VeriGene; A Tool for the Creation of DNA
Representations for Hardware Security Analysis

Nicholas Haehn
Dept. of EECS

Bayley King
Dept. of EECS

haehnna@mail.uc.edu king2b3 @mail.uc.edu

Abstract—Hardware Trojans (HT), or malicious attacks on
electronic circuits, are difficult to detect within a design without a
novel analysis methods. Biological paradigms of self-defense exist,
providing DNA as a possible basis for Hardware Trojan detection.
Genetic circuits utilize DNA structure to allow programmable
functions in living cells. The programs used to generate genetic
circuits are in their infancy, taking considerable time with a
limited success rate. In this study, we propose VeriGene a new
tool and method for analyzing malicious attacks in electronic
circuits, adapting DNA as a basis for viewing and analyzing
hardware designs. Utilizing the general structure and encoding
of DNA information into individual nucleotides and methods
of genetic circuits, we describe a program to generate DNA
representations of circuits. Once analyzed with a Neural Network,
the DNA representations from infected and uninfected circuits
were classified with high accuracy. The results provide evidence
for an alternative DNA lens for the hardware security analysis
of circuits and the reliability of the VeriGene.

Index Terms—Hardware Trojans, Hardware Security, Genetic
Circuits, Artificial Intelligence

I. INTRODUCTION

Throughout the years, semiconductor device manufacturing
has globalized alongside an increase in the use of third-
party Intellectual Property (IP) in hardware design [1], [2].
While software security has been a focus of research for
many years, focus shifted to the security of hardware devices
[3]. There are multiple hardware based attacks including HT,
IP Piracy, Reverse Engineering, Side-Channel Attacks, and
Counterfeiting [4].

Shakya [5] and Choo [6] have excellent reviews over
HT that discuss different classification methods; in the most
general form a HT can be classified as either pre-silicon (RTL,
HDL, etc.) or post-silicon (fabricated devices). Of key interest
are pre-silicon HT, or malicious modifications to circuits,
causing Denial of Service (DOS), information leakage, circuit
function modification, or more [7]-[10]. HT include a trigger
and a payload, allowing the HT to avoid detection until the
trigger occurs [7], [10].

Among other researchers, Collins [11] summarized a taxon-
omy of HT in FPGA IP, claiming that HT can be categorized
into: Trojans that cause malfunction, Trojans that prevent
FPGA operation, fault injecting Trojans, Trojans that cause

This research was funded by the National Science Foundation (NSF)
Research Experiences for Undergraduates (REU) program under the NSF
Award Numbers CCF-1718428 and ECCS 1926465.

Rashmi Jha
Dept. of EECS
University of Cincinnati University of Cincinnati University of Cincinnati
Cincinnati, OH, USA Cincinnati, OH, USA Cincinnati, OH, USA
jhari@ucmail.uc.edu

Temesguen Kebede David Kapp
RWYA RWYA
AFRL AFRL

Dayton, OH, USA Dayton, OH, USA
temesgen.kebede. 1 @us.af.mil david.kapp @us.af.mil

side effects, information leaking Trojans, FPGA resource
wasting Trojans, and Trojans that introduce vulnerabilities.

HT detection and repair techniques are used to identify flaws
and attacks in designs. However, when an attack breaches these
safeguards, researchers propose a defense or mitigation to said
attack. Current HT detection methods mostly include Side-
Channel Analysis (SCA) and logical testing in post-silicon,
but other techniques including optical inspection, invasive de-
tection, and neural networks have been cited in recent literature
[6], [8], [12]. SCA involves observing power, delay, area,
and leakage power in reference to the golden, or unmodified,
circuit. Logical testing involves testing the logical responses
of a circuit in comparison to the golden circuit [10]. Other
methods of detection and removal have been proposed, most
relevant being genetic (bio-inspired) algorithms and evolvable
hardware [8]-[11], [13]. HT are often difficult to detect, and
there is a search for novel detection methods to mitigate the
rising challenges presented by HT [14], [15].

In a broad sense, malicious attacks on hardware circuits
can be considered similar to malicious viral attacks on DNA,
as the infection disrupts circuit functionality. Interestingly,
there is a rich body of research regarding defense mechanisms
against viral attacks in biological systems. These systems can
be developed into defense mechanisms for digital circuitry
through converted, analogous DNA sequences. Thus, DNA
could provide an alternative lens to view HT through genetic
circuits.

Genetic circuits are logical processes similar to electronic
circuits. However, instead of being implemented in copper and
silicon, these circuits are created as synthetic sequences of
DNA.

Genetic parts are created by characterizing the behavior of
true DNA sequences, classifying the sequences into a defined
type of part [16], [17]. Genetic circuits are created from
these parts, either manually or by programs, and function in
organisms such as E. Coli (Escherichia Coli, prokaryote) or
yeast (Saccharomyces cerevisiae, eukaryote) [18]-[20].

