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Abstract—The future of computing requires heterogeneous
integration, including the recent adoption of chiplet methodol-
ogy, where high-speed cross-chip interconnects and packaging
are critical for the overall system performance. As an example
of advanced packaging, a high-density interconnect (HDI) printed
circuit board (PCB) has been widely used in complex electronics
ranging from cell phones to computing servers. A modern HDI
PCB may have over 20 layers, each with its unique material
properties and geometrical dimensions, i.e., stack-up, to meet var-
ious design constraints and performance requirements. Stack-up
design is usually done manually in the industry, where experi-
enced designers may devote many hours adjusting the physical
dimensions and materials in order to meet the desired specifi-
cations. This process, however, is time-consuming, tedious, and
suboptimal, largely depending on the designer’s expertise. In
this article, we propose to automate the stack-up design with
a new framework, ISOP+, using machine learning (ML) for
inverse stack-up optimization for advanced package design with
adaptive weight adjustment and multilevel optimization. Given
a target design specification, ISOP+ automatically searches for
ideal stack-up design parameters while optimizing performance.
A novel ML-assisted hyperparameter optimization method is
developed to make the search efficient and reliable. Experimental
results demonstrate that ISOP+ is better in figure-of-merit (FoM)
than conventional simulated annealing and Bayesian optimization
algorithms, with all our design targets met with a shorter run-
time. We also compare our fully automated ISOP+ with expert
designers in the industry and achieve very promising results, with
orders of magnitude reduction of turn-around time.

Index Terms—Design optimization, hyperparameter
optimization, signal integrity (PCB stack-up, PCB interconnect
design, packaging).
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I. INTRODUCTION

DVANCES in packaging technologies are driving the

scaling of electronic devices. Advanced packaging tech-
nology involves integrating various materials and interfaces
and requires collaboration between architects and engineers
from multiple disciplines. Despite the slowing down of the
integrated circuits (ICs) fabrication process, on-packaging
interconnects and heterogeneous integration continues to pro-
pel the evolution of computing systems [1].

Following the trend, printed circuit board (PCB) technology
is also evolving at a rapid pace. Modern high-performance
PCB designs can typically have 12 to 20 layers [2]. Each
layer contains a variety of signals, ranging from single-
ended double data rate (DDR) signaling to differential serial-
izer/deserializer (SerDes) routing. The developments of high-
density interconnect (HDI) and substrate-like PCB (SLP) are
also increasing the complexity of PCB stack-up design [3].
Advanced PCB, together with other trends in advanced pack-
aging, is increasing the degree of integration between chiplets,
where the signals on a PCB are sensitive to the physical
design of a stack-up design. In a typical industrial design flow,
the stack-up design is usually handled by experienced engi-
neers manually through many trial-and-error and simulations
to determine the choice of materials and their physical dimen-
sions for each PCB layer. This manual process, which relies
heavily on the intuition and experience of engineers, is critical
for ensuring the signal integrity of PCB interconnects.

Automation of stack-up design can further optimize the
interconnects. Historically, interconnect optimization in IC sig-
nificantly contributes to the advances of the whole system [4],
and a similar trend is observed in optimizing package-level
interconnects for heterogeneous integration systems [1]. The
high-speed PCB is one of the key components in the inter-
chip interconnection, and its stack-up design significantly
impacts the performance. However, the existing research in
automating the PCB stack-up design is limited. Liao et al. [5]
proposed to use an artificial neural network (ANN) to
predict the resulting PCB performance, such as transmis-
sion line impedance, insertion loss, and cross-talk metrics.
Then, a designer uses the ANN model to quickly obtain the
stack-up design performance from PCB stack-up parameters
without running time-consuming simulations and manually
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Fig. 1. TIllustration of the conventional stack-up design and our proposed
inverse stack-up optimization framework (ISOP+).

optimizing through iterations. He et al. [6] proposed using
an integer programming-based method to generate stack-up
arrangement candidates, which requires experienced pack-
age designers to define a set of appropriate design rules
to accelerate the overall design cycle. Both [5] and [6]
require extensive manual engineering efforts to make the
design decisions. Kiguradze et al. [7] applied the Bayesian
optimization (BO) method to optimize the five-parameter
stack-up design. However, it only offers a solution for lim-
ited design space and fails to provide a fully automated and
scalable solution to the stack-up designs.

In this article, we propose a fully automated stack-up design
methodology in an inverse optimization setting, called inverse
stack-up optimization for advanced package design (ISOP+).
Instead of assisting the manual design, our proposed frame-
work directly produces the stack-up designs that are optimized
against performance requirements by leveraging automated
search algorithms and machine learning (ML) surrogate model.
As shown in Fig. 1, given the design specifications, such as
transmission line impedance Z, ISOP+ searches for stack-
up designs, and optimizes for performance metrics, such as
signal loss at various frequencies and cross-talk. The main
contributions of this work are summarized as follows.

1) We propose ISOP+, an agile framework for automating
the HDI PCB stack-up design process. To the best of
our knowledge, this is the first work to provide a fully
automated solution to stack-up design. We believe the
proposed methodology, in general, can be extended to
many other scenarios of interconnect optimization.

2) We formulate the inverse stack-up optimization as a
hyperparameter optimization (HPO) problem, using the
customized optimization flow that incorporates both
global and local search. The global stage is powered by
an effective two-stage HPO search algorithm to solve the
stack-up design by efficiently and quickly exploring the
entire search space. The local stage leverages available
gradient information for further refinement.

3) We accelerate the optimization process by introduc-
ing ML surrogate models to predict stack-up design
performance. The ML models replace the expensive
simulations in the search for space exploration.

4) We enhance the quality and practicality of the
optimization outcome by incorporating adaptive weight
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Fig. 2. Structure of a differential stripline layer.

adjustment and input parameter constraints into the
optimization objective.

5) Experimental results demonstrate that the ISOP+ frame-
work reduces the design cycle from hours to minutes and
greatly outperforms other baseline optimization methods
as well as the manual design.

The remainder of this article is organized as follows. We
introduce the stack-up design problem and its formulation in
Section II. The details of the proposed framework and its key
elements are described in Section III. Section IV presents
the experimental results. The conclusions are provided in
Section V.

II. PRELIMINARIES

In this section, we introduce the preliminaries of PCB stack-
up design (Section II-A) and HPO problem (Section II-B).
We then formulate the inverse stack-up design problem
(Section II-C).

A. PCB Stack-Up Design

Construction of a PCB begins with designing its material
layers’ arrangement, i.e., stack-up. The basic function of a
PCB, which comprises primarily of passive interconnects, is
to transfer a signal from one port to another while maintain-
ing signal integrity. Since establishing a stack-up is the first
step in PCB design, it has a significant impact on the effi-
ciency and cost of the final product. In high-speed systems,
a well-designed stack-up can lessen the circuit’s susceptibility
to external noise and cross-talk issues. The performance of a
transmission line is determined by a layer’s physical dimen-
sions and material properties. A simplified structure of a single
differential stripline layer is illustrated in Fig. 2. The subscript
t, ¢, and p denote a layer’s metal trace for signals, glass-
reinforced epoxy laminate sheet (core), and preimpregnated
bonding sheet (prepreg), respectively. The notations of each
parameter are presented Table I.

