2023 |EEE International Symposium on Circuits and Systems (ISCAS) | 978-1-6654-5109-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/I1SCAS46773.2023.10181958

Asynchronous, Spatiotemporal Filtering using an
Analog Cellular Neural Network Processor

Jonah P. Sengupta*, Michael A. Tomlinson*, Daniel R. Mendat*, Martin Villemur®, Andreas G. Andreou*
* Department of Electrical & Computer Engineering, Johns Hopkins University
f Embedded Systems Division, Silicon Austria Labs
Email: {jsengupl, mtomlin5, dmendat4, andreou} @jhu.edu, martin.villemur@silicon-austria.com

Abstract—Neuromorphic processing architectures seek to emu-
late the functionality of the brain by realizing parallel, efficient,
event-based processing which can be directly applied to solve
many of the pressing problems within artificial intelligence and
big data. However, implementation of these systems leads to slow
response times, high power dissipation, or incoherent output.
In this paper, an analog cellular neural network processing
element is demonstrated to perform asynchronous spatiotemporal
filtering operations in an area and power efficient manner. It
utilizes a pair of analog memories to encode spike timings and
perform event-based bandpass temporal processing. Information
from the local clique of temporal filters is leveraged by a
parallel, spatial processor which maps CNN arithmetic to the
current-domain for compact computation. Preliminary circuit
verification demonstrated the ability of the element to perform
spatiotemporal filtering operations with latencies less than 1.8us
while only consuming 1.6pJ/spike.

Index Terms—neuromorphic hardware, cellular neural net-
work, asynchronous processing, analog VLSI

I. INTRODUCTION

Neuromorphic sensing and processing pose themselves as a
promising solution to many of the prevalent issues pertaining
to the scaling of artificial intelligence hardware platforms [1].
These architectures have showcased the ability to perform
large-scale optimization, scene recognition, and autonomous
control tasks in an energy-efficient, massively parallel fashion
[2]-[5]. However, platform implementations leave room for
improvement. Digital silicon neuron-based frameworks utilize
large memories to store neuron states and synaptic weights
[6]. These typically utilize time-multiplexed techniques which
places a bound on response speed and require clocks whose
distribution networks consume power. In contrast, analog
neurons allow for higher implementation density and asyn-
chronous operation but device mismatch makes extensive
system calibration requisite [5].

This paper presents an analog, cellular neural network
(CNN) processing element which seeks to address both of
these issues. CNNs are two-dimensional arrays of cells or
processing elements (PEs) that utilize local connections to
realize spatial computation. These platform have been shown
to perform a large variety tasks in an energy-efficient, par-
allel, and compact fashion [7], [8]. More recent versions of
simplicial-CNN arrays have been used to conduct energy-
efficient morphological processing of binary images by lever-
aging symmetric functions [9]. A prior architecture was pro-

Fig. 1: Block diagram and schematic of the Spike-based CNN
Processing Element (SBCNN-PE): it consists of an interspike
interval temporal frontend (ISI-TFE) and current-mode CNN
(CM-CNN) which are connected to each other, the pixel, and
AER with request-acknowledge interfaces.

posed that provided the means to spatiotemporally filter event-
based data asynchronously [10].

This paper presents the circuit-level implementation of
an enhanced version of this prior work. It utilizes analog
memory to represent spike timing information thus providing
an area and power efficient alternative to digital memory
[11]. Symmetric-CNN arithmetic was then compactly mapped
to the current-domain. Low-precision states used for spatial
processing allowed for the removal of any external memory
and yielded fast response times. Further descriptions of these
modules and others will be covered in Section II. Section III
demonstrates circuit capability and presents a set of prelimi-
nary performance metrics before concluding in Section IV.

II. ASYNCHRONOUS PROCESSING ELEMENT

Spatiotemporal processing of event information is per-
formed using the processing element shown in Figure 1.
The spike-based, cellular neural network processing element
(SBCNN-PE) is composed of a chain of mixed-signal compu-
tational blocks. Input spike data can either flow from an AER
receiver interface that captures data from a paired transmitter
[12] or from a vertically integrated spike generator [13],
[14]. First, event data is used as the input to the interspike
interval temporal frontend (ISI-TFE) whose programmed band
determines whether to send a request to the next stage. Once
requested, spatial processing is realized in the current-mode
symmetric CNN (CM-CNN) by leveraging temporal data
from the 3x3 neighborhood and current-mode arithmetic to
represent the symmetric-CNN computation [15]. An analog
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Fig. 2: Schematic of a spike-temporal encoder channel: an
analog value, V., encodes the time elapsed between spikes,
which is then converted into a digital value, Out, using a
comparator.

timer circuit is used to perform the requisite handshaking with
the spike generator and reset the elements within the ISI-TFE
after a programmed amount of time has elapsed.

