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Abstract-By extrapolating functionality from the retina, 

retinomorphic engineering has yielded devices that have shown 

promise to alleviate the challenges presented in modern computer 

vision tasks. An incredible amount of work has been devoted 

in recent years to the development and deployment of these 

event-based vision sensors in applications requiring low-latency, 

energy-efficient, high dynamic range sensing solutions. However, 

not much work has been devoted to the area, energy, and 

speed analysis of the various encoding and decoding mechanisms 

necessary for sensory pipelines. This paper outlines an empirical 

framework that presents a clear tradeoff between the various 

methodologies to transduce physical information in to spikes 

(encoding) and reconstruct said stimuli from the incident events 

(decoding). Software-based models of these methodologies were 

constructed to evaluate the accuracy of stimuli reconstruction 

for a variety of input profiles. As a result, it is shown that an 

optimized retinomorphic architecture for a specific set of system­

driven cost metrics requires a heterogenous fabric of encoders 

with a composition of 95 % temporal contrast pixels and 5 % 

intensity encoder assuming a temporal jitter of lµs. Much like 

the composition of ganglion cells in magno- and parvo-cellular 

pathway, this multi-modal solution provides the most time, area, 

and power efficient method to convey visual data. 

Index Terms-neuromorphic vision, system design, information 

theory, retinomorphic engineering 

I. INTRODUCTION 

Neural circuits in the inner and outer plexiform layers of 

the retina provide the necessary building blocks to efficient 

encode visual stimuli. The outer plexiform layer responses 

consists of a horizontal cell shunting inhibition, pooled average 

receptor response and local contrast enhancement. This spatial, 

bandpass response reduces transmitting spikes corresponding 

to redundant, low-frequency background while attenuating 

contributions from high-frequency, uncorrelated fixed pattern 

noise. Bipolar cell connectivity and amacrine cell feedback in 

the inner plexiform layer amount to the transient response of 

the a -ganglion cells. However, output activity of the retina 

does not consist of a singular encoding modality, but rather a 

mix of sustained and transient responses. As will be suggested 

in this work, multi-modal encoding provides the means to 

maximized information transmission while reducing energy 

consumption. 

Retinomorphic engineering, coined by K wabena Boahen in 

1996 [l], has sought to duplicate a vast array of the retina's 

characteristics and processing capabilites in silicon-based sen­

sor arrays. Boahen goes on to remark that retinomorphic sys­

tems should abide by many of the same characteristics of the 

retina: local automatic gain control, bandpass spatiotemporal 

filtering, and adaptive quantization and bandwidth utilization. 

The results of such efforts are known as silicon retina. 

Transmitter 

Axonal 11 111] I Synapse/ ~ 
Channel 1 - t-'= ~ ► 1 Dendrite _.. 

Receiver 

Fig. 1: Retinomorphic Communication Pipeline: a transmitter 

(enclosed in light red) preconditions and encodes a sensory 

signal into a spike train which is decoded by the receiver 

(yellow) where the signal is ultimately reconstructed. Analog 

domain blocks are blue and digital are in green. Spikes are 

removed and timing is disturbed after propagating through 

the axonal channel, leading to decoding errors, represented 

as dotted spikes. 

Many retinomorphic sensors have been reported to effi­

ciently solve the pressing problems in machine vision [2]-[6] . 

However, these sensors neglect the important considerations 

that can be gleaned from the retina. For one, modern arrays 

only implement encoder functionality that mirrors that seen in 

the magnocellular pathway [7]. This neglects the rich informa­

tion offered in the parvocellular pathway which is comprised 

of sustained responses from color sensitive, densely packed 

midget ganglion cells. Multi-modality is essential to not only 

detect changes in the scene, but reconstruct high spatial 

frequencies and wide-spectrum intensity profiles. Furthermore, 

retinomorphic sensors are designed without consideration of 

downstream decoding mechanisms. These latter architectures, 

if not effectively implemented with respect to speed and area, 

will reduce the gains realized by the retinomorphic sensor. 

This work highlights the different encoding and decoding 

mechanisms used for retinomorphic communication. It out­

lines the benefits and shortfalls of each in the context of 

architecture speed, area, and power to rationalize the need 

for the multi-modal approach seen in the mammalian retina. 

Section II provides an overview of the channel model used 

along with some other system considerations. Sections III and 

IV provided an overview of encoding and decoding method­

ologies respectively. Section V presents numerical analysis of 

the retinomorphic channel before concluding in Section VI. 