In conventional industrial design flow, a designer usually
selects a combination of design parameters and uses a com-
putationally expensive electromagnetic (EM) field simulation
software to evaluate the selection [8]. An experienced designer
has an understanding of the physics of transmission lines, and
how the parameters affect the system’s individual performance.
For example, the impedance of the transmission line is the
root of inductance over capacitance. As the metal trace width
increases, the capacitance of the transmission line increases,
leading to a decrease in impedance. However, it is hard to see
the second-order effect of these parameters, and how it exactly
affects the multiple system requirements. Software EM solver
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TABLE I
NOTATIONS OF STACK-UP PARAMETERS

Physical Dimensions
w width
H height
S spacing between differential signals
D
E

distance between two differential pairs
etch factor (represent the trapezoidal shape)

Material Properties

Df dissipation factor
Dk dielectric constant
o conductivity

R surface roughness

tool based on integrated channel analysis tool (ICAT) [9] is one
example. It takes about 1 min to compute performance metrics
for each layer of the stack-up design, and varies depending
on the machine resources at hand. The designer evaluates
the simulation result against the system’s requirements, which
include matching differential impedance, minimizing inser-
tion loss, and minimizing near-end and far-end cross-talk.
Optimization of stack-up design is a time-consuming task
that requires a number of iterations of simulations by trial-
and-error. Furthermore, designers’ reliance on heuristics and
intuition can cause them to overlook nonintuitive solutions.
Our studies show that manual stack-up designs often result
in inferior quality, especially when facing tradeoffs between
different performance metrics. In this work, we propose an
automated and efficient stack-up design framework that can
significantly reduce manual efforts and turnaround time while
producing improved solution quality.

B. Hyperparameter Optimization

HPO searches for the best set of parameters in an
optimization problem that is costly to evaluate in general. In
general, an HPO aims to obtain a parameter set X as shown in

x* = argmin f(x) (D
xeX

where x denotes the hyperparameters and f(x) is the objec-
tive function to be minimized. Unlike traditional optimization
problems, the objective functions in HPO are usually non-
convex and nondifferentiable, which blocks the adoption of
many optimization techniques. Meanwhile, the evaluation time
for f(x) is often non-negligible, which imposes a higher
requirement on sampling efficiency on HPO algorithms.
There have been several existing methods that target the
HPO problems, including [10]. Grid search and random search
are two simple approaches. Their search schemes do not
leverage the evaluated records, so the sample efficiency is usu-
ally low. Metaheuristic algorithms, such as genetic algorithms
and simulated annealing (SA), use a heuristic algorithm to
guide the randomized search process to improve efficiency.
In recent years, BO and its variants have become popular
with HPO [11]. BO is an iterative process that builds a sur-
rogate model to fit observed points into the objective function
and guides the exploration. An acquisition function is used to

balance exploration and exploitation. BO is often efficient but
hard to parallelize due to its sequential nature.

HPO has been used to tune parameters in design flow for
very large scale integration (VLSI) [12], [13], [14], [15], [16]
and field-programmable gate array (FPGA) [17]. It can also
be used to optimize the hyperparameters for individual stages,
such as placement [18], [19]. Besides tuning the parame-
ters, HPO is also adopted in solving the analog device sizing
problem. The automated analog sizing methods work on the
inverse design problem. Given target specifications, automatic
analog sizing treats design parameters, such as transistor
width, as hyperparameters and applies HPO to find the sizing
solution. There have been a variety of HPO search algorithms
applied to the analog sizing problem, including the genetic
algorithm [20], BO [21], and reinforcement learning [22].
Inspired by the analog sizing problem, we apply HPO to
automate the stack-up design in inverse optimization.

C. Inverse PCB Stack-Up Optimization: Problem
Formulation

The inverse PCB stack-up optimization process searches for
a set of design parameters that meet the system specifications
while optimizing a user-defined figure of merits (FoMs). In
science and mathematics, an inverse problem often refers to
estimating the unknown parameters inversely through mea-
surements. Similarly, our optimization scheme seeks to iden-
tify valid stack-up design parameters by obtaining information
about the target performance measurements.

Problem 1 (Inverse PCB Stack-Up Optimization): Given a
set of input search range S and a set of performance con-
straints C, solve the optimization problem and obtain the
stack-up design parameters as shown in

x* = arg min fFM(x)
X

subjectto x; € S;fori=1,...,d
fE@) =0forj=1,....k )
where x is a d-dimensional parameter vector, and S; denotes

the set of valid numbers for parameter x;. ffM is the FoM
function to optimize, S defines the input search space, and

fC€ denotes the performance specifications constraints. k is the

number of constraints in the problem.

III. ALGORITHMS

This section presents our ISOP+ framework and the
optimization of the inverse stack-up design. It shall be noted
that our framework is easily extensible to other advanced pack-
aging designs that require stack-up design and optimizations.

A. Overall Flow

The ISOP+ offers an automated and effective framework
for inverse stack-up design optimization tasks. The goal of
the inverse stack-up design optimization is to determine the
best combination of design parameters for each layer in
a PCB’s stack-up. The optimized final design must meet
a specified performance metric, as well as comply with
performance specifications and constraints. The evaluation
of both performance metric and constraints are nontrivial.
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Fig. 3. Overall flow of ISOP+ framework.

Traditional manual design flow relies on an engineer’s expe-
rience and trial-and-error approach using slow simulations to
optimize a stack-up design. ISOP+ provides a faster, more
reliable, and more practical alternative.

The ISOP+ framework solves the inverse PCB stack-up
optimization by incorporating a discrete domain HPO and gra-
dient descent. Fig. 3 shows an illustration of the overall flow.
It takes four categories of inputs, an FoM function (ff°M), a
set of performance output constraints (fOC), a set of param-
eter search spaces (S), and a set of design parameter input
constraints (f1€). fFM and fOC are related to the performance
metrics, and S and fC are related to the input design parame-
ters. The output of ISOP+ is the design parameters for stack-up
design. The optimization process contains three stages: 1) early
global search exploration; 2) local exploration; and 3) later can-
didate roll-out. The first stage samples the parameters globally
to explore the search space and shrink it. We utilize a discrete
domain HPO method and ML surrogate model to effectively
explore the different local minima in this stage. The second
stage selects a small number of samples from the constrained
search space from the previous stage and refines them through
local optimization. This stage utilizes the gradient approxima-
tion available through the ML surrogate model and employs
gradient descent to the samples, allowing for quick fine-tuning
of multiple local minima. The last stage of candidate roll-out
then chooses the final optimal stack-up designs.

Algorithm 1 illustrates the procedures of our ISOP+ frame-
work in detail.

1) Global Search Space Exploration (Lines 1-8): Our
stack-up problem is a nonconvex optimization that con-
sists of multiple local minima solutions rather than a sin-
gle global minimum. As a result, it is crucial to compre-
hensively investigate various favorable points throughout
the entire design space during the global optimization
phase. First, we encode the initial search space and
input parameter values to binary values (lines 1 and 2).
Then, the search space is iteratively reduced to eliminate
stack-up parameter space that is not ideal (lines 3-7).
The optimization process is guided by the optimization
objective function g(-), which is devised to incorpo-
rate fF°M, fOC and fI€. Furthermore, to facilitate the
search space exploration, g(-) is adaptively adjusted
as the search space narrows (line 6). We intend to
obtain more samples and rapidly reduce the search space
in a tradeoff of some accuracy. Instead of conducting
time-consuming EM simulations, the performance met-
rics are estimated by sampling from an ML surrogate

Algorithm 1 ISOP+
Input: /M), f1€0). 19°0). S
Output: cand_num combination of x*
I: Encode X and S to binary domain \
2: search space T(x) < S
3: for i < 1 to iter_num do
4:  Take g random sample x? from T'(x)
5.  T(x) < UpdateSpace(T(x), x4, g(M(-)))
6
7
8
9

A

1)
g(-) < UpdateWeights(x?, g())
: end for
: Take p sample x” from T(x) using Hyperband )
: Decode x and S to decimal domain
10: for i < 1 to epoch_num do
11: xP < AdamOptimizer(xP,
12: end for
13: for i < 1 to cand_num do
14.  X; < RoundToValidDiscretevValue(x?)
150y < g(M(x)
16: end for

2 ())) 2)

model M (+) to evaluate g(-). Finally, several samples are
selected from the reduced search space (line 8).

