400 epochs at a
learning rate of 10−4 and then trained further for 50more epochs on
the FlyingThings3D dataset (35) at a learning rate of 10−5. The batch
size used was 32. We used the following loss function for training
our networks based on (36):

arg min
~_pxΥx

E
k~_px � ~_pxk

logð1 þ eΥxþεÞ
þ λlogð1 þ eΥxÞ

 !

ð1Þ

In our mathematical formulation in Eq. 11, this is equivalent to
using f ð~y; ŷÞ ¼ k~y � ŷk1, hðaÞ ¼ 1=logð1 þ eαþεÞ, g(a) = log(1 + ea),
with ϵ = 10−3, λ = 1.0, and E is the expectation/averaging operator.
All the hyperparameters are obtained through cross-validation.

To summarize, the input to our networks was consecutive image
frames and the output was four channels: two channels for optical
flow in the x and y direction and two channels for uncertainty in the
x and y optical flow. We denoted per pixel the optical flow vector at
location x as ~_px [ R2�1 and its aleatoric heteroscedastic uncertainty
as ϒx ∈ ℝ2 × 1. We then used the predicted optical flow uncertainty
ϒ to compute a point on the image using morphological operations,
which was in turn used to compute the control strategy based on the
task as explained in the following sections. The goal of this work is
to showcase how uncertainty can be used for various robotics appli-
cations and how such a formulation can unify classes of robotics
problems together. Hence, we did not use any other information,
such as color, optical flow, or depth, in our experiments, which
are merely shown for comparison purposes in this paper. Further-
more, no prior knowledge about placement or type of structure(s)
was used in our experiments. Our control actions were based on ϒ
obtained from the current image pairs; no temporal smoothing or
filtering was used. All our perception, planning, and control algo-
rithms ran on board the NVIDIA Jetson TX2 and the flight control-
ler on the aerial robot and hence could be ported to a palm-sized
aerial robot (37, 38) without any added effort. In the following sec-
tions, we describe the specific experiment and its environmental
setup along with the control policies for four applications:
dodging dynamic obstacles, navigating through unstructured envi-
ronments, flying through an unknown gap, and finding the
object pile.

Dodging dynamic obstacles
In this experiment, we present a method to detect and dodge
unknown (zero-shot) dynamic obstacles using only a monocular
camera. The procedure of dodging dynamic obstacles involves
three key steps: first, detection of the obstacle or independently
moving object(s); second, prediction of the obstacle trajectory on
the image plane; and third, invoking a dodging maneuver to
avoid getting hit by the obstacle(s). We used the fact that a
dynamic obstacle will have the maximum amount of occlusions
and accretions on the consecutive frames from a hovering quadro-
tor. This in turn leads to high uncertainty of optical flow.We detect-
ed the dynamic obstacle by performing simple morphological
operations on the obtained uncertainty map. Further, we tracked
the obstacle over three frames by detection (segmentation) to
compute the direction the obstacle would hit on the image plane.
Then, we computed a safe direction and executed a control
command to move in that direction for “best-effort” dodging as
proposed in (39). We describe the experimental setup and
results next.

The experimental setup contained a hovering quadrotor at
which the obstacles were thrown or flown into such that a collision
would definitely occur if the quadrotor were to hold its position and
not invoke a dodging maneuver. We experimented with four differ-
ent obstacles, varying in shape, size, color, texture, and trajectory: a
spherical ball of diameter 140 mm, a toy car 185 mm by 95 mm by
45 mm, a toy airplane 270 mm by 250 mm by 160 mm, and a
PRGHusky360 quadrotor 440 mm by 370 mm by 160 mm. No
prior information about the objects was used in any of the experi-
ments. The objects—ball, car, and airplane—were thrown at the
quadrotor and followed a parabolic trajectory under the influence
of gravity, whereas the PRGHusky360 quadrotor followed a linear
trajectory. The objects were thrown or flown at speeds of 4.5 to 8.0
m s−1 from a distance ranging from 4.8 to 6.0 m. We achieved an
overall success rate (SR) of 83.3% over 60 trials. We compared our
results with depth-basedmethods, event-basedmethods, and occlu-
sion-based methods (Fig. 2 and Tables 1 and 2). In the depth-based
methods, D435i gave true scale depth, whereas the MiDaS and
MiDaS-S (40, 41) only output relative scale depth. Here, MiDaS
denotes the MiDaS v3.0 DPT-Large (41) pretrained model, and
MiDaS-S denotes the MiDaS v2.1 small pretrained model directly
obtained from the original work without any fine-tuning or retrain-
ing. For comparison with occlusion-based methods, we used the
predicted occlusion mask fromMaskFlowNet (42). We call this pre-
diction OccMask. In all the depth-based methods, we threshold the
depth value as an obstacle when it is closer than a particular depth
value to dodge them. We observed that Intel RealSense D435i (one
of the best depth sensors on the market) was not able to obtain
depth on moving objects accurately when they were far, hence ne-
cessitating an alternative formulation for dynamic obstacle dodging
like the one presented in this work. In the event-based method, the
approach was adapted from (39), where the output is the probability
of each pixel being an obstacle. Alternatively, a stereo pair of event
cameras can provide the guarantee of dodging obstacles (43). Last,
in the occlusion-based method, we threshold the large values as be-
longing to dynamic obstacles followed by morphological operations
similar to our method, Ajna. We compared our results with the
aforementioned methods on metrics such as detection rate (DR),
run time, FLOPs, and number of parameters in Table 1. Here, we
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Fig. 2. A sequence of images of quadrotor dodging objects. Dodging (A) airplane, (B) ball, (C) cart, and (D) drone. Here, the object and quadrotor transparency shows
the progression over time. Red and green arrows indicate object and quadrotor directions, respectively. In each subfigure, the outputs are shown in the following order
[using subfigures of (A) as examples]: (A1) image sequence of dodging, (A2) RGB image as seen by the quadrotor, (A3) D435i depth image, (A4) MiDaS-S output, (A5)
MiDaS output, (A6) OccMask, and (A7) Ajna. The color map used in all the depth images is plasma, where blue color represents far and yellow is close. The color map for
occlusion and uncertainty map is inverse plasma, where blue color represents lower uncertainty/occlusions and yellow represents higher uncertainty/occlusions. The
yellow boxes show the zoomed-in view of the object. The color map is consistent across all figures in this paper.
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define DR as

DR ¼
Num: success
Num: trials

; Success :¼ IoU � 0:5 ð2Þ

where IoU ¼ ðD > GÞ=ðD < GÞ. Here, D is the predicted mask
and G is the ground truth mask.

