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Control Oriented Modeling,
Experimentation, and Stability
Analysis of an Autorotating
Samara
This paper presents a control-oriented model for describing the steady-state and dynamic
behavior of a single-winged samara seed-pod in autorotative descent. A negligible lateral
center of mass motion and constant, prescribed roll-angle to develop a simplified and
compact model. Spanwise aerodynamic dependence is exchanged for an independent blade
element representation with two tuned parameters to account for the effects of leading-edge
vortex phenomena. The resulting model is a fourth-order nonlinear dynamical system. The
accuracy of this model is established by validating it against our own experimental data as
well as against those reported in the literature by other researchers. The validation exercise
reveals that zero roll-angle is a viable assumption that significantly reduces model
complexity while retaining accuracy. A necessary condition is derived for the existence of
steady autorotation of the samara under free descent. Furthermore, a stability analysis is
conducted suggesting that the eigenvalues of the fourth-order system, linearized about the
autorotational equilibrium, can be well-represented by those of two decoupled two-
dimensional systems. The analysis reveals the critical parameters that determine stability of
sustained autorotation. Such stability analysis provides a platform for similar analytical
exploration of future model improvements. The validity of this compact model suggests the
plausibility of designing and controlling simple autorotative mechanisms based on these
dynamics. [DOI: 10.1115/1.4062438]

1 Introduction

Samara seed pods, a morphology that has evolved parallel in
numerous plants throughout the world, effectively employ autor-
otation to slow descent speed. This allows organisms to produce
heavier seeds/fruit that can be scattered across a larger area by
prevailing winds and gusts, [1–6]. The study of these biological
structures can provide insight into efficient design of aerodynamic
systems, both small and large. Samaras can be classified by wing
configuration and aerodynamic behavior in descent [7]. This paper
will focus on samars of the single-winged variety that do not roll
about their spanwise axis at steady-state.
A seminal work by Norberg [8], has presented a thorough

qualitative and experimental analysis of samara stability. However,
through dynamic modeling, a mathematical analysis can be
performed to draw more quantitative insight in regards to samara
descent behavior, e.g., ranges of physical and aerodynamic
parameters that allow for stable autorotation. A simple mathemat-
ical analysis of samara stability was presented in Ref. [9] for the
purpose of modeling and controlling a powered single-winged
rotorcraft. This work was further expanded upon in Ref. [10].
Computational fluid dynamics was utilized in Refs. [11] and [12] to
analyze the microscale effects of turbulence and leading-edge

vortices. Discussion of the effects of leading-edge vortices and the
robustness of samara stability to gusts has been given in Ref. [13].
An extensive and detailed model of samara dynamics and an
analysis of stability have been presented byRosen and Seter [14,15],
which employ blade element method with special attention to the
effects of low Reynolds number. Further experimental work can be
found in Refs. [4], [12], [14], [16], and [17].
It is the goal of this paper to provide a more compact blade

element theory-based model for a samara in vertical descent by
neglecting lateral movement and assuming negligible roll angle.
This model, presented in Sec. 2, is explored for analysis of both
steady-state, and transient behavior. Expanding upon the work in
Ref. [18], an experimental setup and results are discussed in Sec. 3
for tuning and validation of simulation results. Furthermore, an
analytical derivation of conservative boundaries for aerodynamic
and physical properties that allow steady autorotation is discussed in
Sec. 4, and a stability analysis of the autorotational equilibrium is
conducted in Sec. 5. This is followed by Concluding Remarks,
Acknowledgments, References, and an Appendix, in that order. The
paper provides a model that balances accuracy and ease of implementa-
tion for stability analysis as well as design and control of simple single-
winged rotorcraft similar to that of Refs. [9], [10], [19], and [20].

2 Modeling

2.1 DynamicModel. The equations of motion with respect to a
body-fixed reference frame are displayed in the following equations:

Contributed by the Dynamic Systems Division of ASME for publication in the
JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
September 2, 2022; final manuscript received April 14, 2023; published online May 15,
2023. Assoc. Editor: Amit K. Sanyal.

Journal of Dynamic Systems, Measurement, and Control JUNE 2023, Vol. 145 / 061004-1
CopyrightVC 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/145/6/061004/7012946/ds_145_06_061004.pdf by U

niversity O
f C

entral Florida user on 08 January 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4062438&domain=pdf&date_stamp=2023-05-15


Ix3x3 _xx3 þ ðIz3z3 � Iy3y3Þxy3 xz3 ¼ Mx3

Iy3y3 _xy3 þ ðIx3x3 � Iz3z3Þxx3 xz3 ¼ My3

Iz3z3 _xz3 þ ðIy3y3 � Ix3x3Þxx3 xy3 ¼ Mz3

(1)

m _v0 ¼� mgþ Fx3 sin h

þ Fy3 sin w cos hþ Fz3 cos w cos h
(2)

where Ix3x3 , xx3 , and Mx3 refer to the moment of inertia, angular
velocity, and net moment about the body-fixed x-axis, and Fx3 refers
to the net force in the direction of the body-fixed x-axis. The same
naming convention follows for the body-fixed y- and z-axes. The
angular velocity of the samara in the body-fixed frame ðx3, y3, z3Þ
can be expressed using Euler angles as follows:

x ¼ xx3 îþ xy3 ĵþ xz3 k̂

¼ ð _wþ _/ sin hÞîþ ð _/ cos h sinw� _h coswÞĵ
þ ð _/ cos h coswþ _h sinwÞk̂

(3)

The forces Fx3 , Fy3 , Fz3 and the moments Mx3 , My3 , Mz3 are due to
aerodynamics. To determine them, the position and velocity of a
point P shown in Fig. 1(a) can be expressed relative to O as given
below:

rP ¼ rO þ rî, vP ¼ vO þ ðx� rîÞ
vO ¼ voðsin hîþ cos h coswĵþ cos h sinwk̂Þ

(4)

