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Abstract—By extrapolating functionality from the retina,
retinomorphic engineering has yielded devices that have shown
promise to alleviate the challenges presented in modern computer
vision tasks. An incredible amount of work has been devoted
in recent years to the development and deployment of these
event-based vision sensors in applications requiring low-latency,
energy-efficient, high dynamic range sensing solutions. However,
not much work has been devoted to the area, energy, and
speed analysis of the various encoding and decoding mechanisms
necessary for sensory pipelines. This paper outlines an empirical
framework that presents a clear tradeoff between the various
methodologies to transduce physical information in to spikes
(encoding) and reconstruct said stimuli from the incident events
(decoding). Software-based models of these methodologies were
constructed to evaluate the accuracy of stimuli reconstruction
for a variety of input profiles. As a result, it is shown that an
optimized retinomorphic architecture for a specific set of system-
driven cost metrics requires a heterogenous fabric of encoders
with a composition of 95% temporal contrast pixels and 5%
intensity encoder assuming a temporal jitter of 1us. Much like
the composition of ganglion cells in magno- and parvo-cellular
pathway, this multi-modal solution provides the most time, area,
and power efficient method to convey visual data.

Index Terms—neuromorphic vision, system design, information
theory, retinomorphic engineering

I. INTRODUCTION

Neural circuits in the inner and outer plexiform layers of
the retina provide the necessary building blocks to efficient
encode visual stimuli. The outer plexiform layer responses
consists of a horizontal cell shunting inhibition, pooled average
receptor response and local contrast enhancement. This spatial,
bandpass response reduces transmitting spikes corresponding
to redundant, low-frequency background while attenuating
contributions from high-frequency, uncorrelated fixed pattern
noise. Bipolar cell connectivity and amacrine cell feedback in
the inner plexiform layer amount to the transient response of
the a-ganglion cells. However, output activity of the retina
does not consist of a singular encoding modality, but rather a
mix of sustained and transient responses. As will be suggested
in this work, multi-modal encoding provides the means to
maximized information transmission while reducing energy
consumption.

Retinomorphic engineering, coined by Kwabena Boahen in
1996 [1], has sought to duplicate a vast array of the retina’s
characteristics and processing capabilites in silicon-based sen-
sor arrays. Boahen goes on to remark that retinomorphic sys-
tems should abide by many of the same characteristics of the
retina: local automatic gain control, bandpass spatiotemporal
filtering, and adaptive quantization and bandwidth utilization.
The results of such efforts are known as silicon retina.
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Fig. 1: Retinomorphic Communication Pipeline: a transmitter
(enclosed in light red) preconditions and encodes a sensory
signal into a spike train which is decoded by the receiver
(yellow) where the signal is ultimately reconstructed. Analog
domain blocks are blue and digital are in green. Spikes are
removed and timing is disturbed after propagating through
the axonal channel, leading to decoding errors, represented
as dotted spikes.
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Many retinomorphic sensors have been reported to effi-
ciently solve the pressing problems in machine vision [2]-[6].
However, these sensors neglect the important considerations
that can be gleaned from the retina. For one, modern arrays
only implement encoder functionality that mirrors that seen in
the magnocellular pathway [7]. This neglects the rich informa-
tion offered in the parvocellular pathway which is comprised
of sustained responses from color sensitive, densely packed
midget ganglion cells. Multi-modality is essential to not only
detect changes in the scene, but reconstruct high spatial
frequencies and wide-spectrum intensity profiles. Furthermore,
retinomorphic sensors are designed without consideration of
downstream decoding mechanisms. These latter architectures,
if not effectively implemented with respect to speed and area,
will reduce the gains realized by the retinomorphic sensor.

This work highlights the different encoding and decoding
mechanisms used for retinomorphic communication. It out-
lines the benefits and shortfalls of each in the context of
architecture speed, area, and power to rationalize the need
for the multi-modal approach seen in the mammalian retina.
Section II provides an overview of the channel model used
along with some other system considerations. Sections III and
IV provided an overview of encoding and decoding method-
ologies respectively. Section V presents numerical analysis of
the retinomorphic channel before concluding in Section VI.