Navigating through unstructured environments
In this experiment, we present a method to navigate a quadrotor
toward a goal direction through different unstructured environ-
ments: indoor forest, boxes, and a photorealistic simulated forest.
We identified the safe region in the current image to avoid obstacles
while also moving toward the goal by dynamically weighing the
contributions of the local planner (avoiding obstacles) and global
planner (going toward the goal). Once the weighted intermediate
goal direction was obtained, a control policy was deployed on the
quadrotor to change the current heading direction using a propor-
tional-integrative-derivative (PID) controller to reach the goal while
avoiding collisions. The current desired direction ~vg was obtained as
the weighted sum of the goal direction vg and free path direction
vfree. ~vg acts as the global planner, and vfree acts as the local
planner. This policy was based on the policy from (44) with
minor modifications explained next.

Consider a small neighborhood N on the image plane centered
around the intersection of the goal direction vector and the image
plane. Let vfree be the geometric center of the largest free space in the
neighborhood N. We consider higher values of uncertainty in
optical flow to be closer to the camera because the rotation-com-
pensated optical flow is inversely proportional to depth (45).
Now, let Zclose be the closest depth value in N. Let Zo,i denote
the depth value in N in different directions i. We chose the
second most “unsafe” region such that Zo = min(Zo,i > Zclose + δ),
where δ is a user-defined heuristic. This formulation is inspired by
the classical receding horizon planner (46). The final control policy
is given by

~vg ¼ ð1 � wÞvg þ wvfree;w [ ½0; 1� ð3Þ

eðtÞ ¼ ~vgðtÞ � ~vcurrðtÞ ð4Þ

uðtÞ ¼ KpeðtÞ þ Ki

ðτ

0
eðτÞ þ Kd

deðtÞ
dt

ð5Þ

w ¼
1

1 þ eð� Zo=ZcloseÞ
;Zclose ¼ minZðx; yÞ8fx; yg , N ð6Þ

where ~vcurr is the estimated current heading direction. Note that the
goal vector is dominated by vfree when the foreground element is
very close, which means w → 1, and by global goal vector vg

Table 1. Quantitative evaluation for dodging obstacles and flying
through gaps.

Method DR
(%) ↑

Run
time
(ms) ↓

FLOPs
(G) ↓

Number of
parameters

(M) ↓

Dodging dynamic obstacles

D435i* (61) 100.0 1.0 – –
MiDaS-S (40) 0.0 12.0 43.7 21.1

MiDaS (40) 3.1 137.8 1052.9 344.6

EVDodgeNet†

(39) (SegNet)
40.4 2.5 0.2 0.03

EVDodgeNet† (39)
(DB + H +
SegFlowNet)

90.7 11.0 5.2 3.6

OccMask (42) 74.8 31.4 62.7 20.6

Ajna (ours) 89.2 10.1 6.3 2.7

Flying through unknown shaped gaps

GapFlyt (PWC-Net)
(45, 62)

94.2 91.0 90.8 8.75

GapFlyt (FlowNet2)
(45, 63)

93.0 124.0 24836.4 162.5

GapFlyt (SpyNet)
(45, 64)

74.0 70.0 149.8 1.2

D435i* (61) 100.0 1.0 – –
MiDaS-S (40) 0.0 12.0 43.7 21.1

MiDaS (40) 30.1 137.8 1052.9 344.6

OccMask (42) 56.2 31.4 62.7 20.6

Ajna (ours) 91.0 10.1 6.3 2.7

*Uses depth images. †Uses event sensor images and results are taken
from (39).

Table 2. Quantitative evaluation for navigating through unstructured environments.

Method SR
(%) ↑

Average path length increase
(%) ↓

Average safe point error
(px.) ↓

Run time
(ms) ↓

FLOPs
(G) ↓

Number of parameters
(M) ↓

MorphEyes*

(44)
99.0 0.6 1.1 2.5 – –

MiDaS-S (40) 32.0 7.8 6.8 13.4 43.7 21.1

MiDaS (40) 97.0 1.0 1.1 139.2 1052.9 344.6

OccMask (42) 0.0 – 40.0 35.3 62.7 20.6

Ajna (ours) 92.0 2.7 4.1 11.6 6.3 2.7

*Uses stereo camera images. All other methods above use RGB image(s) as their input.
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when there are no obstacles nearby, which means w → 0. We de-
ployed this policy in all three aforementioned environments. We
controlled yaw velocity and net thrust vector to achieve the
desired direction. In addition to (44), where both “safe” and
“unsafe” regions are used, our method also weighed in the second
most unsafe region.
Indoor forest environment
An indoor forest environment was constructed using cylindrical
play tunnels of diameter 0.48 m and height 1.83 m (Fig. 3A).
These tunnels were scattered over the space of 7 m by 5 m in an
unstructured manner. The quadrotor successfully navigated
through the indoor forest environment at an average speed of 3.2
m s−1 with an SR of 86% over 50 trials in different configurations.
Boxes environment
We constructed cubes or “boxes” using yoga mats of dimensions 0.6
m by 0.6 m for our unstructured environment (Fig. 3B). The rect-
angular mat in the middle had dimensions 1.37 m by 0.6 m. This
environment was constructed in the same area as mentioned in
the previous section. The quadrotor successfully navigated
through the box environment at an average speed of 1.6 m s−1

with an SR of 82% over 50 trials. Figure 3 shows a comparison of
our results with Intel D435i, MiDaS-S, MiDaS, and OccMask.
Simulated forest environment
We rendered RGB images in Blender 3D software in a photorealistic
forest scene (Fig. 4B). Figure 4A represents a simplified version of
the forest from the top view. The camera was mounted on a quad-
rotor that followed a differential flatness model for its controller.
Our simulator used a Cycles rendering engine that used a ray-
tracing algorithm to produce images that the quadrotor saw. The