2) Local Exploration (Lines 9—12): During this stage, the
solution candidates from the previous stage are further
fine-tuned, taking advantage of the gradient approxima-
tion provided by the ML surrogate model. This gradient
descent-based method excels at exploring neighboring
points that offer improvements over the current solu-
tion with fast speed. To begin this stage, we decode
our binary search space and design parameter candi-
dates to decimal domain to apply the gradient descent
algorithm on continuous domain (line 9). We employ
the selected samples as initial points for stochastic gra-
dient descent-based local optimization using the Adam
optimization algorithm, also employing the ML surro-
gate model (lines 10-12).

3) Candidate Roll-Out (Line 13—-16): After local refine-
ment of the search space, we roll out cand_num design
candidates. In this stage, we ensure that design param-
eters are valid by rounding to the nearest valid discrete
values (line 14). Then, we further evaluate them with
accurate EM simulations (M(-)) and choose the final
solution based on an objective function g(-) (line 15).
Function g(-) is devised to incorporate our ultimate
optimization goal, ff°M and fOC. ISOP+ can generate
multiple design candidates (cand_num) ranked by FoM
in the roll-out stage if specified by the user.

The rest of the section presents details on the ISOP+

framework algorithm’s key components.

B. HPO Search Algorithm—Global Exploration

ISOP+ adopts and adapts the Harmonica algorithm [23]
in the exploration of the global search space. By leverag-
ing Harmonica, the parallelized evaluation of design con-
figurations is possible, and we can ensure the optimization
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task remains within the constrained discrete search space.
Harmonica is a spectral approach to discrete domain HPO
that is predicated on the notion that the objective function can
be represented by a combination of sparse and low-degree
Fourier polynomials. The algorithm utilizes the polynomial
sparse recovery (PSR) subroutine to gradually reduce the
search space. Equation (3) represents a simplified version of
Harmonica’s PSR subroutine

PX) =D e (x) 3)
q
subject to arg min : Z(Z oo (Xi) — .7-'()(,-))2 }
¢ i=1

where c1, ..., ¢t is the indices of the most significant £ com-
ponents of the Fourier coefficients «, and F(-) denotes the
objective function, which is g(-) in our task. x is binary vector
of size n represented in {—1, 1}". This approximation method
can efficiently reconstruct the objective function by observing
limited randomized samples with several iterations [24]. The
Harmonica algorithm observes ¢ random samples of F(x;) in
each iteration. By solving sparse polynomial regression using
PSR subroutine, it chooses the significant bits for x* based
on a polynomial approximation p(x). Each iteration selects a
random ¢ set of variable combinations x; from the reduced
search space and further evaluates them with the performance
models.

The proposed HPO search algorithm allows for efficient par-
allelized sampling and evaluation of design parameters in the
ISOP+ framework. In each iteration, a large number of ran-
dom sets of design parameters are sampled over the search
space in batch. These candidate parameter sets are evaluated in
parallel by the ISOP+ framework using the objective function.
Then, they are incorporated into a simple linear regression
method to approximate a polynomial to fit the optimization
objective function. In comparison to typical sequential HPO
algorithms, such as BO, the suggested parallelized method,
enables us to observe and obtain more samples within the
same runtime budget, resulting in improved optimization out-
comes. This parallelized nature of the method enables faster
convergence and is beneficial for the task with a very large
initial search space.

The Harmonica algorithm can in-situ optimize over a con-
strained and discrete parameter search space. A discrete
domain consists of a finite or countable number of values,
while a continuous domain consists of an uncountable num-
ber of real values. When the optimization task is carried out in
a discrete domain, there are fewer possible solutions to con-
sider, which can simplify the search for the global optimum.
In addition, in the context of stack-up design, design parame-
ters are constrained to discrete values and specific ranges due
to material and technology selection limitations. Therefore,
by assuming a discrete search space for our problem, we
can ensure that no loss of information happens during the
optimization process. The granularity or resolution of each
parameter can be incorporated as parameter increment step
size. In ISOP+, we translate the entire discrete search space
S to a binary search space 7'(x), and we directly choose the
design configuration from this encoded space. For example,

for a decimal representation of a design parameter x(jg), the
binary domain representation x(2y will be as shown in

X — X
X)) = ToBinary(%) 4)

where [xz, xy] is the defined parameter range and dx is the
parameter increment size. The number of bits assigned for
each parameters can be represented as logy([(xy — xr)/dx]
4+ 1), and this information is used to map each design choices
to a binary value. In binary space, each parameter is repre-
sented by a limited number of bits; therefore, the variables are
certain to be within the search space S. The such property ben-
efits the overall efficiency of the global optimization process
by avoiding explorations with invalid design parameter values.
In our implementation, the final iteration of the Harmonica
algorithm is followed by the hyperband algorithm [25] to
select several design parameter candidates for further eval-
uvation in the local optimization phase. Hyperband is a
bandit algorithm that balances random exploration versus
informed exploitation when given a limited sampling bud-
get B. Compared to the BO approach, it is fast in speed by
doing random searches through adaptive resource allocation
and early stopping. It randomly selects a set of parameter
configurations, n, and evaluates them using different resource
budgets. In the iterative process, the algorithm discards the
worst-several cases and allocates more resources in the promis-
ing configuration set. If allocating the uniform budget B/n over
all configurations, deciding n becomes a problem of tradeoffs.
The hyperband algorithm adaptively allocates resources by
considering several possible values of n for a fixed B, in a grid
search-manner. Our experiments have shown that this sampling
method outperforms the naive random sampling approach.
The chosen samples from this global optimization are then
optimized further in the subsequent optimization procedure.

C. Gradient Descent—Local Exploration

We optimize further by performing gradient descent on
selected solution candidates. The global optimization process
aims to reduce the search space and find an approximate solu-
tion close to the true optimal. The local optimization task then
seeks to refine the solution candidates by examining samples
in the vicinity of each solution candidate. In Harmonica’s step,
encoding each possible parameter value as binary can be ben-
eficial for optimization tasks to stay within the constrained
design space, especially since the sizeable initial space is con-
sidered. However, this can pose a limitation when working
with values close to the boundaries of the binary domain. For
example, in a continuous domain, there is a difference of 1
between the values 31 and 32. However, it will appear as all
bits flipped in their 5-bit binary representation (5’b01111 and
5’b10000). Hence, it is necessary to inspect the sample points
further to optimize locally in a continuous domain.

We need to consider conversions between discrete and con-
tinuous domains to utilize gradient descent. First, prior to the
gradient descent stage, solution candidates are converted back
to decimal form (Algorithm 1 line 9), following:

X(10) = ToDecimal(x(z)) X dx + xp. ®))
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Then, once the gradient descent process is complete, we
round the parameter values to the nearest discrete val-
ues (Algorithm 1 line 14) as shown in

final x = dx x Round()%). (6)

This process ensures that our final solution configurations are
valid discrete values. While this might cause some loss in
accuracy, it is negligible in the context of local search. We have
the ability to control the learning rate and epoch number of the
gradient descent algorithm. This ensures that the optimization
process does not excessively fine-tune the parameters to the
extent that the changes become insignificant when rounded to
the nearest discrete values.

A stochastic gradient descent-based Adam optimizer [26] is
employed to refine the candidate samples. Adam optimizer is
a widely used optimization algorithm for training deep learn-
ing models for its ability to reach good results at a fast speed.
To construct an optimizer that is suitable for our problem,
we directly input our design parameter X into the optimizer.
This enables the optimizer to compute the gradient for each
design parameter and adjust them in a way that minimizes
the loss. Additionally, we include the typical hyperparameters
for the gradient descent algorithm, such as learning rate. The
p best-candidate samples obtained from the previous global
optimization stage serve as the initial point of one batch. We
use the trained ML surrogate model and the objective func-
tion g(-) as loss function to evaluate the samples. The Adam
optimizer calculates the gradient and attempts to improve the
average loss of the whole batch. The local optimization stage
concludes by selecting cand_num design configurations for the
candidate roll-out stage, where they undergo evaluation using
real EM simulations.

