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This paper presents a control-oriented model for describing the steady-state and dynamic
behavior of a single-winged samara seed-pod in autorotative descent. A negligible lateral
center of mass motion and constant, prescribed roll-angle to develop a simplified and
compact model. Spanwise aerodynamic dependence is exchanged for an independent blade
element representation with two tuned parameters to account for the effects of leading-edge
vortex phenomena. The resulting model is a fourth-order nonlinear dynamical system. The
accuracy of this model is established by validating it against our own experimental data as
well as against those reported in the literature by other researchers. The validation exercise
reveals that zero roll-angle is a viable assumption that significantly reduces model
complexity while retaining accuracy. A necessary condition is derived for the existence of
steady autorotation of the samara under free descent. Furthermore, a stability analysis is
conducted suggesting that the eigenvalues of the fourth-order system, linearized about the
autorotational equilibrium, can be well-represented by those of two decoupled two-
dimensional systems. The analysis reveals the critical parameters that determine stability of
sustained autorotation. Such stability analysis provides a platform for similar analytical
exploration of future model improvements. The validity of this compact model suggests the
plausibility of designing and controlling simple autorotative mechanisms based on these

dynamics. [DOI: 10.1115/1.4062438]

1 Introduction

Samara seed pods, a morphology that has evolved parallel in
numerous plants throughout the world, effectively employ autor-
otation to slow descent speed. This allows organisms to produce
heavier seeds/fruit that can be scattered across a larger area by
prevailing winds and gusts, [1-6]. The study of these biological
structures can provide insight into efficient design of aerodynamic
systems, both small and large. Samaras can be classified by wing
configuration and aerodynamic behavior in descent [7]. This paper
will focus on samars of the single-winged variety that do not roll
about their spanwise axis at steady-state.

A seminal work by Norberg [8], has presented a thorough
qualitative and experimental analysis of samara stability. However,
through dynamic modeling, a mathematical analysis can be
performed to draw more quantitative insight in regards to samara
descent behavior, e.g., ranges of physical and aerodynamic
parameters that allow for stable autorotation. A simple mathemat-
ical analysis of samara stability was presented in Ref. [9] for the
purpose of modeling and controlling a powered single-winged
rotorcraft. This work was further expanded upon in Ref. [10].
Computational fluid dynamics was utilized in Refs. [11] and [12] to
analyze the microscale effects of turbulence and leading-edge
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vortices. Discussion of the effects of leading-edge vortices and the
robustness of samara stability to gusts has been given in Ref. [13].
An extensive and detailed model of samara dynamics and an
analysis of stability have been presented by Rosen and Seter [14,15],
which employ blade element method with special attention to the
effects of low Reynolds number. Further experimental work can be
found in Refs. [4], [12], [14], [16], and [17].

It is the goal of this paper to provide a more compact blade
element theory-based model for a samara in vertical descent by
neglecting lateral movement and assuming negligible roll angle.
This model, presented in Sec. 2, is explored for analysis of both
steady-state, and transient behavior. Expanding upon the work in
Ref. [18], an experimental setup and results are discussed in Sec. 3
for tuning and validation of simulation results. Furthermore, an
analytical derivation of conservative boundaries for aerodynamic
and physical properties that allow steady autorotation is discussed in
Sec. 4, and a stability analysis of the autorotational equilibrium is
conducted in Sec. 5. This is followed by Concluding Remarks,
Acknowledgments, References, and an Appendix, in that order. The
paper provides a model that balances accuracy and ease of implementa-
tion for stability analysis as well as design and control of simple single-
winged rotorcraft similar to that of Refs. [9], [10], [19], and [20].

2 Modeling

2.1 Dynamic Model. The equations of motion with respect to a
body-fixed reference frame are displayed in the following equations:
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IX3A‘3 Cbx} + (12323 - ]}'3}'3)w}'3 Wz = MX3
Ly, @y, + ([x;x; - 12323)(1)/\’3 -, = My, (1
123-’3 Wz + (]}'3}'3 - I,\‘3X3)wX3 Wy, = M.

mvy = —mg + Fy, sin 0

+ Fy, sin i cos 0 + F., cos y cos 0 2
where Iy, w,,, and M,, refer to the moment of inertia, angular
velocity, and net moment about the body-fixed x-axis, and F, refers
to the net force in the direction of the body-fixed x-axis. The same
naming convention follows for the body-fixed y- and z-axes. The
angular velocity of the samara in the body-fixed frame (x3,y3,z3)
can be expressed using Euler angles as follows:

W= wxj + wyxf + whlg

= () + ¢ sin0)i + (¢ cos Osinyy — Ocos )]
+ (¢cos Ocosy + Osinh)k

3

The forces F,,, F,, F., and the moments M,,, M,,, M., are due to
aerodynamics. To determine them, the position and velocity of a
point P shown in Fig. 1(a) can be expressed relative to O as given
below:

rp =ro + ri, Vp = Vo + (@ X ri)

“)

Vo = v,(sin 0i + cos 0 cos /j + cos 0 sin k)

In Eq. (4) it is assumed that the point O of the samara has motion
predominantly in the vertical direction with negligible motion in
lateral directions. From Egs. (3) and (4)
Vp = Vo + (0) X IIA)
= v, sin 0 + [v, cos 0 cos iy — (¢ cos Osinyy — 0 cos )]k
+ [vo cos Osiny + (¢ cos O cos y + Osiny)]j
Q)