images were rendered at 30 frames/s at a resolution of 640 pixels
by 480 pixels. The scene consisted of static trees with varying
sizes, shapes, and textures. We tested both our perception and
control algorithm in simulation. We compared Ajna with Mor-
phEyes (44), MiDaS-S, MiDaS, and Comas on SR, average safe
point error, run time, and average path length increase from path
length using ground truth depth in Table 2 and Fig. 4. We
defined the SR as the ratio of the number of successful trials of
drones navigating through the scene without any collisions to the
total number of trials. The average safe point error was the differ-
ence between the ideal safe point obtained from the ground truth
depth map to the safe point computed through the respective
method. The safe point was defined as the safest point on the
image plane where the drone should be headed. This was adapted
from (44). Note that the safe point error was computed in pixels on
the image plane. Average path length increase was defined as the
percentage increase in the average distance taken by the particular
method as compared with the distance traversed when using the
ground truth depth map. Furthermore, we randomized our scene
of size 40 m by 20 m with a uniform random distribution of
various trees of diameter ranging from 0.6 to 0.9 m with a
minimum separation distance of 3 m between two trees. We suc-
cessfully tested our method to achieve an SR of 92% over 100
trials with an average speed of 4.8 m s−1.

Flying through an unknown gap
In this experiment, we present a method to detect and navigate
through a gap of unknown shape and location using only a monoc-
ular camera. The procedure of flying through a gap involves two key

Fig. 3. A sequence of images of the quadrotor navigating through cluttered environments. (A) Indoor forest. (B) Boxes. Here, the object and quadrotor transparency
shows the progression of time. The green arrow indicates the quadrotor direction. In each subfigure, the outputs are shown in the following order [using subfigures of (A)]:
(A1) image sequence of navigation, (A2) RGB image as seen by the quadrotor, (A3) D435i depth image, (A4) MiDaS-S output, (A5) MiDaS output, (A6) OccMask, and
(A7) Ajna.
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steps: detection of the gap and aligning/flying through the gap. In
the first step, we used the active vision (47, 48) philosophy to
perform an “exploratory” maneuver just like in (45). We then
used the fact that the uncertainty of optical flow inside the gap
would be much higher than outside. This is intuitively true
because the number of occlusions and accretions caused inside
the gap would be much larger due to the parallax effect. This dis-
parity in uncertainty enabled us to detect the gap in an effortless
manner using basic morphological operations. Once the gap was
detected, we tracked the contour indirectly by tracking the fore-
ground (the part outside the gap) and background regions (the
part inside the gap) separately. We then propagated the gap
contour shape using the focus of expansion (FOE) constraints as
in (45) to fly through the safe point xs. Further, we tracked the
gap and visually servoed toward the safe point by actively switching
between background and foreground as necessary (45). We describe
the experimental setup and results next.

The experimental setup contained a rigid scene with two near-
planar “wall” surfaces, namely, the foreground and the background
(Fig. 5). The foreground contained an unknown-shaped gap. The
foreground wall had newspaper stuck on it to add texture to the
scene. The background wall had real-life features and hence was
not augmented with additional features. The average distance
from the initial position of the quadrotor to the foreground and
background was 3.0 and 7.2 m, respectively. For the detection of
the gap, we bumped up the proportional gain of the position con-
troller (49, 50) momentarily to invoke random exploratory maneu-
vers. This could easily be replaced by a fixed diagonal line trajectory,
such as presented by Sanket et al. (45). Over this maneuver, a
number of images were captured. The uncertainty in optical flow
between these sets of images was used to detect the gap. Similar
to (45), once the gap was detected, the foreground and background
regions were tracked using Kanade-Lucas-Tomasi tracker (51) and
the quadrotor servoed toward the gap. We compared our results
using optical flow methods, depth-based methods, and occlusion-
based methods on metrics of DR, run time, FLOPs, and number of
parameters in Table 1. The DR was the same as defined in the
“Dodging dynamic obstacles” section. We obtained a DR accuracy
of 91% over 100 trials across four different unknown-shaped gaps
with a minimum tolerance of just 8 cm. The optical flow methods
for detecting the gap were based on GapFlyt (45) with the input to
the algorithm coming from different optical flow networks, such as
PWC-Net, FlowNet2, and SpyNet. In the depth-based methods

(D435i, MiDaS, and MiDaS-S), the gap was obtained by clustering
depth values into foreground and background, followed by obtain-
ing the region of largest disparity between the values. For the occlu-
sion-based method OccMask, we used simple morphological
operations after thresholding the values to obtain the gap.

Segmentation of object pile
We studied the possibility of using Ajna for foreground-background
segmentation tasks. In this experiment, we assumed that the object
set was placed on a planar surface. We used the activeness of the
robot to obtain uncertainty due to occlusions. The camera moved
actively to take two snapshots from different views of the same scene
to compute the uncertainty ϒ. The boundary between the fore-
ground and background is correlated to the occlusion between
two frames. These occluded regions give rise to high uncertainty.
We conducted our experiments on GrassMoss (Fig. 6A), Rocks
(Fig. 6B), and YCB (Fig. 6C) datasets as mentioned in (36) on 30
unique configurations per dataset. We qualitatively compared
Ajna’s output with Intel D435i, Mask-RCNN (52), PointRend
(53), MiDaS-S, MiDaS, and OccMask. Note that Ajna and
OccMask are active approaches and rely on two images to
segment the foreground and background. For segmenting in the
D435i image, we used a plane-fitting algorithm on the depth map
and removed it for the background subtraction. Object segmenta-
tion methods like Mask-RCNN and PointRend rely on features
and texture maps. They segment the object cluster but also
segment some objects on the background texture (see traffic lights
and trees being segmented in Fig. 6B3). In MiDaS-S and MiDaS, we
segmented the background by thresholding the depth value on the
predicted output image. In OccMask, the occlusions were visible on
the objects, but OccMask also results in artifacts in the background
textures as well (see Fig. 6A7). In Fig. 6A8, Ajna gives an estimate of
where the object pile is located. Just using ϒ directly does not
provide segmentation of the object pile. It acts as an attentionmech-
anism to “show” where the object pile is but is seldom sufficient to
provide segmentation of the pile. This can, however, be used as an
initialization step for interactive segmentation as proposed in (36)
for segmenting out zero-shot or unknown objects/samples. If one is
segmenting known objects, one can use instance segmentation–
based methods, such as Mask-RCNN or PointRend, that identify
objects from a learned database, and one can extract the required
objects directly. An alternative approach is to use a method that pro-
vides depth like the D435i or infers depth using a neural network

