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Emerging Memory Devices Beyond
Conventional Data Storage: Paving the
Path for Energy-Efficient Brain-Inspired

Computing

by Rashmi Jha

he current state of neuromorphic computing broadly
encompasses domain-specific computing architectures
designed to accelerate machine learning (ML) and artificial
intelligence (Al) algorithms.! As is well known, AI/ML
algorithms are limited by memory bandwidth.? Novel
computing architectures are necessary to overcome this limitation.
There are several options that are currently under investigation using
both mature and emerging memory technologies. For example, mature
memory technologies such as high-bandwidth memories (HBMs) are
integrated with logic units on the same die to bring memory closer
to the computing units.* There are also research efforts where in-
memory computing architectures have been implemented using
DRAMSs or flash memory technologies.** However, DRAMs suffer
from scaling limitations, while flash memory devices suffer from
endurance issues.®’ Additionally, in spite of this significant progress,
the massive energy consumption needed in neuromorphic processors
while meeting the required training and inferencing performance for
AI/ML algorithms for future applications needs to be addressed.® On
the AI/ML algorithm side, there are several pending issues such as
life-long learning, explainability, context-based decision making,
multimodal association of data, adaptation to address personalized
responses, and resiliency. These unresolved challenges in AI/ML have
led researchers to explore brain-inspired computing architectures and
paradigms. It is noteworthy that a biological brain naturally addresses
these issues while consuming just a fraction of the amount of energy
required by a conventional computer.
When it comes to brain-inspired paradigms of computing, memory
devices used for storing weights in neuromorphic computers are
compared to biological synapses. A biological process engine (PE)

can be considered as an aggregate of neurons connected via synapses.
A fundamental difference between neuromorphic PE (shown in
Fig.1(a)) and biological PE (shown in Fig.1(b)) is that a biological
synapse changes conductance based on learning rules, which
reconfigures the signal transmission pathways between neuronal
populations.® This seemingly simplistic approach serves as a basis for
biological computing.

But then one ponders why it has been so difficul to replicate the
computing paradigms of the brain? Biological synapses are diverse
in morphology and functionality. They also demonstrate dynamic
behavior on multiple time scales, such as short-term plasticity (STP),
which forms the basis of working memory and sensory information
filtering ' Dendritic architectures and distribution of synapses
on dendrites also play a critical role in biological computing by
modulating signal delays.!! Several reports indicate that data is stored
in the form of spatiotemporal clusters of synapses in the brain.”
Additionally, beyond Hebbian learning based on pre- and post-
neuronal spiking times, a third factor such as neurotransmitters or
rewards that convey information about success can play an important
role in learning which can be accommodated by biological synapses. '
Conventional memory elements (such as DRAM, SRAM, flash) lack
the versatility of biological synapses. This limitation is where the true
benefit of emerging memory technologies can be leveraged, as many
of the emerging memory devices can be engineered to manifest the
“dynamic behavior.”

There are several emerging memory devices that are currently
under investigation to replace or complement the conventional
memory technologies in neuromorphic architectures.' This article
will discuss resistive random access memory (RRAM) devices as

(continued on next page)
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Fig. 1. (a) Systolic array-based machine learning (ML) processing unit, (b) Neuro-synaptic processing unit in biological brain showing pyramidal neuron with

complex dendritic architecture.
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Fig. 2. RRAM devices: (a) Fabricated state, (b) After electroforming showing thick filament in switching oxide, (c) First eset showing retracted filament, (d)
Thin filament g owth during set process causing a low-resistance state (LRS), (e) Retracted filament during eset causing a high-resistance state (HRS).

these are one of the more promising candidates and they have been
widely studied in emerging neuromorphic architectures. RRAMs are
two-terminal devices in a metal-insulator-metal (MIM) configuration,
shown in Fig.2(a). The insulator is usually a metal oxide'>. An
interfacial layer can be designed to modulate the properties of metal
oxide by serving as an oxygen exchange layer. Various dopants in
metal oxides have also been widely investigated to achieve the desired
switching characteristics.!® These devices can be easily integrated on
complementary metal oxide semiconductor (CMOS) platforms in
back-end-of-line (BEOL) processing, adding computing value to the
passive interconnects. There are two broad categories of RRAMs—
filamentary and non-filamentar . In filamentary-RRAMs, the first step
involves electroforming by applying positive electroforming voltage
with compliance current (I,,) control that leads to the formation of a
defect-assisted filament, shown in Fig.2(b). These defects could be
oxygen vacancies or metal ions. Then, the first reset is performed
by applying negative voltage to retract the filament via a possible
redox reaction, shown in Fig. 2(c). Finally, set operation is performed
by applying positive voltage to reform the filament with relatively
smaller I, to define the low-resistance state (LRS) (Fig. 2(d)). A
subsequent reset operation leads to a high-resistance state (HRS)
(Fig. 2(e)). The device can be switched between LRS and HRS with
a write endurance of >10° cycles. Multiple resistive states can be
achieved by modulating I, or reset voltages, which enables multi-bit
weight storage in a single device, resulting in the densification of
memory.'” The resistive states in non-filamentary RRAMs are driven