The wind velocity relative to P is assumed v, p = —vp. This
approximation neglects the effects of the leading edge vortex of a
single-winged samara which couples blade elements. Efforts were
made in Ref. [14] to account for spanwise flow with skewed blade
elements. Instead, a corrective tuning adjusts the coefficient of drag
and moment of inertia for the effects of the coupled aerodynamics.
This correction will be discussed further in Secs. 2.2 and 3.2. From
Fig. 2 for an element along the samara blade, the local drag and lift
forces, dD and dL, respectively, are given by

1
dD = 3 pw(r)drCp () U]

1 (0)
dL =3 ow(r)drCp ()| |Uso|
where o is the spanwise local angle of attack and from Eq. (5)
U, = —vP,yf— vP,zlg and tano = — i (@)
Vpry

i
4

(b)

Fig. 1 Euler angle definition for a samara
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Fig.2 Elemental forces on a blade
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where U, is the relative wind velocity experienced by a blade
element (see Fig. 2). The element forces in body-fixed y; and z3
directions are

1
dry, = Epw(r)\\Uoon(sinocCL(a) —cosaCp(a))dr

(8)
1
dF., = Epw(r)HUoon(cos o Cr (o) + sina Cp(a))dr
The overall forces and moments are
I'f I‘f
FYBZJdFys’ FZ3:JdF-’3
., . ©)
M., =J rdfF,,, M, = fJ rdF.,
o o

2.2 Simplifying Assumptions. In Eq. (9), note that the limits of
integration r( and ry are not equal to 0 and R, respectively. This is
because, as evident from Fig. 1(b), the wing-span that contributes to
the aerodynamic forces starts from 7y > O andendsatanr; < R.The
bottom boundary of ry is taken to account for losses due to the
rounded seed geometry near the center of mass, whereas the top
boundary of ¢ is taken to account for tip losses. For practicality,
constant values have been selected for ry and 7 as ratios of a given
samara’s radius, R (see Table 3). Also, as the forces and moments are
resolved, the following two simplifying assumptions are applied:

(1) The effect of dF,,, the elemental force along the blade span, is
neglected. Thus, F,, ~0 is assumed and its effect on
aerodynamics is neglected. This simplifies the dynamic
model. The assumption can be removed by using the net
relative wind velocity on the (x5, y3) plane and accordingly
considering blade elements to be tilted from the y; axis
instead of being parallel to it, as shown in Fig. 2(b).

(2) Therolling moment is assumed M,, =~ 0. This is based on the
observation that the samara’s motion is dominated by the yaw
rate ¢, the pitching motion 6,0 (coning), and the vertical
motion vy

A samara is typically an elongated and planar rigid body. Thus,
for simplicity /..., = I,,, + I,,y, can be applied. Moreover, due to
the slender thickness and planform of the samara blade, it is assumed
that the moment of inertia with respect to the spanwise axis,
L,y < 1y, 12, Accordingly, this work assumes I, = 0 and

2123 = 1y, Itis important to note that the mass of the samara is not
evenly distributed. A majority of its mass is concentrated at the seed,
at point O (see Figs. 1(a) and 1(b)). It is imperative that this be taken
into consideration when approximating the value for /,,,. For this
paper, Eq. (10) was employed for moment of inertia approximation

1
Ly, = 3 fmR? (10)

where f is a tunable factor to account for the nonuniform mass
distribution which differs from samara to samara. The resulting
reduced moment of inertia helps achieve coning angles that correlate
well with data published in the literature, [8]. For the purposes of
producing a simplified model, the center of mass is taken to be at O.

As mentioned in Sec. 2.1, the integration of independent blade
elements perpendicular to the span ignores the spanwise airflow of
the leading edge vortex which has been documented for single-
winged samara structures [11-13]. This simplification is empha-
sized by assumption 1 (above) which states that F, ~ 0. It will be
shown in Sec. 3 that a strong agreement with steady-state values can
be achieved with corrective adjustment of two tunable parameters:
from Eq. (10) and later Cp, from Eq. (19). The goal of this model is to
provide a platform for reaching accurate steady-state results with
realistic dynamic behavior. It is expected that a direct implementa-
tion of leading-edge vortex aerodynamics would improve the
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predictive accuracy of the model for the extreme dynamics before
settling into autorotation. This addition would, however, signifi-
cantly increase model complexity which can be detrimental to
control applications.

Through observation of a samara in descent, it is seen that the roll
angle, 1, remains small. With this observation, and consideration of
the symmetry of the samara’s airfoil profile, it is reasonable to
assume that the angle y will be nearly if not exactly zero at steady-
state. Further, the assumption of M,, ~ 0 along with /,,,, = 0 and
I,., = I,,,, implies that the first equation of Eq. (1) is identically
zero. The dynamics and statics of the system can be studied for
different constant values of 1. Statics analysis reveals that only a
small range of { around zero is allowable. This simplification
reduces the statics problem to that of determining three unknowns,
namely, ¢, 0, and vo. The dynamics reduce to four states, namely,
¢, 0, 0, and v¢. The simplified dynamics of an autorotating samara
are next provided. From the second and third equations of Eq. (1),
from Eq. (2), and imposing = 0 on oy, ®,,, @, in Eq. (3)

0cosy + ¢* sin O cos O cos yy + 2¢O sin 0'sin
— deosOsing = —M,, /1.
Osiny + ¢ sin 0 cos Osin — 20 sin 0 cos Y (1
+ ¢peosOcosyy = M., /1.,
Vo = —g + (Fy, cos Osinyy) /m + (F-, cos Ocos ) /m

where M,,, M., and F, are nonlinear functions of the state variables,
as given in Egs. (8) and (9). It is noted here from Eqgs. (5), (6), and (7)
that