Fig. 4. Comparison of variousmethods to navigate through a simulated realistic forest scene. (A) The scene from the top viewwith paths overlaid (direction of travel
is left to right). The legend is as follows: white, ground truth depth; green, MiDaS; dashed green, MiDaS-S; yellow, OccMask; black, MorphEyes; blue, Ajna (ours). (B) Sample
RGB image as seen by the quadrotor, (C) ground truth depth, (D) MiDaS-S output, (E) MiDaS output, (F) OccMask output, (G) MorphEyes output, and (H) Ajna output.
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Fig. 5. Image of quadrotor flying through unknown gaps. (A) Egg. (B) Goku. (C) Infinity. (D) Rectangle. In each subfigure, the outputs are shown in the following order
[using subfigures of (A)]: (A1) image of flight through the gap, (A2) RGB image as seen by the quadrotor, (A3) D435i depth image, (A4) MiDaS-S output, (A5) MiDaS output,
(A6) OccMask, and (A7) Ajna. The black or yellow boxes in the images show the window location.
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like MiDaS or MiDaS-S, and one can segment the objects that
“stand out” of the plane of the table. None of the later methods gen-
eralizes to novel/zero-shot objects because they rely on learning to
predict outputs based on textures rather than geometry. Ajna, when
combined with NudgeSeg, can be used as a method to learn novel
objects to train methods like Mask-RCNN, PointRend, or MiDaS.
This can further enable the operation of robots in the wild. Further-
more, it is simple to know whether an object is zero-shot by
“looking” at the epistemic uncertainty of predictions, and this pre-
sents an interesting avenue for future work.

Network speed on different hardware
In this section, we test the Ajna network’s inference speed on
various computing platforms such that they can be deployed on
various-sized quadrotors (as low as 120 mm as shown in Fig. 1).
The inference time for Ajna on an Intel i9 CPU, NVIDIA Titan
Xp GPU, NVIDIA Jetson TX2, Intel NCS2, and Google Coral

TPU is 140.7, 9.1, 49.0, 268.9, and 34.4 ms, respectively. For a de-
tailed comparison of various network architectures for related tasks,
we refer the readers to (54). Here, the time on the Intel i9 CPU and
NVIDIATitan Xp GPU is presented to act as a baseline and cannot
be deployed on small robots. The NVIDIA TX2 used in our exper-
iments performs well for small aerial robots. Specialized neural
network accelerators such as the Intel NCS2 and the Google Coral
TPU are tailor-made for tiny aerial robots. Our work and its unify-
ing conceptualization will enable a multitude of tasks on tiny aerial
robots when coupled with such neural network accelerators.

DISCUSSION
Perception on robots for various autonomous operations is gener-
ally centered around building a 3D representation of the scene using
mature simultaneous localization and mapping (SLAM) or odom-
etry algorithms. Various sensor suites have been used to accomplish

Fig. 6. Outputs for segmentation experiments using various methods on different datasets. (A) GrassMoss. (B) Rocks. (C) YCB. In each subfigure, the outputs are
shown in the following order [subfigures of (A)]: (A1) RGB image as seen by the robot, (A2) D435i depth image, (A3) Mask R-CNN output, (A4) PointRend output, (A5)
MiDaS-S output, (A6) MiDaS output, (A7) OccMask, and (A8) Ajna output. Different colors in (A3) and (A4) show different objects with different labels being detected by
the instance segmentation.
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the aforementioned tasks. Central to such methods are fusing mul-
tiple noisy measurements from either single or multiple sensors to
obtain more accurate results. This has facilitated the modeling and
utilization of uncertainty of various sensing and processing modal-
ities. However, these uncertainties also have latent informational
cues that are rarely used in robots. Furthermore, when one is build-
ing a parsimonious solution to various robotics problems to comply
with the size, weight, area, and power (SWAP) constraints to
perform all sensing and computation on board, one has to use
every bit of informational cue available. This will further lead to
unifying various robotic tasks on a parsimonious agent.

In our work, we present one such unifying framework for four
common robotic tasks by a resource-constrained aerial robot:
dodging dynamic obstacles, navigating through a cluttered environ-
ment, flying through gaps, and segmentation of object piles. All
these methods rely on the activeness of the agent, in other words,
its ability to obtain images from different views. On the basis of the
heteroscedastic aleatoric uncertainty ϒ of optical flow, we obtained
object boundaries due to accretions and deletions that are central to
performing “depth-based segmentation” that was used in solving
the aforementioned four problems using a simple perception
stack. Note that ϒ of optical flow has additional informational
cues that aid the detection of dynamic obstacles and navigation
problems: motion blur, which leads to optical flow being ill-
defined. In the dynamic obstacle case, when the obstacle is
moving much faster than the robot, the amount of motion blur
leads to an ill-posed estimation of optical flow, which gives rise to
high ϒ. This has the same effect as the properties of event cameras:
Dynamic obstacles stand out because of producing a large number
of events, which is mimicked by high values of ϒ.

