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Altitude Control of a Tethered Multi-Rotor Autogyro in 2-D Using
Pitch Actuation via Differential Rotor Braking

Tasnia Nobonil!, Jonathan McConnell? and Tuhin Das?

Abstract—For tethered multi-rotor autogyros to be viable
energy efficient unmanned aerial vehicles (UAVs), control anal-
ysis and stability investigation of autorotative flight are vital. In
this paper, a simplified model-based altitude control technique
is presented which is effective in the presence of both uniform
and variable wind profile. A two-rotor autogyro, tethered to the
ground and constrained to move in the 2D plane of the wind di-
rection, is adopted for the study. The reduction to 2D simplifies
the system and helps focus on the feasibility of altitude control
and pitch modulation by exclusively using differential braking,
which is a novel concept. In this arrangement, control inputs are
the braking torques in each of the two rotors. The assumption is
that with another two rotors in the lateral direction the roll and
yaw motion of the system can be controlled when extended to
3D. The aerodynamics and tether modeling are based on Blade
Element Momentum (BEM) method and catenary mechanics
respectively. The characteristics of the equilibria of the tethered
multi-rotor autogyro are investigated. For the aforementioned
set-up, the differential rotor braking input is designed based on
a proportional feedback law, and is effective in controlling the
autogyro’s altitude with the help of restoring effect provided
by the tether tension.

I. INTRODUCTION

Autogyro is a rotorcraft that produces lift by using unpow-
ered rotor(s) which turn(s) by the action of relative airflow
through the blades. Initial modeling of autogyro based on the
blade element momentum (BEM) approach [1] traces back
to Glauert [2] where the author considered constant pitch
of the rotor blade. Many researchers developed their model
[3]-[7] modifying the assumptions of [2]. Among them,
work of Wheatley [5] needs to be mentioned particularly
for its significance of providing a detailed model where the
author introduced a linear variation in pitch and validated
the result experimentally using a commercially available
autogyro. Readers are suggested to read [8] and [9] to know
further about the development of the autogyro over time.

A tethered rotorcraft can be an effective option for har-
vesting power from an airborne wind energy (AWE) device
at high altitude [10]. The effect of regenerative braking on
the steady-state behavior of autogyro and their feasibility for
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Fig. 1. View of the tethered autogyro in 2-D with two rotors. The system’s
pitch angle is represented by .

high-altitude power generation have been explored in [11]—
[14], where the authors develop their model preliminarily
based on [5]. In [15], the equilibrium behaviour of a tethered
autogyro in steady-state autorotation is demonstrated for
both cases of high-altitude power generation and low-altitude
surveillance. In the field of surveillance, tethered autogyro
can be considered as an energy saving alternative to drones.
But unlike drone, there is an inadequacy of study found
in literature regarding the attitude control of such systems.
Rye [16] investigated longitudinal stability of such system
assuming straight massless tether. Houston [17] described
control charactestics of an autogyro based on the analysis test
data recorded during flight trials. In [18], altitude and pitch
control are presented using a PID controller for vehicular
towed autogyro where tether is modeled as massless rod.
In this paper, we investigate the dynamic behaviour and
equilibrium nature of a multi-rotor autogyro tethered to
ground. The dynamic model coupled with a static catenary
model incorporating tether mass generates complex dynamic
equations which are difficult to solve analytically. Hence, as
a starting research study, a 2D case is considered to reduce
some of the complexities of the equations, restricting the
motion in X-Z plane. The nature of autorotative equilibria
are explored. We propose and evaluate the performance of
an altitude controller that only uses braking toque as control
input for pitch modulation. Simulation results showing the
performance of control are presented in VI. Indeed, the dy-
namical analysis of the proposed quadcopter-based autogyro
is only complete when the entire 3D dynamics is considered.
The reason for reducing the system to 2D for this study is to

2848

Authorized licensed use limited to: University of Central Florida. Downloaded on January 08,2024 at 03:40:10 UTC from IEEE Xplore. Restrictions apply.



demonstrate a feasibility of altitude and pitch control using
differential braking only. The exclusive use of braking for
control is novel in such rotorcrafts and the goal of this paper
is to demonstrate its viability within a contained (i.e., 2D)
framework as an initial study. Our future work will cover the
full 3D dynamics.