A. Interspike Interval Temporal Frontend

Data from event-based, silicon retina and other spike gen-
erators are anisochronous [16], [17]. Therefore, an interface
which provides a decoded, temporal representation of spike
timing is needed. Local decoding of incident spikes can
be achieved by observing the interspike interval (temporal
coding) [18]. Temporal decoders have the benefit of low
computation latencies and implementation complexity in the
asynchronous domain. These representations can be extended
into the spatial domain to render time surfaces which depict
spatiotemporal spike activity [19]. Digital realization of time
surface activations are area inefficient and require synchronous
implementations for local timestamping. In contrast, analog
representation of interspike intervals reduces area and power
consumption.

To track ISIs, spike timing is encoded in the analog domain
by the computational core of the ISI-TFE: the temporal
encoder (TE), shown in Figure 2. After a spike activation,
the reset (nR) is asserted by the analog timer pulling V.
high. Following its release, pull-up device My, is de-activated
allowing M;,; to sink current and discharge V.. When a
subsequent spike is received, the ISI will be encoded as the
remaining charge on V. This voltage is then converted to a
digital bit by the comparator. Voltage bias Vpry sets the
threshold of the comparator such that Out is raised when
V, < Vgrg. With current Iy used to set Vgrx on the
leak device, each temporal encoder output is logic 0 for time,
Tte-

_ Ci(Vbp — Vinr)
Iprk
where Vip, = Vgry and assuming My, is saturated.
A spike-based, bandpass response can then be constructed
by utilizing two temporal encoders with decay times 75 and
717 which represent the temporal corners of high-pass and
low-pass filters respectively. Assuming identical comparator
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Fig. 3: Timing diagram of the ISI-TFE: three cases are
highlighted - (a) high frequency spike (b) low frequency spike
(c) spike with requisite interval.

thresholds, maximum bandwidth can be expressed as the
difference in leak currents:

Tow = Tif — Thf (2)

1 1
= Cuw(Vbop — Wnr)(IBLK " " Toin o (3)

Bandwidth can be further extended by increasing and decreas-
ing the voltage thresholds for the high and low frequency
temporal encoders respectively.

A timing diagram of the ISI-TFE is depicted in Figure 3.
This illustrates the three possible output cases:

a) High-frequency noise: tie; < Thy < Tiys

b) Low-frequency noise: 7hf < Tif < tisi

c) Target interval: 7,7 < t;5; < 735
As shown in Figure 3, output from the ISI-TFE, nT Regq, is
realized on event-based basis using the following logic:

nl'Req=—-HF v LF vV —=PizReq 4

such that HF and LF are the Out comparator signals for the
high and low frequency temporal encoders respectively and
PizReq is the request from the AER receiver or vertically
integrated element. This signal also sets a state register with
output nC'M P which is then broadcast to the nearest neigh-
bors for spatial processing.

B. Current-mode Symmetric CNN

When successive spikes have an ISI within the passband
of the ISI-TFE, a request is then sent to the CM-CNN circuit
shown in Figure 4. In this event, the nT Req is asserted and the
state bits from the center element and the 8 nearest neighbors,
nCMP|0 : 8], are each used to enable a branch in a pull-
up network. Each branch has three devices: the switch tied to
the state data, a bias transistor, and a third device representing
the structuring element n.SE[0 : 8]. Bias Vg py is programmed
using a peripheral diode-connected P-device which is sourcing
current /g py;. By connecting all the current branches together,
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Fig. 4: Schematic of the CM-CNN circuit: Block Ipy per-
forms a compact addition using neighborhood activity and
structuring element. Block Fiym,, represents a current-mode
implementation of the CNN function. Residual current is
integrated onto the IAF neuron which handles the output
interface with the AER.