In the navigation case, the closer the object, the more amount of
motion blur it will have because of slight movement while the
image/frame is being acquired, coupled with the fact that the
optical flow of the closer objects is higher, so the inherent value
of ϒ will be high. In a qualitative sense, ϒ has information from
both worlds: depth and motion boundaries. This is exactly what
we observe from the results from Fig. 4 and Table 2. Results using
Ajna are in the middle (in terms of SR, path length, and safe point
error) of using depth-based methods and occlusion methods. In the
occlusion-based method OccMask, there is no trivial way to solve
the boundary assignment problem, that is, which part of the high
occlusion region belongs on the tree. This is because the informa-
tional cue about depth is missing in this representation. However, in
depth-based methods, the boundary assignment is trivial, but the
computational cost to obtain the depth map is much higher
(about seven times as compared with Ajna). Furthermore, works
such as (55) avoided processing holes in optical flow, especially
near the FOE, which led to a very inefficient solution. Our
method can be easily incorporated into such methods to avoid
holes in optical flow as shown in Fig. 7A. Particularly in the cases
where optical flow values are small near the FOE even though the
obstacle is present, our method can provide robustness. Notice how
ϒ is high even though the optical flow magnitude is low near the
FOE because it is on the tree trunk. Such approaches can lead to
minimal representations for high-speed agile flight through the
forest and can advance the work of (56, 57).

We obtained and analyzed uncertainty in various different set-
tings (see Fig. 7, A to G). Figure 7B shows how uncertainty behaved
in the case when only light illumination changed [blinking light-

emitting diode (LED)], whereas Fig. 7C represents uncertainty in
the case of both light changes as well objects under motion.
Figure 7D shows that our method was invariant to black-box adver-
sarial attacks (58). We observe that in Fig. 7D3, the input image had
an adversarial patch superimposed, yet this did not affect our un-
certainty predictions. Figure 7 (E to G) illustrates three different ex-
periments: flying through unknown gaps, navigating in static
environments, and dodging dynamic objects. For Fig. 7 (E to G) ex-
periments, the first column represents the depth map of the scene
(black represents 0 m; white represents 4 m), the second and third
columns are the consecutive input images to our neural network,
and the last column is the predicted uncertainty. We observed
that uncertainty at depth boundaries is almost always far greater
than the uncertainty at low-texture regions. This study was per-
formed on a variety of real-world textures with varying the
number of texture components (variations in the smoothness of
the scene including color-flat or low texture regions) in over 7000
images and 100 textures in three scenarios of detection of unknown
gaps (50 differently shaped gaps; one such example is shown in Fig.
7E), static obstacle environments (one such example is shown in Fig.
7F), and dynamic obstacles (one such example is shown in Fig. 7G).

We can also analyze how neural networks see depth using a
single image (59) versus two or more images. Let us shed some
light on the simulation forest experiment. Figure 4B represents
the input RGB image of a simulated forest, and Fig. 4C represents
the ground truth depth map. If we look closely, in MiDaS output
(Fig. 4E), the branch of the tree is missing. In addition, notice
that the tree branch is present in OccMask and Ajna outputs (Fig.
4, F and H, respectively). Note that MiDaS used a single image to
predict depth, whereas OccMask and Ajna required two images to
predict its output. From Table 1, we can conclude that MiDaS has
about 128× more parameters as compared with our Ajna, and yet it
fails to capture small details like the tree branch. Neural networks
often fail to capture this subtle information from a single image, ir-
respective of the size of the pre-trained model. For robotics appli-
cations such as navigation, this subtle information is crucial to avoid
these obstacles. Thus, the utilization of multiple images (rather than
a single image) to predict quantities like depth can be more benefi-
cial for such applications.

Limitations and future work
It is important for us to also discuss a few limitations of using just
optical flow uncertainty for the tasks described before. Uncertainty
can be high because of a multitude of reasons, such as depth bound-
aries, color-flat regions, extreme brightness changes, and blinking
lights. In general, we observed that (more examples can be found
in the Supplementary Materials) depth boundaries or dynamic ob-
stacles have higher uncertainties than other factors and can be used
for navigation. Nevertheless, uncertainty from multiple sources
(such as optical flow and surface normals) can be used to disambig-
uate among various scenarios and can be an interesting avenue for
future work. Furthermore, using uncertainty might not present a
complete solution but can act as a safety/attention mechanism
that highlights the part of the image that needs more processing/at-
tention. From a logical perspective, high uncertainty and the solu-
tion of a task are not necessary and sufficient for each other. As an
example, let us take the task of detecting an independently moving
object (IMO). If P is the proposition, where P = “There is a high
uncertainty in this region” and Q is the proposition such that Q =
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Fig. 7. Uncertainty predictions in extreme scenarios. (A) (i) Input image pair as an anaglyph, (ii) optical flowwith the color map shown as inset, and (iii) Ajna’s predicted
uncertainty. Despite low ṗ in the highlighted white region, the quadrotor needs to dodge this area. This is correctly predicted as high ϒ. This is a common example where
ϒ provides additional information over ṗ. (B) (i to iii) Input image frames and ṗ under blinking LEDwithout motion. (C) (i to iii) Input image frames and under blinking LED
with motion. (D) (i to iv) Image input, predicted ϒ, image input with flow attack, and predicted ϒ under attack. (E), (F), and (G) are experiments of flying through gaps,
flying through a forest, and detecting dynamic obstacles. Left to right: ground truth depth (white is 4 m and black is 0 m), input images 1 and 2, predicted ϒ.
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“There is an IMO there,” then Q ⇒ P but P↛Q. We could have high
uncertainty because of a blinking light, for example, or because
there is an object nearby. Therefore, in principle, a system based
on uncertainty estimation will never miss an IMO—It may think,
however, in some instances, that there is an IMO when there is
not one. This is the price that qualitative minimal perception has
to pay. Thinking that there is an IMO at a close-by location is not
necessarily a bad thing for a minimal system, because close-by
objects could be potential obstacles and should be avoided.

We see several interesting avenues for future work because our
work is at a nascent stage. First and foremost, it would be interesting
to analyze the aleatoric uncertainty of various sensors commonly
used in robotics, such as inertial sensors, LiDARs, SONARs
(sound navigation and ranging), and so on. We think that this
could be a new way to fuse sensors using informational cues
rather than just fusion using raw uncertainty values using Bayesian
formulation and its variants. Furthermore, these latent informa-
tional cues might help unravel nontrivial and efficient ways to
solve common robotics problems in a unified manner. Although
we presented analysis and experimental results to showcase that ϒ
can be used to solve common robotics problems, it is still not clear
how a task planner would be built to switch between the aforemen-
tioned tasks and how one would disambiguate between the various
cases when deployed in the wild. In addition, the use of uncertainty
in low-light environments with traditional RGB cameras will largely
hinder the performance of obstacle detection. It would be interest-
ing to explore the uncertainty principles for high dynamic range
(HDR) or event cameras in the near future.

