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The current state of neuromorphic computing broadly 
encompasses domain-specific computing architectures 
designed to accelerate machine learning (ML) and artificial
intelligence (AI) algorithms.1 As is well known, AI/ML 
algorithms are limited by memory bandwidth.2 Novel 

computing architectures are necessary to overcome this limitation. 
There are several options that are currently under investigation using 
both mature and emerging memory technologies. For example, mature 
memory technologies such as high-bandwidth memories (HBMs) are 
integrated with logic units on the same die to bring memory closer 
to the computing units.3 There are also research efforts where in-
memory computing architectures have been implemented using 
DRAMs or flash memory technologies.4,5 However, DRAMs suffer
from scaling limitations, while flash memory devices suffer from 
endurance issues.6,7 Additionally, in spite of this significant progress, 
the massive energy consumption needed in neuromorphic processors 
while meeting the required training and inferencing performance for 
AI/ML algorithms for future applications needs to be addressed.8 On 
the AI/ML algorithm side, there are several pending issues such as 
life-long learning, explainability, context-based decision making, 
multimodal association of data, adaptation to address personalized 
responses, and resiliency. These unresolved challenges in AI/ML have 
led researchers to explore brain-inspired computing architectures and 
paradigms. It is noteworthy that a biological brain naturally addresses 
these issues while consuming just a fraction of the amount of energy 
required by a conventional computer. 

When it comes to brain-inspired paradigms of computing, memory 
devices used for storing weights in neuromorphic computers are 
compared to biological synapses. A biological process engine (PE) 
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can be considered as an aggregate of neurons connected via synapses. 
A fundamental difference between neuromorphic PE (shown in 
Fig.1(a)) and biological PE (shown in Fig.1(b)) is that a biological 
synapse changes conductance based on learning rules, which 
reconfigures the signal transmission pathways between neuronal 
populations.9 This seemingly simplistic approach serves as a basis for 
biological computing. 

But then one ponders why it has been so difficul to replicate the 
computing paradigms of the brain? Biological synapses are diverse 
in morphology and functionality. They also demonstrate dynamic 
behavior on multiple time scales, such as short-term plasticity (STP), 
which forms the basis of working memory and sensory information 
filtering 10 Dendritic architectures and distribution of synapses 
on dendrites also play a critical role in biological computing by 
modulating signal delays.11 Several reports indicate that data is stored 
in the form of spatiotemporal clusters of synapses in the brain.12 
Additionally, beyond Hebbian learning based on pre- and post-
neuronal spiking times, a third factor such as neurotransmitters or 
rewards that convey information about success can play an important 
role in learning which can be accommodated by biological synapses.13 
Conventional memory elements (such as DRAM, SRAM, flash) lack 
the versatility of biological synapses. This limitation is where the true 
benefit of emerging memory technologies can be leveraged, as many 
of the emerging memory devices can be engineered to manifest the 
“dynamic behavior.”  

There are several emerging memory devices that are currently 
under investigation to replace or complement the conventional 
memory technologies in neuromorphic architectures.14 This article 
will discuss resistive random access memory (RRAM) devices as 

Fig. 1.  (a) Systolic array-based machine learning (ML) processing unit, (b) Neuro-synaptic processing unit in biological brain showing pyramidal neuron with 
complex dendritic architecture.

(a) (b)
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these are one of the more promising candidates and they have been 
widely studied in emerging neuromorphic architectures. RRAMs are 
two-terminal devices in a metal-insulator-metal (MIM) configuration,
shown in Fig.2(a). The insulator is usually a metal oxide15. An 
interfacial layer can be designed to modulate the properties of metal 
oxide by serving as an oxygen exchange layer. Various dopants in 
metal oxides have also been widely investigated to achieve the desired 
switching characteristics.16 These devices can be easily integrated on 
complementary metal oxide semiconductor (CMOS) platforms in 
back-end-of-line (BEOL) processing, adding computing value to the 
passive interconnects. There are two broad categories of RRAMs—
filamentaryand non-filamentar . In filamentary-RRAMs, the first step 
involves electroforming by applying positive electroforming voltage 
with compliance current (Icc) control that leads to the formation of a 
defect-assisted filament, shown in Fig.2(b). These defects could be 
oxygen vacancies or metal ions. Then, the first reset is performed 
by applying negative voltage to retract the filament via a possible 
redox reaction, shown in Fig. 2(c). Finally, set operation is performed 
by applying positive voltage to reform the filament with relatively 
smaller Icc to define the low-resistance state (LRS) (Fig.  2(d)). A 
subsequent reset operation leads to a high-resistance state (HRS) 
(Fig. 2(e)). The device can be switched between LRS and HRS with 
a write endurance of >106 cycles. Multiple resistive states can be 
achieved by modulating Icc or reset voltages, which enables multi-bit 
weight storage in a single device, resulting in the densification of 
memory.17 The resistive states in non-filamentary RRAMs are driven 

by the modulation of defect states at the oxide/metal interface or in 
oxide that alters the transport properties of electrons between top and 
bottom electrodes. Multiple analog resistance states can be achieved 
in these devices by using different programming conditions 18 