Promoters can be triggered from molecules and proteins
present in the cell or inserted externally, similar to an elec-
tronic circuit [17], [21], [22]. The ribosome binding site
(RBS) allows for transcription to begin [17]. The coding DNA
sequence (CDS), or gene, acts as the blueprint for the protein,
being repressed or activated based on the promoter input.

. P DNA Representation
Verilog Specification H (Nucleotides) HT
. —
'V_eriGene
DNA Representation DNA Representation [P DNA |
(Hexadecimal Six-mers) (Nucleotides) Parts
L - - - - - - 1

Neural Network

Pre-processing Detection

Fig. 1: A system diagram of VeriGene and its testing.

The ribozyme acts as an insulator for the transcription of
the gene segment [19]. The terminator signals the end of the
transcription of a gene [23]. Cassettes are genes that allow
for the expression of certain proteins. Scars are used to fuse
together the different DNA sequence sections [20].

Programs, such as AutoBioCAD [18], Cello [19], [24], and
Cello 2.0 [25] offer program-based design solutions for genetic
circuits. These often utilize an annealing algorithm, such as
Monte Carlo Simulated Annealing, to provide a combination
of genetic parts that is most likely to succeed in a living cell
[19]. Programs such as iBioSim also exist, which allow for the
logical testing of proposed genetic circuit designs [26]. The
genetic circuit design softwares often utilize Verilog or other
HDL as a basis for the program.

Annealing algorithms take considerable program run-time
for a single simple circuit, while also having a relatively low
success rate (we observed a success rate of 21.56% across
118,552 Verilog files utilizing Cello 2.0). Additionally, these
programs rely upon banks of DNA sequences individually
characterized or created by researchers with low variety.

While DNA representations allow for the implementation
of bio-inspired algorithms and more for HT detection, we
explored a Neural Network based detection approach. The
underlying hypothesis was that a DNA representation of circuit
will accentuate HT features, making circuits easier to classify
by a Neural Network.

For the purposes of analyzing a large number of Ver-
ilog Hardware Description Language (HDL) specifications
for HT infection, we propose a new DNA generation tool
from Verilog, referred to as VeriGene. VeriGene creates DNA
representations of hardware circuits that emulate features of
genetic circuits. While not meant for creating true genetic
circuits, VeriGene is a novel tool for HT analysis through
the use of DNA representations. This is not practical with
existing genetic circuit design programs due to low success
rates and long processing time. To our knowledge, this is the
first program created with the purpose of hardware security
analysis through DNA representations.

The remainder of the paper is organized as follows: Section
IT discusses the methodology used in creating and testing
VeriGene. Then, Section III presents the results of the Neural
Network applied to the sample dataset, and Section IV elabo-
rates on the results.

II. METHODOLOGY
A. DNA Part Generation

Based on DNA parts used in the creation of genetic circuits,
seven different types of parts are created: promoters, termina-
tors, scars, RBS, ribozymes, cassettes, and CDS.

First, a sequence of a random length within the user-given
length range of the DNA part is randomly generated using
a, ¢, t, or g based on the standard DNA nucleotides adenine,
cytosine, thymine, and guanine, respectively. If the sequence
is repeated, a new sequence is generated until the sequence
is unique. Terminators are paired with the promoters and thus
must have matching numbers of sequences.

B. Verilog Code Generation

A Verilog code generation program is used to create any
number of sample combinational logic circuits to be used
to test VeriGene. The program steps through the user-set
parameters until every combination of a number of inputs,
outputs, and logical gates is reached.

Once the parameters for a specific file are determined, inputs
and outputs are created in Verilog followed by gates from
the basic combinational logic gates: AND, OR, NOR, NAND,
XOR, and XNOR. Every input, output, and wire is used within
the circuit, otherwise the program randomly selects two gate
inputs and outputs. The given gate is then added to circuit,
and the next gate is assigned until all outputs are defined.

VeriGene generates versions of the combinational Verilog
that are infected with simple HT based on overall concepts pre-
sented on Trust-hub, a hardware security benchmark database
[1], [27]-[30]. Each HT type hijacks an existing gate within
the design.

The DOS HT prototype utilizes AND gates to simulate an
adversary attempting to disrupt the stability and functionality
of the circuit. The complete DOS Prototype attack adds
malicious circuitry to every logical gate of the circuit, while
the localized attack only attacks a single gate at a time. The
Leak HT prototype utilizes either AND, NAND, or NOT gates
to facilitate a leak of information to simulate an adversary
attempting to gather information from the circuit. The Fault
Injection HT utilizes XOR logic gates to flip the output of
the existing logical gate to simulate an adversary attempting
to alter the functionality of the circuit.

The complete DOS is randomly chosen to occur 1 out
of every 500 circuits. Otherwise, the type of attack will
be randomly chosen between the three remaining attacks. A
comment is added to every line of Verilog that includes an HT
for human readability.