Overall, our method takes baby steps by presenting a generalized
uncertainty formulation that can be used to solve common robotics
problems in an unconventional manner.We hope that this can open
new doors for robot autonomy at sizes that were not thought pos-
sible before by using ϒ to aid parsimonious solutions.

MATERIALS AND METHODS
General heteroscedastic aleatoric uncertainty formulation
Let x be the input to a neural network ℕ with weightsW and ~y be its
estimated output (Eq. 7) where the ground truth prediction is given
by ŷ.

~y ¼ Nðx j WÞ ð7Þ

We want to learn weightsW to optimize the following problem:

arg min
W;Υ

f ðŷ; ~yÞ such that Υ ¼ kðf ðŷ; ~yÞ; xÞ ð8Þ

Here, f is a distance metric between the predicted ŷ and ground
truth ŷ, and ϒ is a monotone function k of heteroscedastic aleatoric
uncertainty of the underlying probability distribution pðx; ~y j WÞ

with a positive correlation to the expected error/risk. Formally,
the correlation between two random variables X and Y is given by
the Pearson correlation ρX,Y in Eq. 9, where E represents the expec-
tation operator.

ρX;Y ¼
EðXYÞ � EðXÞEðYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðX2Þ � EðXÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðY2Þ � EðYÞ
2

q ð9Þ

To reiterate, ϒ is a function of x and is correlated with the esti-
mated error between ~y and ŷ and is formally defined below:

Υðx j WÞ :¼ hðEðdðŷ; ~yÞÞÞ such that ρΥ;f ðŷ;~yÞ . 0 ð10Þ

Here, d and f are distance metrics on a set X such that f, d : X × X
→ [0, ∞) and satisfy the properties of identity, symmetry, and tri-
angle inequality. Note that ϒ need not be the variance of the distri-
bution pðx; ~y j WÞ but has to satisfy ρϒ,ν > 0, where ν is the variance
(which might be hard to compute for arbitrary distributions). Intu-
itively,ϒ represents the expected error or risk or the absence of con-
fidence in the predicted output. To obtain ϒ, which we will call
uncertainty for ease of understanding in a self-supervised way, we
need to optimize the following function.

arg min
~y;Υ

hðΥÞf ðŷ; ~yÞ þ λgðΥÞ ð11Þ

In the above optimization function, g is a monotone function of
the uncertainty (to preserve the domain order and convexity) and h
is a function that inverts the nature of monotonicity of g (such that
ρh,g < 0 is satisfied; here, h could also be a function of g). The intu-
ition behind the above formulation is that there is a two-way cou-
pling between ϒ and ~y to ensure that trivial solutions are not
encountered and that values are appropriately scaled. The term
hðΥÞf ðŷ; ~yÞ scales the value of f ðŷ; ~yÞ appropriately based on the un-
certainty per input dimension; this is equivalent to weighing differ-
ent noisy observations to mimic “outlier rejection” and can be
thought of as a loss attenuator. However, this can lead to trivial so-
lutions of ϒ → ∞ (if unbounded) to minimize the loss. To avoid
this, a simple penalty on the value of ϒ is added using λg(ϒ) to
counteract exploding values of ϒ. This formulation is a generaliza-
tion of the work in (7). The user is free to choose the functions g, h,
and f, which can be adapted from domain-specific knowledge. We
showed the relationship between f, g, and h in previous works, and it
is presented in Table 3. Note that our formulation spurs by intui-
tively summarizing a large body of prior work across various
domains that estimate uncertainty, risk, and/or learned robustness
parameter(s). We intuited a trend in the large bodies of past work
and formulated a blueprint function that can be used for crafting
novel loss functions. To summarize, we unified previous works
into a single generalized function. These previous works (Table 3)
can be obtained by plugging in specific functional parameters in our
formulated equation (Eq. 11).

Note that in our formulation,ϒ canmean uncertainty (similar to
covariance) or lack of confidence (risk) of any arbitrary distribution.
Because for complicated distributions,ϒ can be a complicated func-
tion of the variance ν, the uncertainty might be qualitative rather
than quantitative. However, with careful consideration of functions
f, g, h, and λ, ϒ can be made to be a quantitative function of ν with
simple closed-form solutions. In such scenarios, one can also work
toward certifiability of neural networks in a limited domain of train-
ing/operating data. Formally, a network is certifiably robust when
the error is bounded by a value τ for the prediction of perturbed
inputs. If x is the input and x0 is the perturbed input, the lp distance
in their respective outputs should be bound within τ, i.e., ‖ℕ(x∣W )
− ℕ(x

0

∣W )‖p ≤ τ. We hypothesize that this definition of robustness
should also include the network’s confidence as an additional con-
straint. This is analogous to the network “informing us” when it is
speculating a failure. Such a formulation needs a thorough
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mathematical treatment and is beyond the scope of this paper. Fur-
thermore, we see this as a potential direction for interesting
future work.

When we use Eq. 11 to learn ϒ in a self-supervised way along
with ~y and when bothϒ and ~y are dense, they vary per pixel location
x. In practice, the actual loss function that is minimized is given
below:

arg min
~y;Υ

EðhðΥxÞf ðŷx; ~yxÞÞ þ λEðgðΥxÞÞ8x ð12Þ

The above equationmodels the distribution given below (assum-
ing that we are minimizing the negative log-likelihood in Eq. 12).

pðŷ j ~y;ΥÞ /
Y

8x
expð� hðΥxÞf ðŷx; ~yxÞÞexpð� gðΥxÞÞ ð13Þ

In the rest of this paper, ϒ refers to heteroscedastic aleatoric un-
certainty unless otherwise specified, and we refer to heteroscedastic
aleatoric uncertainty as just uncertainty unless specified otherwise
for simplicity.

Informational cues from uncertainty ϒ
The answer to the question “what informational cues does the un-
certainty hold?” lies hidden inside the question “what is this uncer-
tainty of?” For robot autonomy, we generally estimate one or more
of the following quantities: (i) optical flow, (ii) monocular/stereo
depth, (iii) surface normals, and (iv) semantic segmentation.