In a neuromorphic hardware, matrix multiplication is one of the 
most computationally intensive tasks limited by memory bandwidth. 
RRAM devices have been studied to enable in-memory computing 
in neuromorphic architectures, which has the potential to accelerate 
matrix multiplication.19 RRAM devices in a 1 Diode-1 RRAM (1D1R) 
crossbar configuration are shown in Fig. 3(a). An access diode is 
necessary to mitigate the sneak current in the crossbars.20 Though 
1D1R is highly scalable, the desired specifications for access diodes 
have been difficul to meet and further research is needed in this area. 
Therefore, 1 Transistor 1 RRAM (1T1R), where the transistor serves 
as an access device, is a more practical implementation of RRAM in 
crossbar arrays currently (Fig. 3(b)). With these RRAM arrays, matrix 
multiplication is performed in analog fashion where the input voltage 
is intrinsically multiplied by the conductance state of an RRAM in 
a cell to result in an output current. The current through each cell is 
summed on the wire in column, resulting in matrix multiplication. 
Additional circuitry is needed to sense this current and transform it to 
the digital domain using analog-to-digital converters, or it is possible 
to continue processing in the analog domain. These architectures 
have been used to implement deep neural networks (DNNs). 

Just like the brain, a neuromorphic hardware capable of real-time 
learning and inferencing is highly desirable. However, the training 
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Fig. 2.  RRAM devices: (a) Fabricated state, (b) After electroforming showing thick filament in switching oxide, (c) First eset showing retracted filament, (d)
Thin filament g owth during set process causing a low-resistance state (LRS), (e) Retracted filament during eset causing a high-resistance state (HRS). 

(a) (b) (c) (d) (e)

Fig. 3.  RRAM in crossbar array configuration in (a) 1D1R, (b) 1T1R. Input data ( 1 to vn) are applied into the array that gets transformed into current (I1 to Im) 
by multiplication with conductance value of corresponding RRAMs and summation in array.

(a) (b)
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process is usually very complex, requiring additional hardware. 
Therefore, training and inferencing engines are designed separately to 
meet the optimum power, performance, area, and cost specifications.
Inferencing engines based on RRAM neuromorphic architectures are 
of much interest for low-power edge-AI applications.21

One of the major drawbacks of RRAMs in neuromorphic 
architectures for inferencing is the drift in resistance states over 
time. The LRS and HRS retention over time has been reported to 
be a function of temperature, Icc, or programming pulse-width.22 
The retention of resistive states over time can also be modulated by 
programming voltages—devices programmed with higher voltages 
or a higher number of pulses tend to have longer retention compared 
to devices programmed with lower voltages or a lower number 
of pulses. 

Interestingly, while the time-dependent retention (or dynamic states) 
of these emerging memory devices is undesirable in a neuromorphic 
inferencing engine in its current implementation, this characteristic 
can be considered similar to the STP observed in biological synapses. 
Additionally, the ability to forget information has been shown to 
have a positive impact on learning.23 A notable difference between a 
biological brain and RRAM-based neuromorphic inferencing engines 
is that a biological brain continues to learn from data even while 
inferencing. Therefore, time-dependent retention is useful because 
the system is dynamic. On the other hand, current inferencing engines 
based on RRAMs are static where states are expected to stay constant 
over time. A major challenge lies in understanding how we can use 
the dynamic nature of emerging memory devices to the advantage of 
neuromorphic systems. Indeed, these STP states of RRAM devices 
have been leveraged in spiking neural network architectures to 
demonstrate filtering of noise in sensory data and modified Hebbian 
learning.24–26 While these preliminary reports are encouraging 
steps, further work is needed in this area to leverage these unique 
characteristics. Additionally, currently dynamic states in RRAMs are 
uncontrolled in nature. Once their applications are established, then 
they can be engineered to result in the desired performance. 

In conclusion, RRAM devices hold promise for applications in 
neuromorphic computing, though there are some pending challenges 
that need to be addressed. Beyond their established applications 
for matrix multiplication in crossbar arrays, it is important to study 
time-dependent states and to develop techniques for controllably 
modulating the dynamic states. The reliability of these states 
needs to be studied as well. Complex dendritic architectures with 
RRAMs beyond crossbar arrays need to be investigated. A detailed 
understanding of these dynamic states can help implement cortical 
circuitries that utilize dynamic synaptic states in diverse distributions 
using these devices—which can have significant impact on advancing 
novel paradigms of computing. 
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