If an analysis closer to true genetic circuits or transistor
logic is desired [21], the Verilog circuit can be converted to
logically similar NOR-based, or repression-based, Verilog.

C. DNA Representation Creation

DNA representations created by VeriGene utilize a modified
structure compared to typical genetic circuits. As shown in
Figure 2a, genetic circuits created by Cello function on gene

RNA Stability
Element
(Ribozyme
Insulators)

Input
Promoters
DS (Gene)

|

>] |
r A\:’\V F’9-~T r f\:>__

o

Terminator Scar

Ribosome
Binding Site

Promoters (from
other gates)

(a) Sample model of an AND gate as would be produced by Cello
2.0. This model utilizes repression-based logic, utilizing three gene
sections. The two external promoters receive an input, which sends
a signal to the internal promoters of the first genetic section. When
both external promoters are present, the output of the entire genetic
circuit will appear out of the orange CDS. This output would mimic
an AND-gate response. Each terminator stops transcription of that
specific genetic section.

RNA Stability
Element
(Ribozyme

Insulators) €0 (Gene)

Scar

N |
\

Ribosome ~ Terminator

Promoters (inputs) Binding Site (output)

(b) Sample model of an AND gate as created with the VeriGene using
repurposed DNA parts. When either of the two external inputs are
high, the CDS will transcribe the protein, with the terminator type
signalling the type of output for the given circuit.

Fig. 2: Synthetic Biology Open Language Visual (SBOL
Visual) diagrams of AND gates produced from Cello 2.0 and
VeriGene.

repression. Each gene codes for a specific output protein. The
terminator then signals the end of transcription for that gene.

The DNA basis only must provide an alternative lens to view
the Verilog specification, rather than fully functional DNA for
implementation in living cells as genetic circuits. With this
modification, the representative DNA sequences can be created
more quickly and reliably than true genetic circuits.

As shown in Figure 2b, the DNA representations work based
on standard logic as opposed to repression-based logic. The
promoters act as inputs to the gate, while the gene provides
the functionality of the gate. The terminator was repurposed
to signal the desired output of the gate, rather than the end of
transcription.

Other DNA elements meant for stability and connecting
DNA elements were preserved in the DNA representations.
Since the terminator is used to signal the output of the specific
gate, genes are open to be used to signal the type of logic being
used. This allows for more scalability of the DNA sequences
using VeriGene. In standard DNA structuring, a gene produces
a specific protein, which is used by other gates to trigger
promoters, requiring a large number of gene DNA sequences.

To create the DNA representations, DNA parts are loaded
into the program. Each promoter is paired to a unique termi-
nator in order to allow for identifiers to activate sections of the
DNA representations. Then, each CDS is assigned a specific
use for the DNA representations according to the standard
combinational logic gates: NOT, NOR, OR, AND, NAND,

XNOR, and XOR.

Combinational Verilog specifications can be created as in
Section II-B or inserted externally to create the DNA represen-
tations. VeriGene is currently limited to combinational logic
circuits due to the structuring of the DNA part assignment,
but VeriGene could be expanded to include structural logic
functionality in the future. The Verilog is read by storing all
the circuit and gate inputs, outputs, wires, and functionality.
Then, DNA parts are assigned. First, promoters are assigned
to a given circuit input, and terminators are assigned to a
given circuit output. A promoter and terminator must both
be assigned to a single wire, as wires are used for internal
circuit communication.

A scar beings the creation of the DNA representation. Based
on the assigned promoters for the gate inputs, the promoter
DNA sequences are added to the circuit sequence. A ribozyme
and RBS is then added to the circuit, mimicking genetic circuit
structure. The CDS is then added to the circuit sequence based
on the gate functionality. Finally, a terminator is added to
the circuit sequence based on the gate output. This process
is repeated for every gate within the circuit, with a scar in
between every gate sequence.

Following gate assignment, the final outputs of the entire
circuit are specified using cassettes. The promoters paired
to the terminators of the circuit outputs are added. Then, a
unique cassette sequence is given to that output, which is then
followed by a scar. The cassette is used in this manner to
mimic the output style as produced by Cello 2.0.

One percent of the nucleotides (a, c, t, or g), are randomly
reassigned, or mutated, to prevent Neural Network over-
learning. This is similar to adding pixelation to images used
for image-based Neural Networks.

Next, the DNA representation sequence is converted into
K-mers. K-mers allow for text-classification Neural Networks
to be able to analyze the DNA sequence, as the DNA is
represented into a series of DNA “words”. K-mers also allow
for the Neural Network to maintain context of the original
DNA sequence, which analysis by single base pairs would not
allow [31]. In the case of VeriGene, six-mers were created,
where six characters comprise each DNA ”word” created using
a moving window, as shown in Figure 3. Six-mers were chosen
to provide a similar length compared to other studies with k=5,
while increasing the k-value by one to decrease file size [31].