II. RETINOMORPHIC CHANNELS

The basic structure of a biological computation and com-
munication pipeline is seen in Figure 1. A sensory receptor
is responsible for transducing physical phenomenon into an
analog signal which is then filtered using spatiotemporal
information. These early processing stages are responsible
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for encoding the signal based its temporal characteristics,
spatial prevalence, or absolute magnitude. Analog encoding
neuron responses are integrated onto the soma of an output
neuron whose spike activity is proportional to its inputs and
local, axonal parasitics. Stochastic dynamics of the axon
subsequently cause the loss of spikes and temporal jitter. This
lossy spike train is decoded via synapses which project onto
the dendrite of a receiver neuron. Final reconstruction takes
place utilizing the inverse operation used to encode the stimuli.
However, system output is corrupted by analog noise, dropout
of spikes, and temporal jitter which skewed spike timings.
High-level, hardware analysis of this framework is presented
in this chapter and software/hardware implementations will be
explored in subsequent chapters of this work.

Encoding methodologies and design trade-offs with respect
to power, area, and speed are provided here. However, basic
rationale for retinomorphic sensing arrays need to be provided.
System switching activity provides a simple metric to compare
hardware platforms. For a retinomorphic architecture to be
more appealing from a energy standpoint, array switching
activity needs to be less than that of a frame-based platform.
This trade-off, built off the analysis from [1], can be outlined
as such

fspk,arr < faps (1)
Nrocholfspk logz(Nrochol - 1) < NrocholffpsM (2)
(facta - fbk(]- - Oé)) logQ(Nrochol - 1) < ffpsM (3)

(facta - ft_lyd (]- - Ot)) logQ(N'rochol - 1) < ffpsM (4)

where the retinomorphic array output bandwidth, fepk arrs
and frame-based sensor throughput, f,,s can be deconstructed
into relation of average pixel firing rate for stimuli driven
events, f,c¢, and frame-rate, fy,s. Parameter o denotes the
probability a pixel fires with rate f,.; given local encoding
and signal processing, while + denotes the ratio between this
active frequency and a resting firing rate. Output bits from a
retinomorphic system are AER driven thus they denote spatial
locality of event activation, logy Ny,;,; — 1. Spike timings and
firing rates encode stimuli information. In contrast, spatial
location is inherently represented in the scanning approaches
of frame-based sensors, but information is encoded as a digital
value of size M. By equating foet = faps, the maximum
retinomorphic activity level tolerated for given array size
(INpiz) and attenuation factor v is
¥ M 1
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Figure 2 is a plot of this maximum tolerated pixel activity,
«, for a set of array sizes and attenuation factors, v. When
the resting spike rate goes to 0 and v diverges to infinity, the
maximum switching activity converges to m For
an array size of 109, the activity is bounded to a value of
40.17% meaning a pixel can only be in an active state for less

than 40% of the time and various stimuli profiles. Therefore,
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Fig. 2: Activity level threshold, «, for retinomorphic platform:
average pixel frequency such that frame-based platforms are
inferior from an energy standpoint. Metrics are extracted using
increasing array sizes and baseline activity attenuation, -y.

in-pixel adaptation and spatiotemporal encoding need to be
utilized to reduce activity rates.

III. ENCODING SCHEMA

As a baseline mechanism, absolute intensity can be encoded
into a spike train by integrating input synaptic current or
photocurrent onto a comparator node which fires a pulse when
the potential has exceeded a threshold. Therefore, the simple
integrate-and-fire pixel encodes absolute intensity into a pulse-
frequency modulated, spike train with rate:

ienc
fspk,zaf Lthcvmem ( )

where icy,. = ipp is the photocurrent from the sensing element,
Vi is the requisite threshold the potential reaches to fire a
spike, and C),enm is the membrane capacitance. However, it
can be seen from the expression that high intensity background
profiles would result in high firing rates. Therefore, as seen
in the outer plexiform layer, spatial filtering to reduce this
redundancy. Spatial contrast is defined as
ienc,scon = 7:no’rm| Ml (7)
bk

where the ratio of difference between input, 4,5, and back-
ground intensity, ip.x, and the latter is known as Weber
Contrast which is converted into a current response using
Inorm. Output response 5.0, can be similarly integrated and
transduced into a spike train using the IAF neuron encoder.
A potential downfall of this encoding methodology is the
presence of a sustained response to high contrast stimuli. To
address this, transient stimuli can be encoded

dipp
7 (®)
where ienc tcon Tepresents the temporal contrast response, or
temporal high-pass response, of the transient encoder. This

ienc,tcon = iph - (iph * Hlpf) =
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consists of computing the difference between the input current
and a temporal average.