D. ML-Based Surrogate Models

The ML-based surrogate model is used to replace the expen-
sive EM simulation in the exploration stage to accelerate the
optimization process. The optimization procedure requires fre-
quent performance evaluations of different design parameters.
Relying on the slow EM simulations makes the HPO process
and gradient descent slow and limits the number of samples
we can afford. To address this issue, we use a fast ML-based
surrogate model to increase the number of samples the search
algorithm can observe within the available runtime budget.

Building our ML surrogate models is essentially a regres-
sion problem with tabular features. Our dataset contains 90k
unique stack-up design combinations, of which 80% are used
for training and 20% for testing. The data is collected using an
industry-standard simulation tool based on ICAT [9]. We ran-
domly query the data over the wide range of each parameter
set by the designers. The design parameters and ranges repre-
sent a large solution space, 10%°. While the training dataset is
equivalent to only 7 x 10723% of the entire search space, our
ML surrogate model empirically results in satisfying accuracy
and can guide our search space exploration effectively.

We select the structure of 1D-convolutional neural
network (CNN) model [27] for our surrogate model.
Conventionally, CNN is used for image and video processing

Common
CNN
Structure

i AES:

[x15) (1x16384) [2048x8)

Fig. 4. Simplified structure of 1D-CNN [27].

tasks due to its efficiency in capturing local input patterns by
considering spatial structure associativity of the data. Suppose
a CNN is applied to a tabular dataset. In that case, it assumes
a correlation between each tabular feature, and the ordering
of the features impacts the model accuracy. However, it is
hard to define the correct locality correlation of features in a
tabular dataset, such as our stack-up dataset. ID-CNN sug-
gests the preprocessing layer of reordering and reshaping to
find the correlation of the features before processing to the
CNN layers, as shown in Fig. 4. Before the typical convo-
lutional layers are initiated, the tabular features are passed
through a fully connected layer. This procedure generates the
new features as a linear sum of numerous original features,
expanding the feature dimension. Then, the feature vector is
reshaped to form the 3-D image format. In this manner, signals
with a large number of possible orderings of distinct charac-
teristics are generated before passing through the fundamental
CNN model. Consequently, we utilize the CNN structure by
intentionally generating a signal suited for CNN.

Utilizing 1D-CNN, we train one multioutput model to
predict impedance, signal loss, and near-ended cross-talk.
By using a single multioutput model rather than construct-
ing individual models for each, we allow outputs to share
information and have complex interactions that can only be
handled by structured inference. Also, it is computationally
more efficient than training and maintaining multiple sin-
gle models, providing unified prediction rules and reducing
the training time. We utilize the model as a proxy; there-
fore, it must produce accurate predictions within an error
margin relative to the actual value. Mean average percent-
age error (MAPE) is used as the primary evaluation metric
to train the models for impedance and loss, and symmet-
ric mean absolute percentage error (SMAPE) for cross-talk
as it could have zero values. There are a variety of regres-
sion methods, including XGBoost [28], decision tree regressor
(DTR), gradient boosting regressor (GBR), polynomial lin-
ear regression (PLR), random forest regressor (RFR), support
vector regressor (SVR), and multilayer perceptron regressor
(MLPR) [29]. The comparison study of the different models
and their accuracy is presented in Section IV-B.

E. Optimization Objective Function

We introduce an objective function g(-) for optimization in
the early global search space exploration stage. The inverse
stack-up optimization problem is to minimize fF°M while
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honoring the constraint f1€ and fOC. However, directly solving
the constraint problem is difficult and inefficient. Evaluation
of fFoM and fOC requires querying from performance mod-
els, which requires computational resources. A naive approach
ignores the constraints in the exploration stage and filters
out the invalid results at the last stage. This blind search
space exploration could result in unnecessary computation that
violates the constraint and produces a poor-quality solution.

In this work, we propose to relax the constraints into
the penalties in the optimization objective function, g(-), to
guide our optimization task appropriately. Consequently, our
problem statement becomes

*

X" = arg min g(x) @)
xeX

g0 = YowfM fFMe 3 w00 00 ()
i j
where j;_OC (x) = max(M;(x) — fi+, 0).

The ]S-OC becomes a clip function for constraints. For
instance, one may wish to give a constraint for impedance such
that it has an acceptable tolerance range, Zt, of the charac-
teristic impedance Z,. The constraint function will become
f£(x) = max(|Mz(x) — Z,| — Z+,0). Note that the input
parameter constraint f'C will be discussed further in the next
section.

We further smooth g(-) into our objective function g(-). In
the HPO search scheme, the Harmonica algorithm approxi-
mates a polynomial function to guide the search space reduc-
tion. Directly modeling the nondifferentiable function g(-)
is empirically inefficient and inaccurate. A smooth objective
function would enable more searches at the border. Therefore,
we enhance the performance of our HPO algorithm and locate
local and global optimal points more efficiently. We suggest
a smoothed approximation of the maximum function using
the double sigmoid functions, g(x). S(-) indicates a sigmoid
function

i J

where

700 = (3 #00 = fx ) + (=3 0 = fiz ). ©)

Our framework utilizes both g(-) and g(-). Fig. 5 gives a
comparison between the two. We can adjust g(-) furthermore
by giving control parameter y. While g(-) is utilized for the
ML surrogate model to help better navigate the search space,
g(+) is used in the later roll-out simulation stage, as this is our
ultimate objective. The parameter y influences the steepness
of the constraint factor, as demonstrated in Fig. 5. When the
tolerance factor f+ is of a tight region, we want our slope to be
steep so that the boundary between values within and outside
the restriction is more easily distinguishable. Therefore, we
empirically determine the control parameter y to be 1/fj+ in
the experiments.

F. Input Parameter Constraint

Input parameter constraint '€ is applied to establish inter-
dependence between parameters and constrict the parameter

M; (%)

Fig. 5. Functions g(-) and g(-) with different y.

space further. Another consideration when optimizing a design
is to see the effect when given a limited physical design space.
For instance, we may want to restrict the total horizontal length
of a differential stripline. If no input parameter constraints are
imposed, we will adjust the range of individual parameters,
such as W;, D;, and S;. However, this results in a manually
limited search space, and the optimization task will have to
find the best solution within this space rather than considering
the compromise between parameters. Therefore, by adding the
input parameter constraint to objective function g(-), we can
achieve greater control over the optimized design.

We combine the input parameter constraint f'C to the
objective function g(-) as shown in

g(x) — Z WZFOM ’f;'FOM (X)

+ Y WP Y Wi ). 0
J k

The f'C term can be represented as a clip function

[E®0) = max(ye(x) — Ay, 0)
where the constraint is yx(x) < Ag.

(1)

The function yx(x) is a first-order polynomial of x. For
example, to establish an upper limit A; for the horizontal
dimensions W; and S; of the stack-up design, the following
equation can be used: y1(x) =2 x W; 4+ §;. The optimization
process is controlled through the use of clip functions which
make the design go against the direction of violation as it
increases. This input constraint does not need to be evalu-
ated by an ML surrogate model or simulation, and it does
not require a smooth function, unlike the output constraint
fOC. The outcome for the objective function when the input
constraint is incorporated can be found in Section IV-D.

G. Adaptive Weight Adjustment

We actively tune the weight w'C and wOC with respect

to weight wf°M to help guide the optimization task more
effectively. Incorrect weight settings may result in poor
optimization. If the constraint factors are weighted too high, it
may hinder the efficient exploration of the area that best opti-
mizes our ultimate objective. Alternatively, if the constraint
factors are given insufficient weight, we may obtain mean-
ingless results that violate the constraints. As the optimization
process progresses, weight factors must be modified to account
for the shrinking search space. Therefore, it is necessary to
use the information gained from each iteration of the HPO
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Algorithm 2 update_weights()
Z(fcfwcmax)

total_sample_num
2: if constraint_valid_ratio > S then

min(wFoM x FoM(x))
f

1: constraint_valid_ratio =

3w <« max((1 — B)w,
4: end if

max

search process to actively adjust and balance the weight of
each factor.