II. SYSTEM DESCRIPTION

A. Equations of Motion of the Dynamic System

The system studied in this paper has a two-rotor mecha-
nism and is connected to the ground by a tether as shown
in Fig.1. The rotors in this system consist of blades that can
flap about their root. As a result, a significant amount of
the rolling and pitching motions of each rotor, generated by
uneven force distributions, are relieved. The dynamic model
of the system is developed under the assumption that thrust
force in each rotor is always along the rotor axis. For the
overall system, the roll and yaw motions are assumed to be
already controlled by other two rotors in lateral direction
and that there is no wind velocity in that direction. This
assumption allows the system to be studied in the X-Z plane.
Solving the equation of motion (1)-(3) gives the position x
and z and pitch angle 3 of the autogyro.

meZ =TisinB 4+ Tosin 8+ d.(Vyy — &) — T'sinny (1)

meZ=TicosB+ThcosfB —d.z2—Tcosm —mgg (2)

where, d. is the damping coefficient. Rotor thrust forces 77,
T and tether tension 7' comes from aerodynamic model
explained in II-B and catenary model described in III re-
spectively.

I.p = é(T1 - Ty) 3)
where, I. is the moment of inertia of the frame about its
center point C in Fig.1. The system is arranged in such a
way that the difference in two thrust forces 73, T in rotors
A and B can cause pitch angle S to change when braking
torque ¢ in (4) or g2 in (5) is applied.

LY =Qa+q )

Qs =Qp + ¢ &)

where, I, is the moment of inertia of each rotor about its
rotational axis, R is the radius of the blade, Q4, Qp are
the aerodynamic torque of rotor A and B respectively. The
braking torque causes change in rotational velocities {2; and
Q)5 of each rotor about its respective shaft which is crucial to
the aerodynamic properties of the system described in II-B.
It subsequently leads to the change in the thrust forces of
the system. Thus, with the help of restoring effect from of
the tether tension 7', position of the system can be changed
by the difference in 77 and T5.

Fig. 2.
B. Aerodynamic Analysis

Setup for calculation of relative velocity and angles of incidence.

The aerodynamic model of a tethered autogyro considered
in this study is primarily adopted from [15] where work of
Wheatley, [5], is taken as a foundation model to study steady
autorotation of a tethered autogyro. Since, this paper focuses
on the dynamic behaviour, the aerodynamic equations of [5]
are rearranged and solved in a more causal manner suitable
for capturing the transients. The arrangement of the system,
illustrated in Fig.2, causes the rotors to experience relative
wind velocity at angle w4 and ap respectively.

—

Viwja = (Vw — T — éﬁ'sinﬁ)%— (734— éﬁcosﬂ)l%

} . . . . ©
Vs = (Vw—a':—i—iﬁsinﬁ)i—(Z—iﬂcos@k

V. and initial states are provided to (6) to calculate V,, /4
and V,,,p. Angle of incidence a4 and ap are calculated
using (7).

Z+ %6 cos 3
Vi — @ — LBsin B

Z— é B cos 3

wfx.‘i’éBSinﬂ

ag = ff — arctan

)

ap =  — arctan

The equations in (6) and (7) can be derived using kinematic
analysis. The aerodynamic model in [15] utilizes two di-
mensionless ratios 1 and A for each rotor. Tip speed ratio,
1, shown in (8), is the ratio of the wind velocity parallel to
the rotor disc to the tip speed of the rotor blade.

VA cosaa Vw/Bcosap
MR QR

The inflow ratio, A, is the ratio of total wind velocity
perpendicular to the rotor disc to the tip speed of the
rotor blade. The rolling torque of the rotor is balanced by
flapping motion of the hinged rotor blade at the base. The
flapping angle of the blade is approximated by a periodic
function dependent on its angular position, as a truncated
Fourier series containing five coefficients [5]. These Fourier
coefficients are expressed as functions of A and y in [5] and
can be re-written as a matrix equation (9).

pa = pB = ®)