After producing the K-mers, the sequence is vectorized into
hexadecimal values corresponding to the K-mer to reduce stor-
age usage. Each K-mer is first converted into a number in base-
four, due to each character in the K-mer having four options:
a, ¢, t, or g. This base-four number is then converted into
base-16, which is formatted into standard hexadecimal format.
A Verilog specification and its respective DNA sequence is
shown in Figure 4.

D. Preparing Data for Neural Network Analysis

Each vectorized DNA sequences is randomly assigned to
the testing set with a 60% chance, training set with a 25%
chance, or validation set with a 15% chance. The training

[CICAIATTIATIT

—CCAATT|ICAATTA|AATTAT |ATTATT

Fig. 3: An example of a 9 character long DNA sequence split into six-mers. Each colored block on the left represents one

six-mer.

module Example(output outO, input in0O,
wire wire0, wirel, wire2, wire3;

inl);

nand (wire0 ,inl ,in0);

xnor (wirel , wire0 ,inl);

nand (wire2 , wire0 ,in0);

and (wire3 , wirel ,in0);

or (out0 ,wire2 , wire3);
endmodule

(a) A sample combinational Verilog module as created by the Verilog
generation program. This Verilog HDL specification includes two
inputs (in0 and inl) and one output (outO). The circuit includes 4
wires (wireO through wire3) and 5 gates. Each gate is represented as
the gate’s type (NAND), followed by the gate’s output (wire0), and
the gate’s inputs (inl and in0).

5D7 5F1 D7C F13 7C4 139 C46 395 469 95A 69E
SAF 9E7 AF5 E7D F5F 7D3 5F0 D3C FOF 3CB OFA
CB2 FAC B23 AC4 239 C4E 393 4E0 934 E05 345
05D 457 5D9 576 D99 762 998 622 980 224 801
24C 013 4C4 139 C4A 39E 4AB 9E2 AB8 E22 B8O
22C 80B 2CE OBF CEF BF7 EFD F7B FDA 7BA DAA
BA2 AA4 A29 A4E 293 4E0 938 EOA 38E OAB 8E6
AB1 E60 B10 600 10C 007 0Cl 078 CIE 78B 1EA
8BE EA3 BE8 A36 E8D 363 8D4 639 D4E 397

(b) A small portion of the complete vectorized K-mers from the
DNA sequence created from the provided Verilog specification. Each
three-character section represents six-mer translated into a unique
hexadecimal representation.

Fig. 4: A sample Verilog specification and its respective
vectorized DNA sequence.

dataset is used to train the Neural Network model’s layers,
adding weights to each layer to better predict the model. The
validation dataset is used to validate the weights set by the
training dataset. The test dataset is used as a reference dataset
to evaluate the trained model.

The percentage of a given Verilog file and respective DNA
representation that is made of HT material is calculated. The
infection percentage in a Verilog fileis determined by how
many gates are related to HTs, as marked by comments
during the creation of the Verilog dataset. To determine the
percentage of infections in the DNA representation, the DNA
representation creation process is replicated. It is noted what
portion of the DNA characters occur due to an HT as indicated
by the Verilog comments.

E. Sample Dataset Generation

To demonstrate the effectiveness of VeriGene at creating
DNA representations for classification, a sample dataset was
created and tested in a Neural Network.

To increase the variety of Verilog specifications delivered
to VeriGene, data storage, and Neural Network efficiency, the
Verilog creation process of Section II-B was modified. The

Verilog was generated using inputs and outputs in ranges of
powers of two from 2 to 64. 1 to 64 internal gates were
used in each combination of inputs and outputs, with a total
of 1,548 uninfected and infected files each created. These
input, output, and gate combinations were selected to provide a
large variety in design sizes without exhaustively testing each
combination level to save storage space. Benchmark circuits
were not able to be tested as most benchmark circuits available
do not follow the format that VeriGene expects, including the
addition of sequential logic [1]. Additionally, larger circuits
were not tested, as the DNA representations become too large
to store. Once these Verilog specifications were created, they
were converted to NOR-based logic.

The standard combinational logic and NOR-based logic Ver-
ilog specifications were converted into DNA representations as
in Section II-C and split into training, testing, and validation
datasets. All versions of the data were then tested using the
method described in Section II-D to determine the infection
rates of each set.

F. Testing and Classification of DNA Representations

The sample datasets from Section II-E were fed into a
sequential one-dimensional convolutional TensorFlow Neural
Network utilizing the Keras library. The data was split into 32
batches over 30 epochs for standard combinational logic and
20 epochs for NOR-based logic. The network consisted of the
following layers in order: an embedding layer, a convolutional
layer with “relu” activation, a dropout layer, a global max
pooling layer, another dropout layer, and a dense layer. A
convolutional neural network was chosen due to existing
DNA classification applications with k-mers and training time
advantages compared to LSTM networks [32].