Usl* = r?? cos®0 + (r + vy cos 0)°
sina = [—vg cos 0 cos Y + (¢ cos Osiny — O cos )] /|| Usol|

cos a = [vg cos Osinyy + (¢ cos O cos y + Osiny)]/||Us||
12)

2.3 Conditions For Steady Autorotation. Conditions for
steady autorotation can now be derived from the dynamic model
above by imposing 0 = ¢ = 0 =iy = 0. It is noted here, that in
deriving the conditions for steady autorotation, the roll angle, v, is
allowed to assume nonzero constant values. The value, Vs, is treated
as an input in determining the possible set of autorotational
equilibria. The exercise confirms that feasible steady values of
lie only a few degrees around y =0. The equations for steady
autorotation, obtained from Egs. (1)—(3) are

¢*sinOcos O cosy = —M,, /1.,
¢*sin O cos Osiny = M., /1., (13)
mg = Fy, sinycos 0 + F_, cos } cos )

The static model in Eq. (13) can be expressed in a compact form by
the introduction of two dimensionless parameters, given in the
following equation:
r . Vo

I (14)
The ratio y represents the span-ratio which is the position of a blade
element with respect to the length of the blade. The ratio A represents
the tip-speed-ratio which is the relation of the vertical descent speed
to the speed of the tip of the blade. The ratio 1/y produces a local
speed ratio which describes the relation of the vertical descent speed
of the entire samara to the local velocity of a blade element.
Inclusion of the local speed ratio provides insight into spanwise
characteristics. Applying the ratios in Eq. (14) produce the following
expressions for the local ||Us || and o under steady autorotation:
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Ul = 2 cos?0

2
()]
b
sino = (r¢siny — vo cos ) cos 0/]|Us ||
cosa = (rep cosy + vo siny)cos 0/||Us||

= tano = (tanlp—l—ﬁ)/(l —tamﬁé)
X X

It should be noted here that for negligible v, the right-hand side of
Eq. (15) reduces to the local speed ratio of the blade element.
Expanding Eq. (13) using Egs. (8), (9), and (15) produces the
following system of equations:

15)

My, = —I,,, $*sin 0 cos 0 cos

y 2
:_%pq} 00529J1r3w(r) 1+(§)
; § (16)
|:<;CL(O() + CD(O()) sin
- <CL(oc) - %CD(ac))cos Vldr
M., = I, ¢*sin 0 cos 0 sin
Ts 2
= %p ¢ cos? 0Lr3 w(r) 1+ <§)
2 a7
l:(CL(OC) + }CD(O()) sin l//
+ (%CL(OC) - CD(oc))cos Wldr
| N 22
mg:ipq& cos HJ‘r w(r)(/ 1+ (%)
[(~Zuer+co Jsinw as)

+ (CL(oc) +§Cp(a))cos Wldr

Here a simple thin airfoil model is employed to select values for C,,
and Cp, the coefficients of lift and drag, respectively [21].
Specifically

Cp(a) =2msino

. (19)
Cp(a) = Cp(a)sina + Cp,

where Cp, is a tuned additional drag to account for the effects of
roughness and airfoil thickness. Traditionally, Eq. (19) is represen-
tative of potential flow with no flow separation. This simplification
does not consider the presence of a leading edge vortex, however, it
has been seen from comparison to literature that the trends of
Eq. (19) are behaviorally comparable to that of low Reynolds
Number flow over small wings, [14]. It is shown in Sec. 3.2 that
accurate equilibrium values are achieved after system tuning
without deviating from realistic values of Cp,. Equations
(16)—(18) can be numerically solved for the steady-state values of
¢, 0, vy, and / for arange of values of 1. The process of determining
the steady conditions is to first solve for A from Egs. (16) and (17).
This is done by noting that

M., cosyy + M,, sinyy =0 (20)

Equation (20) must be solved numerically to determine the steady
value of 4. Once solved, 0 can be determined from either Eqs. (16) or
(17). Here, 6 can be solved explicitly. Next ¢ can be determined

061004-4 / Vol. 145, JUNE 2023

Fig. 3 Visualization of a samara spiral descent

explicitly from Eq. (18). Finally, knowing A and d), Vo can also be
explicitly determined from the definition of / in Eq. (14).

3 Results and Validation

3.1 Experimental Setup and Results. For observation of
samara performance and collection of validation data, an experi-
mental setup was created in the following manner:

(1) Samaras were collected from local maple trees (specifically
Red Maples—Acer rubrum).

(2) A measuring tape was hung plum in camera view of a
Samsung Z Fold3.

(3) Samaras were dropped from sufficient height in plane with
the measuring tape and recorded at 960 frames per second
(visualized in Fig. 3).

(4) Samaras were also recorded from a top-down perspective at
the same frame rate.

(5) The collected footage was analyzed frame-by-frame to
extract 0, ¢, and v.

It is important to note that for accurate falling speed estimation,
samaras should be recorded falling in the same plane as the
measuring tape. Analyzing recordings of samaras with significant
offset from the distance reference requires correction for parallax
effects and can increase error. Furthermore, angle measurements
should be taken when the samara is nearest to the center of view,
such that minimal perspective distortion is present. A visualization
of angle measurement is seen in Fig. 4. A sample video of samara
descent from both front and top views is available at the following
link.!

