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Abstract: This paper presents a reduced order model for describing the steady-state and
dynamic behavior of a single-winged samara seed pod undergoing autorotative descent. Blade
Element Theory is employed to capture the span-wise behavior of a samara. By neglecting lateral
motion of the center of mass and prescribing a roll angle, a simplified and compact model is
developed while retaining reasonable accuracy in comparison to experimental data published
in the literature. Steady-state results confirm the validity of assuming a small roll angle, which
helps reduce model complexity. Simulation of the dynamics yields reasonable transient behavior
and convergence to equivalent steady-state values. Accuracy of the reduced order model suggests
the plausibility of designing and controlling simple autorotative mechanisms.
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1. NOMENCLATURE

Coefficient of drag
Additional drag effects
Coeflicient of lift

Net force

Acceleration due to gravity
Moment of inertia

Mass

Net moment

Radial position

Blade radius

Vertical velocity of samara
Blade width

Local angle of attack
Pitch angle

Tip speed ratio

Air density

Yaw angle

Span ratio

Roll angle

Angular velocity

2. INTRODUCTION

A samara is a seed pod configuration that naturally
autorotates during descent. This increases the distances
seeds can be scattered by a single organism, as longer
descent times allow for more influence from prevailing
winds and gusts, Burrows (1975); Augspurger (1986);
Augspurger and Franson (1987); Green (1980); Green and
Johnson (1990, 1993). This design also allows for the
adoption of larger seeds, as the lower terminal velocity
reduces the force of impact substantially. Analyzing the
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behavior of these naturally evolved rotorcraft can provide
valuable insight into the dynamics and design of larger
and more sophisticated aerodynamic mechanisms as well
as simple micro-rotorcraft. This paper will give focus to
samaras of the single-winged variety.

A seminal work by Norberg (1973) has presented a thor-
ough qualitative and experimental analysis of samara sta-
bility. Additional literature presents the comparison of
samara performance to windmills and parachutes, Hertel
(1966); Holden (2016). However, dynamic modeling can
provide insight into the transient behavior of samara de-
scent. Furthermore, producing a mathematical model of a
samara allows for exploration of the size and samara design
conditions which produce stable autorotation. A simple
mathematical analysis of samara stability was presented
in Ulrich et al. (2010) for the purpose of modeling and
controlling a powered single-winged rotorcraft. This work
was further expanded upon in Ulrich and Pines (2012).
Computational fluid dynamics was utilized in Lentink
et al. (2009) and Holden (2016) to analyze the micro-
scale effects of turbulence and leading edge vortices. Dis-
cussion of the effects of leading edge vortices and the
robustness of samara stability to gusts has been given
in Limacher (2015). An extensive and detailed model of
samara dynamics and an analysis of stability have been
presented by Rosen and Seter (1991); Seter and Rosen
(1992), which employ Blade Element Method with special
attention to the effects of low Reynolds number. Samara
experimentation has been conducted by Hertel (1966);
Green (1980); Rosen and Seter (1991); Yasuda and Azuma
(1997); Nathan et al. (1996); Holden (2016). It is the goal
of this paper to provide a reduced order Blade Element
model for a samara in vertical descent by neglecting lateral
movement and assuming negligible roll angle. This model
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will be explored for analysis of both steady-state, and
transient behavior. A reduced order model provides many
benefits to the prospect of design and control of simple
single-winged rotorcraft similar to that of Ulrich et al.
(2010); Ulrich and Pines (2012).

3. DYNAMIC MODEL

Fig. 1. Euler angle definition for a samara

The equations of motion with respect to a body fixed
reference frame are displayed in (1) and (2).