1 0 0 0 V15 ao AO CO
0 1 0 0 V25 aq Al Cl

V31 0 1 V34 0 bi| =10 ([X+]|0 9
0 V42 0 3 V45 as Ag 03

Us1 0 VUs3 Us4 3 b2 0 0
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where,
1 5 5 2uB3
= — B - ="
15 16 H PV 3(BT — %M2B2)’
Va1 —4uB (1 0.035,u3>
B2 + éﬂz 3 B3
—4uB 1 3 1,
= = ——yuB”, = ——B*%,
U34 6(B2+%u2) V42 6’)’# V45 17

1 2 1 . 1
Us1 = *’WQ (32 - M*)7U53 = *6%“3377}54 = 1734,

11 H(AB? — )
Ap == (733 0.080 3) A, =2 T
0 27 3 + H y 411 2(B4—l,u2B2)
2
—0.053
Ay = ——i®
1 bo 4 2 2 1 4
=-~{2(B B - )
Co 27{ 4( T gt )t
b1/ 5 , 5 2p3 M,
(o Do)} -
5 ( et 1,02
2p 4 3 3 4
C, = m(g@gB + 0.1066pu° + 61 B )
1 5 90( 9o 15 1 3
— 2D (g2 ) g B}
Cs 5 VK {4 g ) Tt

Equation (10) can be derived from (9) and solved for 5x1

coefficient matrix p. if A is known.
pe=v YAN+vIC (10)

a1 and by from (9) can also be expressed as linear functions
of X\ shown in (11) and (12).

a3 = moX + my (11)
b2 :S()A+51 (12)
where, mg = A1, m1 = —va5by + C1, s9g = 0, and 57 =

_71—1(1151% + v53b1 + vs4a2). Equation (11) and (12) help
to simplify the calculation of coefficient of rotor thrust Cj.
The relation of C; and A given in [5], can be rearranged as
(13).

Ci = po + p1A + pabe + p3ag (13)
where,
1 1 1 4
_ 9<733 72B——3>
po 2“{ o{zh gk 9t

1 1 1
0 (734 SR — 4)}
AV 32

1 1 1
p1 = EUG(BQ + 5#2)7192 = éUULMQB>

_ L3
p3 = qpoap
Substituting (11) and (12) into (13), we get (14) which

expresses C; as a linear function of A.
Ci = (p1 + p25o + pamo) A + (po + p2s1 + pama) (14)
= coA + 1

Thus equation (14), a simplified version of (13), is only
a function of variable \ if Fourier coefficients are already
known by solving (10). The relation among variables «, C}

(XC3 ZC) ‘ C

M

mg

~ Tether length, 1t
To 3 Mo > X

O

Fig. 3. Static forces on a catenary tether

and A\ from [5], given in (15), can be re-written as (16)
after replacing C; with the expression established in (14).
Equation (18) provides @), and @, about each rotor.

3Ce
tana = — (15)
meo (N4 p?)2
1
=Co\
tana = A zf0n + a1 (16)
B (A2 + p?)?

Equation (10) and (16) are coupled and can be solved only by
simultaneous numerical approach. The following numerical
process is employed to determine A and ag, a1, b1, as, bs:
1) A good initial guess of A is provided to (10) to
calculate p. which provides cg, c;.
2) A is approximated using (16).
3) If convergence criteria is not met, guess for A is
adjusted towards the calculated value of .
4) Steps 1-3 are repeated until desired convergence is
achieved for \. The threshold value for absolute change
in \ is chosen to be 107,
5) With converged value of A, final Fourier coefficients
are calculated using (10) at that instant.
This numerical process is implemented for both rotors sepa-
rately and \,, \p, pca, pep are evaluated. Thrust coefficient,
Cy, and Cy,, are calculated with (15) to calculate the thrust
force in each rotor using

Ty = pBTRYCy,, Ty = pQinR*Cy, 17)

Equation (17) is used to calculate thrust forces in both
rotors. The aerodynamic torque ¢ about the rotor is zero for
steady-state autorotation. For dynamic modeling, () must be
calculated with (18) adopted from [5].
_ l 2 p4 2 1 2 _ 1 2 1 3 3
Q= bt R a{’\ (QB ris ) +’\(39°B *or