Performance measurements were conducted for five sample
samaras. The physical parameters of this sample group are presented
in Table 1, along with the physical parameters of three larger
samaras from previous works [8,12]. The parameters f,p and C, Doy
are optimized values and will be discussed in Sec. 3.2. It should be
noted that the Norberg and Holden 2 specimens are not Red Maple
samaras, but Norway maple (Acer plantanoides) and silver maple

'https://youtu.be/B9BI_dBsOlo
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Fig.4 Visualization of samara pitch angle, 0

Table1 Samara experimental parameters

m (kg) L (m) R (m) fupl CDQ()pt
Samara 1 0.000031 0.035 0.025 0.209 0.033
Samara 2 0.000025 0.038 0.025 0.359 0.224
Samara 3 0.000022 0.035 0.021 0.402 0.213
Samara 4 0.000046 0.035 0.023 0.326 0.872
Samara 5 0.000038 0.032 0.019 0.329 0.794
Norberg 0.00013 0.047 0.035 0.238 0.124
Holden 1 0.000116 0.040 0.034 0.249 0.219
Holden 2 0.000236 0.059 0.048 0.684 0.708

(Acer saccharinum), respectively. Experimental values for steady-
state 0, ¢, and v, are presented in Table 2 for the five tested samaras
as well as the three samaras from the literature.

3.2 Parameter Optimization. It has been observed that
samaras, even within one species, vary significantly in size, mass,
curvature, etc. For this reason, selecting an appropriate value for 7y, ,,
and Cp is a nontrivial effort. Direct measurement of these values
requires microscale testing and in many cases, destruction of a
specimen for analysis of mass distribution. For this reason, two
tunable parameters have been added, namely, fand Cp, in Egs. (10)
and (19), respectively, to adjust approximations of /y,,, and Cp, for
variation in morphology and higher-order aerodynamic response.
Given the model above and collected experimental data, as well as
other important modeling parameters listed in Table 3, a two-
dimensional steepest descent optimization can be employed to select
values for f and Cp,. A successful optimization should not only
produce modeled steady-state values of 0, ¢, and vy which show
good agreement with experimental values but also produce realistic
values for fand Cp,.

Optimized values for the eight studied samaras are presented in
Table 1. It can be see in Table 2 that strong agreement is achieved for
0, ¢, and v,. For a study of appropriate /,,, values, samara 2 was
separated into two pieces: seed and wing. These separate sections
were measured for mass and physical dimensions, and an
approximation of /,,,, was performed by considering the seed to

Table 3 Samara and environmental parameters

o 0.2R m
Ty 0.9R m
p 1.225 kg/m?

be a cylinder and the wing a rectangular flat plate, each of uniform
density. From this analysis, it was found that /,,, ~ 2 x 10~"kgm?
for samara 2. Due to the rounded geometry of both the seed and
wing, the above approximation is an overestimate. Given the
measured /,, ., Eq. (10) can be used to show f* ~ 0.47. This value is
larger, yet of similar magnitude to the value optimized through
steepest descent. The optimized values of Cp, in Table 1 are also
realistic, as they are comparable to the low Reynolds Number
performance of insect wings [14]. As will be discussed further in
Sec. 4, the optimized Cp, values also fall within the necessary range
of stability.

3.3 Analysis of Variable Roll. As previously stated, the above
steady-state model was produced for an arbitrary roll angle, 1. This
allows for simulation of a range of equilibrium results for a span of Y
values. To explore the effects of varying 1/, the physical parameters
of the Norberg specimen (see Table 1) were inputted, and the steady-
state values of ¢, 0, vy, and A were modeled for a range of

— 15deg < y < 15deg. Theresults of this analysis are presented in
Figs. 5 and 6.

It can be observed in Fig. 5(a) that a significant error in steady-
state ¢ is associated with negative . Furthermore, the steep,
positive correlation of 6 and  seen in Fig. 5(b) suggests that
adjusting / by a few degrees to either side of iy =0 results in a
significant deviation of steady-state 0 agreement. These trends,
however, are produced using the fand Cp, values of Table 1, which
were optimized under the assumption of i = 0. For this reason, an
analogous three-dimensional steepest descent algorithm has been
employed to not only optimize fand Cp,, but to also allow  to vary.
For this optimization, the values of Table 1 were taken as initial
guesses to see if significant deviation would occur when the
assumption of y =0 was removed. The results of this process are
presented in Table 4. The resulting optimized iy values do not
deviate further than 0.6 deg from 0 deg and produce only minimal
improvements in steady-state agreement of 0, ¢, and v,. Further-
more, the variability in magnitude and sign of the optimized
suggests that such a correction is specific to individual morpholog-
ical differences among samaras rather than suggesting a innate,
nonzero roll for all samaras.

3.4 Dynamics Simulations. The transient behavior of a falling
samara is next studied through simulations. Steady-state analysis
has shown that it is reasonable to assume = 0 near equilibrium. It
has been observed that a falling samara establishes autorotation in a
matter of a few seconds. This coupled with the minuscule rolling
moment of inertia, /,,,,, suggests that achieving negligible roll angle
will be nearly instantaneous. It is therefore reasonable for this
control-oriented model to extend the assumption of =0 to
transients. For consistency with the steady-state analysis, i has been

Table2 Samara experimental and modeled results: 6 (deg), ¢ (rev/s), and v, (m/s)

oexrr Omoa Ope d)cxp d’mod ¢PE V0 exp VOomod VOPE
Samara 1 21.6 21.6 0.08% 16.6 16.4 0.64% -0.55 -0.50 9.66%
Samara 2 24.6 24.6 0.03% 12.3 12.5 -1.16% -0.62 -0.61 2.38%
Samara 3 19.0 19.1 -0.10% 12.9 13.4 -3.47% -0.57 -0.59 -1.91%
Samara 4 29.8 29.7 0.18% 12.1 12.4 -2.79% -1.16 -0.95 18.42%
Samara 5 19.9 20.0 -0.31% 15.1 15.1 —0.58% -0.87 -0.92 -5.70%
Norberg 20 20.0 -0.02% 13 13.3 -2.15% -0.9 -0.82 8.43%
Holden 1 24 24.0 0.14% 12.0 12.5 -3.51% -0.98 -0.88 10.17%
Holden 2 23 22.9 0.50% 6.8 6.3 6.85% —-1.06 -0.94 11.30%
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Fig.6 Steady-state behavior over range of roll angles: (a) terminal velocity and (b) tip speed ratio

