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Abstract— For tethered multi-rotor autogyros to be viable
energy efficient unmanned aerial vehicles (UAVs), control anal-
ysis and stability investigation of autorotative flight are vital. In
this paper, a simplified model-based altitude control technique
is presented which is effective in the presence of both uniform
and variable wind profile. A two-rotor autogyro, tethered to the
ground and constrained to move in the 2D plane of the wind di-
rection, is adopted for the study. The reduction to 2D simplifies
the system and helps focus on the feasibility of altitude control
and pitch modulation by exclusively using differential braking,
which is a novel concept. In this arrangement, control inputs are
the braking torques in each of the two rotors. The assumption is
that with another two rotors in the lateral direction the roll and
yaw motion of the system can be controlled when extended to
3D. The aerodynamics and tether modeling are based on Blade
Element Momentum (BEM) method and catenary mechanics
respectively. The characteristics of the equilibria of the tethered
multi-rotor autogyro are investigated. For the aforementioned
set-up, the differential rotor braking input is designed based on
a proportional feedback law, and is effective in controlling the
autogyro’s altitude with the help of restoring effect provided
by the tether tension.

I. INTRODUCTION

Autogyro is a rotorcraft that produces lift by using unpow-
ered rotor(s) which turn(s) by the action of relative airflow
through the blades. Initial modeling of autogyro based on the
blade element momentum (BEM) approach [1] traces back
to Glauert [2] where the author considered constant pitch
of the rotor blade. Many researchers developed their model
[3]–[7] modifying the assumptions of [2]. Among them,
work of Wheatley [5] needs to be mentioned particularly
for its significance of providing a detailed model where the
author introduced a linear variation in pitch and validated
the result experimentally using a commercially available
autogyro. Readers are suggested to read [8] and [9] to know
further about the development of the autogyro over time.

A tethered rotorcraft can be an effective option for har-
vesting power from an airborne wind energy (AWE) device
at high altitude [10]. The effect of regenerative braking on
the steady-state behavior of autogyro and their feasibility for
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Fig. 1. View of the tethered autogyro in 2-D with two rotors. The system’s
pitch angle is represented by β.

high-altitude power generation have been explored in [11]–
[14], where the authors develop their model preliminarily
based on [5]. In [15], the equilibrium behaviour of a tethered
autogyro in steady-state autorotation is demonstrated for
both cases of high-altitude power generation and low-altitude
surveillance. In the field of surveillance, tethered autogyro
can be considered as an energy saving alternative to drones.
But unlike drone, there is an inadequacy of study found
in literature regarding the attitude control of such systems.
Rye [16] investigated longitudinal stability of such system
assuming straight massless tether. Houston [17] described
control charactestics of an autogyro based on the analysis test
data recorded during flight trials. In [18], altitude and pitch
control are presented using a PID controller for vehicular
towed autogyro where tether is modeled as massless rod.

In this paper, we investigate the dynamic behaviour and
equilibrium nature of a multi-rotor autogyro tethered to
ground. The dynamic model coupled with a static catenary
model incorporating tether mass generates complex dynamic
equations which are difficult to solve analytically. Hence, as
a starting research study, a 2D case is considered to reduce
some of the complexities of the equations, restricting the
motion in X-Z plane. The nature of autorotative equilibria
are explored. We propose and evaluate the performance of
an altitude controller that only uses braking toque as control
input for pitch modulation. Simulation results showing the
performance of control are presented in VI. Indeed, the dy-
namical analysis of the proposed quadcopter-based autogyro
is only complete when the entire 3D dynamics is considered.
The reason for reducing the system to 2D for this study is to
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demonstrate a feasibility of altitude and pitch control using
differential braking only. The exclusive use of braking for
control is novel in such rotorcrafts and the goal of this paper
is to demonstrate its viability within a contained (i.e., 2D)
framework as an initial study. Our future work will cover the
full 3D dynamics.