Hence, in our discussion, we will focus on these three quantities
in the following subsections.

Uncertainty of optical flow
Optical flow at a pixel located at x = [x y]T is denoted as _px and is
given by

_px ¼
1
Zx

xVz � Vx
yVz � Vy

� �

þ
xy � ð1 þ x2Þ y

ð1 þ y2Þ � xy � x

� �

Ω ð14Þ

Here, V = [Vx Vy Vz]T, Ω = [Ωx Ωy Ωz]T denotes the 3D linear
and angular velocities of the camera, respectively. Zx denotes the
depth at a pixel x. To gather insight into when a high uncertainty
would be obtained, we need to revisit the mathematical definition of
optical flow. The optical flow _px essentially is giving us the matching
of each pixel x between two images and is obtained by solving the
brightness constancy equation

arg min
_px

ItðxÞ � Itþδtðx þ _pxÞ j ð15Þ

Here, ℐt(x) and δt denote the brightness of the point at x at time
t and small time increment, respectively. In practice, because a
single point sample at xwould be too noisy to match, a small bright-
ness over a small patch neighborhood N is matched using some
function of the difference in patch brightness denoted by f (this

Table 3. Relation to existing works (chronological order).

fð~y; ŷÞ h(a) g(a) λ y Reference

k~y � ŷk
2
2

a−2 Log(a2) 1.0 Semantic segmentation (7)

k~y � ŷk1 a Log(a) 0.2 Monocular depth (29)

ð~y � ŷÞ
2 a−1 Log(a) 1.0 Optical flow (8)

k~y � ŷk1 a−1 Log(a) 1.0 Optical flow (18)

0:5ð~y � ŷÞ
2
;

if j ~y � ŷ j, 1
j ~y � ŷ j � 0:5;

otherwise

8
>><

>>:

a−2

Log(a2) 2.0 3D bounding box (15)

k~y � ŷk
2
2

a−2 Log(a) 6.0 Optical flow (12)

k~y � ŷk
2
2

a−1 Log(|a|) 1.0 Visual odometry (27)

k~y � ŷk
2
2

a−1 Log(a) 1.0 Dense depth (25)

k~y � ŷk1 a−1 Log(a) 1.0 Monocular depth (26)

k~y � ŷk1
1

logð1þeaþεÞ
Log(1 + ea) 1.0 Optical flow (36)

k~y � ŷk1 a−1 Log (a) 1ffiffi
2

p Stereo disparity (20)

k~y � ŷk1 a−1 Log (a) 1.0 Monocular depth (19)

cos� 1ð~yT ŷÞ –a Log 1þeπa
1þa2

� � 1.0 Surface normals (21)

ð~y � ŷÞ
2 a−2 Log(a2) 2.0 Optical flow (17)

ð~y � ŷÞ
2 a−2 Log(a2) 1.0 Monocular depth (23)

k~y � ŷk
2
2

a−2 Log(a2) 1.0 Pixel dolor (24)

ð~y � ŷÞ
2 a−2 Log(a2) 1.0 Monocular depth (22)
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could be as simple as the sum) and is given as

arg min
_px

f ðItðxÞ � Itðx þ _pxÞÞ j 8x [ N ð16Þ

The robustness of the estimated optical flow _px to noise is
defined by the Lipschitzness of the estimate with respect to the
noisy/perturbed estimate and is given as

dðf ð _pÞ; f ð _p þ vÞÞ � Kdð _p; _p þ vÞ ð17Þ

Here, ν is the noise in the estimate, K is a positive constant, and d
is a distance metric. A smaller value of K indicates a lower sensitiv-
ity. Now, let us look at what condition will cause a small error on the
estimated flow to affect the brightness matching score significantly.
To understand this phenomenon mathematically, let us look at the
mutual information (Eq. 18) between the distributions of optical
flow with and without noise. For ‖v‖ → 0, the mutual information
Iðf ð _pxÞ; f ð _px þ vÞÞ should be maximum.

Iðf ð _pxÞ; f ð _px þ vÞÞ ¼ DKLðPf ð _pxÞ;f ð _pxþvÞkPf ð _pxþvÞ � Pf ð _pxþvÞÞ ð18Þ

Here, f ð _pxÞ denotes the matching score from Eq. 16, Pa denotes
the marginal distribution of a, and ⊗ is the operator that multiplies
two marginal distributions. Now, because the neighborhood N is
small, the deviation of x, y inside the neighborhood is small.V, Ω are
intrinsic camera properties and do not depend on the scene. The
only geometric variable left that can affect the distributional shift
of f ð _px þ vÞ away from f ð _pxÞ even when ν is small is large
changes to Zx. This means that the depth varies a lot spatially
with small changes to location, i.e., ‖∇xZ‖ is large. These are
depth discontinuities or edges. They are generally dominated by
object boundaries. Hence, a large uncertainty is correlated with
object boundaries.

The keen reader might also think about the fact that the Z is a
latent variable that implicitly influences ϒ, but the appearance of
the image should also be affecting it directly. Intuitively, should ϒ
not have high values for areas that cannot bematched? Indeed this is
true; this is the other case where large “flat” (uniform color) regions
will lead to large uncertainty because of the absence of nondistinct
features. Here, a feature would be called distinct based on the struc-
ture tensor M

M ¼
rxI

2 rxIryI

rxIryI ryI
2

" #

ð19Þ

Let λ1 and λ2 be the eigenvalues of M; then, if λ1 ≈ λ2 → 0, the
region is flat. Note that there is a minimum size of the neighbor-
hood N that is flat for uncertainty to be high, and this neighbor-
hood size is directly related to the receptive field.

To summarize, a high uncertaintyϒ on estimated optical flow _px
is due to either depth boundaries or flat regions in the image larger
than the receptive field of the network or when severe local illumi-
nation changes are encountered. From a slightly different perspec-
tive, depth boundaries give rise to occlusions (parts of the scene are
covered by other parts of the scene that are closer) or accretions
(parts of the scene are revealed as the closer part occluding it has
now moved away) and in turn lead to high ϒ because there is no
mapping from ℐt(x) to Itþδtðx þ _pxÞ. Formally,

∄ _px such that f ðItðxÞ � Itþδtðx þ _pxÞÞ j 8x [ N ! 0 ð20Þ

In the case of a flat patch, the failure is due to a nonunique
mapping from ℐt(x) to Itþδtðx þ _pxÞ.