Algorithm 2 presents the weight adjustment algorithm. Our
HPO algorithm provides a batch of a new sample every
iteration, allowing us to observe these random samples’ statis-
tics to help navigate the weight adjustment. First, we determine
the proportion of randomly gathered samples that satisfy the
constraint (line 1). When we determine that the ratio g is suf-
ficient, we reduce the weights for the constraint factor (lines
2-4). However, there is a lower limit to the weight; if there is
no lower bound, the weight could vanish, and the constraint
could be ignored. Consequently, we use a clip function in
which the minimum weight cannot be less than the minimum
of FoM term. Cp,x represents the boundary condition of the
acceptable regions for fOC(x) and f1€(x). Cmax is fOC (—f/7)
and JHC(O), respectively, for output and input constraints. In
the experiment, we empirically choose 8 as 0.2. The output
constraint factor foc(x) is guaranteed to be (0,2) because
they are represented as a sum of two sigmoids. Also, our
fFoM term, which is mostly L for our experiments, is desir-
able to be (—1, 0]. Therefore, we empirically choose the initial
weight of each factor, wFoM ,0C “and wi€, as the same. The
active weight adjusting continues throughout the HPO process,
and the final weight values are utilized as fixed values in the
subsequent gradient descent stage.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for the ISOP
framework to prove its effectiveness and reliability. All the
algorithms, the proposed and baselines, are implemented in
Python and executed on a Linux machine equipped with GPU
support. The final performance measurements are validated
using EM simulations on a Windows machine. We first eval-
uate the effectiveness of the proposed inverse optimization
method in Section IV-A in comparison to the baseline meth-
ods. We employ the same ML surrogate model across all
methods to focus on evaluating the impact of different methods
on overall optimization performance. Section IV-B provides
the accuracy evaluation of our ML-based surrogate model.
Section IV-C gives the comparative analysis of the various ver-
sions of ISOP. The method ISOP [30] differ from the proposed
method in two key aspects, 1) the overall optimization tech-
niques and 2) the ML surrogate model. This section highlights
the specific contribution of ISOP+ in these two aspects
to attaining positive improvements in overall performance.
Finally, Section IV-D contains a comparative study between
the ISOP-generated and the manual stack-up design.

TABLE II
DESCRIPTION OF EACH EXPERIMENT TASKS

" FoM 1 200 Z, | Z+ | NEXT, | NEXT+
Task s @ | @ | mv) | mv)
Ti ARG 8 | 1 - 5
T2 (Y2 100 | 2 5 -
T3 {L1/{Z, NEXT} | 8 | 1 0 0.05
T4 || {L+2 NEXT}/{Z} | 85 | 1 - -

A. Evaluation of the HPO Framework

This section presents the experimental results of the compar-
ison between the proposed framework and other optimization
techniques, including SA and BO. All techniques employ the
same ML surrogate model to evaluate the performance of the
solution candidate samples in the global and local optimization
stage. Additionally, we use objective function g(-) with the
same initial weights. We further adjust the run setting of the
SA and BO to match either the runtime (denoted as “—17)
or the number of observed samples (denoted as “—2”) of
the proposed ISOP+. For example, SA-1 refers to the SA
algorithm that has a runtime comparable to that of ISOP+,
while SA-2 refers to a scenario where the number of sam-
ples observed is comparable to that of ISOP4-. All tasks are
terminated after 1000 s, and the results are reported at the ter-
mination. The BO algorithm is slow in the experiments due to
its sequential process, and BO-2 experiments are terminated
earlier.

Our BO implementation utilizes Optuna [31], which pro-
vides a simple and efficient implementation of BO. Optuna
focuses on the tree-structured Parzen estimators (TPEs) algo-
rithm instead of relying on Gaussian processes as its under-
lying surrogate model. It uses kernel density estimations
to model the probability distribution of the objective func-
tion, making it computationally efficient for high-dimensional
optimization problems. To maximize the number of BO iter-
ations to achieve high-quality results, we adopt a sequential
approach by evaluating a single sample each iteration. For SA
implementation, we implement our own. The algorithm begins
by randomly selecting an initial solution and then explores
the search space iteratively by randomly selecting neighboring
solutions. If a neighboring solution proves to be better than the
current solution, it is accepted as the new solution. However, if
the neighboring solution is worse, it can still be accepted with
a certain probability. This allows the algorithm to explore dif-
ferent search space regions and increases the chance of finding
the global optimum. In our implementation, this probability
is decided by comparing exp([cost — new_cost]/temperature)
and randomly generated number between [0.0, 1.0). The tem-
perature decreases linearly as the iteration progresses.

The experiment conducts optimization tasks with four dif-
ferent user objectives (FoM) and constraints as described in
Table II. Z is differential impedance, |Z,| is the transmis-
sion line’s characteristic differential impedance, and Z4 is the
acceptable tolerance of |Z —Z,|. L is differential insertion loss
at 16 GHz in dB/inch. NEXT is the peak near-end differential
cross-talk in mV. |NEXT,| and NEXT+ = |NEXT—NEXT,| are
the target and acceptable tolerance, respectively, when NEXT
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TABLE III
DESIGN SPACE PARAMETER RANGES AND INCREMENTS FOR EXPERIMENTS (S, S, S’1), AND TRAINING DATASET

Param S Sy S’y Training Dataset
T — Ty dx case/bits T — Ty dx case/bits T — Ty dx case/bits T — Ty dx
A 2-5 0.1 31/5 2-10 0.1 81/7 2-10 0.1 81/7 1-29 0.5
St 2-10 0.5 17/5 2-10 0.5 17/5 2-10 0.5 17/5 1-64 0.5
Dy 30-40 5 3/2 15-40 5 6/3 15-40 5 6/3 1-100 1
E; 0-0.3 0.05 713 0-0.3 0.05 713 0-0.3 0.05 73 0-0.7 0.1
H; 0.6-1.5 0.1 10/4 0.6-1.5 0.1 10/4 0.6-1.5 0.1 10/4 0.3-3.9 0.1
H, 2-8 0.2 31/5 2-10 0.2 41/6 2-10 0.2 41/6 1-40 1
H, 2-8 0.2 31/5 2-10 0.2 41/6 2-10 0.2 41/6 1-40 1
o 3.8e+7-5.8e+7 | le+6 21/5 3.0e+7-5.8e+7 | le+6 29/5 3.8e+7-5.8e+7 | le+6 21/5 3.0e+7-5.8e+7 | le+6
R; -14.5-14 0.5 58/6 -14.5-14 0.5 58/6 -14.5-14 0.5 58/6 -14.5-14 0.5
Dk, 2.5-4.5 0.05 41/6 2-5 0.05 61/6 2.5-4.5 0.05 41/6 1-7 0.1
Dk, 2.5-4.5 0.05 41/6 2-5 0.05 61/6 2.5-4.5 0.05 41/6 1-7 0.1
Dk, 2.5-4.5 0.05 41/6 2-5 0.05 61/6 2.5-4.5 0.05 41/6 1-7 0.1
Df; 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.0001-0.1 0.0001
Df. 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.0001-0.1 0.0001
Df, 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.001-0.02 0.001 20/5 0.0001-0.1 0.0001
7.14 x 109 (279) 2.97 x 1021 (27) 6.53 x 1020 (27) 1.31 x 10%°

is considered as constraint. T3 and T4 incorporate NEXT to
observe scenarios with more than two objectives. In addition,
we conduct the experiment under the two different design
search spaces S and S; as illustrated in Table III. The last
row presents the size of each search space. The design space
S1 has solution space of 273 but contains the total num-
ber of 7.14 x 10'° valid cases. This discrepancy exists from
generating invalid cases when mapping the possible cases to
certain bits. During the optimization algorithm, we address
this issue by evaluating the invalid cases and excluding from
the performance evaluation. The design space S considers a
larger space that includes Sj.