Once the model was trained, the model was applied to
predict the classes of the test dataset. A confusion matrix was
prepared by comparing the predictions against the true class.
A confusion matrix allows the viewer to determine the number
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). Precision was determined as
the number of true positives out of the number of predicted
positives. Recall was calculated as the true positives over the
amount of actual positives. F1 score combined precision (p)
and recall (r) metrics.

III. RESULTS

All 3,096 Verilog specifications were converted to NOR-
based logic using VeriGene. Furthermore, all Verilog specifi-
cations were converted into DNA representations. The NOR-
based logic and Standard logic DNA representation datasets
were split into Training, Validation, and Testing datasets, as
shown by Table 1.

Standard Logic [[NOR-based Logic |
| Uninfected | Infected || Uninfected | Infected ||

Training 950 910 910 921
Validation 216 259 234 228
Testing 382 379 404 399

[Total] 1548 [1,548] 1548 | 1548]

TABLE I: Dataset split between uninfected and infected files
of Standard and NOR-based logic.

Predicted Class

Uninfected | Infected | Total
= » | Uninfected 343 39 382
«?)E | Infected 24 255 279
<C Total 367 294 661

(a) Confusion matrix for the Neural Network predictions on the test

dataset using DNA representations using standard logic.
Predicted Class

Uninfected | Infected | Total
= » | Uninfected 395 9 404
2 & [Infected 53 346 399
<0 Total 448 355 803

(b) Confusion matrix for the Neural Network predictions on the test
dataset using DNA representations using NOR-based logic.

TABLE II: Confusion matrices for Neural Network predic-
tions.

HT makeup in Verilog and DNA representations were not
dissimilar. Infected standard combinational logic Verilog was
calculated to have a median of 7.14% infected lines with
standard deviation of 9.25%. For infected NOR-based logic
Verilog specifications, the median was 7.04% infected lines
with a standard deviation of 9.40%. For the DNA represen-
tations made from infected standard combinational logic, the
median was 5.68% infected lines with standard deviation of
6.52%. DNA representations made from infected NOR-based
logic, meanwhile, had a median of 6.54% infected lines with
a standard deviation of 8.37%.

All datasets were successfully run through the Neural Net-
works. The DNA representations created from standard logic
saw training loss of 0.1735, validation loss of 0.2221, and
testing loss of 0.2397 across 30 epochs. The training accuracy
reached 96.02%, validation accuracy reached 92.84%, and
testing accuracy reached 91.72%. This trial’s training and
validation accuracy and loss across the 30 epochs are shown
in Figures 5a and 5b, respectively. The confusion matrix for
this trial is shown in Table Ila, with a 0.8673 precision, 0.9140
recall, and 0.8901 F1 score.

Using DNA representations created from NOR-based Ver-
ilog across 20 epochs, training loss was 0.2888, validation loss
was 0.3029, and testing loss was 0.3062. Training accuracy
was 91.64%, validation accuracy was 92.64%, and testing
accuracy reached 92.28%. This trial’s training and validation
accuracy and loss across the 20 epochs are shown in Figures
5c and 5d, respectively. The confusion matrix for this trial is
shown in Table IIb, with a 0.9746 precision, 0.9672 recall, and
0.9178 F1 score.

IV. DISCUSSION

As shown by the results in Section III, Verilog specifications
can be generated, converted to NOR-based logic, converted

Training and validation accuracy

0.9

0.6 1

® Training acc
. — validation acc

0.5 - T T T T T T
] 5 10 15 20 25 30
Epochs

(a) TensorFlow Neural Network accuracy results from standard com-
binational logic DNA representations.

Training and validation loss

® Training loss
. — validation loss

074 ®

0.6

0.5

Loss

0.4 4

0.3

0.2

0 5 10 15 20 25 30
Epochs

(b) TensorFlow Neural Network loss results from standard combina-
tional logic DNA representations.

Training and validation accuracy

@ Training acc
° —— validation acc

25 5.0 75 10.0 125 15.0 17.5 20.0
Epochs

(c) TensorFlow Neural Network accuracy results from NOR-based
logic DNA representations.

Training and validation loss

07d ® ® Training loss
L4 —— Validation loss

0.6

0.4 4

0.3

25 5.0 75 10.0 125 15.0 17.5 20.0
Epochs

(d) TensorFlow Neural Network loss results from NOR-based logic
DNA representations.

Fig. 5: TensorFlow Neural Network results for standard com-
binational logic DNA representations and NOR-based DNA
representations. Both trials shown here utilize a 60% training,
20% testing, and 20% validation dataset split.

into DNA representations, and pre-processed and analyzed.
The runtime to create a DNA representation from the Verilog
specification is approximately 0.25 seconds, which is signifi-
cantly less time than existing genetic circuit programs. Addi-
tionally, files can be analyzed in the trained neural network in
less than 5 minutes.