Izsfs wrs + (Izszs - Iysys)wys Wag = Mrs
Lysyy wys + (rsws = Lagzg)Wag Way = My, (1)

2323 Wag T (Lygys — Ly )Wy Wyg = Mz
miy = —mg + Fy, sin 6 5
+ Fy, sin 1 cos 0 + F, cos i cos 8 2)
where I, ., Ws,, and My, refer to the moment of inertia,
angular velocity, and net moment about the body-fixed x-
axis, and Fj, refers to the net force in the direction of the
body fixed x-axis. The same naming convention follows
for the body-fixed y- and z-axes. The angular velocity
of the samara in the body-fixed frame (z3,ys,23) can be

expressed using the Euler angles as follows,

w = %3% + wysj + sz_l%
¢+<ﬁsin9)%+(écos@sinw—écosw>5 (3)
+ (gf)cosecosw + 981111/}) k
The forces Fy,, Fy,, F, and the moments M, M,,, M,,
are due to aerodynamics. To determine them, we start with

the position and velocity of a point P shown in Fig. 1(a),
expressed relative to O as given below,

rp:ro—l—r%, VP:vo—i—(wxr%) ()
R . R 4
Vo = v, (sin 01 + cos 0 cos ] + cos @ sin wkz)

In (4) we have assumed that the point O of the samara
has motion predominantly in the vertical direction with
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Fig. 2. Elemental forces on a blade

negligible motion in lateral directions. From (3) and (4)
we have,

vp :voJr(w X 7’%)
=, sin Hg—i-[vo cos @ cosp— r<¢ cos fsintp — 6 cos @[J)} k
+ {vocosesinw +r (écos&cosw + H.Sinlb)} j
(5)

The wind velocity relative to P is vy, p = —vp. From
Fig. 2 for an element along the samara blade, the local
drag and lift forces, dD and dL respectively, are given by

1
4D = S pu(r)drCo(a)| U,

. (6)
dL = ipw(r)d?"CL(Oz)||Uoo||2

where « is the span-wise local angle of attack and from
(5),
. . v
Uy =—-vpyj—vp.k and tana = ()
UPy
The element forces in body-fixed y3 and z3 directions are:
1

dFy,= 5,011)(7")||UOO I (sina Cr(a) — cosa C’D(a)> dr

1
dFZSZEpw(r)HUOOHQ(cosaC’L(a) + sinozC’D(a)>d7“

The overall forces and moments are:

Tf Tf
Fysz/ dFy,, anz/ dF,,
7o o

Tf ’I‘f
M., = / rdF,,, M,, =— / rdF,,
To To

In (9), note that the limits of integration ro and r; are
not equal to 0 and R respectively. This is because, as
evident from Fig. 1(b), the wing-span that contributes to
the aerodynamic forces starts from rg > 0 and ends at an
rs < R. The bottom boundary of rg is taken to account for

(9)
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losses due to the rounded seed geometry near the center of
mass, whereas the top boundary of r; is taken to account
for tip losses. In this paper we have assumed constant
values of these parameters based on visual inspection.
Also, as we resolve the forces and moments we make the
following two simplifying assumptions:

(1) We neglect the effect of dFy,, the elemental force
along the blade span. Thus, we assume F,, ~ 0 and
neglect its effect on the aerodynamics. This simplifies
the dynamic model. The assumption can be removed
by using the net relative wind velocity on the (x3, y3)
plane and accordingly considering blade elements to
be tilted from the y3 axis instead of being parallel to
it, as shown in Fig. 2(b).

(2) We assume the rolling moment M,, ~ 0. This is
based on the observation that the samara’s motion
is dominated by the yaw rate ¢, the pitching motion
0,0 (coning) and the vertical motion vy.

A samara is typically an elongated and planar rigid body.
Thus, for simplicity we can assume that ..., = Iy, +
Iyy5ys- Moreover, due to the slender thickness and planform
of the samara blade, it is assumed that the moment
of inertia with respect to the spanwise axis, I;,., <
Lysysy L2gzy- Accordingly, in this paper we assume, Iy, ,, =
Oand I,,., = Iy,y,. It is important to note that the mass of
the samara is not evenly distributed. A majority of its mass
is concentrated at the seed, at point O (see Fig. 1(a) and
(b)). It is imperative that this be taken into consideration
when approximating the value for I,,,. The resulting
reduced moment of inertia helps in achieving coning angles
that correlate well with data published in the literature,
Norberg (1973). For the purposes of producing a simplified
model, the center of mass is taken to be at O.