II. RETINOMORPHIC CHANNELS 

The basic structure of a biological computation and com­

munication pipeline is seen in Figure 1. A sensory receptor 

is responsible for transducing physical phenomenon into an 

analog signal which is then filtered using spatiotemporal 

information. These early processing stages are responsible 
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for encoding the signal based its temporal characteristics,

spatial prevalence, or absolute magnitude. Analog encoding

neuron responses are integrated onto the soma of an output

neuron whose spike activity is proportional to its inputs and

local, axonal parasitics. Stochastic dynamics of the axon

subsequently cause the loss of spikes and temporal jitter. This

lossy spike train is decoded via synapses which project onto

the dendrite of a receiver neuron. Final reconstruction takes

place utilizing the inverse operation used to encode the stimuli.

However, system output is corrupted by analog noise, dropout

of spikes, and temporal jitter which skewed spike timings.

High-level, hardware analysis of this framework is presented

in this chapter and software/hardware implementations will be

explored in subsequent chapters of this work.

Encoding methodologies and design trade-offs with respect

to power, area, and speed are provided here. However, basic

rationale for retinomorphic sensing arrays need to be provided.

System switching activity provides a simple metric to compare

hardware platforms. For a retinomorphic architecture to be

more appealing from a energy standpoint, array switching

activity needs to be less than that of a frame-based platform.

This trade-off, built off the analysis from [1], can be outlined

as such

fspk,arr < faps (1)

NrowNcolf̂spk log2(NrowNcol − 1) < NrowNcolffpsM (2)

(f̂actα− f̂bk(1− α)) log2(NrowNcol − 1) < ffpsM (3)

(f̂actα−
f̂act

γ
(1− α)) log2(NrowNcol − 1) < ffpsM (4)

where the retinomorphic array output bandwidth, fspk,arr,

and frame-based sensor throughput, faps can be deconstructed

into relation of average pixel firing rate for stimuli driven

events, fact, and frame-rate, ffps. Parameter α denotes the

probability a pixel fires with rate fact given local encoding

and signal processing, while γ denotes the ratio between this

active frequency and a resting firing rate. Output bits from a

retinomorphic system are AER driven thus they denote spatial

locality of event activation, log2 Npix − 1. Spike timings and

firing rates encode stimuli information. In contrast, spatial

location is inherently represented in the scanning approaches

of frame-based sensors, but information is encoded as a digital

value of size M . By equating fact = faps, the maximum

retinomorphic activity level tolerated for given array size

(Npix) and attenuation factor γ is

α <
γ

γ − 1
(

M

log2(Npix − 1)
−

1

γ
) (5)

Figure 2 is a plot of this maximum tolerated pixel activity,

α, for a set of array sizes and attenuation factors, γ. When

the resting spike rate goes to 0 and γ diverges to infinity, the

maximum switching activity converges to M
log

2
(Npix−1) . For

an array size of 106, the activity is bounded to a value of

40.17% meaning a pixel can only be in an active state for less

than 40% of the time and various stimuli profiles. Therefore,

Fig. 2: Activity level threshold, α, for retinomorphic platform:

average pixel frequency such that frame-based platforms are

inferior from an energy standpoint. Metrics are extracted using

increasing array sizes and baseline activity attenuation, γ.

in-pixel adaptation and spatiotemporal encoding need to be

utilized to reduce activity rates.

III. ENCODING SCHEMA

As a baseline mechanism, absolute intensity can be encoded

into a spike train by integrating input synaptic current or

photocurrent onto a comparator node which fires a pulse when

the potential has exceeded a threshold. Therefore, the simple

integrate-and-fire pixel encodes absolute intensity into a pulse-

frequency modulated, spike train with rate:

fspk,iaf =
ienc

VthCmem

(6)

where ienc = iph is the photocurrent from the sensing element,

Vth is the requisite threshold the potential reaches to fire a

spike, and Cmem is the membrane capacitance. However, it

can be seen from the expression that high intensity background

profiles would result in high firing rates. Therefore, as seen

in the outer plexiform layer, spatial filtering to reduce this

redundancy. Spatial contrast is defined as

ienc,scon = inorm|
iph − ibck

ibck
| (7)

where the ratio of difference between input, iph, and back-

ground intensity, ibck, and the latter is known as Weber

Contrast which is converted into a current response using

inorm. Output response iscon can be similarly integrated and

transduced into a spike train using the IAF neuron encoder.

A potential downfall of this encoding methodology is the

presence of a sustained response to high contrast stimuli. To

address this, transient stimuli can be encoded

ienc,tcon = iph − (iph ∗Hlpf ) =
diph

dt
(8)

where ienc,tcon represents the temporal contrast response, or

temporal high-pass response, of the transient encoder. This
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consists of computing the difference between the input current

and a temporal average.