To ensure the reliability of the approaches, we conduct
repeat trials under the same conditions ten times. The final
results are collected for each trial by running three EM simu-
lations on the candidate selected by the ML surrogate model
and HPO algorithm. It is important to note that the average
runtime reported in the tables incorporates both the algorithm
time and the EM simulation time. The average EM simulation
time is 45.5 s for three EM simulation run in parallel. The suc-
cess rate is determined by the number of trials where a solution
satisfying the constraints is discovered. The better-final result
is indicated by a lower ff°M. Improvement of ISOP+ in the
table represents the FoM improvement of ISOP+ over each
method and is calculated as

FoM
ISOP+

FoM

method
FoM
method

M Impv. of ISOP+ = 100 x (12)
Therefore, any positive number presents a positive percentage
improvement of ISOP+ over the other method.

Table IV compares average performance statistics for each
method for T1 and T2. T1 and T2 are designed to evalu-
ate the performance under the same design objectives with
varying values, i.e., minimize L for varied Z, and Z;. We
observe that ISOP+ achieves better efficiency and reliability
in finding minimum points in all cases. For the SA approach,
the success rate for T1/S; did not reach 100% when a larger
number of samples were observed compared to ISOP+ (SA-1).
Additionally, despite the longer runtime and increased number

of sample observed in SA-2, ISOP+- consistently outperformed
SA by a maximum of 2.2% for all tasks. Compared to BO,
ISOP-+ achieves at most 30.8%, 33.6%, 32.7%, and 39.9% bet-
ter performance for each task space. The results for S show
that when the initial search space is larger, ISOP+ greatly out-
performs compared to BO. This is because ISOP+ operates
at a much faster pace, preventing slow BO from producing
satisfactory results.

Table V presents the result comparison of each method on
T3 and T4. T3 and T4 have the same constraint for Z as
T1; however, they include NEXT in the metric as a constraint
and FoM, respectively. T3 result shows that SA and BO both
fail to find a viable solution as the search space becomes com-
plex with NEXT involved as a constraint. ISOP+ demonstrates
performance improvement of up to 19.1%, 55.2%, 5.8%, and
32.7% for each task and space, when given fewer resources
compared to SA. Compared to BO, ISOP+ achieves better-
FoM performance under similar runtime by 28.0%, 42.5%,
29.4%, and 40.6%, and also offers better-FoM performance
with significantly less runtime. ISOP+ produced a lower-
standard deviation for FoM metrics (L and NEXT), indicating
that it is more reliable at finding good solution than other meth-
ods. The results for S, indicate that ISOP+ performs better for
all tasks when the initial search space is large. Furthermore,
ISOP+ shows greater performance improvement in T3 and
T4, compared to T1 and T2. This suggests that ISOP+ excels
at finding good solutions as the solution space becomes more
complicated with more objectives and constraints to consider.

B. Evaluation of ML Model Accuracy

We experiment with several basic regression models with
cross-validation and including multiple iterations with HPO
methods. The basic regression models we implemented
includes DTR, GBR, PLR, RFR, SVR, XGBoost [28], and
MLPR. As shown in Table III, we use the training dataset
with a design space significantly larger than our target spaces,
S1, Sy, and 8’1. The 15 design parameters shown in the table
are selected based on their impact on Z, L, and NEXT. Their
ranges are decided based on the specification provided by
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TABLE IV
EXPERIMENT RESULT COMPARISON FOR T1 AND T2 FOR SEARCH SPACE S| AND Sy

Task Success. Ave. Ave. AZ L Impv. of
/ Method rate run sample fFeM | ISOP+
S (succ./total) | time (s) seen mean | stdev | mean | stdev (%)
SA-1 9/10 81.98 16800 0.379 | 0.101 | -0.446 | 0.000 | 0.446 2.2
SA-2 10/10 88.11 19981 0.384 | 0.073 | -0.446 | 0.000 | 0.446 2.2
T1/S; BO-1 10/10 >1000 3039 0.459 | 0.079 | -0.495 | 0.001 | 0.495 11.8
BO-2 10/10 86.64 454 0.474 | 0.083 | -0.630 | 0.010 | 0.630 30.8
ISOP+ 10/10 73.04 16754 0.570 | 0.030 | -0.436 | 0.000 | 0.436 -
SA-1 10/10 82.67 16750 0.738 | 0.038 | -0.303 | 0.000 | 0.303 1.0
SA-2 10/10 86.35 18938 0.394 | 0.031 | -0.302 | 0.000 | 0.302 0.5
T1/S, BO-1 10/10 >1000 2988 0.401 | 0.077 | -0.343 | 0.001 | 0.343 12.6
BO-2 10/10 87.19 425 0.540 | 0.096 | -0.452 | 0.002 | 0.452 33.6
ISOP+ 10/10 83.05 16675 0.428 | 0.111 | -0.300 | 0.000 | 0.300 -
SA-1 10/10 81.69 16750 0.311 | 0.024 | -0.380 | 0.000 | 0.380 1.5
SA-2 10/10 87.45 18538 0.256 | 0.016 | -0.375 | 0.000 | 0.375 0.2
T2/S; BO-1 10/10 >1000 3049 0.544 | 0.202 | -0.410 | 0.000 | 0.410 8.8
BO-2 10/10 85.96 429 0.668 | 0.161 | -0.556 | 0.011 | 0.556 32.7
ISOP+ 10/10 77.73 16695 0.441 | 0.135 | -0.374 | 0.000 | 0.374 -
SA-1 10/10 83.07 16700 0.260 | 0.070 | -0.262 | 0.000 | 0.262 1.3
SA-2 10/10 90.78 20885 0.178 | 0.019 | -0.260 | 0.000 | 0.260 0.6
T2/S5 BO-1 10/10 >1000 2999 0.200 | 0.026 | -0.321 | 0.001 | 0.321 194
BO-2 10/10 90.47 458 1.001 | 0.319 | -0.431 | 0.010 | 0.431 39.9
ISOP+ 10/10 80.95 16691 0.449 | 0.044 | -0.259 | 0.000 | 0.259 -
TABLE V
EXPERIMENT RESULT COMPARISON FOR T3 AND T4 FOR SEARCH SPACE S| AND S)

Task Success Ave. Ave. AZ L NEXT Impv. of
/ Method rate run sample freM | ISOP+
S (suce Jrotal) | time (s) seen mean | stdev | mean | stdev | mean stdev (%)

SA-1 4/10 83.26 16800 || 0.473 | 0.056 | -0.489 | 0.002 | -0.010 0.000 0.489 7.8
SA-2 8/10 82.83 17973 || 0.410 | 0.070 | -0.558 | 0.019 | -0.010 0.000 0.558 19.1
T3/S; BO-1 6/10 >1000 3051 0.360 | 0.076 | -0.518 | 0.003 | -0.007 0.000 0.518 12.9
BO-2 7/10 85.35 430 0.686 | 0.097 | -0.627 | 0.007 | -0.007 0.000 0.627 28.0
ISOP+ 10/10 75.34 16754 || 0.486 | 0.128 | -0.451 | 0.000 | -0.008 0.000 0.451 -
SA-1 8/10 82.99 16750 || 0.524 | 0.113 | -0.691 | 0.286 | -0.008 0.000 0.691 55.2
SA-2 7/10 89.13 20325 || 0.274 | 0.079 | -0.575 | 0.012 | -0.013 0.000 0.575 46.2
T3/S- BO-1 4/10 >1000 2989 0.820 | 0.020 | -0.355 | 0.000 | -0.025 0.000 0.355 12.9
BO-2 3/10 92.44 455 0.250 | 0.023 | -0.538 | 0.019 | -0.013 0.000 0.538 42.5
ISOP+ 10/10 83.33 16716 || 0.418 | 0.039 | -0.309 | 0.000 | -0.018 | 0.000 sz | 0.309 -
SA-1 10/10 82.81 16750 || 0.270 | 0.018 | -0.467 | 0.000 | -0.006 0.000 0.479 5.8
SA-2 10/10 85.41 18151 || 0.550 | 0.089 | -0.460 | 0.000 | -0.001 0.000 0.462 24
T4/S; BO-1 10/10 >1000 3052 0.378 | 0.126 | -0.498 | 0.002 | -0.002 0.000 0.502 10.1
BO-2 10/10 89.17 429 0.448 | 0.108 | -0.633 | 0.004 | -0.003 0.000 0.639 29.4
ISOP+ 10/10 74.38 16708 (| 0.312 | 0.067 | -0.451 | 0.000 | 0.000 0.000 0.451 -
SA-1 10/10 82.75 16650 || 0.376 | 0.069 | -0.473 | 0.000 | -0.002 0.000 0.477 32.7
SA-2 10/10 99.61 24709 || 0.407 | 0.059 | -0.460 | 0.000 | -0.002 0.000 0.464 30.8
T4/Ss BO-1 10/10 >1000 2994 0.323 | 0.059 | -0.386 | 0.003 | -0.010 0.000 0.406 20.9
BO-2 9/10 99.71 515 0.376 | 0.077 | -0.490 | 0.004 | -0.026 0.000 0.541 40.6
ISOP+ 10/10 89.10 16600 || 0.435 | 0.103 | -0.305 | 0.000 | -0.008 0.000 0.321 -