Through observation of a samara in descent, it is seen that
the roll angle, 1, remains small. With this observation,
and consideration to the symmetry of the samara’s airfoil
profile, it is reasonable to assume that the angle ¢ will
be nearly if not exactly zero at steady state. Further,
the assumption of M,, ~ 0 along with I,,,, = 0 and
I,., = I,,, implies that the first equation of (1) is
identically zero. The dynamics and statics of the system
can be studied for different constant values of 1. Statics
analysis reveals that only a small range of 1 around zero is
allowable. This simplification reduces the statics problem
to that of determining 3 unknowns, namely ¢, 0, and wvyg.
The dynamics reduces to 4 states, namely, ¢, 6, 6, and vp.
The simplified dynamics of an autorotating samara is next
provided. From the second and third equations of (1), from

(2), and imposing 1) = 0 0N Wy, Wy,, Wz, in (3), we have,

0cos1/)+¢ sin 6 cos 0 cos ¥ + 246 sin 0 sin 1)

—chostmz/J =My, /1Ly,

G sin ) + (j) sin 6 cos 0 sin v — 2¢f sin 6 cos
008 0cos = My /Ty,

, cossin)/m + (F,, coscosvp)/m
(10)
where M,,, M., and F,, are nonlinear functions of the

state variables, ‘as given in (8) and (9). It is noted here
from (5), (6), and (7) that,

o = —g + (Fy

1Usll® =
=[—wp cosf cosw—kr(gﬁ cos 0 sinth — 0 cos )] /|| Uso||

2 cos? 0 + (r0 + vg cos 0)?
sin ov

cos o = [vg cos 0 sin b + (¢ cos 0 cos 1 + 0 sin )] /|| Use ||
(11)

4. CONDITIONS FOR STEADY AUTOROTATION

Conditions for steady autorotation can now be derived
from the dynamic model above by imposing § = ¢ = § =
vp = 0. It is noted here, that in deriving the conditions
for steady autorotation, we allow the roll angle 1 to
assume non-zero constant values. We treat ¢ as an input
in determining the possible set of autorotational equilibria.
The exercise confirms that feasible steady values of v lie
only a few degrees around 1 = 0. The equations for steady
autorotation, obtained from (1), (2) and (3) are:

¢?sin 0 cos f costh = — My, /Ty,
¢? sin @ cos Osintp = M, /I, (12)
mg = F,, sinvy cos + F, cos1) cos 0

The static model in (12) can be expressed in a compact
form by the introduction of two dimensionless parameters,
given in (13):
r Vo
X R’ OR
The ratio y represents the span-ratio which is the position
of a blade element with respect to the length of the blade.
The ratio A represents the tip-speed-ratio which is the
relation of the vertical descent speed to the speed of the
tip of the blade. The ratio A/ produces a local speed ratio
which describes the relation of the local angular velocity of
a blade element to the vertical descent speed of the entire
samara. Inclusion of the local speed ratio provides insight
into span-wise characteristics. Using the ratios in (13), we
have the following expressions for the local ||Us| and «
under steady autorotation,

e )]

sina = (r¢siny — vg cos 1) cos 0/||Us |,

(13)

Vsl =

cosa = (1 cos ) 4 vg sin ) cos 0/ || Uss |,

= tana = <tanz/J—|— A) / <1 —tanw)\)
X X

It should be noted here that for negligible 1), the right hand
side of (14) reduces to the local speed ratio of the blade
element. Expanding (12) using (8), (9) and (14) produces
the following system of equations:

My, = —Iy,y, $?sin 6 cos O cos 1P

! (;.Scos29/rf Sw(r) 1+</\)2
= — =P T wl\r —
2 ro X

A , (15)
[(CD(a) - ;cm)) sin 1 —
C

( (o) + %C’D(a)) cos ¢] dr
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Table 1. SAMARA AND ENVIRONMENTAL

PARAMETERS

Cp, 0.124 -
Iysys 1.26x 1078 kgm?

m 0.00013 kg

R 0.035 m

0 0.2R m

rf 0.9R m

P 1.225 kg/m?