In Eq. (4) it is assumed that the point O of the samara has motion
predominantly in the vertical direction with negligible motion in
lateral directions. From Eqs. (3) and (4)

vP ¼ vO þ ðx� rîÞ
¼ vo sin hîþ ½vo cos h cosw� rð _/ cos h sinw� _h coswÞ�k̂
þ ½vo cos h sinwþ rð _/ cos h coswþ _h sinwÞ�ĵ

(5)

The wind velocity relative to P is assumed vw=P ¼ �vP. This
approximation neglects the effects of the leading edge vortex of a
single-winged samara which couples blade elements. Efforts were
made in Ref. [14] to account for spanwise flow with skewed blade
elements. Instead, a corrective tuning adjusts the coefficient of drag
and moment of inertia for the effects of the coupled aerodynamics.
This correction will be discussed further in Secs. 2.2 and 3.2. From
Fig. 2 for an element along the samara blade, the local drag and lift
forces, dD and dL, respectively, are given by

dD ¼ 1

2
qw rð ÞdrCD að ÞjjU1jj2

dL ¼ 1

2
qw rð ÞdrCL að ÞjjU1jj2

(6)

where a is the spanwise local angle of attack and from Eq. (5)

U1 ¼ �vP,yĵ� vP,zk̂ and tan a ¼ � vP,z
vP,y

(7)

Fig. 1 Euler angle definition for a samara

Fig. 2 Elemental forces on a blade
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where U1 is the relative wind velocity experienced by a blade
element (see Fig. 2). The element forces in body-fixed y3 and z3
directions are

dFy3 ¼
1

2
qw rð ÞjjU1jj2 sin aCL að Þ � cos aCD að Þð Þdr

dFz3 ¼
1

2
qw rð ÞjjU1jj2 cos aCL að Þ þ sin aCD að Þð Þdr

(8)

The overall forces and moments are

Fy3 ¼
ðrf
r0

dFy3 , Fz3 ¼
ðrf
r0

dFz3

Mz3 ¼
ðrf
r0

r dFy3 , My3 ¼ �
ðrf
r0

r dFz3

(9)

2.2 SimplifyingAssumptions. In Eq. (9), note that the limits of
integration r0 and rf are not equal to 0 and R, respectively. This is
because, as evident from Fig. 1(b), the wing-span that contributes to
the aerodynamic forces starts from r0 > 0 and ends at an rf < R. The
bottom boundary of r0 is taken to account for losses due to the
rounded seed geometry near the center of mass, whereas the top
boundary of rf is taken to account for tip losses. For practicality,
constant values have been selected for r0 and rf as ratios of a given
samara’s radius,R (see Table 3). Also, as the forces andmoments are
resolved, the following two simplifying assumptions are applied:

(1) The effect of dFx3 , the elemental force along the blade span, is
neglected. Thus, Fx3 � 0 is assumed and its effect on
aerodynamics is neglected. This simplifies the dynamic
model. The assumption can be removed by using the net
relative wind velocity on the (x3, y3) plane and accordingly
considering blade elements to be tilted from the y3 axis
instead of being parallel to it, as shown in Fig. 2(b).

(2) The rolling moment is assumedMx3 � 0. This is based on the
observation that the samara’smotion is dominated by the yaw
rate _/, the pitching motion h, _h (coning), and the vertical
motion v0.

A samara is typically an elongated and planar rigid body. Thus,
for simplicity Iz3z3 ¼ Ix3x3 þ Iy3y3 can be applied. Moreover, due to
the slender thickness and planform of the samara blade, it is assumed
that the moment of inertia with respect to the spanwise axis,
Ix3x3 � Iy3y3 , Iz3z3 . Accordingly, this work assumes Ix3x3 ¼ 0 and
Iz3z3 ¼ Iy3y3 . It is important to note that the mass of the samara is not
evenly distributed. Amajority of its mass is concentrated at the seed,
at pointO (see Figs. 1(a) and 1(b)). It is imperative that this be taken
into consideration when approximating the value for Iy3y3 . For this
paper, Eq. (10) was employed for moment of inertia approximation

Iy3y3 ¼
1

3
fmR2 (10)

where f is a tunable factor to account for the nonuniform mass
distribution which differs from samara to samara. The resulting
reducedmoment of inertia helps achieve coning angles that correlate
well with data published in the literature, [8]. For the purposes of
producing a simplified model, the center of mass is taken to be atO.
As mentioned in Sec. 2.1, the integration of independent blade

elements perpendicular to the span ignores the spanwise airflow of
the leading edge vortex which has been documented for single-
winged samara structures [11–13]. This simplification is empha-
sized by assumption 1 (above) which states that Fx3 � 0. It will be
shown in Sec. 3 that a strong agreement with steady-state values can
be achieved with corrective adjustment of two tunable parameters: f
fromEq. (10) and laterCD0

fromEq. (19). The goal of thismodel is to
provide a platform for reaching accurate steady-state results with
realistic dynamic behavior. It is expected that a direct implementa-
tion of leading-edge vortex aerodynamics would improve the

predictive accuracy of the model for the extreme dynamics before
settling into autorotation. This addition would, however, signifi-
cantly increase model complexity which can be detrimental to
control applications.
Through observation of a samara in descent, it is seen that the roll

angle,w, remains small. With this observation, and consideration of
the symmetry of the samara’s airfoil profile, it is reasonable to
assume that the angle w will be nearly if not exactly zero at steady-
state. Further, the assumption of Mx3 � 0 along with Ix3x3 ¼ 0 and
Iz3z3 ¼ Iy3y3 implies that the first equation of Eq. (1) is identically
zero. The dynamics and statics of the system can be studied for
different constant values of w. Statics analysis reveals that only a
small range of w around zero is allowable. This simplification
reduces the statics problem to that of determining three unknowns,
namely, _/, h, and v0. The dynamics reduce to four states, namely,
_/, _h, h, and v0. The simplified dynamics of an autorotating samara
are next provided. From the second and third equations of Eq. (1),
from Eq. (2), and imposing _w ¼ 0 on xx3 , xy3 , xz3 in Eq. (3)