II. SYSTEM DESCRIPTION

A. Equations of Motion of the Dynamic System

The system studied in this paper has a two-rotor mecha-
nism and is connected to the ground by a tether as shown
in Fig.1. The rotors in this system consist of blades that can
flap about their root. As a result, a significant amount of
the rolling and pitching motions of each rotor, generated by
uneven force distributions, are relieved. The dynamic model
of the system is developed under the assumption that thrust
force in each rotor is always along the rotor axis. For the
overall system, the roll and yaw motions are assumed to be
already controlled by other two rotors in lateral direction
and that there is no wind velocity in that direction. This
assumption allows the system to be studied in the X-Z plane.
Solving the equation of motion (1)-(3) gives the position x
and z and pitch angle β of the autogyro.

maẍ = T1 sinβ + T2 sinβ + dc(Vw − ẋ)− T sin η1 (1)

maz̈ = T1 cosβ + T2 cosβ − dcż − T cos η1 −mag (2)

where, dc is the damping coefficient. Rotor thrust forces T1,
T2 and tether tension T comes from aerodynamic model
explained in II-B and catenary model described in III re-
spectively.

Icβ̈ =
l

2
(T1 − T2) (3)

where, Ic is the moment of inertia of the frame about its
center point C in Fig.1. The system is arranged in such a
way that the difference in two thrust forces T1, T2 in rotors
A and B can cause pitch angle β to change when braking
torque q1 in (4) or q2 in (5) is applied.

IrΩ̇1 = QA + q1 (4)

IrΩ̇2 = QB + q2 (5)

where, Ir is the moment of inertia of each rotor about its
rotational axis, R is the radius of the blade, QA, QB are
the aerodynamic torque of rotor A and B respectively. The
braking torque causes change in rotational velocities Ω1 and
Ω2 of each rotor about its respective shaft which is crucial to
the aerodynamic properties of the system described in II-B.
It subsequently leads to the change in the thrust forces of
the system. Thus, with the help of restoring effect from of
the tether tension T , position of the system can be changed
by the difference in T1 and T2.
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Fig. 2. Setup for calculation of relative velocity and angles of incidence.

B. Aerodynamic Analysis

The aerodynamic model of a tethered autogyro considered
in this study is primarily adopted from [15] where work of
Wheatley, [5], is taken as a foundation model to study steady
autorotation of a tethered autogyro. Since, this paper focuses
on the dynamic behaviour, the aerodynamic equations of [5]
are rearranged and solved in a more causal manner suitable
for capturing the transients. The arrangement of the system,
illustrated in Fig.2, causes the rotors to experience relative
wind velocity at angle αA and αB respectively.

V⃗w/A =
(
Vw − ẋ− l

2
β̇ sinβ

)
î−

(
ż +

l

2
β̇ cosβ

)
k̂

V⃗w/B =
(
Vw − ẋ+

l

2
β̇ sinβ

)
î−

(
ż − l

2
β̇ cosβ

)
k̂

(6)

Vw and initial states are provided to (6) to calculate Vw/A

and Vw/B . Angle of incidence αA and αB are calculated
using (7).

αA = β − arctan
ż + l

2 β̇ cosβ

Vw − ẋ− l
2 β̇ sinβ

αB = β − arctan
ż − l

2 β̇ cosβ

Vw − ẋ+ l
2 β̇ sinβ

(7)

The equations in (6) and (7) can be derived using kinematic
analysis. The aerodynamic model in [15] utilizes two di-
mensionless ratios µ and λ for each rotor. Tip speed ratio,
µ, shown in (8), is the ratio of the wind velocity parallel to
the rotor disc to the tip speed of the rotor blade.

µA =
Vw/A cosαA

Ω1R
, µB =

Vw/B cosαB

Ω2R
(8)

The inflow ratio, λ, is the ratio of total wind velocity
perpendicular to the rotor disc to the tip speed of the
rotor blade. The rolling torque of the rotor is balanced by
flapping motion of the hinged rotor blade at the base. The
flapping angle of the blade is approximated by a periodic
function dependent on its angular position, as a truncated
Fourier series containing five coefficients [5]. These Fourier
coefficients are expressed as functions of λ and µ in [5] and
can be re-written as a matrix equation (9).