IV. DECODING SCHEMA

After the stimuli current from the photodiode is processed

using spatiotemporal filtering chain, output encoder current is

transduced into a spike stream. These address events travel

along varying degrees of the hardware communication chain

before arriving at a software or hardware-realized decoder ar-

chitecture. Function of these decoders are similar independent

of implementation medium: events are received, processed,

and used as the means to reconstruct the input stimuli or

accomplish another application task. These events can arrive

via direct 1-to-1 connection realized via 3D integration [8] or

via address-driven selection after optional computation-driven

remapping [9], [10]. Decoding elements can be organized

into two subclasses: modules that realize linear filters and

ultimately integrate the events or elements that use the precise

timing between spikes as the basis for computation. The

former are classified as linear decoders or rate-code decoders

as they utilize linear filters to accumulate spikes over a

temporal window. Common linear decoding filters are of low-

pass type since spike integration is used to reconstruct the

signal. This can be accomplished using, among others, a first-

order RC filter or box filter with rectangular window. The

former, exponential filter impulse response can be expressed

as

gexp(t) = Age
−t

τe (9)

uch that τe is the pole of the low-pass filter and Ag is the

filter gain. First-order nature of the filter has lent itself to

straightforward implementation in analog hardware as a model

of a synapse [1], [10]–[12]. A rectangular filter counts the

number of spikes in a sliding temporal of width tr. Filter

impulse response is expressed as

grect(t) = Ag(1− u(t− τr)) (10)

Instances of uniform, moving window synaptic responses

are uncommon in the brain and are not straightforward to

implement in analog or digital hardware.

Alternatively, a non-linear, temporal-code decoder uses the

instantaneous interspike timing to reconstruct the encoded

signal [13]. This temporal-coded method utilizes local memory

to encode recent spike timings and computational elements to

calculate the intervals, t′isi,i:

tisi,i = tspk,i − tspk,i−1 (11)

Ultimately, decoder reconstruction of the input stimuli is

achieved by observing the spike rate-transfer function from

the IAF neuron:

î(t) =
CmemVthr

tisi,i
=

Qthr

tisi,i
(12)

where î(t) is the reconstructed stimulus.

V. RESULTS AND ANALYSIS

A simulation framework of the communication channel

presented in Figure 1 was implemented to analyze the trade-

off of encoder and decoder designs with respect to error rates

and power consumption in the presence of channel noise. The

intention of this effort was to inform the composition of future

retinomorphic arrays by maximizing performance over these

system parameters.

Two noise effects were included to capture the stochastic,

mixed-signal implementation of retinomorphic arrays. First,

random spike dropout was used to model the impact of fixed-

pattern noise which affects neuron firing rates [2], pixel-level

temporal noise which shunts event activation [14], or receiver

subsampling methodologies to compensate for buffer utiliza-

tion [15]. In the analysis model, dropout events, D(pd) is a

vector of size Nspks where each element is a Bernoulli random

variable with p = Pd. For instance, a pd = 0 represents a

lossless channel with no dropout events. In tandem, a temporal

jitter was added to the spike timings generated by the neuron

backend in the encoders. This is a manifestation of some

combination of fixed pattern, shot, flicker, and thermal noise,

all of which are present with varying degrees in the analog

encoder circuits. After the injection of these noise mechanism,

each spike timing ti,nbecomes:

ti,n = ti ∗ (1−Di) +N (0, σ2
j ) (13)

where ti is the pre-noise spike time of spike i, Di is the

dropout random variable for spike i, and the latter term

represents the temporal jitter which is a Normal random

variable with standard deviation σj . In the presence of these

noise mechanisms, the channel performance was captured in

terms of mean-squared error:

ê(Fenc,Gdec, pd, σj) =
1

Tstim

∫ Tstim

0

(̂i(t)− i(t))2 (14)

which is a function of the encoding (Fenc) and decoding Gdec

schemes as well as the noise parameters defined above. This

metric encapsulates the difference between the reconstruction

î(t) and a input stimulus, i(t) over the period Tstim.