€h coswþ _/2 sin h cos h coswþ 2 _/ _h sin h sinw

� €/ cos h sinw ¼ �My3=Iy3y3

€h sinwþ _/2 sin h cos h sinw� 2 _/ _h sin h cosw

þ €/ cos h cosw ¼ Mz3=Iy3y3

_v0 ¼ �gþ ðFy3 cos h sinwÞ=mþ ðFz3 cos h coswÞ=m

(11)

whereMy3 , Mz3 andFz3 are nonlinear functions of the state variables,
as given in Eqs. (8) and (9). It is noted here fromEqs. (5), (6), and (7)
that

jjU1jj2 ¼ r2 _/2 cos2hþ ðr _hþ v0 cos hÞ2

sin a ¼ ½�v0 cos h coswþ rð _/ cos h sinw� _h coswÞ�=jjU1jj

cos a ¼ ½v0 cos h sinwþ rð _/ cos h coswþ _h sinwÞ�=jjU1jj
(12)

2.3 Conditions For Steady Autorotation. Conditions for
steady autorotation can now be derived from the dynamic model
above by imposing €h ¼ €/ ¼ _h ¼ _v0 ¼ 0. It is noted here, that in
deriving the conditions for steady autorotation, the roll angle, w, is
allowed to assume nonzero constant values. The value, w, is treated
as an input in determining the possible set of autorotational
equilibria. The exercise confirms that feasible steady values of w
lie only a few degrees around w¼ 0. The equations for steady
autorotation, obtained from Eqs. (1)–(3) are

_/2 sin h cos h cosw ¼ �My3=Iy3y3

_/2 sin h cos h sinw ¼ Mz3=Iy3y3

mg ¼ Fy3 sinw cos hþ Fz3 cosw cos h

(13)

The static model in Eq. (13) can be expressed in a compact form by
the introduction of two dimensionless parameters, given in the
following equation:

v ¼ r

R
, k ¼ � v0

_/R
(14)

The ratio v represents the span-ratio which is the position of a blade
elementwith respect to the length of the blade. The ratio k represents
the tip-speed-ratio which is the relation of the vertical descent speed
to the speed of the tip of the blade. The ratio k=v produces a local
speed ratio which describes the relation of the vertical descent speed
of the entire samara to the local velocity of a blade element.
Inclusion of the local speed ratio provides insight into spanwise
characteristics. Applying the ratios inEq. (14) produce the following
expressions for the local jjU1jj and a under steady autorotation:
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jjU1jj2 ¼ r2 _/2 cos2h 1þ k
v

� �2
" #

sin a ¼ r _/ sinw� v0 cosw
� �

cos h=jjU1jj
cos a ¼ r _/ coswþ v0 sinw

� �
cos h=jjU1jj

) tan a ¼ tanwþ k
v

� �.
1� tanw

k
v

� �
(15)

It should be noted here that for negligible w, the right-hand side of
Eq. (15) reduces to the local speed ratio of the blade element.
Expanding Eq. (13) using Eqs. (8), (9), and (15) produces the
following system of equations:

My3 ¼ �Iy3y3
_/2 sin h cos h cos w

¼ � 1

2
q _/ cos2 h

ðrf
r0

r3 w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

v

� �2
s

k
v
CL að Þ þ CD að Þ

� �
sin w

�

� CL að Þ � k
v
CD að Þ

� �
cos w�dr

(16)

Mz3 ¼ Iy3y3
_/2 sin h cos h sin w

¼ 1

2
q _/ cos2 h

ðrf
r0

r3 w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

v

� �2
s

CL að Þ þ k
v
CD að Þ

� �
sin w

�

þ k
v
CL að Þ � CD að Þ

� �
cos w�dr

(17)

mg ¼ 1

2
q _/ cos2 h

ðrf
r0

r2 w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

v

� �2
s

� k
v
CL að Þ þ CD að Þ

� �
sin w

�

þ CL að Þ þ k
v
CD að Þ

� �
cos w�dr

(18)

Here a simple thin airfoil model is employed to select values for CL

and CD, the coefficients of lift and drag, respectively [21].
Specifically

CLðaÞ ¼ 2p sin a

CDðaÞ ¼ CLðaÞsin aþ CD0

(19)

where CD0
is a tuned additional drag to account for the effects of

roughness and airfoil thickness. Traditionally, Eq. (19) is represen-
tative of potential flow with no flow separation. This simplification
does not consider the presence of a leading edge vortex, however, it
has been seen from comparison to literature that the trends of
Eq. (19) are behaviorally comparable to that of low Reynolds
Number flow over small wings, [14]. It is shown in Sec. 3.2 that
accurate equilibrium values are achieved after system tuning
without deviating from realistic values of CD0

. Equations
(16)–(18) can be numerically solved for the steady-state values of
_/, h, v0, and k for a range of values ofw. The process of determining
the steady conditions is to first solve for k from Eqs. (16) and (17).
This is done by noting that

Mz3 coswþMy3 sinw ¼ 0 (20)

Equation (20) must be solved numerically to determine the steady
value of k. Once solved, h can be determined from either Eqs. (16) or
(17). Here, h can be solved explicitly. Next _/ can be determined

explicitly from Eq. (18). Finally, knowing k and _/, v0 can also be
explicitly determined from the definition of k in Eq. (14).

3 Results and Validation

3.1 Experimental Setup and Results. For observation of
samara performance and collection of validation data, an experi-
mental setup was created in the following manner:

(1) Samaras were collected from local maple trees (specifically
Red Maples—Acer rubrum).

(2) A measuring tape was hung plum in camera view of a
Samsung Z Fold3.

(3) Samaras were dropped from sufficient height in plane with
the measuring tape and recorded at 960 frames per second
(visualized in Fig. 3).

(4) Samaras were also recorded from a top-down perspective at
the same frame rate.

(5) The collected footage was analyzed frame-by-frame to
extract h, _/, and v0.