the Institute of Printed Circuits (IPCs) and the current man-
ufacturing and fabrication capabilities. These 15 parameters
satisfy our aim to include the parameters engineers control
when designing a stack-up in a real-world industrial setting.

Table VI demonstrates that our 1D-CNN model outper-
formed other models in both MAE and MAPE for Z and L,
and sSMAPE for NEXT. We believe it is due to the complex-
ity of functions between design parameters and performance
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TABLE VI
EVALUATION OF TRAINED MODELS

ML Z L NEXT
Method MAE ‘ MAPE | MAE ‘ MAPE | MAE ‘ SMAPE
DTR 8.260 0.091 | 0.440 | 0.127 | 4.004 1.047
GBR 6.173 0.082 | 0.325 | 0.101 1.215 0.861
PLR 13.051 | 0.219 | 0.550 | 0.173 | 2.044 1.048
RFR 4.401 0.050 | 0.247 | 0.071 | 3.298 1.051
SVR 5.961 0.108 | 0.342 | 0.101 1.989 0.914
XGBoost 1.417 0.016 | 0.112 | 0.031 | 0.431 0.342
MLPR 0.459 0.006 | 0.053 | 0.016 | 0.203 0.442
lDizcs\]IN 0.321 | 0.004 | 0.035 | 0.011 | 0.219 | 0.306
Z [Q] L [dB/inch] NEXT [mV]
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Fig. 6. Predicted performance versus ground truth. (a) MLP Z. (b) MLP L.

(c) XGB NEXT. (d) 1D-CNN Z. (e) 1D-CNN L. (f) 1ID-CNN NEXT.

metrics that CNN is capable of modeling. Our 1D-CNN model
first extends the 15 features to 16 384 features using fully con-
nected layer. Subsequently, we reshaped these features into a
2-D structure (2048 x 8). This process introduces a spatial and
local correlation within the data. This approach proved bene-
ficial, particularly when dealing with sparse training datasets,
which accounted for only 7 x 10723% of the entire search
space. By incorporating the spatial and local correlation, our
ML model became better equipped to capture the intricate
relationships between the features. Furthermore, in our imple-
mentation, we use leaky ReLU [32] as activation function and
utilize dropout [33] to prevent over-fitting.

Fig. 6 illustrates the behavior of trained models for Z, L, and
NEXT. The first row presents the result for MLP model for
Z and L, and XGB model for NEXT, respectively, which are
used in ISOP [30]. The second row presents 1D-CNN model
for Z, L, and NEXT. The results demonstrate a strong correla-
tion between the predicted performance values and the actual
values, with the 1D-CNN model performing better than the
other models. The high accuracy of the ML models allows
us to accelerate the overall optimization flow by replacing
the time-consuming simulations. In the other evaluations of
the experiments, we choose the 1D-CNN model based on its
lowest MAPE and sMAPE.

C. Case Study: Comparative Analysis

We compare our ISOP+ result with the previous study
ISOP [30]. In our proposed method, we make improvements
to both the ML surrogate model and the inverse optimization
approach. Our ML surrogate model has improved by chang-
ing its architecture to 1D-CNN, and the inverse optimization
method is enhanced with automatic tuning of the objective
function and further optimization through gradient descent.
The previous study’s ML surrogate model is referred to as
“MLP_XGB,” while the new proposed model is referred
to as “1D-CNN.” We denote the previous study’s inverse
optimization method as “H,” and the new method as “H_GD.”
For a fair comparison, we also implement another version
where we use the improved ML surrogate model and the
previous study’s inverse optimization approach (H4-1D-CNN).
The scenario for “H_GD-+MLP_XGB” cannot be evaluated
due to the incompatibility of employing the gradient descent
algorithm on the XGBoost model. The XGBoost model uti-
lizes the gradient-boosted decision tree (GBDT) algorithm,
which trains multiple decision trees on different subsets of the
training dataset and subsequently combines them using gra-
dients. As a result, the XGBoost model is not differentiable
in the same way as neural networks, making it unsuitable for
applying gradient descent to the model “MLP_XGB.”

Tables VII and VIII present the detailed results of these
comparisons. Figs. 7 and 8 present the summary of the results.
The new proposed ISOP+ presents better FoM over all tasks
and search spaces with less runtime and number of samples
seen. Comparing “H+MLP_XGB” and “H+1D-CNN” reveals
that the change made to ML surrogate model bring slight
improvement compared to the previous study [30], but it also
resulted in a longer runtime due to the computational com-
plexity involved in evaluating a CNN model compared to MLP
and XGBoost models. In conclusion, the combination of the
improvement in the inverse optimization method and the ML
surrogate model leads to a better performance in terms of FoM,
along with a reduced runtime. Additionally, the new method
eliminates the need for manual tuning of the objective function
and the hyperparameters of the HPO method. This reduces the
amount of manual effort required to run the framework and
makes the result more reliable.

D. Case Study: Comparison With Manual Design and
Adoption of Input Constraints

To acquire a comprehensive understanding of the result
ISOP+ produces, we investigate one trial case and present
the best candidates in that trial. ISOP+ is able to complete
each task in a little over 1 min. As a comparison, we obtained
a manual result from an experienced designer. The designer
tries to optimize for loss when given the impedance target at
85  with the acceptable tolerance of 1 .

In the experiment, we utilize ISOP+ to solve each task
in two different ways: 1) in the search space S; without
any input parameter constraints and 2) in the search space
&S’y as illustrated in Table III with input constraints. Sy is
manually defined with limited parameter ranges to prevent
excessive horizontal width of the stack-up. On the other
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TABLE VII