3 1 4 1 4 ) (1 2 3 2)
+-6B"+ — + ~B°— -
w6 491 39 # 01 pAa1 2 I

8
i (7pB? = o) - Suachi B + a3 (S B! .
+%u232) + b7 (éB4 + %MQBQ) — az (i/faoB2
—i—éublBS) + %a§B4 + bg(%pZGOBQ + %;ﬁ@lBS
) i 1 )
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Fig. 4. Characteristics of equilibria: (a) Equilibria at V3, = 10m/s and [; = 1000m; (b) Equilibria for varying /¢ and at V;, = 10m/s for g = 6° — 12°;
(c) Equilibria for varying V4,; (d) Transient behavior of system under perturbation, for V,, = 10m/s and /; = 1000m

III. CATENARY

The restoring force in the multi-rotor autogyro system is
provided by the tether tension 7. To evaluate the tension,
a tether profile is approximated using static catenary model
adopted from [19] where (19)-(20) define the tether shape.

= ¢ eosh (272) — con (1))
b= [sinh (551 +sinh ()],

where, [; is length of tether, ¢ and { are parameters of
the catenary depending on the position and tether length.
Equation (19) and (20) together can be manipulated to take
the form of (21) and (22).

19)

(20)

cosh (%) —14 2—22 (z? - z2) 1)
q= g — {(arctanh (i)} (22)

Equation (21) is numerically solved to determine (. With
known (, q can be easily calculated from (22) for a known
l; and known end point (x, z) of the tether which in this case
is the center point of the frame. ¢ and ( are used to calculate
angle ng and 7; using (23)-(24) from [19].

Fig.3 shows the setup for static analysis of the catenary. ng

and 77 possess two constraints for the system to be valid

and they are- (i) 7o +n1 < 90° and (ii) o > 0°. Static force

balance equations at the two end points of the catenary is
given in (25).

Tsinm.— Tycosng = 0’ 25)

T cosny —Tpsinnyg —meg =0

where, m; is the mass of the tether. We can eliminate T

from (25) and determine 7" knowing 7y and n; from (23)

and (24) respectively. The expression for T is given in (26),

_ ailig cosno
cos(1o +m)’

where o; is the mass per unit length of the tether.

(26)

IV. CHARACTERISTICS OF EQUILIBRIA

With suitable parameter values from [15] and initial
guesses for states, the equations of motion in (1)-(5) can
be solved and simulated following the steps described in
Section II. The solution converges to equilibrium without
any external control input, yielding an equilibrium space
similar to that in [15]. The convergence indicates stability
of the equilibria. Figure 4(a) shows the variation of the

Ny = arctan{ — sinh (Q)} (23)  equilibrium points with varying incidence angle 3 for fixed

¢ wind speed V,, and fixed tether length /;. With increasing /3,

_m Iy 24 the equilibrium altitude increases up to a certain 8 (12.5° in

m=39= arctan (Z + tan 770) 24) this case), and reduces thereafter. The reduction is attributed
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Fig. 5. Altitude control in uniform wind speed: (a) Applied braking torques as control input; (b) Change in altitude and drift with time, reference altitude
set at 870m and 920m; (c) Pitching angle of the system; (d) Thrust forces 77 and T3; (e) Rotational speeds €21 and $22; (f) Tip-speed ratios 4 and pup

in the presence of control action

to the aerodynamic forces becoming dominated by drag.
The drag-dominated region corresponds to low values of
w, i < 0.15, where the momentum theory becomes less
reliable. For the purposes of control development, this region
is avoided.

The equilibrium points also depend on V,, and [;. Figure
4(b) shows that for V,, = 10m/s, the envelope of equilibria
shifts up with increasing [;. On the other hand, the depen-
dency of equilibrium points on V,, at a fixed [; = 1000m
shown in Fig.4(c) suggests that as expected, higher feasible
elevations happen at higher values of V,,. Figure 4(c) also
indicates a narrow operating range at low V,,, which gets
wider with increasing wind speed. It is evident that without
any control, the system attains equilibrium for uniform V,,,
fixed I; and fixed 8. This is evident from Fig.4(d). Here,
at t = 1200s the position is perturbed from its equilibrium
position, (z., z.). We observe that the equilibrium is restored
subsequently. This indicates an internally stable equilibrium
of the 2D autogyro system, at least for small perturbations.
The corresponding stability analysis is an area of our ongoing
research.