It is important to note that for accurate falling speed estimation,
samaras should be recorded falling in the same plane as the
measuring tape. Analyzing recordings of samaras with significant
offset from the distance reference requires correction for parallax
effects and can increase error. Furthermore, angle measurements
should be taken when the samara is nearest to the center of view,
such that minimal perspective distortion is present. A visualization
of angle measurement is seen in Fig. 4. A sample video of samara
descent from both front and top views is available at the following
link.1

Performance measurements were conducted for five sample
samaras. The physical parameters of this sample group are presented
in Table 1, along with the physical parameters of three larger
samaras from previous works [8,12]. The parameters fopt and CD0opt

are optimized values and will be discussed in Sec. 3.2. It should be
noted that the Norberg and Holden 2 specimens are not Red Maple
samaras, but Norway maple (Acer plantanoides) and silver maple

Fig. 3 Visualization of a samara spiral descent

1https://youtu.be/B9Bl_dBsOIo
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(Acer saccharinum), respectively. Experimental values for steady-
state h, _/, and v0 are presented in Table 2 for the five tested samaras
as well as the three samaras from the literature.

3.2 Parameter Optimization. It has been observed that
samaras, even within one species, vary significantly in size, mass,
curvature, etc. For this reason, selecting an appropriate value for Iy3y3
and CD is a nontrivial effort. Direct measurement of these values
requires microscale testing and in many cases, destruction of a
specimen for analysis of mass distribution. For this reason, two
tunable parameters have been added, namely, f and CD0

in Eqs. (10)
and (19), respectively, to adjust approximations of Iy3y3 and CD for
variation in morphology and higher-order aerodynamic response.
Given the model above and collected experimental data, as well as
other important modeling parameters listed in Table 3, a two-
dimensional steepest descent optimization can be employed to select
values for f and CD0

. A successful optimization should not only
produce modeled steady-state values of h, _/, and v0 which show
good agreement with experimental values but also produce realistic
values for f and CD0

.
Optimized values for the eight studied samaras are presented in

Table 1. It can be see in Table 2 that strong agreement is achieved for
h, _/, and v0. For a study of appropriate Iy3y3 values, samara 2 was
separated into two pieces: seed and wing. These separate sections
were measured for mass and physical dimensions, and an
approximation of Iy3y3 was performed by considering the seed to

be a cylinder and the wing a rectangular flat plate, each of uniform
density. From this analysis, it was found that Iy3y3 � 2� 10�9kgm2

for samara 2. Due to the rounded geometry of both the seed and
wing, the above approximation is an overestimate. Given the
measured Iy3y3 , Eq. (10) can be used to show f � 0:47. This value is
larger, yet of similar magnitude to the value optimized through
steepest descent. The optimized values of CD0

in Table 1 are also
realistic, as they are comparable to the low Reynolds Number
performance of insect wings [14]. As will be discussed further in
Sec. 4, the optimizedCD0

values also fall within the necessary range
of stability.

3.3 Analysis of Variable Roll. As previously stated, the above
steady-state model was produced for an arbitrary roll angle, w. This
allows for simulation of a range of equilibrium results for a span ofw
values. To explore the effects of varying w, the physical parameters
of theNorberg specimen (see Table 1)were inputted, and the steady-
state values of _/, h, v0, and k were modeled for a range of
� 15 deg < w < 15 deg. The results of this analysis are presented in
Figs. 5 and 6.
It can be observed in Fig. 5(a) that a significant error in steady-

state _/ is associated with negative w. Furthermore, the steep,
positive correlation of h and w seen in Fig. 5(b) suggests that
adjusting w by a few degrees to either side of w¼ 0 results in a
significant deviation of steady-state h agreement. These trends,
however, are produced using the f and CD0

values of Table 1, which
were optimized under the assumption of w¼ 0. For this reason, an
analogous three-dimensional steepest descent algorithm has been
employed to not only optimize f andCD0

, but to also alloww to vary.
For this optimization, the values of Table 1 were taken as initial
guesses to see if significant deviation would occur when the
assumption of w¼ 0 was removed. The results of this process are
presented in Table 4. The resulting optimized w values do not
deviate further than 0.6 deg from 0 deg and produce only minimal
improvements in steady-state agreement of h, _/, and v0. Further-
more, the variability in magnitude and sign of the optimized w
suggests that such a correction is specific to individual morpholog-
ical differences among samaras rather than suggesting a innate,
nonzero roll for all samaras.

3.4 Dynamics Simulations. The transient behavior of a falling
samara is next studied through simulations. Steady-state analysis
has shown that it is reasonable to assume w¼ 0 near equilibrium. It
has been observed that a falling samara establishes autorotation in a
matter of a few seconds. This coupled with the minuscule rolling
moment of inertia, Ix3x3 , suggests that achieving negligible roll angle
will be nearly instantaneous. It is therefore reasonable for this
control-oriented model to extend the assumption of w¼ 0 to
transients. For consistencywith the steady-state analysis,w has been

Table 1 Samara experimental parameters

m (kg) L (m) R (m) fopt CD0 opt

Samara 1 0.000031 0.035 0.025 0.209 0.033
Samara 2 0.000025 0.038 0.025 0.359 0.224
Samara 3 0.000022 0.035 0.021 0.402 0.213
Samara 4 0.000046 0.035 0.023 0.326 0.872
Samara 5 0.000038 0.032 0.019 0.329 0.794
Norberg 0.00013 0.047 0.035 0.238 0.124
Holden 1 0.000116 0.040 0.034 0.249 0.219
Holden 2 0.000236 0.059 0.048 0.684 0.708

Table 2 Samara experimental and modeled results: h (deg), _/ (rev/s), and v0 (m/s)

hexp hmod hPE _/ exp
_/mod

_/PE v0 exp v0mod v0PE

Samara 1 21.6 21.6 0.08% 16.6 16.4 0.64% –0.55 –0.50 9.66%
Samara 2 24.6 24.6 0.03% 12.3 12.5 –1.16% –0.62 –0.61 2.38%
Samara 3 19.0 19.1 –0.10% 12.9 13.4 –3.47% –0.57 –0.59 –1.91%
Samara 4 29.8 29.7 0.18% 12.1 12.4 –2.79% –1.16 –0.95 18.42%
Samara 5 19.9 20.0 –0.31% 15.1 15.1 –0.58% –0.87 –0.92 –5.70%
Norberg 20 20.0 –0.02% 13 13.3 –2.15% –0.9 –0.82 8.43%
Holden 1 24 24.0 0.14% 12.0 12.5 –3.51% –0.98 –0.88 10.17%
Holden 2 23 22.9 0.50% 6.8 6.3 6.85% –1.06 –0.94 11.30%