Table 4 Samara modeled results W/variable y (deg): 0 (deg), ¢
(rev/s), and v, (m/s)

l//OPI Bmud ¢m0d Vomod f opt CDO opt

Samara 1 —-0.005 21.6 16.5 -0.50 0.209 0.033
Samara 2 0.062 24.6 12.4 -0.61 0.362 0.225
Samara 3 0.389 19.1 13.0 -0.59 0.423 0.217
Samara 4 0.592 29.8 12.2 -0.94 0.336 0.878
Samara 5 —-0.006 19.9 15.1 -0.92 0.330 0.794
Norberg 0.172 20.0 13.1 -0.83 0.246 0.126
Holden 1 0.438 24.0 12.1 -0.88 0.262 0.224
Holden 2 —0.396 23.0 6.4 -0.94 0.664 0.704

presented as a constant input. The resulting dynamic model is given
in Egs. (11) and (12). Transient simulation results for 0 and 0 as well
as ¢ and vy are presented in Figs. 7 and 8, respectively. Case 1 (bold)
shows the model response with all initial conditions set to O (i.e.,
{9 0¢ vo} = {0000}). Case 2 (dashed) has initial conditions of
0 =45deg, 0 = 0.175 rad/s, ¢ = 4 rev/s, and vy = —0.4 m/s.

For the dynamic responses of 0, 0, ¢, and vy, an aggressive
stabilization is observed before smoothing out at approximately

061004-6 / Vol. 145, JUNE 2023

0.5 s. The following smooth dynamic settles into steady autorotation
within the first second. Special attention should be given to the
response of vy which at approximately 0.25s achieves maximum
descent speed. Past this point, the samara slows to its autorotative
terminal velocity. The steady values of the dynamic simulation show
complete agreement with those of the steady-state model, as
expected.

The equilibrium of autorotation can be viewed as a balancing of
counteracting yawing moments along the span of a rotor-craft blade.
This effect is visualized in Fig. 9 which displays the moment
provided by each blade element of a samara. For the presented case
(case 1), the entire blade provides a moment to increase the rotation
of the samara. This effect reduces over time until steady-state is
reached. It can be seen that at 1 s an approximately equal region of
positive and negative moment is present, suggesting equilibrium.
This result agrees with the predicted performance of helicopter
blades in autorotation [22].

Observation of samaras found in nature and simulation of the
presented model from various initial conditions has suggested the
autorotational equilibrium of a single-winged samara is charac-
terized by a large region of attraction. An investigation of samara
stability will be presented in Secs. 4 and 5.
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Fig. 8 Samara dynamic response: (a) yaw and (b) vertical velocity

4 A Necessary Condition for the Existence of
Autorotational Equilibrium

In this section, a necessary condition for the existence of an
autorotational equilibrium of the falling samara is derived based on
the equations of motion presented in this paper. Under steady
autorotation, ¢, 0, and v, are constant. Note that the solution of
steady autorotation can only exist if there exists a solution A for
Eq. (20), as r varies over the span r € [ro,r¢]. Substituting the
expressions of My, and M., from Eq. (16) and (17), respectively,
Eq. (20) can be rewritten as

M., cosyy +M,, sinyy =0

(7
= ipJ w(r)r|[Use|[*[sin(o — ) Cr. — cos(at — y)Cpldr = 0
0

21
In Eq. (21), [[Us||* > 0 and w(r) > 0 for r € [r, r¢]. Therefore, for
Eq. (21) to be valid, it is necessary that there exists an r € (ro, ry)
where

sin(o — )Cp — cos(a — )Cp =0 (22)

is satisfied. From Eq. (15), it can be shown that
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Scaled Spanwise Moment Distribution
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Fig. 9 Scaled yawing moment along span of blade (case 1)
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Vo cos 0 Vo

sin(o — ) = — S —
0T~ g ow
. 23
3 (23)
cos(ot — ) = ————
\/)’2(}')2 + v%
From Egs. (19) and (23), Eq. (22) reduces to
A
sina +—27rcs?;oc = —v—(.) =  sina ——sina+7y =0,
ré * 24)
)V = CD')
/ 2n

where / and y are defined in Eq. (14). Equation (24) is quadratic in
sin o, and for an autorotational equilibrium to exist it is necessary
that the solution of sin o is real. Thus, the following:

% > 2.7 25)

is a necessary condition. From Egs. (14) and (24), and since the
solution of Eq. (25) must be in the range r € (ro, ry), substituting
7 = r/R yields the following requirements:

r0<r<Ale = r0<£ = y<;”2R2 =
2/ 2/ 4r3 26)
Cp < nAR?
0 27

The above condition on Cp, is useful since it places a requirement on
the drag coefficient. Since typically at steady-state 4 =~ 0.25, as
observed in the presented study, and since ryp = 0.2R is considered,
Eq. (26) suggests, Cp, < 2.45. For a steady-state A~ 0.28, as
obtained in Fig. 6(b) for y = Odeg, the requirement becomes
Cp, < 3.08. The necessary condition can thus be reduced to an
upper bound on Cp,. The bound is conservative as evident from
typical model values shown in Tables 1 and 4. The necessary
condition for autorotation leads to another interesting deduction if
Y = 0deg is imposed. This case is of importance since the presented
model has shown good predictive capabilities under this condition.
From Eqgs. (14) and (23)

Vo

_ Ay
Vré e i o

Substituting the above expression of sino into the necessary

condition in Eq. (24)
2 N 2
OOV e
b b b

Y =0deg = sinoa=—

N 2
A
G) v
b
From the above transformed necessary condition, which is valid for
the case when i = 0deg, a solution for (4/y) can exist in Eq. (27)
onlyify > 0,implying Cp, > 0. The term Cp, in the drag coefficient
of Eq. (19) is thus a critical component in determining autorotational

equilibrium. Section 5 presents a stability analysis of the autorota-
tional equilibrium.