IV. DECODING SCHEMA

After the stimuli current from the photodiode is processed
using spatiotemporal filtering chain, output encoder current is
transduced into a spike stream. These address events travel
along varying degrees of the hardware communication chain
before arriving at a software or hardware-realized decoder ar-
chitecture. Function of these decoders are similar independent
of implementation medium: events are received, processed,
and used as the means to reconstruct the input stimuli or
accomplish another application task. These events can arrive
via direct 1-to-1 connection realized via 3D integration [8] or
via address-driven selection after optional computation-driven
remapping [9], [10]. Decoding elements can be organized
into two subclasses: modules that realize linear filters and
ultimately integrate the events or elements that use the precise
timing between spikes as the basis for computation. The
former are classified as linear decoders or rate-code decoders
as they utilize linear filters to accumulate spikes over a
temporal window. Common linear decoding filters are of low-
pass type since spike integration is used to reconstruct the
signal. This can be accomplished using, among others, a first-
order RC filter or box filter with rectangular window. The
former, exponential filter impulse response can be expressed
as

gewp(t) = Age:_‘f (9)

uch that 7, is the pole of the low-pass filter and A, is the
filter gain. First-order nature of the filter has lent itself to
straightforward implementation in analog hardware as a model
of a synapse [1], [10]-[12]. A rectangular filter counts the
number of spikes in a sliding temporal of width ¢,. Filter
impulse response is expressed as

grect(t) = Ag(l - u(t - TT))

Instances of uniform, moving window synaptic responses
are uncommon in the brain and are not straightforward to
implement in analog or digital hardware.

Alternatively, a non-linear, temporal-code decoder uses the
instantaneous interspike timing to reconstruct the encoded
signal [13]. This temporal-coded method utilizes local memory
to encode recent spike timings and computational elements to
calculate the intervals, t/_. .:

181,1°

(10)

tisi,i = tspk,i - tsplc,i—l (] 1)

Ultimately, decoder reconstruction of the input stimuli is
achieved by observing the spike rate-transfer function from
the IAF neuron:

2 Cmem Vinr r
i) = thr _ Qin

(12)

tisii tisii

where 7(t) is the reconstructed stimulus.

V. RESULTS AND ANALYSIS

A simulation framework of the communication channel
presented in Figure 1 was implemented to analyze the trade-
off of encoder and decoder designs with respect to error rates
and power consumption in the presence of channel noise. The
intention of this effort was to inform the composition of future
retinomorphic arrays by maximizing performance over these
system parameters.

Two noise effects were included to capture the stochastic,
mixed-signal implementation of retinomorphic arrays. First,
random spike dropout was used to model the impact of fixed-
pattern noise which affects neuron firing rates [2], pixel-level
temporal noise which shunts event activation [14], or receiver
subsampling methodologies to compensate for buffer utiliza-
tion [15]. In the analysis model, dropout events, D(pg) is a
vector of size N5 Where each element is a Bernoulli random
variable with p = Pj,. For instance, a p; = 0 represents a
lossless channel with no dropout events. In tandem, a temporal
jitter was added to the spike timings generated by the neuron
backend in the encoders. This is a manifestation of some
combination of fixed pattern, shot, flicker, and thermal noise,
all of which are present with varying degrees in the analog
encoder circuits. After the injection of these noise mechanism,
each spike timing ¢; ,becomes:

tim = ti * (1= D;) + N(0,07) (13)

where ¢; is the pre-noise spike time of spike 7, D; is the
dropout random variable for spike ¢, and the latter term
represents the temporal jitter which is a Normal random
variable with standard deviation o;. In the presence of these
noise mechanisms, the channel performance was captured in
terms of mean-squared error:

1

Tstim

Tsti,?n,
(FonesCuecrpany) = o [ GO =i (14)
which is a function of the encoding (F.,.) and decoding G 4
schemes as well as the noise parameters defined above. This
metric encapsulates the difference between the reconstruction
i(t) and a input stimulus, i(¢) over the period Ty,