With the ability to convert Verilog into DNA representa-
tions, a different and novel context is provided for the analysis
of hardware circuits and malicious attacks on them. Across
all datasets, there was a high standard deviation in HT make-
up, and all datasets were skewed right. Despite the change in
context of the circuit specifications, HTs were not represented
in statistically significant different magnitudes between DNA
representations and Verilog in both standard and NOR-based
logic. This demonstrates that the DNA representations allow
for a similar but different context to Verilog specifications.
The difference in the median and standard deviation between
the Verilog and DNA representations can likely be accounted
to the length and variation in the DNA parts used to create
the DNA representations.

Compared to methods for creating genetic circuits from
Verilog specifications such as Cello and Cello 2.0, there was
a greater success rate in DNA representation creation and
variety utilizing VeriGene. Hardware Security analysis does
not require that the circuits perform perfectly in living cells.
Rather, DNA can simply provide a different context from
Verilog, removing the need for complex algorithms, improving
the success rate of DNA creation. Available DNA sequences
for DNA parts tend to be similar overall to each other, which
can be difficult to distinguish. The randomly generated DNA
parts can vary greatly and be created in any number to increase
the scale of DNA representations.

As shown by the results of the Neural Networks, both
DNA representations created from standard combinational
logic and NOR-based logic can be analyzed for HT detection.
Classification accuracy on the testing datasets using the DNA
sequence representations reached values above 91% for all
trials. This demonstrates that the model, once trained, can
accurately classify the DNA representations of both NOR-
based and standard combinational logic. Analyzing the loss
graphs in Figures 5b and 5d, the training and validation loss
for both trials remained relatively close to each other across
the entirety of training. This represents minimal over-learning
of the model throughout training. Due to the lack of differ-
ences in infection rates and classification of Trojans between
standard and NOR-based logic, standard logic is preferred for
future analysis. However, NOR-based logic provides a more
comparable relationship to the true functioning of DNA, which
will likely be useful in applying genetic-based algorithms.

Furthermore, both trials resulted in high F1 scores of 0.8901
and 0.9178 for standard combination logic and NOR-based
logic, respectively. This shows that the models were well
suited for the classification of the DNA representations. Both
trials presented relatively minimal overall false positives and
false negatives. In Table Ila, the trained model is shown to lean
on the side of over-predicting infected circuits by a precision

of 0.8673. Meanwhile, Table IIb, shows a higher precision and
recall with NOR-based logic DNA representations.

Overall, both models and trials for standard and NOR-based
logic DNA representations demonstrate successful classifica-
tion. Based on these results, VeriGene can be used to create
DNA representations for the hardware security analysis of
circuit specifications. With the ability to effectively classify
circuits as either infected or uninfected, Neural Networks
show one valid option for analysis of DNA representations
of Verilog specifications.

Some methods of pre-silicon analysis, including feature
extraction and other neural network based approaches, have
shown results with higher accuracy than the results presented
with the Neural Network in this paper [12]. VeriGene’s pur-
pose, however, is to provide an alternative lens on the HDL
circuit for the application of future algorithms. While a simple
neural network was used to analyze the DNA representations
in this work, the results from VeriGene can be applied to
genetic-based algorithms or other neural-network approaches
to possibly achieve a higher accuracy than in the HDL state.

V. CONCLUSION

In this work, VeriGene, a new tool for the analysis of HTs
and other hardware security attacks in Verilog utilizing DNA
representations was presented. To our knowledge, VeriGene is
the first program for DNA representation creation from Verilog
for the purpose of hardware security analysis.

To produce DNA ”words,” the DNA sequence is split
into K-mers of 6 characters in length and vectorized into a
hexadecimal format. The Verilog and DNA sequences can be
tested using VeriGene to determine the amount of a given
specification that is due to HT.

To test the effectiveness of utilizing DNA representations
to analyze hardware security in Verilog specifications, sample
combinational logic and NOR-based logic Verilog files were
created using VeriGene and tested in a TensorFlow and Keras
Neural Network.

During this testing, all Verilog specifications were suc-
cessfully transitioned into DNA representations, illustrating
the scalability and reliability of the system. HTs presented
themselves similarly in both Verilog and DNA representations
in terms of circuit make-up. The Neural Network was able to
successfully classify the DNA sequences with a high degree
of accuracy. This demonstrated that the DNA representations
offered a valid lens to analyze HTs in circuit specifications.
Although a Neural Network was used in this study, other clas-
sification methods could be used to achieve higher accuracy.

Based on the results presented, DNA representations provide
a viable alternative for the analysis of hardware circuits for
possible hardware security faults. VeriGene allows for rapid
and reliable production of these DNA representations for
simple combinational logic. This novel lens for hardware
security analysis could be expanded to include logic beyond
simple combinational logic as well as biological detection and
repair techniques. This would allow for the analysis of more
complex circuitry and HTs.

DATA AVAILABILITY

The code for VeriGene is available on the corresponding
author’s GitHub: github.com/nicholash85/VeriGene. Raw Ver-
ilog and DNA representation data are available on reasonable
request to the corresponding author at haechnna@mail.uc.edu.