1 0 0 0 v15
0 1 0 0 v25
v31 0 1 v34 0
0 v42 0 3 v45
v51 0 v53 v54 3



a0
a1
b1
a2
b2

 =


A0

A1

0
A3

0

λ+


C0

C1

0
C3

0

 (9)
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where,

v15 = − 1

16
γµ2B2, v25 =

2µB3

3(B4 − 1
2µ

2B2)
,

v31 =
−4µB

B2 + 1
2µ

2

(1
3
+

0.035µ3

B3

)
,

v34 =
−4µB

6(B2 + 1
2µ

2)
, v42 = −1

6
γµB3, v45 = −1

4
γB4,

v51 =
1

8
γµ2

(
B2 − µ2

6

)
, v53 = −1

6
γµB3, v54 =

1

4
γB4,

A0 =
1

2
γ
(1
3
B3 + 0.080µ3

)
, A1 =

µ(4B2 − µ2)

2(B4 − 1
2µ

2B2)

A3 =
−0.053

2
γµ3

C0 =
1

2
γ
{θ0
4

(
B4 + µ2B2 − 1

8
µ4

)
+

θ1
5

(
B5 +

5

6
µ2B3

)}
− Mw

I1Ω2
,

C1 =
2µ

B4 − 1
2µ

2B2

(4
3
θ0B

3 + 0.106θ0µ
3 + θ1B

4
)

C3 = −1

2
γµ2

{θ0
4

(
B2 − 1

8
µ2

)
+

1

6
θ1B

3
}

Equation (10) can be derived from (9) and solved for 5x1
coefficient matrix ρc if λ is known.

ρc = v−1Aλ+ v−1C (10)

a1 and b2 from (9) can also be expressed as linear functions
of λ shown in (11) and (12).

a1 = m0λ+m1 (11)

b2 = s0λ+ s1 (12)

where, m0 = A1, m1 = −v25b2 + C1, s0 = 0, and s1 =
−1
3 −1(v51a0 + v53b1 + v54a2). Equation (11) and (12) help

to simplify the calculation of coefficient of rotor thrust Ct.
The relation of Ct and λ given in [5], can be rearranged as
(13).

Ct = p0 + p1λ+ p2b2 + p3a1 (13)

where,

p0 =
1

2
σa

{
θ0

(1
3
B3 +

1

2
µ2B − 4

9π
µ3

)
+θ1

(1
4
B4 +

1

4
µ2B2 − 1

32
µ4

)}
,

p1 =
1

4
σa

(
B2 +

1

2
µ2

)
, p2 =

1

8
σaµ2B,

p3 =
1

16
σaµ3

Substituting (11) and (12) into (13), we get (14) which
expresses Ct as a linear function of λ.

Ct = (p1 + p2s0 + p3m0)λ+ (p0 + p2s1 + p3m1)

= c0λ+ c1
(14)

Thus equation (14), a simplified version of (13), is only
a function of variable λ if Fourier coefficients are already
known by solving (10). The relation among variables α, Ct

Tether length, lt 

g
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T
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mtg

Fig. 3. Static forces on a catenary tether

and λ from [5], given in (15), can be re-written as (16)
after replacing Ct with the expression established in (14).
Equation (18) provides Qa and Qb about each rotor.

tanα =
λ

µ
+

1
2Ct

µ(λ2 + µ2)
1
2

(15)

tanα =
λ

µ
+

1
2c0λ+ c1

µ(λ2 + µ2)
1
2

(16)

Equation (10) and (16) are coupled and can be solved only by
simultaneous numerical approach. The following numerical
process is employed to determine λ and a0, a1, b1, a2, b2:

1) A good initial guess of λ is provided to (10) to
calculate ρc which provides c0, c1.

2) λ is approximated using (16).
3) If convergence criteria is not met, guess for λ is

adjusted towards the calculated value of λ.
4) Steps 1-3 are repeated until desired convergence is

achieved for λ. The threshold value for absolute change
in λ is chosen to be 10−6.

5) With converged value of λ, final Fourier coefficients
are calculated using (10) at that instant.

This numerical process is implemented for both rotors sepa-
rately and λa, λb, ρcA, ρcB are evaluated. Thrust coefficient,
Ct1 and Ct2 , are calculated with (15) to calculate the thrust
force in each rotor using

T1 = ρΩ2
1πR

4Ct1 , T2 = ρΩ2
2πR

4Ct2 (17)

Equation (17) is used to calculate thrust forces in both
rotors. The aerodynamic torque Q about the rotor is zero for
steady-state autorotation. For dynamic modeling, Q must be
calculated with (18) adopted from [5].