After applying the decoding method, an inverse mapping of

the analog encoding needs to be applied in order to complete

the reconstruction. Since the absolute intensity, IAF pixel does

not apply any spatial or temporal processing, the backend

reconstruction îiaf (t) is complete post-decoding. However, for

the spatial encoder, the background intensity (ibck), contrast

polarity (ssc), and normalization current (inorm) are used to

produce the reconstructed current:

îscon(t) =
id(t)sscibck

inorm
− ibck (15)

Since the TCON encoding is performing a temporal derivative

on the input stimuli, reconstruction consists of doing the

temporal integration of this decoder output whose sign is

dictated by the temporal contrast polarity, stc:

îtcon(t) = îtcon(t− 1) + stc(id(t)) (16)
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Fig. 3: Reconstruction performance of encoder-decoder pairs:

SCON-orange, TCON-yellow, IAF-blue. First panel - input

stimuli. Second panel - reconstruction using box filter. Third

panel - reconstruction using exponential filter. Fourth - recon-

struction using interspike interval

Figure 3 depicts the reconstruction results for the three encoder

methods using the three decoders without the presence of

noise. Reconstruction error for the SCON method stems from

the latency introduced by the rate-coded decoders as a τe and

τr time is needed to accumulate a high spike rate that results

from high, negative contrast at the advent of the stimulus.

In addition, the edges of the stimulus are delayed in the

reconstruction using the rate-coded approaches due to the

latency of each filter, τe = 250µs and τr = 1ms thereby

highlighting a downside of utilizing linear methods.

Figure 4 outlines the MSE of the different decoder methods

versus temporal jitter and spike dropout rates respectively. The

accuracy was extracted for each encoder method and averaged

for each decoder technique to provide a curve that can be

utilized for analysis. For jitter profiles with σj < 10µs, the

ISI decoder proves to have the smallest error for the given

stimulus. A similar relationship is seen with spike streams

with small dropout rates. Following intuition, the ISI accuracy

deteriorates when dropout rate and jitter increase while linear

decoder accuracy maintains. This is because the latter methods

effectively average noise within a temporal window of τ width.

Figure 5 is a plot of MSE for TCON and IAF encoder

methods averaged over all decoder techniques. These plots

highlight a distinct trade-off between the encoder approaches.

The TCON pixel is strictly worse for all jitter profiles given

dropout rate of 0 %. However, with a jitter distribution with

deviation of 1µs, the IAF pixels become worse from an error

perspective with dropout rates within 0.1 and 0.25. These

results also highlight a potential shortfall of the TCON pixel.

When the channel is noisy and induces stochastic temporal

jitter or lossy transmission, reconstruction accuracy suffers.
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Fig. 4: MSE with respective to decoder method (tc=temporal

code, rect=box filter, exp=exponential filter). The top and

bottom panel outlines accuracy of each method with respect

to temporal jitter and spike dropout rates respectively.

This is due to the TCON pixel’s high attenuation factor (γ)

within a static scene.

Encoder-dependent, noise artifacts, which are a result of

circuit complexity, can be analyzed using this simple channel

model. For instance, as mentioned in Sections III and IV,

TCON and box filter analog implementations are complex

hence one could expect higher jitter and dropout rates, say

µj = 10µs and pd = 0.1. This can be compared to a

IAF pixel with ISI decoder. In this configuration, lack of

encoding reduces complexity-driven noise and low jitter, but

increases the change of channel congestion which leads to

higher dropout rates in the readout. For a σj = 0.01µs
and pd = 0.2, the êIAF,ISI > êTCON,BOX despite lower

complexity.

Error and circuit complexity is not the only constraint

Exp Filter 

o: ~ _ _ __ .'.::1s'.'._1 __ 

Q 1 I 
3 

Time(s) 

4 

x 10-3 

~ 
5 

Jitter (µs) 

Dropout prob. (p) 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 08,2024 at 04:16:41 UTC from IEEE Xplore.  Restrictions apply. 



✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✲✝

✶�
✲✞

✶�
✲✟

■✠✡

❚☛☞✌

(a) MSE as a function of jitter, pd = 0

✵ ✵✍✵✎ ✵✍✏ ✵✍✏✎ ✵✍✑ ✵✍✑✎ ✵✍✒ ✵✍✒✎ ✵✍✓ ✵✍✓✎ ✵✍✎

✏✵
✔✕

✏✵
✔✖

✗✘✙

✚✛✜✢

(b) MSE as a function of dropout, σj = 1µs

Fig. 5: MSE with respective to encoder method (IAF and

TCON). The top and bottom panel outlines accuracy of each

method with respect to temporal jitter and spike dropout rates

respectively.

for retinomorphic systems. In large arrays that are active in

embedded contexts, low power consumption is paramount.

Power of each encoder methodology can be approximated by

multiplying a nominal energy per spike by output spike rate.