Formally,

9f _pix j i . 1g such that f ðItðxÞ � Itþδtðx þ _pixÞÞ j 8x

[ N ! 0 ð21Þ

In other words, the map from ℐt(x) to Itþδtðx þ _pxÞ is surjec-
tive.

ItðxÞ ! Itþδtðx þ _pxÞ such that f ðItðxÞ � Itþδtðx

þ _pxÞÞ

j 8x [ N ! 0 ð22Þ

We experimentally observe that uncertainties are generally rela-
tively higher for depth discontinuities as compared with
other factors.

Uncertainty of monocular/stereo depth
Let us focus first on the stereo depth. This is computed using the
disparity, which is defined as the displacement between the pixel
between the two stereo images. This is a subset of the optical flow
we discussed before. Without loss of any generality, let us assume
that we have a horizontal stereo camera system where Vz = Vy = 0
because our cameras are perfectly aligned (or calibrated to be
aligned) and Vx = b (in focal lengths), the baseline of the camera
system. In addition, Ω = 0 because the rotation between the
cameras is zero. Here, optical flow (disparity) is being computed
between two stereo images (instead of different frames from a mon-
ocular camera). The equation for disparityD (or flow) boils down to

Dx ¼
bf
Zx

ð23Þ

Here, f is the focal length in pixels, and b and Zx are in physical
units. Following the discussion from the previous subsection, the
same argument holds true.

∄Dx such that f ðILðxÞ � IRðx þ DxÞÞ j 8x [ N ! 0 ð24Þ

Here, ℐL and ℐR are left and right camera images. To summa-
rize, the depth boundaries between stereo pairs give us a high ϒ
along with large flat regions and severe illumination changes.

For monocular depth estimation, the analysis needs a little more
knowledge of how the loss functions are constructed. Because esti-
mating depth from a single view is ill-posed without any prior
knowledge, most works use a penalty on kr~Zxk, penalizing for
large changes in estimated depth ~Zx in a small area. This is generally
true because most surfaces are smooth except at object boundaries.
A similar discussion as before leads us to the conclusion that even
with a monocular depth estimation network, a high ϒ will be en-
countered at object boundaries.

Uncertainty of surface normals
Imagine a surface S being imaged onto an image plane as follows

x ¼ K½R;T�X ð25Þ

Here, K is the camera intrinsic matrix, [R, T ] is the relative pose
of the camera with respect to the surface (without any loss of gen-
erality, we can assume R ¼ I3�4), x is the points on the image plane,
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and finally, X are the real-world points on the surface S. Now, the
surface normal nX (in the real world) at the neighborhood of a point
X is given by nxrSx. Anytime there is a large local change in
surface normals, the view that appears because of a small change
in viewing direction will manifest itself as large ϒ. This can
happen in two main cases: (i) drastic changes to surface normal
or (ii) large local illumination changes. In the first case, the
capture of an image is the projection of a 3D scene into two dimen-
sions, which causes the depth dimension Zx to manifest x and y in-
versely. This means that even for small changes in x, y, the only
parameter that can cause a large change in nx (this is normal on
the image plane) spatially is large changes to Zx. Intuitively, the gra-
dient is ill-defined at the intersection of two surfaces with different
normal directions.

In the second case, the reflective properties of the material and/
or drastic movement of the light source can affect the value of un-
certainty. In particular, when looking at a reflective surface, one can
expect high uncertainties because of the specularities of point
sources of light. In this scenario, using this prior knowledge of
the quantity to be estimated (surface normals) can be incorporated
to pick the values of f, g, and h, as discussed in (21).

Uncertainty of semantic segmentation
Because semantic segmentation uses the local appearance (locality
size limited by the receptive field of the network) to predict the per-
pixel class labels, a high ϒ is expected when the appearance is not
distinct enough to be clearly classified into a single class. For
example, a white barrel might look like a lane line, and a pavement
(footpath) might look like a road because of illumination changes.
In such scenarios,ϒ can be used to temporally filter semantic labels
for either odometry (60) or improving robustness. Because this
work focuses on the unconventional uses of uncertainty, we leave
this as a scope for future work.

In summary, the heteroscedastic aleatoric uncertainty acts as a
loss attenuator while learning; hence, the uncertainty is high when-
ever accretions or deletions of the scene are encountered, which
generally happens at the depth and object boundaries. Hence, one
can treat uncertainty as an attention mechanism when estimating a
quantity that has a disparity at object edges and/or depth
boundaries.

Keen readers might be thinking,“why can’t we use epistemic un-
certainty to do the same?” Epistemic uncertainty models what is
outside the data distribution that has been learned during training.
This might work if one has to detect zero-shot obstacles but will
require careful crafting of the training set, which is often hard. To
exacerbate the situation further, epistemic uncertainty would
requireN passes of the network, in contrast to aleatoric uncertainty,
which only requires a single pass.

Uncertainty and its relationship to confidence and
inlier ratio
The concept of loss function attenuation based on a criterion has
been studied in a lot of previous works. Such attenuation has
been most studied under two formulations: one as an inlier ratio
and the other as a robustness parameter. The first scenario is used
when one wants to learn a simplified model from the data in an un-
supervised or self-supervised way. For example, if one wants to
regress a six-degree-of-freedom camera pose from a pair of
images that contains a lot of moving objects, one would need to

only consider the background regions to obtain a robust estimate.
Such a method models a subset (special case) of the regions with
high uncertainty. The second scenario is used when robustness is
desired such as for erroneous labels. Such a formulation generally
entails an optimization problem of the following form:
arg min~y;αf ð~y; ŷ; αÞ, where α is a robustness parameter (per pixel
in case of images), and f is a distance function. Such a method es-
timates the “importance” of a pixel in predicting ~y as close as pos-
sible to ŷ. Here, this important measure is correlated inversely with
the uncertainty measure.
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