Fig. 4 Visualization of samara pitch angle, h

Table 3 Samara and environmental parameters

r0 0:2R m
rf 0:9R m
q 1.225 kg/m3

Journal of Dynamic Systems, Measurement, and Control JUNE 2023, Vol. 145 / 061004-5
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presented as a constant input. The resulting dynamic model is given
in Eqs. (11) and (12). Transient simulation results for h and _h as well
as _/ and v0 are presented in Figs. 7 and 8, respectively. Case 1 (bold)
shows the model response with all initial conditions set to 0 (i.e.,
h _h _/ v0
� 	

¼ 0 0 0 0f g). Case 2 (dashed) has initial conditions of
h ¼ 45 deg, _h ¼ 0:175 rad/s, _/ ¼ 4 rev/s, and v0 ¼ �0:4 m/s.

For the dynamic responses of h, _h, _/, and v0, an aggressive
stabilization is observed before smoothing out at approximately

0.5 s. The following smooth dynamic settles into steady autorotation
within the first second. Special attention should be given to the
response of v0 which at approximately 0.25 s achieves maximum
descent speed. Past this point, the samara slows to its autorotative
terminal velocity. The steady values of the dynamic simulation show
complete agreement with those of the steady-state model, as
expected.
The equilibrium of autorotation can be viewed as a balancing of

counteracting yawingmoments along the span of a rotor-craft blade.
This effect is visualized in Fig. 9 which displays the moment
provided by each blade element of a samara. For the presented case
(case 1), the entire blade provides a moment to increase the rotation
of the samara. This effect reduces over time until steady-state is
reached. It can be seen that at 1 s an approximately equal region of
positive and negative moment is present, suggesting equilibrium.
This result agrees with the predicted performance of helicopter
blades in autorotation [22].
Observation of samaras found in nature and simulation of the

presented model from various initial conditions has suggested the
autorotational equilibrium of a single-winged samara is charac-
terized by a large region of attraction. An investigation of samara
stability will be presented in Secs. 4 and 5.

Fig. 5 Steady-state behavior over range of roll angles: (a) yaw velocity and (b) pitch angle

Fig. 6 Steady-state behavior over range of roll angles: (a) terminal velocity and (b) tip speed ratio

Table 4 Samara modeled results W/variable w (deg): h (deg), _/
(rev/s), and v0 (m/s)

wopt hmod
_/mod v0mod fopt CD0 opt

Samara 1 –0.005 21.6 16.5 –0.50 0.209 0.033
Samara 2 0.062 24.6 12.4 –0.61 0.362 0.225
Samara 3 0.389 19.1 13.0 –0.59 0.423 0.217
Samara 4 0.592 29.8 12.2 –0.94 0.336 0.878
Samara 5 –0.006 19.9 15.1 –0.92 0.330 0.794
Norberg 0.172 20.0 13.1 –0.83 0.246 0.126
Holden 1 0.438 24.0 12.1 –0.88 0.262 0.224
Holden 2 –0.396 23.0 6.4 –0.94 0.664 0.704
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4 A Necessary Condition for the Existence of
Autorotational Equilibrium

In this section, a necessary condition for the existence of an
autorotational equilibrium of the falling samara is derived based on
the equations of motion presented in this paper. Under steady
autorotation, _/, h, and v0 are constant. Note that the solution of
steady autorotation can only exist if there exists a solution k for
Eq. (20), as r varies over the span r 2 ½r0, rf �. Substituting the
expressions of My3 and Mz3 from Eq. (16) and (17), respectively,
Eq. (20) can be rewritten as

Mz3 coswþMy3 sinw ¼ 0

) 1

2
q
ðrf
r0

w rð ÞrjjU1jj2 sin a� wð ÞCL � cos a� wð ÞCD½ �dr ¼ 0

(21)

In Eq. (21), jjU1jj2 > 0 and w(r)> 0 for r 2 ½r0, rf �. Therefore, for
Eq. (21) to be valid, it is necessary that there exists an r 2 ðr0, rf Þ
where

sinða� wÞCL � cosða� wÞCD ¼ 0 (22)

is satisfied. From Eq. (15), it can be shown that

Fig. 7 Samara dynamic response: (a) pitch and (b) rate of pitch

Fig. 8 Samara dynamic response: (a) yaw and (b) vertical velocity

Fig. 9 Scaled yawing moment along span of blade (case 1)
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sin a� wð Þ ¼ � v0 cos h
jjU1jj ¼ � v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 _/2 þ v20

q ,

cos a� wð Þ ¼ r _/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2 þ v20

q (23)

From Eqs. (19) and (23), Eq. (22) reduces to

sin aþ CD0

2p sin a
¼ � v0

r _/
) sin2a� k

v
sin aþ c ¼ 0,

c ¼ CD0

2p

(24)

where k and v are defined in Eq. (14). Equation (24) is quadratic in
sin a, and for an autorotational equilibrium to exist it is necessary
that the solution of sin a is real. Thus, the following:

k
v
> 2

ffiffiffi
c

p
(25)

is a necessary condition. From Eqs. (14) and (24), and since the
solution of Eq. (25) must be in the range r 2 ðr0, rf Þ, substituting
v ¼ r=R yields the following requirements:

r0 < r <
kR
2
ffiffiffi
c

p ) r0 <
kR
2
ffiffiffi
c

p ) c <
k2R2

4r20
)

CD0
<

pk2R2

2r20

(26)

The above condition onCD0
is useful since it places a requirement on

the drag coefficient. Since typically at steady-state k � 0:25, as
observed in the presented study, and since r0 ¼ 0:2R is considered,
Eq. (26) suggests, CD0