Q =
1

2
bρcΩ2R4a

{
λ2

(1
2
B2 − 1

4
µ2

)
+ λ

(1
3
θ0B

3 +
2

9π

µ3θ0 +
1

4
θ1B

4 +
1

32
µ4θ1

)
+ µλa1

(1
2
B2 − 3

8
µ2

)
+a2

0

(1
4
µ2B2 − 1

16
µ4

)
− 1

3
µa0b1B

3 + a2
1

(1
8
B4

+
3

16
µ2B2

)
+ b21

(1
8
B4 +

1

16
µ2B2

)
− a2

(1
4
µ2a0B

2

+
1

6
µb1B

3
)
+

1

2
a2
2B

4 + b2
(1
8
µ2θ0B

2 +
1

12
µ2θ1B

3

+
1

6
µa1B

3
)
+

1

2
b22B

4 − δ

4a

(
1 + µ2 − 1

8
µ4

)}

(18)
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III. CATENARY

The restoring force in the multi-rotor autogyro system is
provided by the tether tension T . To evaluate the tension,
a tether profile is approximated using static catenary model
adopted from [19] where (19)-(20) define the tether shape.

z = ζ
[
cosh

(x− q

ζ

)
− cosh

( q
ζ

)]
(19)

lt = ζ
[
sinh

(x− q

ζ

)
+ sinh

( q
ζ

)]
, (20)

where, lt is length of tether, q and ζ are parameters of
the catenary depending on the position and tether length.
Equation (19) and (20) together can be manipulated to take
the form of (21) and (22).

cosh
(x
ζ

)
= 1 +

1

2 ζ2

(
l2t − z2

)
(21)

q =
x

2
−
{
ζ arctanh

( z

lt

)}
(22)

Equation (21) is numerically solved to determine ζ. With
known ζ, q can be easily calculated from (22) for a known
lt and known end point (x, z) of the tether which in this case
is the center point of the frame. q and ζ are used to calculate
angle η0 and η1 using (23)-(24) from [19].

η0 = arctan
{
− sinh

( q
ζ

)}
(23)

η1 =
π

2
− arctan

( lt
ζ
+ tan η0

)
(24)

Fig.3 shows the setup for static analysis of the catenary. η0
and η1 possess two constraints for the system to be valid
and they are- (i) η0+η1 < 90◦ and (ii) η0 > 0◦. Static force
balance equations at the two end points of the catenary is
given in (25).

T sin η1 − T0 cos η0 = 0

T cos η1 − T0 sin η0 −mtg = 0
, (25)

where, mt is the mass of the tether. We can eliminate T0

from (25) and determine T knowing η0 and η1 from (23)
and (24) respectively. The expression for T is given in (26),

T =
σtltg cos η0
cos(η0 + η1)

, (26)

where σt is the mass per unit length of the tether.

IV. CHARACTERISTICS OF EQUILIBRIA

With suitable parameter values from [15] and initial
guesses for states, the equations of motion in (1)-(5) can
be solved and simulated following the steps described in
Section II. The solution converges to equilibrium without
any external control input, yielding an equilibrium space
similar to that in [15]. The convergence indicates stability
of the equilibria. Figure 4(a) shows the variation of the
equilibrium points with varying incidence angle β for fixed
wind speed Vw and fixed tether length lt. With increasing β,
the equilibrium altitude increases up to a certain β (12.5◦ in
this case), and reduces thereafter. The reduction is attributed
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in the presence of control action

to the aerodynamic forces becoming dominated by drag.
The drag-dominated region corresponds to low values of
µ, µ ≤ 0.15, where the momentum theory becomes less
reliable. For the purposes of control development, this region
is avoided.

The equilibrium points also depend on Vw and lt. Figure
4(b) shows that for Vw = 10m/s, the envelope of equilibria
shifts up with increasing lt. On the other hand, the depen-
dency of equilibrium points on Vw at a fixed lt = 1000m
shown in Fig.4(c) suggests that as expected, higher feasible
elevations happen at higher values of Vw. Figure 4(c) also
indicates a narrow operating range at low Vw, which gets
wider with increasing wind speed. It is evident that without
any control, the system attains equilibrium for uniform Vw,
fixed lt and fixed β. This is evident from Fig.4(d). Here,
at t = 1200s the position is perturbed from its equilibrium
position, (xe, ze). We observe that the equilibrium is restored
subsequently. This indicates an internally stable equilibrium
of the 2D autogyro system, at least for small perturbations.
The corresponding stability analysis is an area of our ongoing
research.