5 Stability Analysis

The stability analysis presented in this section is based on the
coefficients of lift and drag formulations of Eq. (19). Fory = ¢ = 0,
the nonlinear dynamics of Eq. (11) can be expressed in state-space
form as

061004-8 / Vol. 145, JUNE 2023

o o fi
d —M,3 /1353 — ¢ sin 0 cos 0 I
dr bl M_3/ (133 cos 0) + 2¢0sin 0/ cos 0 A
Yo —g+F.zcos0/m fa

(28)

The linearized dynamics around the equilibrium (6, 0, =
0, ¢,, vo.) can be expressed as

X = AX,

[0 1 0 0]
90 90 op Ovo
A= |0H O Oh OB = Axn Apn Ax Ay

0 90 ap O
O O Of O Ay Ap Ay Ay

00 80 aq_') 6\/0 e

(29)

where, X = {(0 -0, 0 (qﬁ - qﬁe) (vo — Vo,e)] ' and the expres-
sions for A;;,i=2, 3,4 and j = 1,2, 3,4 are given in the Appendix.
The characteristic equation of A is
st (Ap +Ass + Au)st + (AnAss + AyzAg + Audy — ApAs
— A3Aps — ApAy — Ax)s*
+ (—AnA33Au — ApAsAp — AusApArs + AnnAsAus
+ A33A24A4 + AgA23Az
+ An1Azz — ApAzy + AgjAss — ApuAur)s
+ (A21A34443 — A1 A33Aus + An3A31Au — Ap3AsiAyg
+ A2AsAszs — AsAz1Ag) =0
(30)
An analytical study of the eigenvalues of A. (e.g., using Routh
stability [23]) is tedious considering the complexity of the individual
expressions of A; j, as evident from Eqs. (A1)—(A12). To simplify the

analysis the following decoupled matrices are considered as
substitutes for the stability analysis. The two candidate matrices are

0 1 0 0 0 1 0 0
A — Ay An 0 0 A — Ay An 0 Ay
¢ 0 0 Asz Ay ’ ¢ 0 0 As 0
0 0 Ayl Ay Ay Ap 0 Ay

(31

In A7, the dynamics of 0 and 0 are decoupled from that of ¢ and v,
thus resulting in two (2 x 2) linear systems. In A., the dynamics of
0, 0 and v, are decoupled from that of ¢, resulting in one (3 x 3) and
a scalar dynamical system. In both cases, the stability analysis is
simplified. To evaluate which simplification is better suited for
analysis, a numerical root-locus study is performed. The four main
parameters of the samara model, namely, the mass m, the blade
radius R, the mass distribution factor f, and the drag factor Cp, are
varied by +30% and the corresponding eigenvalues are plotted for
the original linearized system A, and the simplified ones, A; and A..
The eigenvalue variations and comparisons are shown in Fig. 10. Itis
noted that for all parameter perturbations in Fig. 10, the eigenvalues
of A., which is the original linearized system, are well-
approximated by those of A;. Furthermore, they are better
approximated by the eigenvalues of A; than those of A.. The
same observation is made for decoupling the dynamics of the
descent velocity, vq, from that of 0, 0, and ¢. The decoupling in the
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Fig. 10 Eigenvalue variation in A, A; and A, due to =30% parameter perturbations in (a) m, (b) R, (c) f, and

(d) Cp,

form of two (2 x 2) linear systems, as in A, thus provides a way to
do a tractable stability analysis of the original linearized system
while better retaining the characteristics of A, than A.. Tt is also
evident from Fig. 10 that the off-block-diagonal entries of A, with
respect to the block-diagonal form of A;, do not produce enough
effect on its eigenvalues to induce instability.

Based on the observations above, the conditions that ensure
stability of the autorotational equilibrium of the samara using A; can
be analyzed. First, consider the stability of the subsystem

. Jo 1
Aer = |:A21 Azz} ©2)

The stability of A7, is ensured by the following necessary and
sufficient condltlons

Ay <0 and Ay <0 (33)

Consider the expression of A,; given in Eq. (Al). All terms
of Eq. (Al) will be negative if vp, <0, ¢, >0,0<6, <
n/4, Cp, >0, I;3,3 > 0 and if all integral terms in Eq. (Al)
are positive. Note that the samara geometry, aerodynamic proper-
ties, and equilibrium conditions ensure that the above requirements
are satisfied and thereby Ay} < 0 provided 0 < 0, < 7/4. Next
consider the expression of A,, given in Eq. (A2). It can be expressed
as

Journal of Dynamic Systems, Measurement, and Control

C s0, 7 -
_ D02/;C0§ J I'ZW( )\/mdr

y3y3

_ Cn,p vOe cos 0,

}ﬂx ‘ /r2¢ +Vog

_ Vo, cosOe J QI E— ) g <o
I,VB)’3 ro ’.Zd)e + VO,F m
(34)