< 2:45. For a steady-state k � 0:28, as
obtained in Fig. 6(b) for w ¼ 0 deg, the requirement becomes
CD0

< 3:08. The necessary condition can thus be reduced to an
upper bound on CD0

. The bound is conservative as evident from
typical model values shown in Tables 1 and 4. The necessary
condition for autorotation leads to another interesting deduction if
w ¼ 0 deg is imposed. This case is of importance since the presented
model has shown good predictive capabilities under this condition.
From Eqs. (14) and (23)

w ¼ 0 deg ) sin a ¼ � v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2 þ v20

q ¼ k=vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=vð Þ2

q
Substituting the above expression of sin a into the necessary
condition in Eq. (24)

k
v

� �2

þ c 1þ k
v

� �2
" #

¼ k
v

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

v

� �2
s

(27)

From the above transformed necessary condition, which is valid for
the case when w ¼ 0 deg, a solution for ðk=vÞ can exist in Eq. (27)
only if c > 0, implyingCD0

> 0. The termCD0
in the drag coefficient

of Eq. (19) is thus a critical component in determining autorotational
equilibrium. Section 5 presents a stability analysis of the autorota-
tional equilibrium.

5 Stability Analysis

The stability analysis presented in this section is based on the
coefficients of lift and drag formulations of Eq. (19). Forw ¼ _w ¼ 0,
the nonlinear dynamics of Eq. (11) can be expressed in state-space
form as

d

dt

h

_h

_/

v0

2
666664

3
777775 ¼

_h

�My3=Iy3y3 � _/2 sin h cos h

Mz3= Iy3y3 cos h
� �þ 2 _/ _h sin h= cos h

�gþ Fz3 cos h=m

2
6666664

3
7777775
¼

f1

f2

f3

f4

2
666664

3
777775
(28)

The linearized dynamics around the equilibrium ðhe, _he ¼
0, _/e, v0,eÞ can be expressed as

_~X ¼ Ae
~X,

Ae ¼

0 1 0 0
@f2
@h

@f2

@ _h

@f2

@ _/

@f2
@v0

@f3
@h

@f3

@ _h

@f3

@ _/

@f3
@v0

@f4
@h

@f4

@ _h

@f4

@ _/

@f4
@v0

2
6666666664

3
7777777775







e

¼
0 1 0 0

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2
6664

3
7775

(29)

where, ~X ¼ h� heð Þ _h _/� _/e

� �
v0 � v0,eð Þ

h iT
and the expres-

sions for Ai,j, i¼ 2, 3, 4 and j ¼ 1, 2, 3, 4 are given in the Appendix.
The characteristic equation of Ae is

s4 � ðA22 þ A33 þ A44Þs3 þ ðA22A33 þ A33A44 þ A44A22 � A23A32

� A34A43 � A42A24 � A21Þs2
þ ð�A22A33A44 � A23A34A42 � A43A32A24 þ A22A34A43

þ A33A24A42 þ A44A23A32

þ A21A33 � A23A31 þ A21A44 � A24A41Þs
þ ðA21A34A43 � A21A33A44 þ A23A31A44 � A23A34A41

þ A24A41A33 � A24A31A43Þ ¼ 0

(30)

An analytical study of the eigenvalues of Ae (e.g., using Routh
stability [23]) is tedious considering the complexity of the individual
expressions ofAi,j, as evident fromEqs. (A1)–(A12). To simplify the
analysis the following decoupled matrices are considered as
substitutes for the stability analysis. The two candidate matrices are

A�
e ¼

0 1 0 0

A21 A22 0 0

0 0 A33 A34

0 0 A43 A44

2
6664

3
7775, �Ae ¼

0 1 0 0

A21 A22 0 A24

0 0 A33 0

A41 A42 0 A44

2
6664

3
7775

(31)

In A�
e , the dynamics of h and _h are decoupled from that of _/ and v0,

thus resulting in two ð2� 2Þ linear systems. In �Ae, the dynamics of
h, _h and v0 are decoupled from that of _/, resulting in one ð3� 3Þ and
a scalar dynamical system. In both cases, the stability analysis is
simplified. To evaluate which simplification is better suited for
analysis, a numerical root-locus study is performed. The four main
parameters of the samara model, namely, the mass m, the blade
radius R, the mass distribution factor f, and the drag factor CD0

are
varied by 630% and the corresponding eigenvalues are plotted for
the original linearized systemAe and the simplified ones,A�

e and
�Ae.

The eigenvalue variations and comparisons are shown in Fig. 10. It is
noted that for all parameter perturbations in Fig. 10, the eigenvalues
of Ae, which is the original linearized system, are well-
approximated by those of A�

e . Furthermore, they are better
approximated by the eigenvalues of A�

e than those of �Ae. The
same observation is made for decoupling the dynamics of the
descent velocity, v0, from that of h, _h, and _/. The decoupling in the
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form of two ð2� 2Þ linear systems, as in A�
e , thus provides a way to

do a tractable stability analysis of the original linearized system
while better retaining the characteristics of Ae than �Ae. It is also
evident from Fig. 10 that the off-block-diagonal entries of Ae, with
respect to the block-diagonal form of A�

e , do not produce enough
effect on its eigenvalues to induce instability.
Based on the observations above, the conditions that ensure

stability of the autorotational equilibrium of the samara usingA�
e can

be analyzed. First, consider the stability of the subsystem

A�
e,1 ¼

0 1

A21 A22

� 

(32)

The stability of A�
e,1 is ensured by the following necessary and

sufficient conditions:

A21 < 0 and A22 < 0 (33)

Consider the expression of A21 given in Eq. (A1). All terms
of Eq. (A1) will be negative if v0,e < 0, _/e > 0, 0 < he <
p=4, CD0

> 0, Iy3y3 > 0 and if all integral terms in Eq. (A1)
are positive. Note that the samara geometry, aerodynamic proper-
ties, and equilibrium conditions ensure that the above requirements
are satisfied and thereby A21 < 0 provided 0 < he < p=4. Next
consider the expression of A22 given in Eq. (A2). It can be expressed
as