V. ALTITUDE CONTROL VIA DIFFERENTIAL
ROTOR BRAKING

An autorotating rotor is unpowered and uses the ambient
wind energy to generate the necessary thrust force. In the 2-D
multi-rotor system considered in this work, we demonstrate
that differential braking of the individual autorotating rotors
can be used for altering its pitch angle 5 and thereby achieve
altitude control. From (4) and (5), it is evident that braking
torques g; and ¢o will tend to reduce the corresponding
angular velocities €2; and {25. Equations (17) and (3) show
that differential braking will cause the thrusts 77 and 75 to
differ and thereby cause [ to change. Figure 4(a) shows that

the change in 3, produced by differential braking, will lead
to altitude change. We next present a controller that achieves
this goal.

A proportional feedback control algorithm is employed in
this study to enable the autogyro to reach to a desired altitude
in the presence of both uniform and variable wind field. In
Section V-A, it is shown that the proportional control leads
to an integral effect in the dynamics of (z— zd). This enables
the error (z — zd) to go to zero. The algorithm requires one
control input at each rotor, namely the braking torque ¢; and
q2. The control law, given in (27), generates braking a torque
on either rotor A or B. The braking torque ¢;, when applied
on rotor A, momentarily decreases the thrust 73 leading to
decrease in 3, and eventually altitude is decreased. In the
same way, braking torque ¢, in rotor B increases 3, thereby
increasing altitude.

_J Kp(za—2) for z>z4
« 0 for 2z <z,
27
] 0 for 2z > z4
2= —K,(2q — 2) for z<zq

Here, K, is the controller gain and zg is the desired altitude.
The control input is allowed to take a value between 0 and
an upper limit depending on the error signal. Small braking
torques are sufficient to cause gradual changes in 5. Drastic
change in § are problematic and can induce instabilities.

A. Approximate Closed-Loop Dynamics

We next derive an approximate closed-loop dynamics,
which helps explain why the control law of (27) is effective
in altitude control. Consider the dynamics of the variable
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Z = (z — zq). Referring to (2),
(Th 4+ To) cos f = (11 — T») cos B + 215 cos

I . (28)
= 275 + 275 cos 8

Simulations indicate that the slow dynamics of 3 can be

approximated by,

B=ki(q — ), (29)
and from (27),
=Kp(zqg —2) = —KpZz.

(1 — @) (30)

Thus, for small perturbations around an equilibrium z = z4,

(Th+T3) cos B = (212 cos ) |eq
- z%le,,é - [d,é’ (2T cos B)} kK, /O zdt

(€29)
The time integral appears in (31) due to the fact that from
(29) and (30), d8 = —K, fo Zdt. From Section III, the
catenary tension forces are position dependent only and not
velocity dependent. Hence, the tether tension force in (2) can
be expressed about the equilibrium as

Tcosm = (Tcosm) leq — k222 — k2u® (32)

where z is the small deviation of the x-coordinate of the
autogyro from its equilibrium. Together, an approximate
dynamic equation of the system in the Z coordinate would
have the structure

maé = — <dc + 2lk1Kp) zZ— kzzz - kzxx
(33)

{dﬁ (2T2COSB)} ki1 K, / Zdt

While the above dynamic equation is not complete and
other terms such as the aerodynamic drag forces must be
included and (33) must be considered in conjunction with
the corresponding dynamic equation of Z, it gives an idea
of the structure. Equation (33) shows the damping and
restoring forces and their sources. It also indicates that robust
convergence to zg may be achieved due to the effective
integral action provided by the controller. Further study will
investigate the stability characteristics of the equilibrium
under the closed loop control of (27) which is an area of
ongoing work.

VI. SIMULATION RESULT
A. Uniform Wind Field

In a uniform wind speed of 10m/s and fixed tether length
of 1000m, the proposed controller with K, = 0.01 con-
trols the system’s altitude within the operating region. The
simulation result in Fig.5 shows that the autogyro settles at
the desired altitudes of 870m and 920m without any steady-
state error, which may be attributed to the integral action
provided by the proposed controller. The applied braking
torques in each rotor are allowed to take a value between
0 and —0.015Nm. This leads to a slow control action but

(a)

900 -
E
N800
Altitude of Autogyro |
— — Reference Altitude
700 . . . .
0 2000 . 4000 6000
Time (sec)
(®)
11L
E
210
9 . . . ‘
0 2000 4000 6000
Time (sec)