30

N
(6]
T

Yaw Velocity, ¢ (RPS)
o 3

10 ‘ : ‘ ‘ ‘
-15 -10 -5 0 5 10 15
Roll Angle, ¢ (degrees)
Fig. 3. Steady-state yaw velocity over range of roll angles

M., =I,,,, #*sin 6 cos 6 sin 1)

:%p(;'s cos? G/T:f r3w(r)y[1+ (i)Q
{(CL(OZ) + %cp(a)) sin 9 +
(iC’L(a) — C’D(a)) cos 14 dr

g :%pq-bz cos? g/rTf r2w(r)y[1+ ()};)2 (17)
[Cr(a)+ %CD(O‘)} dr

Here a simplistic thin airfoil model is employed to select
values for C, and Cp, the coefficients of lift and drag,
respectively, White (2011). Specifically,
Cr(a) =2wsina
Cp(a) = Cp(a)sina + Cp,
where Cp, is a tuned additional drag coefficient to account
for roughness and airfoil thickness. Equations (13), (15),
(16) and (17) can be numerically solved for the steady-
state values of ¢, 6, vg, and A for a range of values of ).

5. STEADY-STATE RESULTS

Steady-state simulation was performed for the case of
Acer plantanoides samaras to compare with experimental
results provided in Norberg (1973). Physical parameters of
the samara in question, as well as environmental properties
used for the following simulation results are presented in
Table 1.

As previously stated, the above steady-state model was
produced for an arbitrary roll angle, 1. This allows for
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Fig. 6. Steady-state tip speed ratio over range of roll angles

simulation of a range of equilibrium results for a span of
1 values. Fig. 3 displays the variation of steady-state ¢
with changing v inputs. It can be seen that the value of
¢ at ¢ = 0 is approximately 13.3 rev/s which agrees well
with the value of 13 rev/s found in Norberg (1973). It
can also be observed that significant error is introduced
to the simulated value of ¢ when a negative roll angle is
applied. Figure 4 presents the angle of pitch, 6, taken by
the samara at steady-state for the span of ¥. Not only does
the value of § = 20.0° at ¢ = 0 agree with the 20° value



72 Jonathan McConnell et al. / IFAC PapersOnLine 55-37 (2022) 68—73

reported in Norberg (1973), but it can be seen from the
variation of the plot that even small changes in v produce
significant error in the steady-state 6 value. This supports
the assumption that negligible roll is present at steady-
state. Figure 5 presents the change in terminal velocity for
the span of prescribed 1 values. The simulated terminal
velocity of approximately 0.82 m/s (downwards) shows
good agreement with the experimental value of 0.9 m/s
reported in Norberg (1973).

It was observed that the accuracy of steady-state results
is sensitive to small changes in Cy, and Cp. This observa-
tion is in agreement with the claims of Rosen and Seter
(1991). The addition of the Cp, term provides a means
of adjusting model accuracy to better represent the ad-
ditional aerodynamic effects experienced in low Reynolds
Number flight. The values of Cp, and I,,, presented in
Table 1 were numerically optimized to better represent
the Acer plantanoid samaras studied in Norberg (1973).
The value of Cp, selected from this process agrees well
with literature for insect wings in low Reynolds Num-
ber conditions, as presented in Rosen and Seter (1991).
It has been observed that for a samara with arbitrary
curvature/warping, a minor improvement in steady-state
modeling may be achieved at non-zero v values between
—0.6° < ¥ < 0.6°, however this deviation appears to be
dependent on geometric variations, and thus is specimen-
specific. Further investigation into this claim through ex-
perimentation will be presented in future work.