V. ALTITUDE CONTROL VIA DIFFERENTIAL
ROTOR BRAKING

An autorotating rotor is unpowered and uses the ambient
wind energy to generate the necessary thrust force. In the 2-D
multi-rotor system considered in this work, we demonstrate
that differential braking of the individual autorotating rotors
can be used for altering its pitch angle β and thereby achieve
altitude control. From (4) and (5), it is evident that braking
torques q1 and q2 will tend to reduce the corresponding
angular velocities Ω1 and Ω2. Equations (17) and (3) show
that differential braking will cause the thrusts T1 and T2 to
differ and thereby cause β to change. Figure 4(a) shows that

the change in β, produced by differential braking, will lead
to altitude change. We next present a controller that achieves
this goal.

A proportional feedback control algorithm is employed in
this study to enable the autogyro to reach to a desired altitude
in the presence of both uniform and variable wind field. In
Section V-A, it is shown that the proportional control leads
to an integral effect in the dynamics of (z−zd). This enables
the error (z− zd) to go to zero. The algorithm requires one
control input at each rotor, namely the braking torque q1 and
q2. The control law, given in (27), generates braking a torque
on either rotor A or B. The braking torque q1, when applied
on rotor A, momentarily decreases the thrust T1 leading to
decrease in β, and eventually altitude is decreased. In the
same way, braking torque q2 in rotor B increases β, thereby
increasing altitude.

q1 =

{
Kp(zd − z) for z > zd
0 for z ≤ zd

q2 =

{
0 for z ≥ zd
−Kp(zd − z) for z < zd

(27)

Here, Kp is the controller gain and zd is the desired altitude.
The control input is allowed to take a value between 0 and
an upper limit depending on the error signal. Small braking
torques are sufficient to cause gradual changes in β. Drastic
change in β are problematic and can induce instabilities.

A. Approximate Closed-Loop Dynamics

We next derive an approximate closed-loop dynamics,
which helps explain why the control law of (27) is effective
in altitude control. Consider the dynamics of the variable

2852

Authorized licensed use limited to: University of Central Florida. Downloaded on January 08,2024 at 03:40:10 UTC from IEEE Xplore.  Restrictions apply. 



z̃ = (z − zd). Referring to (2),

(T1 + T2) cosβ = (T1 − T2) cosβ + 2T2 cosβ

= 2
Ic
l
β̈ + 2T2 cosβ

(28)

Simulations indicate that the slow dynamics of β can be
approximated by,

β̇ = k1(q1 − q2), (29)

and from (27),

(q1 − q2) = Kp(zd − z) = −Kpz̃. (30)

Thus, for small perturbations around an equilibrium z = zd,

(T1+T2) cosβ = (2T2 cosβ) |eq

− 2
Ic
l
k1Kp

˙̃z −
[ d

dβ
(2T2 cosβ)

]
eq
k1Kp

∫ t

0

z̃dt

(31)
The time integral appears in (31) due to the fact that from
(29) and (30), dβ = −Kp

∫ t

0
z̃dt. From Section III, the

catenary tension forces are position dependent only and not
velocity dependent. Hence, the tether tension force in (2) can
be expressed about the equilibrium as

T cos η1 = (T cos η1) |eq − kzz z̃ − kzxx̃ (32)

where x̃ is the small deviation of the x-coordinate of the
autogyro from its equilibrium. Together, an approximate
dynamic equation of the system in the z̃ coordinate would
have the structure

ma
¨̃z =−

(
dc + 2

Ic
l
k1Kp

)
˙̃z − kzz z̃ − kzxx̃

−
[ d

dβ
(2T2 cosβ)

]
eq
k1Kp

∫ t

0

z̃dt

(33)

While the above dynamic equation is not complete and
other terms such as the aerodynamic drag forces must be
included and (33) must be considered in conjunction with
the corresponding dynamic equation of x̃, it gives an idea
of the structure. Equation (33) shows the damping and
restoring forces and their sources. It also indicates that robust
convergence to zd may be achieved due to the effective
integral action provided by the controller. Further study will
investigate the stability characteristics of the equilibrium
under the closed loop control of (27) which is an area of
ongoing work.