After applying the decoding method, an inverse mapping of
the analog encoding needs to be applied in order to complete
the reconstruction. Since the absolute intensity, IAF pixel does
not apply any spatial or temporal processing, the backend
reconstruction ;o #(t) is complete post-decoding. However, for
the spatial encoder, the background intensity (ipcx), contrast
polarity (Ssc), and normalization current (iy0ry,) are used to
produce the reconstructed current:

) (t)sscibck

A 1d .
Zscon(t) - ’L— — Upck
norm

15)

Since the TCON encoding is performing a temporal derivative
on the input stimuli, reconstruction consists of doing the
temporal integration of this decoder output whose sign is
dictated by the temporal contrast polarity, S.:

%tcon(t) = rztcon(t - 1) + Stc(id(t)) (16)
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Fig. 3: Reconstruction performance of encoder-decoder pairs:
SCON-orange, TCON-yellow, IAF-blue. First panel - input
stimuli. Second panel - reconstruction using box filter. Third
panel - reconstruction using exponential filter. Fourth - recon-
struction using interspike interval

Figure 3 depicts the reconstruction results for the three encoder
methods using the three decoders without the presence of
noise. Reconstruction error for the SCON method stems from
the latency introduced by the rate-coded decoders as a 7. and
7, time is needed to accumulate a high spike rate that results
from high, negative contrast at the advent of the stimulus.
In addition, the edges of the stimulus are delayed in the
reconstruction using the rate-coded approaches due to the
latency of each filter, 7. = 250us and 7. = 1lms thereby
highlighting a downside of utilizing linear methods.

Figure 4 outlines the MSE of the different decoder methods
versus temporal jitter and spike dropout rates respectively. The
accuracy was extracted for each encoder method and averaged
for each decoder technique to provide a curve that can be
utilized for analysis. For jitter profiles with o; < 10us, the
ISI decoder proves to have the smallest error for the given
stimulus. A similar relationship is seen with spike streams
with small dropout rates. Following intuition, the ISI accuracy
deteriorates when dropout rate and jitter increase while linear
decoder accuracy maintains. This is because the latter methods
effectively average noise within a temporal window of 7 width.

Figure 5 is a plot of MSE for TCON and IAF encoder
methods averaged over all decoder techniques. These plots
highlight a distinct trade-off between the encoder approaches.
The TCON pixel is strictly worse for all jitter profiles given
dropout rate of 0 %. However, with a jitter distribution with
deviation of 1us, the IAF pixels become worse from an error
perspective with dropout rates within 0.1 and 0.25. These
results also highlight a potential shortfall of the TCON pixel.
When the channel is noisy and induces stochastic temporal
jitter or lossy transmission, reconstruction accuracy suffers.

MSE
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(a) MSE as a function of jitter, pq = 0
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(b) MSE as a function of dropout, o; = 1us

Fig. 4: MSE with respective to decoder method (tc=temporal
code, rect=box filter, exp=exponential filter). The top and
bottom panel outlines accuracy of each method with respect
to temporal jitter and spike dropout rates respectively.

This is due to the TCON pixel’s high attenuation factor (v)
within a static scene.

Encoder-dependent, noise artifacts, which are a result of
circuit complexity, can be analyzed using this simple channel
model. For instance, as mentioned in Sections III and IV,
TCON and box filter analog implementations are complex
hence one could expect higher jitter and dropout rates, say
pn;j = 10ps and pg = 0.1. This can be compared to a
IAF pixel with ISI decoder. In this configuration, lack of
encoding reduces complexity-driven noise and low jitter, but
increases the change of channel congestion which leads to
higher dropout rates in the readout. For a o; = 0.01us
and pg; = 0.2, the éIAF,ISI > éTCON,BOX despite lower
complexity.

Error and circuit complexity is not the only constraint
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Fig. 5: MSE with respective to encoder method (IAF and
TCON). The top and bottom panel outlines accuracy of each
method with respect to temporal jitter and spike dropout rates
respectively.

for retinomorphic systems. In large arrays that are active in
embedded contexts, low power consumption is paramount.
Power of each encoder methodology can be approximated by
multiplying a nominal energy per spike by output spike rate.
The former is a result of circuit complexity and design real-
ization while latter is dependent on encoder attenuation factor,
¥ (Ytcon >> 7Viay)- Table I outlines the qualitative rankings
of the encoder and decoder methods given the aforementioned
analysis and discussion.