This concludes that Ay, < 0 since all terms in Eq. (34) are negative,
1nclud1ng the last term which is negative because
V3e/(r 2+ v5..) < 1. Thus, the negativity of A, is also guaranteed
by the samara geometry, aerodynamic properties, and equilibrium
conditions. This establishes the stability of the subsystem A ;. Next,
consider the subsystem A; ,, given by

. {A% A34}

— 35
e2 Ay Ay (33)

It can be verified that A;, is stable if and only if
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Azz + Ay <0 and  AszAyy > A3Ags (36)

Consider the first condition in Eq. (36). From Eq. (A7), A3; can be
expressed as

2 7, 2 2
np v, cosl, (7 Vie rw(r
Az = — (}* J ( 0. > r) dr(37)

C Oe [ j
_D;&J Pw(r)\ /292 + 3¢ dr

¥y3)3 o

_ Cp,pd; cos 0, Jf Fw(r) (38)

dr <0
NN

Y3)3
In Eq. (38), A33 <0 since each term is negative around the
equilibrium. Similarly, from Eq. (A12), A44 can be expressed as

np¢,cos*0,

Ty
Ay = 7J rw(r)dr

m o

dr

Cp,pv§, cos0, J’V w(r)

o /’.2 d)g + V(%,e
Cp, pcos’0, [ -
Dl e pZm ¢ J w(r)y/r? q’)? + v%yedr

o

2m

2 30 2
npvg, cos 0, ('t %
_TPVo €08 Be J 3-—s vf(r) dr<0
m 0 P2 +5, ,/rz(/Jg—l—v%’e
39)

In Eq. (39), Asy <0 since each term is negative around the
equilibrium, including the last term since v§,/ (r*¢? + o) S L
Thus, the condition Az3 + A4 < 0 in Eq. (36) is satisfied in the
neighborhood of the autorotational equilibrium. Next, consider the
second term of Eq. (36). Here, first note from Egs. (38) and (39) that
Az3A44 > 0. Next from Eq. (A11), A43 can be expressed as

3 7 2 y
npvo,. cos 0, [ 0, ro,
Apy = — Lm eJ - e — .21, rw(r)dr
70 2, +vg, /2 P2,
_ CD(HD Vo,e d)e COS3 06‘ Jﬂnr rzw(l‘) dr>0
2m 04 /12 (/)? + V(Z)’e
(40)

In Eq. (40), A43 > 0 since both terms are positive, considering
vo,e < 0. Next from Eq. (A8), A34 can be expressed as

2np vo,. cos 0,

Any =
¥ Lysy,
't o (14 Cp, /4 Vi, rd,
J lf’(p( - oo/ n)+ (A s rw(r)dr
Sy
(41)

If A34 < 0, then A34A43 < 0 and hence the second condition of Eq.
(36) would be satisfied. Note from Eq. (41) that since vo, < 0, a
conservative condition for Az; < 01is

B r(i)e(l + CD0/47I) N

N . 1.5
\ /rqug + v%,e 2<r2¢3 + V%),e)
<V9~F)2 (42)
2
= Cp, <dnl| 1+ (VL 9. ~1
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V(Z),e 7 .d)e

1 >0

Noting that

VO:e _ VO,e‘ S Vq,e S VO:e _ VO,e. = & S V(?,e S jvie
rf(nbp 09R¢e rd)e "qug 02R¢e 9 r(rbe 0.2
(43)

Equations (42) and (43) yield the following condition for As4 < 0,
which is more conservative than Eq. (42):

(ze >2
2\’

2 <1 +(&) )

The condition in Eq. (44) is not restrictive. This can be verified by
noting that since a typical value of 4, = 0.25. Substituting this value
into Eq. (44) yields Cp, < 0.93. For a steady-state A ~ 0.28, as
obtained in Fig. 6(b) for = Odeg, the requirement becomes
Cp, < 1.14. Thus, stability is also dependent on the parameter Cp,
in our model and the stability condition on Cp, is more stringent in
comparison to the necessary condition of autorotation, as derived in
Sec. 4. From the zoomed-in views of Figs. 10(a) and 10(d), it is
evident that the dominant eigenvalue of A, is around —9. This would
imply a rise-time [23], of about 1.8/9 = 0.2s. This matches well
with the approximate rise-times in the transient simulations of
Figs. 8(a) and 8(b).

It should be noted that, while there are alternate methods to study
the stability of the aforementioned system, such as using the
Gerschgorin circle theorem [24] or its block analog [25], or even
the small gain theorem for interconnected systems [26], these
analysis yield significantly more conservative stability criteria
for this study. It is also arguable that the partial derivatives in
Eq. (29) could be numerically determined instead of the
analytical approach adopted in this paper. Indeed, the numerical
approach was attempted and it was observed these calculations were
lacking in convergence. A similar convergence-related observation
was made in Ref. [15], which ultimately relied on numerical values
based on additional investigations on the accuracy of the numerical
process.