6. DYNAMICS SIMULATIONS

Expanding upon the presented model, the transient behav-
ior of a falling samara is next studied through simulations.
Steady-state analysis has shown that it is reasonable to
assume 1) = 0 near equilibrium. It has been observed that a
falling samara establishes autorotation in a matter of a few
seconds. This coupled with the minuscule rolling moment
of inertia, I, suggests that achieving negligible roll an-
gle will be nearly instantaneous. It is therefore reasonable
for this reduced order model to extend the assumption
of ¢ = 0 to transients. For consistency with the steady-
state analysis, ¢ has been presented as a constant input.
The resulting dynamic model is given in (10) and (11).
Transient simulation results are presented in Figs.7-10.
Case 1 (bold) shows the model response with all initial
conditions set to 0 (i.e. {6 6 ¢ vo} = {0 0 0 0}). Case 2

(dashed) has initial conditions of § = 45°, § = 0.175 rad/s,

¢ =4 rev/s, and vg = —0.4 m/s.

Figure 7 displays the pitch response, 6, of the samara
for both cases. An aggressive stabilization is observed,
showing an initial overshoot before smoothing out at
approximately 0.5 seconds. The following smooth dynamic
settles into steady autorotation in a matter of 1 second.
A similar behavior is observed in Figs.8, 9, and 10 which
present the response of the rate of pitch, 6, rate of yaw,
¢, and vertical velocity, vy, respectively. An initial phase
of oscillation can be seen in the 6 response of Fig. 8. In
both cases, the amplitude of 6 oscillation decays after
2 peaks to assume a smooth trend which approaches 0
at steady-state. Special attention should be given to the
response of vy where it can be seen that the value at
approximately 0.25 seconds is characteristic of maximum

Case 1
= = =Case 2|

[6)]
o

N
o

W
o

Pitch, 6 (degree)

N
o

—_
o
T

I

Time (sec)
Fig. 7. Dynamic pitch response
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Fig. 8. Dynamic rate of pitch response
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Fig. 9. Dynamic yaw response

descent speed. Past this point, the samara slows to its
autorotative terminal velocity. The steady values of the
dynamic simulation show complete agreement with those
of the steady state model, as expected.

The equilibrium of autorotation can be viewed as a bal-
ancing of counteracting yawing moments along the span
of a rotor-craft blade. This effect is visualized in Fig. 11
which displays the moment provided by each blade element
of a samara. For the presented case (Case 1), the entire
blade provides a moment to increase the rotation of the
samara. This effect reduces over time until steady state is
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Fig. 11. Scaled yawing moment along span of the blade
(Case 1)

reached. It can be seen that at 1 seconds an approximately
equal region of positive and negative moment is present,
suggesting equilibrium. This result agrees with the pre-
dicted performance of helicopter blades in autorotation,
Leishman (2006).

Observation of samaras found in nature and simulation
of the presented model from various initial conditions
has suggested the autorotational equilibrium of a single-
winged samara is characterized by a large region of attrac-
tion. Stability investigation of the equilibrium is a topic of
interest and future research for the authors.

7. CONCLUSION

A simplified and compact model for the steady-state be-
havior of a single winged samara has been presented.
It has been shown that an assumption of negligible roll
angle, v = 0° can be made to produce steady-state
equilibria in agreement with experimental data. Extend-
ing to a dynamic representation, a reduced order model
under the assumption of @ = 0° produces reasonable
transient behavior and equivalent steady-state results. The
stablization of the reduced order samara model has been
visualized for two different initial conditions. Ongoing and
future work in continuation of this research include model

refinement, experimentation, as well as linear and non-
linear stability analysis.
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