by the modulation of defect states at the oxide/metal interface or in
oxide that alters the transport properties of electrons between top and
bottom electrodes. Multiple analog resistance states can be achieved
in these devices by using different programming conditions '

In a neuromorphic hardware, matrix multiplication is one of the
most computationally intensive tasks limited by memory bandwidth.
RRAM devices have been studied to enable in-memory computing
in neuromorphic architectures, which has the potential to accelerate
matrix multiplication.!” RRAM devices ina 1 Diode-1 RRAM (1D1R)
crossbar configuration are shown in Fig. 3(a). An access diode is
necessary to mitigate the sneak current in the crossbars. Though
1DIR is highly scalable, the desired specifications for access diodes
have been difficul to meet and further research is needed in this area.
Therefore, 1 Transistor | RRAM (1T1R), where the transistor serves
as an access device, is a more practical implementation of RRAM in
crossbar arrays currently (Fig. 3(b)). With these RRAM arrays, matrix
multiplication is performed in analog fashion where the input voltage
is intrinsically multiplied by the conductance state of an RRAM in
a cell to result in an output current. The current through each cell is
summed on the wire in column, resulting in matrix multiplication.
Additional circuitry is needed to sense this current and transform it to
the digital domain using analog-to-digital converters, or it is possible
to continue processing in the analog domain. These architectures
have been used to implement deep neural networks (DNNs).

Just like the brain, a neuromorphic hardware capable of real-time
learning and inferencing is highly desirable. However, the training
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Fig. 3. RRAM in crossbar array configuration in (a) IDIR, (b) ITIR. Input data ( , to v,) are applied into the array that gets transformed into current (I, to I,
by multiplication with conductance value of corresponding RRAMs and summation in array.
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process is usually very complex, requiring additional hardware.
Therefore, training and inferencing engines are designed separately to
meet the optimum power, performance, area, and cost specifications.
Inferencing engines based on RRAM neuromorphic architectures are
of much interest for low-power edge-Al applications.?!

One of the major drawbacks of RRAMs in neuromorphic
architectures for inferencing is the drift in resistance states over
time. The LRS and HRS retention over time has been reported to
be a function of temperature, I, or programming pulse-width.??
The retention of resistive states over time can also be modulated by
programming voltages—devices programmed with higher voltages
or a higher number of pulses tend to have longer retention compared
to devices programmed with lower voltages or a lower number
of pulses.

Interestingly, while the time-dependentretention (or dynamic states)
of these emerging memory devices is undesirable in a neuromorphic
inferencing engine in its current implementation, this characteristic
can be considered similar to the STP observed in biological synapses.
Additionally, the ability to forget information has been shown to
have a positive impact on learning.” A notable difference between a
biological brain and RRAM-based neuromorphic inferencing engines
is that a biological brain continues to learn from data even while
inferencing. Therefore, time-dependent retention is useful because
the system is dynamic. On the other hand, current inferencing engines
based on RRAMs are static where states are expected to stay constant
over time. A major challenge lies in understanding how we can use
the dynamic nature of emerging memory devices to the advantage of
neuromorphic systems. Indeed, these STP states of RRAM devices
have been leveraged in spiking neural network architectures to
demonstrate filtering of noise in sensory data and modified Hebbian
learning.>*?* While these preliminary reports are encouraging
steps, further work is needed in this area to leverage these unique
characteristics. Additionally, currently dynamic states in RRAMs are
uncontrolled in nature. Once their applications are established, then
they can be engineered to result in the desired performance.

In conclusion, RRAM devices hold promise for applications in
neuromorphic computing, though there are some pending challenges
that need to be addressed. Beyond their established applications
for matrix multiplication in crossbar arrays, it is important to study
time-dependent states and to develop techniques for controllably
modulating the dynamic states. The reliability of these states
needs to be studied as well. Complex dendritic architectures with
RRAMs beyond crossbar arrays need to be investigated. A detailed
understanding of these dynamic states can help implement cortical
circuitries that utilize dynamic synaptic states in diverse distributions
using these devices—which can have significant impact on advancing
novel paradigms of computing.
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