AUTHOR CONTRIBUTIONS STATEMENT

N.H. researched and tested genetic circuit generation pro-
grams, created the DNA representation creation tools, and
wrote the manuscript. B.K. and R.J. provided N.H. technical
and professional guidance throughout the project and assisted
with the manuscript. R.J. conceived the concept of utilizing
genetic concepts for the detection of HTs. T.K. and D.K.
provided feedback to N.H.. All authors reviewed and revised
the manuscript.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

REFERENCES

K. Xiao and M. Tehranipoor, “Tutorial: Hardware Trojan Insertion on
FPGA.”

D. Staub, R. Jha, and D. Kapp, “A CRISPR-Cas-Inspired Mechanism
for Detecting Hardware Trojans in FPGA Devices,” CoRR, vol.
abs/2005.07332, 2020. [Online]. Available: https://arxiv.org/abs/2005.
07332

S. Koley and P. Ghosal, “Addressing hardware security challenges in
internet of things: Recent trends and possible solutions,” in 2015 IEEE
12th Intl Conf on Ubiquitous Intelligence and Computing and 2015
IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015
IEEE 15th Intl Conf on Scalable Computing and Communications and
Its Associated Workshops (UIC-ATC-ScalCom). 1EEE, 2015, pp. 517—
520.

M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283-1295, 2014.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85-102,
2017.

H. S. Choo, C. Y. Ooi, M. Inoue, N. Ismail, and C. H. Kok,
“A review of hardware trojan detection: An overview of different
pre-silicon techniques,” pp. 1-21, 2020. [Online]. Available: https:
/fuc.idm.oclc.org/login?qurl=https %3 A %2F%2Fwww.proquest.com%
2Fother-sources%2Freview-hardware- trojan-detection-overview %
2Fdocview %2F2394536604%2Fse-2%3Faccountid%3D2909

S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan Attacks: Threat Analysis and Countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229-1247, 2014.

S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), 2015, pp. 2021-2024.

H. Li, Q. Liu, and J. Zhang, “A survey of hardware Trojan threat and
defense,” Integration, vol. 55, pp. 426-437, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926016000067
C. S. Sruthi, M. Lohitha, S. K. Sriniketh, D. Manassa, K. Srilakshmi,
and M. Priyatharishini, “Genetic Algorithm based Hardware Trojan De-
tection,” in 2021 7th International Conference on Advanced Computing
and Communication Systems (ICACCS), vol. 1, 2021, pp. 1431-1436.
Z. Collins, “Hardware trojans in fpga device ip: Solutions through
evolutionary computation,” Ph.D. dissertation, University of Cincinnati,
2019.

R. Yasaei, S. Faezi, and M. A. A. Faruque, “Golden reference-free
hardware trojan localization using graph convolutional network,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-11,
2022.

B. King, R. Jha, T. Kebede, and D. Kapp, “Securing 3rd-party hdl ip: a
feasibility study using evolutionary methods,” Journal of Hardware and
Systems Security, pp. 1-15, 2022, reprinted in Springer.

S. Wei and M. Potkonjak, “The undetectable and unprovable hardware
trojan horse,” in 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC). IEEE, 2013, pp. 1-2.

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan
design and implementation,” in 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust. 1EEE, 2009, pp. 50-57.

A. A. K. Nielsen and C. A. Voigt, “Multi-input CRISPR/Cas genetic
circuits that interface host regulatory networks,” Molecular Systems
Biology, vol. 10, no. 11, p. 763, nov 2014. [Online]. Available:
https://doi.org/10.15252/msb.20145735

D. Densmore and S. Hassoun, “Design automation for synthetic biolog-
ical systems,” IEEE Design and Test of Computers, vol. 29, no. 3, pp.
7-20, 2012.

G. Rodrigo and A. Jaramillo, “AutoBioCAD: Full Biodesign Automation
of Genetic Circuits,” ACS Synthetic Biology, vol. 2, no. 5, pp. 230-236,
may 2013. [Online]. Available: https://doi.org/10.1021/sb300084h

A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov,
E. A. Strychalski, D. Ross, D. Densmore, and C. A. Voigt, “Genetic
circuit design automation,” Science, vol. 352, no. 6281, p. aac7341,
apr 2016. [Online]. Available: http://science.sciencemag.org/content/
352/6281/aac7341.abstract

Y. Chen, S. Zhang, E. M. Young, T. S. Jones, D. Densmore, and
C. A. Voigt, “Genetic circuit design automation for yeast,” Nature
Microbiology, vol. 5, no. 11, pp. 1349-1360, 2020. [Online]. Available:
https://doi.org/10.1038/s41564-020-0757-2

M. Taketani, J. Zhang, S. Zhang, A. J. Triassi, Y.-J. Huang,
L. G. Griffith, and C. A. Voigt, “Genetic circuit design automation
for the gut resident species Bacteroides thetaiotaomicron,” Nature
Biotechnology, vol. 38, no. 8, pp. 962-969, 2020. [Online]. Available:
https://doi.org/10.1038/s41587-020-0468-5

J. A. N. Brophy and C. A. Voigt, “Principles of genetic circuit design,”
Nature Methods, vol. 11, no. 5, pp. 508-520, 2014. [Online]. Available:
https://doi.org/10.1038/nmeth.2926

T. Nguyen, T. S. Jones, P. Fontanarrosa, J. V. Mante, Z. Zundel,
D. Densmore, and C. J. Myers, “Design of Asynchronous Genetic
Circuits,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1356-1368,
2019.