VI. SIMULATION RESULT

A. Uniform Wind Field

In a uniform wind speed of 10m/s and fixed tether length
of 1000m, the proposed controller with Kp = 0.01 con-
trols the system’s altitude within the operating region. The
simulation result in Fig.5 shows that the autogyro settles at
the desired altitudes of 870m and 920m without any steady-
state error, which may be attributed to the integral action
provided by the proposed controller. The applied braking
torques in each rotor are allowed to take a value between
0 and −0.015Nm. This leads to a slow control action but
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Fig. 6. Altitude control in the presence of variable wind speed: (a) reference
set at 870m and 920m; (b) variable wind profile generated by TurbSim

demonstrates the viability of the controller. Fig.5(a) confirms
that the braking torques are mutually exclusive as evident
from (27). The oscillatory behavior in β, as evidenced in
Fig.5(c), may be reduced by better tuning of the controller
or by addition of a derivative action. Finally, we note that the
thrusts T1 and T2 differ from each other during transients. In
Fig.5(d) these differences are indiscernible but can be seen
when zoomed in to the transient regions. The same is true
for Ω1 and Ω2 in Fig.5(e) and µA and µB in Fig.5(f).

B. Variable Wind Field

In this section, performance of the controller in the
presence of variable wind profile, a practical scenario, is
explored. Figure 6(a) illustrates that the autogyro goes to
the desired altitude zd within the operating region with an
acceptable diversion from the set point when the control
torques are applied. The variable wind speed is generated
by TurbSim and illustrated in Fig.6(b). The range of control
input as braking torque is selected to be between 0 and
−0.05Nm with Kp = 0.02 which is higher than uniform
wind speed case. This is owing to the greater control effort
required for variable wind speeds, which is expected. From
Figs. 5(b) and 5(c), it is evident that change in altitude is very
sensitive to changes in β. Hence Kp values were chosen to
be small to regulate changes in β through q1 and q2.
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VII. CONCLUSIONS

This study develops a dynamic model of a tethered auto-
gyro extending the system described in [15], combined with
a catenary mechanism to explore the dynamic behaviour.
The proposed model is simulated numerically to study the
correlation of equilibrium space and operating conditions
with varying pitch angle, tether length and wind speed. The
equilibrium space follows the trend of steady-state conditions
in [15]. The model however extends to transient simulations,
amenable for control development. A feedback controller
providing differential braking of the rotors is used to control
the altitude and the results show good agreement in the
uniform field. The control law is then applied to the variable
wind profile case. As this work is an initial study of control
application on the tethred autogyro, we believe control design
based on a further improved dynamic model will provide
more credibility for practical application. Thus, our future
work will be focused areas such as relaxing the assumptions
of thrust forces being always along the rotor axes and
incorporating tether aerodynamics in greater detail.

NOMENCLATURE WITH PARAMETER VALUES

x, xe Autogyro drift & horizontal equilibrium
z, ze Autogyro altitude & vertical equilibrium
β Pitch angle
g Acceleration due to gravity
dc Damping constant (10Ns/m)
Ω1,Ω2 Angular velocity of rotor A & B
Vw Wind velocity
Vw/A, Vw/B Relative wind velocity

at rotor A & B
αA, αB Angle of incidence at rotor A & B
µA, µB Tip speed ratio of rotor A & B
λA, λB inflow ratio of rotor A & B
a0, a1, b1,
a2, b2 Fourier coefficients
b Number of blades (4)
l Length of frame (8.13m)
R Blade radius (3.048m)
ma Total mass of the autogyro (35.94Kg)

including frame
I Blade moment of inertia about

flapping hinge (7.884kgm2)
Ir Rotor moment of inertia (73.72kgm2)
Ic Moment of inertia of the system

about center point (547.61kgm2)
c Blade chord (0.24384m)
θ0 Blade pitch angle at hub (0.0384rad)
θ1 Blade pitch slope (4.9448−03rad/m)
B Blade radius fractionless tip losses(0.96)
a Slope of lift curve (5.85)
δ Average drag coefficient (0.012)
ρ Density of air (1.225kgm−3)
σ Blade disc solidity (0.1019)
γ Non-dimensional mass constant

(19.1298)

MW Flapping moment from blade weight
(37.9625Nm)

Ct1 , Ct2 Rotor thrust coefficient
T1, T2 Thrust force in rotor A & B
T0, T Tether tension at base and at end
η0 Tether angle at base with horizontal
η1 Tether angle at autogyro with vertical
σt Mass per unit length of tether

(0.0148kg/m)
mt Mass of tether
lt Length of tether
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