Fig. 6. Altitude control in the presence of variable wind speed: (a) reference
set at 870m and 920m; (b) variable wind profile generated by TurbSim

demonstrates the viability of the controller. Fig.5(a) confirms
that the braking torques are mutually exclusive as evident
from (27). The oscillatory behavior in 3, as evidenced in
Fig.5(c), may be reduced by better tuning of the controller
or by addition of a derivative action. Finally, we note that the
thrusts 77 and 7% differ from each other during transients. In
Fig.5(d) these differences are indiscernible but can be seen
when zoomed in to the transient regions. The same is true
for €23 and €2y in Fig.5(e) and p4 and pp in Fig.5(f).

B. Variable Wind Field

In this section, performance of the controller in the
presence of variable wind profile, a practical scenario, is
explored. Figure 6(a) illustrates that the autogyro goes to
the desired altitude z; within the operating region with an
acceptable diversion from the set point when the control
torques are applied. The variable wind speed is generated
by TurbSim and illustrated in Fig.6(b). The range of control
input as braking torque is selected to be between 0 and
—0.05Nm with K, = 0.02 which is higher than uniform
wind speed case. This is owing to the greater control effort
required for variable wind speeds, which is expected. From
Figs. 5(b) and 5(c), it is evident that change in altitude is very
sensitive to changes in 5. Hence Kp values were chosen to
be small to regulate changes in [ through ¢; and gs.
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VII. CONCLUSIONS

This study develops a dynamic model of a tethered auto-
gyro extending the system described in [15], combined with
a catenary mechanism to explore the dynamic behaviour.
The proposed model is simulated numerically to study the
correlation of equilibrium space and operating conditions
with varying pitch angle, tether length and wind speed. The
equilibrium space follows the trend of steady-state conditions
in [15]. The model however extends to transient simulations,
amenable for control development. A feedback controller
providing differential braking of the rotors is used to control
the altitude and the results show good agreement in the
uniform field. The control law is then applied to the variable
wind profile case. As this work is an initial study of control
application on the tethred autogyro, we believe control design
based on a further improved dynamic model will provide

[1]
[2]

more credibility for practical application. Thus, our future )
work will be focused areas such as relaxing the assumptions
of thrust forces being always along the rotor axes and (4]
incorporating tether aerodynamics in greater detail.
NOMENCLATURE WITH PARAMETER VALUES 5]
T, Te Autogyro drift & horizontal equilibrium
2, Ze Autogyro altitude & vertical equilibrium (61
B Pitch angle
g Acceleration due to gravity
de Damping constant (10N s/m) (7]
Q4,09 Angular velocity of rotor A & B
Vi Wind velocity
Viy/a, Vayp  Relative wind velocity 81
at rotor A & B 9]
Qap, QB Angle of incidence at rotor A & B
WA, LB Tip speed ratio of rotor A & B [10]
A4, AB inflow ratio of rotor A & B
ap, a1, by,
as, by Fourier coefficients (1]
b Number of blades (4)
l Length of frame (8.13m) (12]
R Blade radius (3.048m)
Mg Total mass of the autogyro (35.94K g) [13]
including frame
I Blade moment of inertia about [14]
flapping hinge (7.884kgm?)
I, Rotor moment of inertia (73.72kgm?)
1. Moment of inertia of the system [15]
about center point (547.61kgm?)
c Blade chord (0.24384m) [16]
0o Blade pitch angle at hub (0.0384rad)
6, Blade pitch slope (4.9448%rad/m) [17]
B Blade radius fractionless tip losses(0.96)
a Slope of lift curve (5.85)
) Average drag coefficient (0.012) [18]
p Density of air (1.225kgm ~3)
o Blade disc solidity (0.1019)
¥ Non-dimensional mass constant [19]
(19.1298)
2854

My Flapping moment from blade weight

(37.9625Nm)

Ct,,Cy,  Rotor thrust coefficient
T, 15 Thrust force in rotor A & B
To, T Tether tension at base and at end
Mo Tether angle at base with horizontal
m Tether angle at autogyro with vertical
o Mass per unit length of tether
(0.0148kg/m)
me Mass of tether
l; Length of tether
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