A22 ¼ � pq _/e cos he
Iy3y3

ðrf
r0

r3w rð Þdr

� CD0
q cos he
2Iy3y3

ðrf
r0

r2w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

� CD0
q v20,e cos he
2Iy3y3

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

� pq v20,e cos he
Iy3y3

ðrf
r0

3� v20,e

r2 _/2
e þ v20,e

 !
r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr < 0

(34)

This concludes that A22 < 0 since all terms in Eq. (34) are negative,
including the las t term which is negat ive because
v20,e=ðr2 _/2

e þ v20,eÞ � 1. Thus, the negativity ofA22 is also guaranteed
by the samara geometry, aerodynamic properties, and equilibrium
conditions. This establishes the stability of the subsystemA�

e,1. Next,
consider the subsystem A�

e,2, given by

A�
e,2 ¼

A33 A34

A43 A44

� 

(35)

It can be verified that A�
e,2 is stable if and only if

Fig. 10 Eigenvalue variation in Ae, A
�
e and �Ae due to 630% parameter perturbations in (a) m, (b) R, (c) f, and

(d) CD0
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A33 þ A44 < 0 and A33A44 > A34A43 (36)

Consider the first condition in Eq. (36). From Eq. (A7), A33 can be
expressed as

A33 ¼ � pq v20,e cos he
Iy3y3

ðrf
r0

v20,e

r2 _/2
e þ v20,e

 !
r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr (37)

� CD0
q cos he
2Iy3y3

ðrf
r0

r2w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

� CD0
q _/2

e cos he
2Iy3y3

ðrf
r0

r4w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr < 0
(38)

In Eq. (38), A33 < 0 since each term is negative around the
equilibrium. Similarly, from Eq. (A12), A44 can be expressed as

A44 ¼�pq _/e cos
3he

m

ðrf
r0

rw rð Þdr

�CD0
qv20,e cos

3he
2m

ðrf
r0

w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þv20,e

q dr

�CD0
qcos3he
2m

ðrf
r0

w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þv20,e

q
dr

�pqv20,e cos
3he

m

ðrf
r0

3� v20,e

r2 _/2
e þv20,e

 !
w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 _/2
e þv20,e

q dr< 0

(39)

In Eq. (39), A44 < 0 since each term is negative around the
equilibrium, including the last term since v20,e=ðr2 _/2

e þ v20,eÞ � 1.
Thus, the condition A33 þ A44 < 0 in Eq. (36) is satisfied in the
neighborhood of the autorotational equilibrium. Next, consider the
second term of Eq. (36). Here, first note from Eqs. (38) and (39) that
A33A44 > 0. Next from Eq. (A11), A43 can be expressed as

A43 ¼�pqv0,e cos3he
m

ðrf
r0

1� v20,e

r2 _/2
e þv20,e

	 r _/effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þv20,e

q
0
@

1
Arw rð Þdr

�CD0
qv0,e _/e cos

3he
2m

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þv20,e

q dr> 0

(40)

In Eq. (40), A43 > 0 since both terms are positive, considering
v0,e < 0. Next from Eq. (A8), A34 can be expressed as

A34 ¼ 2pq v0,e cos he
Iy3y3ðrf

r0

1� r _/e 1þ CD0
=4p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q þ v20,e r
_/e

2 r2 _/2
e þ v20,e

� �1:5
0
B@

1
CA rw rð Þdr

(41)

If A34 < 0, then A34A43 < 0 and hence the second condition of Eq.
(36) would be satisfied. Note from Eq. (41) that since v0,e < 0, a
conservative condition for A34 < 0 is

1� r _/e 1þ CD0
=4p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q þ v20,e r
_/e

2 r2 _/2
e þ v20,e

� �1:5
0
B@

1
CA 
 0

) CD0
� 4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v0,e

r _/e

� �2
s

þ

v0,e

r _/e

� �2

2 1þ v0,e

r _/e

� �2
 !� 1

0
BBBB@

1
CCCCA

(42)

Noting that

v0,e

rf _/e

¼ v0,e

0:9R _/e

� v0,e

r _/e

� v0,e

r0 _/e

¼ v0,e

0:2R _/e

) ke
0:9

� v0,e

r _/e

� ke
0:2

(43)

Equations (42) and (43) yield the following condition for A34 < 0,
which is more conservative than Eq. (42):

CD0
� 4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ke

0:9

� �2
s

þ
ke
0:9

� �2

2 1þ ke
0:9

� �2
 !� 1

0
BBBB@

1
CCCCA (44)

The condition in Eq. (44) is not restrictive. This can be verified by
noting that since a typical value of ke � 0:25. Substituting this value
into Eq. (44) yields CD0

� 0:93. For a steady-state k � 0:28, as
obtained in Fig. 6(b) for w ¼ 0 deg, the requirement becomes
CD0

� 1:14. Thus, stability is also dependent on the parameter CD0

in our model and the stability condition on CD0
is more stringent in

comparison to the necessary condition of autorotation, as derived in
Sec. 4. From the zoomed-in views of Figs. 10(a) and 10(d), it is
evident that the dominant eigenvalue ofAe is around –9. This would
imply a rise-time [23], of about 1:8=9 ¼ 0:2 s. This matches well
with the approximate rise-times in the transient simulations of
Figs. 8(a) and 8(b).

It should be noted that, while there are alternate methods to study
the stability of the aforementioned system, such as using the
Gerschgorin circle theorem [24] or its block analog [25], or even
the small gain theorem for interconnected systems [26], these
analysis yield significantly more conservative stability criteria
for this study. It is also arguable that the partial derivatives in
Eq. (29) could be numerically determined instead of the
analytical approach adopted in this paper. Indeed, the numerical
approach was attempted and it was observed these calculations were
lacking in convergence. A similar convergence-related observation
was made in Ref. [15], which ultimately relied on numerical values
based on additional investigations on the accuracy of the numerical
process.