Construction of retinomorphic systems should exist on a
continuum where a multi-modal encoder/decoder approach can
be taken to optimize composition with respect to costs and el-
ement performance. Such a relationship can be conceptualized

TABLE I: Module Rankings: (e,d) denote the ranking for
encoders and decoders respectively. Decoder implementation
in the analog domain was assumed ( [10], [11], [13])

Module Area | Power | Speed | Accuracy
IAF le 3e le le
SCON 2e 2e 2e 2e
TCON 3e le 3e 3e
Rate-Rect 3d 3d 2d 1d
Rate-Exp. 2d 1d 2d 1d
Temp-ISIT 1d 2d 1d 2d
using the following ratios
1 éiay
Re= - a7
Ce €tcon
1P tcon
Ry =— (18)
P
Cp Piaf

where the C, is the cost or weight of MSE given our system
design and C), is the same for the power constraint. These
ratios capture disparity between system extremes: for values of
R, , << 1, there is a massive gulf in between the performance
of the pixels with respect to each metric. Therefore, in order to
construct a balanced system with mixing coefficient a,, = 0.5,
then more cost will need to be associated with the alternative
metric. The following expression captures this relationship
between the above ratios and array composition

€

R,’ 1) (19)
When R. > R, and power becomes the dominant metric,
o, = 1 and the array will be fully composed of TCON pixels.
An example 2D mapping of a,. with respect to constraint costs
C,,p is shown in Figure 6. In this example, R, = %, thus
a large power cost (a power constrained system) is needed
relative to the error cost. For instance, «,=0.5 and the array
composition is balanced with a cost relation of C), = 20C, =
2. However, with a system that requires higher error sensitivity
and C, — 2, a,- =~ 0.1 and the retinomorphic system is almost
entirely IAF pixels despite their higher power consumption.
The mixing ratio seen between transient, 8 and sustained, «
ganglion cells is also depicted as a line inset within the figure.
Interestingly, the retina ganglion cells are composed of 93% of
these transient variety which confirms the fact that evolution
also optimized the neural layer with respect to power costs
instead of accuracy [7], [16]. Parallelized output and hierarchy
seen in the latter stages of the visual pathway are then used to
compensate for the lower accuracy of the retina to reconstruct
the world around us.

o = min(

VI. CONCLUSION

An overview and numerical analysis of retinomorphic chan-
nel elements and performance has been presented. Three
encoding and decoding methodologies were introduced. The
9 unique combinations of these techniques were applied to
transmit and reconstruct an example stimulus. Reconstruction
accuracy in the presence of temporal jitter and spike dropout
was used to compare performance. Power was approximated
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Fig. 6: Surface map of mixing coefficients for a variety of error
and power costs: MSE and Power were extracted for the IAF
and TCON streams using a ISI decoder and ipp, ymae = 10nA.
Encoder metric ratios: R, = 0.0037, R, = 0.0395. Channel
error profile: P, = 0 and o = 1us. Inset line is the mixing
ratio seen between [ and a-ganglion cells in the retina.

by computing the product of energy consumption per spike
and the pixel output frequency.

With respect to encoder performance, all methods were
assumed to have comparable speed since they all leverage
the IAF neuron for spike encoding. However, it was seen
that the TCON pixel was superior with respect to power
for the given stimulus, but performed poorly with respect to
accurate reconstruction in the presence of extrinsic channel
noise. With respect to encoder performance, the linear decoder
methods were strictly better when reconstructing the signal in
the presence of noise, but incurred a speed penalty as they
require 7 seconds to accumulate a result. Furthermore, ISI
and Exp. decoder methods lend themselves to compact analog
circuit implementation. Encoding power and accuracy metrics
were then leveraged to understand how to architect an array
of pixels given system constraints.

Future work is needed to expand the multi-modal analysis
performed in Section V to decoder techniques. These can be
analyzed with respect to speed and accuracy. Furthermore,
additional stimuli should be used to understand architecture
composition in alternate scenarios (e.g: mostly static/mostly
dynamic scenes). By doing so, this framework can be utilized
to inform the next generation of vision systems which can
realize the effective communication of visual information seen
in the retina.
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