EXPERIMENT RESULT COMPARISON FOR DIFFERENT ISOP IMPLEMENTATIONS FOR T1 AND T2

13

Task Method Ave. Ave. AZ L Impv. of
/ optim ML run sample freM | ISOP+
S technique model time (s) seen mean | stdev | mean | stdev (%)
H MLP_XGB 82.95 25323 || 0.633 | 0.069 | -0.445 | 0.000 | 0.445 2.0
T1/S, H 1D-CNN 85.09 25155 || 0.507 | 0.039 | -0.449 | 0.000 | 0.449 2.7
H_GD 1D-CNN 73.04 16754 0.570 | 0.030 | -0.436 | 0.000 | 0.436 -
H MLP_XGB 85.46 24971 0.374 | 0.118 | -0.345 | 0.000 | 0.345 13.1
T1/S2 H 1D-CNN 86.97 25822 || 0.444 | 0.039 | -0.310 | 0.000 | 0.310 33
H_GD 1D-CNN 83.05 16675 || 0.428 | 0.111 | -0.300 | 0.000 | 0.300 -
H MLP_XGB 88.74 25621 0.330 | 0.045 | -0.451 | 0.000 | 0.451 17.1
T2/S, H I1D-CNN 90.30 26037 || 0.286 | 0.056 | -0.393 | 0.000 | 0.393 4.8
H_GD 1D-CNN 717.73 16695 0.441 | 0.137 | -0.374 | 0.000 | 0.374 -
H MLP_XGB 82.89 24407 || 0.908 | 0.376 | -0.339 | 0.002 | 0.339 23.7
T2/Ss H 1D-CNN 95.34 25439 || 0.780 | 0.377 | -0.298 | 0.000 | 0.298 13.1
H_GD 1D-CNN 80.95 16691 || 0.449 | 0.044 | -0.259 | 0.000 | 0.259 -
TABLE VIII
EXPERIMENT RESULT COMPARISON FOR DIFFERENT ISOP IMPLEMENTATIONS FOR T3 AND T4
Task Method Ave. Ave. AZ L NEXT Impv. of
/ optim ML run sample ] ] ] freM | 1SOP+
S technique model time (s) seen mean | stdev | mean | stdev | mean | stdev (%)
H MLP_XGB 79.95 25781 0.537 | 0.102 | -0.504 | 0.001 | -0.013 | 0.001 | 0.504 1.6
T3/S; H 1D-CNN 86.17 24802 || 0.590 | 0.011 | -0.509 | 0.002 | -0.010 | 0.000 | 0.509 0.9
H_GD 1D-CNN 75.34 16754 || 0.486 | 0.128 | -0.451 | 0.000 | -0.008 | 0.000 | 0.451 -
H MLP_XGB 87.47 25123 || 0.517 | 0.069 | -0.360 | 0.000 | -0.035 | 0.000 | 0.360 14.0
T3/S, H 1D-CNN 91.60 25509 || 0.662 | 0.099 | -0.349 | 0.000 | -0.016 | 0.000 | 0.349 11.4
H_GD 1D-CNN 83.33 16716 || 0.418 | 0.039 | -0.309 | 0.000 | -0.018 | 0.000 | 0.309 -
H MLP_XGB 77.56 25797 || 0.584 | 0.012 | -0.458 | 0.000 | 0.000 | 0.000 | 0.458 1.6
T4/, H 1D-CNN 85.02 25761 0.474 | 0.090 | -0.451 | 0.000 | -0.002 | 0.000 | 0.455 0.9
H_GD 1D-CNN 74.38 16708 || 0.312 | 0.067 | -0.451 | 0.000 | 0.000 | 0.000 | 0.451 -
H MLP_XGB 91.58 25294 || 0.560 | 0.157 | -0.364 | 0.001 | -0.006 | 0.000 | 0.376 14.6
T4/S, H 1D-CNN 102.71 25601 0.450 | 0.044 | -0.356 | 0.000 | -0.005 | 0.000 | 0.366 12.3
H_GD 1D-CNN 89.10 16600 || 0.435 | 0.103 | -0.305 | 0.000 | -0.008 | 0.000 | 0.321 -
\ ! ! ! ! ! ! \
0.6 |- ’DD H+MLP_XGB ( [30]) 0o H+1D-CNN 0o H_GD+1D-CNN (ISOP+) ‘ B
S 05( |
S
ol W b *
03 | 1 ‘ ‘ [ Min Blm -
T1/5, T2/5, T3/5, T4/S5, T1/5; T2/S55 T3/55 T4/S,
Fig. 7. Comparison of FoM with different optimization methods and ML surrogate models.
110 ! ! ! ! ! ! ! !
3 100] ’D” H+MLP_XGB ([30]) 0o  H+ID-CNN [0  H_GD+ID-CNN (ISOP+) \ |
o 90| ] .
S O P ™ O | |
= 70 D‘I_l ‘ﬂ D‘ﬂ D‘l_l ‘H D‘ﬂ ‘H :
T1/5, T2/5, T3/5, T4/5, T1/S, T2/S, T3/5; T4/S,
Fig. 8. Comparison of runtime with different optimization methods and ML surrogate models.

hand, §’; encompasses S and has wider ranges for physical
dimension parameters W;, D;, H., and H,. By incorporat-
ing the input parameter constraints into Sy, we can ensure

that the horizontal dimension does not become overly large.
Consequently, the parameters Wy, S;, D;, H., and H, become
interdependent, and adjust to satisfy the constraints.
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TABLE IX
EXPERIMENT RESULT COMPARISONS WITH MANUAL DESIGNS OVER DIFFERENT TASKS

Method ‘

Design Parameters

| Objectives

Task H fFoM
(S/71CY \ wy S: D, E H ot R Dk, Dfy H. Dk. Df. H, Dk, Df, H Z \ L \ NEXT H
\ Tl \ Manual H 50 6.0 20 000 15 58e+7 -145 430 0.001 80 430 0.001 80 430 0.001 H 85.69 \ -0.434 \ -2.77 H 0.434 \
Ti \ ISOP (S;/No) H 50 65 30 000 1.5 58e+7 -145 450 0.001 6.2 450 0001 80 355 0.001 H 85.70 \ -0.434 \ -0.49 H 0.434 \
\ ISOP (S71/Yes) H 72 55 35 000 15 58e+7 -145 4.10 0.001 8.6 4.00 0.001 94 250 0.001 H 85.56 \ -0.361 \ -0.34 H 0.361 \
T3 \ ISOP (S;/No) H 50 50 35 000 1.5 58e+7 -145 450 0.001 50 285 0.001 50 255 0.001 H 85.72 \ -0.439 \ -0.01 H 0.439 \
\ ISOP (S'1/Yes) H 82 35 40 030 0.7 5.7e+7 -145 250 0.001 80 280 0.001 80 335 0.001 H 84.94 \ -0.425 \ -0.04 H 0.425 \
T4 \ ISOP (S;/No) H 50 6.0 40 000 1.5 58e+7 -145 250 0.001 4.6 450 0.001 64 250 0.001 H 85.74 \ -0.441 \ 0.00 H 0.441 \
\ ISOP (S71/Yes) H 79 40 35 030 1.5 58e+7 -145 250 0.001 7.0 250 0.001 7.0 255 0.001 H 85.07 \ -0.357 \ -0.06 H 0.477 \

The experiment conducts optimization tasks with three
different input constraints:

1) 2x Wi+ S; <20,

therefore, fllc =max(2 x W; + S; — 20, 0);
2) Di—5xH, <0,
therefore, f2IC = max(D; — 5 x H., 0);
3) D/—5xH, <0,
therefore, £i€ = max(D; — 5 x H,, 0).
The constraints are established to limit the base width of a
differential signal in a stripline structure. The first constraint
is defined to control the base width of a differential signal pair,
and the others determine the distance between differential pairs
relative to the height of the insulating layers. An experienced
designer in the industry defines these constraints to guarantee
appropriate stack-up designs.

Table IX presents the result of manual design and the
ISOP+ designs. The design parameter from T1 for &1 with-
out the input constraints achieves the same L value with better
NEXT than the manual, showing the ability of ISOP+ to find
nonintuitive solutions to design expertise. Furthermore, T1 for
&’ with the input constraints produces better L and FoM com-
pared to the manual design. Overall, the ISOP+ framework
produces an excellent stack-up design that outperforms the
manual. The result for T3 and T4 demonstrate that our frame-
work can also perform multiobjective optimization to balance
L and NEXT. By applying input constraints, we can guide
the optimization tasks more efficiently. We believe that as the
system becomes more dense and high-speed, the advantages
of our flexible framework will continue to expand to enable
global optimization over different performance metrics.

V. CONCLUSION

This article presents a novel framework, ISOP+, for
automating stack-up design for advanced package design. The
ISOP+ framework leverages an HPO search algorithm to iden-
tify the best-design parameters and optimize the performance
of each stack-up layer. An ML-based surrogate model is
used to accelerate the optimization process by replacing time-
consuming simulations. Experimental results demonstrate that
the ISOP+ framework can generate excellent design solutions
in a matter of seconds. The proposed methodology offers an
effective and efficient solution to automate the interconnect
design for future packaging technology.
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