6 Conclusions

A simplified and compact model for the steady-state behavior of a
single-winged samara has been presented. It has been shown that an
assumption of negligible roll angle, w¼ 0, is reasonable, and can
simulate accurate steady-state and realistic transient behavior. With
small, nonzero w values, improvements can be made to simulation
agreement with data, but these deviations appear to be more
correlated with individual morphological differences between
samaras as opposed to a general trend of w deviation. Experimental
results have been shown for five Red Maple samaras to tune and
validate the model. The use of two tunable parameters has
adequately encapsulated the effects of complex geometry and
higher-order aerodynamic phenomena on drag and moment of
inertia. Necessary conditions for the existence of an autorotation
equilibrium have been analytically derived with further analysis on
stability, suggesting ranges of parameters that can be employed in
the development of biomimicking aerodynamic mechanisms. The
stability analysis reveals that in the neighborhood of the autorota-
tional equilibrium, the eigenvalues of the higher-order coupled
system can be well-approximated by two decoupled lower-order
systems. This lends itself to a tractable stability analysis which
shows the reliance of stability on key parameters of the samara.
Furthermore, the compact form of the presented model lends itself
well to implementation in aerodynamic control of single-winged
crafts. A topic of future interest is the exploration of lateral stability
and the effects of wind gusts as well as employing the presented
model in a control system.
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Nomenclature

CD ¼ coefficient of drag
CD0

¼ additional drag effects
CL ¼ coefficient of lift
f ¼ adjustment for mass distribution

F ¼ net force
g ¼ acceleration due to gravity
I ¼ moment of inertia
m ¼ mass
M ¼ net moment
r ¼ radial position
R ¼ blade radius
v0 ¼ vertical velocity of samara
w ¼ blade width
a ¼ local angle of attack
h ¼ pitch angle
k ¼ tip speed ratio
q ¼ air density
/ ¼ yaw angle
v ¼ span ratio
w ¼ roll angle
x ¼ angular velocity

Appendix

A21 ¼ @f2
@h






e

¼ pq v0,e _/e sin 2he
Iy3y3

ðrf
r0

r2w rð Þdr þ pq v30,e sin 2he
Iy3y3

ðrf
r0

rw rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

þ CD0
q v0,e _/e sin 2he

2Iy3y3

ðrf
r0

rw rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr � _/2

e cos 2he

(A1)

A22 ¼ @f2

@ _h






e

¼ � pq _/e cos he
Iy3y3

ðrf
r0

r3w rð Þdr þ pq v40,e cos he
Iy3y3

ðrf
r0

r2w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� CD0
q cos he
2Iy3y3

ðrf
r0

r2w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

� q v20,e cos he 6pþ CD0ð Þ
2Iy3y3

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

(A2)

A23 ¼ @f2

@ _/






e

¼ � pq v0,e cos2he
Iy3y3

ðrf
r0

r2w rð Þdr þ pqv30,e
_/e cos

2he
Iy3y3

ðrf
r0

r3w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� CD0
q v0,e _/e cos

2he
2Iy3y3

ðrf
r0

r3w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr � _/e sin 2he

(A3)

A24 ¼ @f2
@v0






e

¼ � pq _/e cos
2he

Iy3y3

ðrf
r0

r2w rð Þdr þ pq v40,e cos
2he

Iy3y3

ðrf
r0

rw rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� CD0
q cos2he
2Iy3y3

ðrf
r0

rw rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

� q v20,e cos
2he 6pþ CD0ð Þ
2Iy3y3

ðrf
r0

rw rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

(A4)

A31 ¼ @f3
@h






e

¼ 0 (A5)

A32 ¼ @f3

@ _h






e

¼ 2pq v0,e
Iy3y3

ðrf
r0

r2w rð Þdr þ pq v30,e _/e

Iy3y3

ðrf
r0

r3w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� q v0,e _/e 4pþ CD0ð Þ
2Iy3y3

ðrf
r0

r3w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr þ 2 _/e tan he

(A6)
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A33 ¼ @f3

@ _/






e

¼ � pq v20,e cos he
Iy3y3

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr þ pq v20,e
_/2
e cos he

Iy3y3

ðrf
r0

r4w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� CD0
q cos he
2Iy3y3

ðrf
r0

r2w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr � CD0

q _/2
e cos he

2Iy3y3

ðrf
r0

r4w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

(A7)

A34 ¼ @f3
@v0






e

¼ 2pq v0,e cos he
Iy3y3

ðrf
r0

rw rð Þdr þ pq v30,e
_/e cos he

Iy3y3

ðrf
r0

r2w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� q v0,e _/e cos he 4pþ CD0ð Þ
2Iy3y3

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

(A8)

A41 ¼ @f4
@h






e

¼ 3pq v0,e _/e sin he cos
2he

m

ðrf
r0

rw rð Þdr þ 3pq v30,e sin he cos
2he

m

ðrf
r0

w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

þ 3CD0
q v0,e sin he cos2he

2m

ðrf
r0

w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

(A9)

A42 ¼ @f4

@ _h






e

¼ � pq _/e cos
2he

m

ðrf
r0

r2w rð Þdr þ pq v40,e cos
2he

m

ðrf
r0

rw rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� q v20,e cos
2he 6pþ CD0ð Þ
2m

ðrf
r0

rw rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

� CD0
q cos2he
2m

ðrf
r0

rw rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr

(A10)

A43 ¼ @f4

@ _/






e

¼ � pq v0,e cos3he
m

ðrf
r0

rw rð Þdr þ pq v30,e _/e cos
3he

m

ðrf
r0

r2w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr

� CD0
q v0,e _/e cos

3he
2m

ðrf
r0

r2w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

(A11)

A44 ¼ @f4
@v0






e

¼ � pq _/e cos
3he

m

ðrf
r0

rw rð Þdr � q v20,e cos
3he 6pþ CD0ð Þ
2m

ðrf
r0

w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q dr

� CD0
q cos3he
2m

ðrf
r0

w rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 _/2

e þ v20,e

q
dr þ pq v40,e cos

3he
m

ðrf
r0

w rð Þ
r2 _/2

e þ v20,e

� �1:5 dr
(A12)
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