The former is a result of circuit complexity and design real-

ization while latter is dependent on encoder attenuation factor,

γ (γtcon >> γiaf ). Table I outlines the qualitative rankings

of the encoder and decoder methods given the aforementioned

analysis and discussion.

Construction of retinomorphic systems should exist on a

continuum where a multi-modal encoder/decoder approach can

be taken to optimize composition with respect to costs and el-

ement performance. Such a relationship can be conceptualized

TABLE I: Module Rankings: (e,d) denote the ranking for

encoders and decoders respectively. Decoder implementation

in the analog domain was assumed ( [10], [11], [13])

Module Area Power Speed Accuracy

IAF 1e 3e 1e 1e
SCON 2e 2e 2e 2e
TCON 3e 1e 3e 3e

Rate-Rect 3d 3d 2d 1d
Rate-Exp. 2d 1d 2d 1d
Temp-ISI 1d 2d 1d 2d

using the following ratios

Re =
1

Ce

êiaf

êtcon
(17)

Rp =
1

Cp

Ptcon

Piaf

(18)

where the Ce is the cost or weight of MSE given our system

design and Cp is the same for the power constraint. These

ratios capture disparity between system extremes: for values of

Re,p << 1, there is a massive gulf in between the performance

of the pixels with respect to each metric. Therefore, in order to

construct a balanced system with mixing coefficient αr = 0.5,

then more cost will need to be associated with the alternative

metric. The following expression captures this relationship

between the above ratios and array composition

αr = min(
Re

Rp

, 1) (19)

When Re > Rp and power becomes the dominant metric,

αr = 1 and the array will be fully composed of TCON pixels.

An example 2D mapping of αr with respect to constraint costs

Ce,p is shown in Figure 6. In this example, Re =
Rp

10 , thus

a large power cost (a power constrained system) is needed

relative to the error cost. For instance, αr=0.5 and the array

composition is balanced with a cost relation of Cp = 20Ce =
2. However, with a system that requires higher error sensitivity

and Ce → 2, αr ≈ 0.1 and the retinomorphic system is almost

entirely IAF pixels despite their higher power consumption.

The mixing ratio seen between transient, β and sustained, α

ganglion cells is also depicted as a line inset within the figure.

Interestingly, the retina ganglion cells are composed of 93% of

these transient variety which confirms the fact that evolution

also optimized the neural layer with respect to power costs

instead of accuracy [7], [16]. Parallelized output and hierarchy

seen in the latter stages of the visual pathway are then used to

compensate for the lower accuracy of the retina to reconstruct

the world around us.

VI. CONCLUSION

An overview and numerical analysis of retinomorphic chan-

nel elements and performance has been presented. Three

encoding and decoding methodologies were introduced. The

9 unique combinations of these techniques were applied to

transmit and reconstruct an example stimulus. Reconstruction

accuracy in the presence of temporal jitter and spike dropout

was used to compare performance. Power was approximated

Jitter (µs) 

Dropout prob. (p) 
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Fig. 6: Surface map of mixing coefficients for a variety of error 

and power costs: MSE and Power were extracted for the IAF 

and TCON streams using a ISi decoder and iph ,max = lOnA. 

Encoder metric ratios: R e = 0.0037, Rp = 0.0395. Channel 

error profile: Pdrop = 0 and CJj = lµ s. Inset line is the mixing 

ratio seen between /3 and a -ganglion cells in the retina. 

by computing the product of energy consumption per spike 

and the pixel output frequency. 

With respect to encoder performance, all methods were 

assumed to have comparable speed since they all leverage 

the IAF neuron for spike encoding. However, it was seen 

that the TCON pixel was superior with respect to power 

for the given stimulus, but performed poorly with respect to 

accurate reconstruction in the presence of extrinsic channel 

noise. With respect to encoder performance, the linear decoder 

methods were strictly better when reconstructing the signal in 

the presence of noise, but incurred a speed penalty as they 

require T seconds to accumulate a result. Furthermore, ISi 

and Exp. decoder methods lend themselves to compact analog 

circuit implementation. Encoding power and accuracy metrics 

were then leveraged to understand how to architect an array 

of pixels given system constraints. 

Future work is needed to expand the multi-modal analysis 

performed in Section V to decoder techniques. These can be 

analyzed with respect to speed and accuracy. Furthermore, 

additional stimuli should be used to understand architecture 

composition in alternate scenarios (e.g: mostly static/mostly 

dynamic scenes). By doing so, this framework can be utilized 

to inform the next generation of vision systems which can 

realize the effective communication of visual information seen 

in the retina. 
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