CidarLab, “Cello,” https://github.com/CIDARLAB/cello, 2016.

T. S. Jones, S. Oliveira, C. J. Myers, C. A. Voigt, and D. Densmore,
“Genetic circuit design automation with cello 2.0,” Nature Protocols,
vol. 17, no. 4, pp. 1097-1113, 2022.

L. Watanabe, T. Nguyen, M. Zhang, Z. Zundel, Z. Zhang, C. Madsen,
N. Roehner, and C. Myers, “iBioSim 3: A Tool for Model-Based Genetic
Circuit Design,” ACS Synthetic Biology, vol. 8, no. 7, pp. 1560-1563,
jul 2019. [Online]. Available: https://doi.org/10.1021/acssynbio.8b00078
H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), 2013, pp. 471-474.
B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of Hardware Trojans and Maliciously Affected
Circuits,” Journal of Hardware and Systems Security, vol. 1,
no. 1, pp. 85-102, 2017. [Online]. Available: https://doi.org/10.1007/
s41635-017-0001-6

J. Harrison, N. Asadizanjani, and M. Tehranipoor, “On malicious
implants in PCBs throughout the supply chain,” Integration, vol. 79,
pp. 12-22, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167926021000304

S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehranipoor,
and D. Forte, “Development and Evaluation of Hardware Obfuscation
Benchmarks,” Journal of Hardware and Systems Security, vol. 2,
no. 2, pp. 142-161, 2018. [Online]. Available: https://doi.org/10.1007/
s41635-018-0036-3

R. Rizzo, A. Fiannaca, M. La Rosa, and A. Urso, “A Deep Learning
Approach to DNA Sequence Classification,” in Computational Intelli-
gence Methods for Bioinformatics and Biostatistics, C. Angelini, P. M. V.
Rancoita, and S. Rovetta, Eds. Cham: Springer International Publishing,
2016, pp. 129-140.

M. A. Lo Bosco Giosué and Di Gangi, “Deep Learning Architectures
for DNA Sequence Classification,” in Fuzzy Logic and Soft Computing
Applications, V. Petrosino Alfredo and Loia and P. Witold, Eds. Cham:
Springer International Publishing, 2017, pp. 162-171.

https://github.com/nicholash85/VeriGene
haehnna@mail.uc.edu
https://arxiv.org/abs/2005.07332
https://arxiv.org/abs/2005.07332
https://uc.idm.oclc.org/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fother-sources%2Freview-hardware-trojan-detection-overview%2Fdocview%2F2394536604%2Fse-2%3Faccountid%3D2909
https://uc.idm.oclc.org/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fother-sources%2Freview-hardware-trojan-detection-overview%2Fdocview%2F2394536604%2Fse-2%3Faccountid%3D2909
https://uc.idm.oclc.org/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fother-sources%2Freview-hardware-trojan-detection-overview%2Fdocview%2F2394536604%2Fse-2%3Faccountid%3D2909
https://uc.idm.oclc.org/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fother-sources%2Freview-hardware-trojan-detection-overview%2Fdocview%2F2394536604%2Fse-2%3Faccountid%3D2909
https://www.sciencedirect.com/science/article/pii/S0167926016000067
https://doi.org/10.15252/msb.20145735
https://doi.org/10.1021/sb300084h
http://science.sciencemag.org/content/352/6281/aac7341.abstract
http://science.sciencemag.org/content/352/6281/aac7341.abstract
https://doi.org/10.1038/s41564-020-0757-2
https://doi.org/10.1038/s41587-020-0468-5
https://doi.org/10.1038/nmeth.2926
https://github.com/CIDARLAB/cello
https://doi.org/10.1021/acssynbio.8b00078
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://www.sciencedirect.com/science/article/pii/S0167926021000304
https://www.sciencedirect.com/science/article/pii/S0167926021000304
https://doi.org/10.1007/s41635-018-0036-3
https://doi.org/10.1007/s41635-018-0036-3

	Introduction
	Methodology
	DNA Part Generation
	Verilog Code Generation
	DNA Representation Creation
	Preparing Data for Neural Network Analysis
	Sample Dataset Generation
	Testing and Classification of DNA Representations

	Results
	Discussion
	Conclusion
	References