J 2
Cp, < 4n 1+ (0“*9) +

6 Conclusions

A simplified and compact model for the steady-state behavior of a
single-winged samara has been presented. It has been shown that an
assumption of negligible roll angle, ¥ =0, is reasonable, and can
simulate accurate steady-state and realistic transient behavior. With
small, nonzero y values, improvements can be made to simulation
agreement with data, but these deviations appear to be more
correlated with individual morphological differences between
samaras as opposed to a general trend of i/ deviation. Experimental
results have been shown for five Red Maple samaras to tune and
validate the model. The use of two tunable parameters has
adequately encapsulated the effects of complex geometry and
higher-order aerodynamic phenomena on drag and moment of
inertia. Necessary conditions for the existence of an autorotation
equilibrium have been analytically derived with further analysis on
stability, suggesting ranges of parameters that can be employed in
the development of biomimicking aerodynamic mechanisms. The
stability analysis reveals that in the neighborhood of the autorota-
tional equilibrium, the eigenvalues of the higher-order coupled
system can be well-approximated by two decoupled lower-order
systems. This lends itself to a tractable stability analysis which
shows the reliance of stability on key parameters of the samara.
Furthermore, the compact form of the presented model lends itself
well to implementation in aerodynamic control of single-winged
crafts. A topic of future interest is the exploration of lateral stability
and the effects of wind gusts as well as employing the presented
model in a control system.
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Nomenclature

Cp = coefficient of drag
Cp, = additional drag effects
C;, = coefficient of lift
f = adjustment for mass distribution

F = net force

g = acceleration due to gravity
I = moment of inertia

m = mass
M = net moment

r = radial position

R = blade radius
vo = vertical velocity of samara
w = blade width

o = local angle of attack

0 = pitch angle

/ = tip speed ratio

p = air density

¢ = yaw angle

¥ = span ratio

Y = roll angle

o = angular velocity

Appendix
g ] O [ N[ ),
a0 e Iy, ro Iy, ro , /r2 ¢§ + V(2),e (Al
. y in20, (' 3 .
+ Cbop voe b 510 20 P, sin 20 J rw(r)\/ qﬁz + v dr — ¢‘2 cos 20,
2[%)’1 o ’
) ] 0, " npve  cos0, (7 2 (r
Ay = £ = 77npd); CVOS ¢ J r3w(r)dr P (;e eJ .’2 w(r) s dr
e y3y3 o ¥3)3 o (,,2¢e + V%,(,)
C 0, " -
_ 70‘];[ cos J rzw(r)\ / 1‘2¢§ + V%),ed" (A2)
y3y3 o
o V5. cos 0. (6m + Cp,) r2w(r) dr
2[)’3}'3 7o 4 /;‘z(bz -+ V%,e
0) 20, (" v b, cos?0, 7 3
Ay = ﬁ — _TPVoe COS Ve EJ rzw(r)dr + P O’eqbg eJ rw(r) s dr
¢ I, Ly, ro Ly, o (rz(bz 2 >
e 0,e (A3)
J 20 (' - .
_ Coupvoe e cos O Vg; Pe cos”0e J Pw(r)\/r2r + V3 dr — ¢, sin20,
y3y3 o
) npd, cos20, [ npvi, cos?0, [’ w(r
Aoy = % = _7/)(1); ‘J w(r)dr + 01’8 eJ : ) sdr
0 le 33 o y3y3 0 ("2(:[)‘2» + V%e)
Cp, pcos?0, [ -
— 70021)1 < J rw(r) \/mdi’ )
y3y3 o
Vg o0 (6m + Cp,) J"V w(r) o
2y, o [1r2¢? + v,
af;
Ay =—| =0 (AS)
a0 |,
) 2 ' Ve, e (7 P
A = ﬁ = —77) Voe [ rzw(r)dr + p] 0 ¢EJ rw(r) < dr
80 e y3y3 Jro y3y3
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. 1.5

" (2d2 ) (A6)
_ PVoe do(4m+ Cp,)
21

y3y3

T -3 - )
J ! .W(’) dr+2¢,tan 6,
P+ VG
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Ay = | _ TPV cosle Jf ), TV Dol J"’ rwr)
ad) e I}’3.VJ 7o 4 /rz(;{)z + V%,e I,VSYS o (,~2¢§ + V%e) s
. ’ (A7)
C sO, [’ - C 2cosB, [7r Aw(r
_ —DUZ'I;COS EJ rzw(r)\/rqu? + v%,é,dr - Dopz(f‘) cos ()J ! .W(’) dr
y3y3 ro Y33 To \/m
_Ofs| _ 2mpwvo, cosO, (7 Ny v(3)~(, (éﬁe cosl, (7 rzw(r) )
A34 B 8_\10 e B [yzyz JI‘OIW(’ )d’ + [)’Wx Jrn 2 32 2 L3 d’
- (rét ) (A8)
_ PVoe b, cos 0,(4n + Cp,) J"f 2w(r) dr
2y, n /12 ¢f +13,
Ay = % _ 3P Vo, q'ﬁe sin 0, cos®0, J"'f rw(r)dr + 3np vae sin 0, cos?0, J'rf w(r) ar
901 " " URVEEL S (A9)
H 2 T,
n 3Cp, p Vo, sin 0, cos=0, J fW(I‘) /’.24)3 R dr
2m o ’
y 20 (7 npve  cos’0, 7 .
A42 = % = — MJ i‘zw’(r)dr + P Oe ‘ J rW(’) 5 dr
W=, )
2 2 T,
_ PYpe CO8 (;e(67f +Cn,) J ! r.W(r) dr (A10)
" P VG,
Cp,p cos?0, [ B
_ TP TP e 5 ¢ rorw(r)\ /12, + v%qur
s npvo, cos’0, [ vy, pecos 0o [T Pw(r)
Ap=—"| =——""—— dr : dr
B0l m L,’W(') T J e )
(’ ¢e + V(),e) (Al 1)
o CDop Vo,e (bp 0053 Be J‘I‘f }‘zw(l‘) dr
R
A — e _ npd, cos?0, (7 rw(r)dr — PV cos’ b, (6m+ Cp,) (' w(r) dr
44 v |, m Yo 2m ro . |20 5
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