TABLE I: Symmetric, Current-mode Functional Mapping

ZRL Fsymm IpnT

T 011. 17050

2 001..1] | 1.5*Ippy

3 [000.. 1] | 25*Ippy

Nzgrr [000..1] | (Nzrr —0.5)*Igpy

a compact addition operation is realized in the current-domain
via KCL at the integration node:

8
Ipy = _(-nCMP[i] A-nSE[i])Ispy ®)

i=0

Symmetric functions used for spatial processing in CNN
arrays consist of vectors of N, + 2 length, such that N,, is
the number of connected neighbors. Each bit of the vector
represents the vertex of a simplex which is approximating
a piecewise linear function, such as the max or min. How-
ever, as shown in prior work [10], [15], useful processing
operations can be performed by utilizing functions composed
of consecutive 0’s and 1’s. Therefore, to reduce complexity,
the symmetric function can be approximated as a threshold
value. A current, sunk through devices M;,; and Mg,o, im-
plements this functionality in the current domain. An external
threshold current Iz is used to set the gates of two diode
connected devices on the periphery which configure cascode
bias Vger and leak bias Vpyr. An explicit mapping between
the symmetric function, Fymm. and programmed leak current,
IgnT, is seen in Table I. Igyr is programmed with a
0.5%Igpyy margin for each level to accommodate mismatch
in the threshold or pull-up devices.

Zero run length (ZRL) is defined as the number of con-
secutive 0’s in the symmetric function [10]. Practically, this
represents the minimum amount of activity needed in the
neighborhood to elicit a response. A threshold in the CM-
CNN realizes the same behavior when expressed in terms of
the unit current, Igpy.

The difference between the summed spatial activity and
current-mode symmetric function is then integrated onto a
positive-feedback, IAF neuron [20], [21] which handles the
interface with the AER network. Residual integration current
is

Iint =Ipuv — IenT (6)
8
=Igpy »_(-nCMPi] A -nSEli]) — (Nzpe —0.5) (7)
i=0
Latency between the assertion of nT Req and assertion of
nReg,. is proportional to this integration current. Slowest
response time, t.pn mae. 1S attained when the spatial activity
just exceeds the programmed threshold with residual current
0.5Igpu

QCpmhr,jaf
Igpu

Therefore, worst-case response time can be improved by
scaling up the unit current used in the CNN computation.
However, this also increases the power consumed by the CM-
CNN.

8)

tmn,maz =

ITI. RESULTS AND ANALYSIS

The various circuit designs outlined in Section II were
implemented in a 65nm CMOS technology and simulated in
SPICE to characterize their theoretical performance. Beneficial
compactness and low-power operation of analog circuits is
balanced by larger sensitivity to noise mechanisms. Therefore,
fixed-pattern noise analysis was utilized to explore its effects
on the performance of ISI-TFE.

Figure 5 shows the results of such analysis. Nominal ISI-
TFE bandpass response is represented by the yellow curve.
With the VBTH,HFZ].IV, VBTH,LFZO.ZV, and Igrx =
100pA, the high frequency and low frequency cutoffs are
12.5kHz and 800Hz respectively. Varying the device param-
eters of the different components of the temporal encoders
reduces the steepness of the bandpass response. When the
comparators are varied, the variance can be represented by a
fixed threshold offset which moreso affects the high-frequency
corner (left corner of blue curve). In contrast, varying the
leak devices (My,; in Figure 2) manifests the variance as
a percentage of programmed current thereby affecting both
corners (orange curve).

Figure 6 is a transient simulation which demonstrates the
activity-driven current-mode, arithmetic of the CM-CNN cir-
cuit. Manual activation of nCM P[0 : 8] and nSE[0 : §]
allowed for the exploration of all input combinations. The
third trace is the sum of output currents from the enabled
current branches. Output current is stepped in increments of
Igpy = 5.5nA (bottom blue trace) for Y, -nCM P[0 : 8] <=
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Fig. 5: Bandpass response of the ISI-TFE under three condi-
tions: ideal (yellow), sampling the device parameters within
the comparator (blue), and sampling the device parameters
within the temporal encoder (orange).
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>~ —nSE|0 : 8] and saturates at a value of Igpy >, —nSE[0 :
8]. It is shown that the nSE[0 : 8] gates the arithmetic and
nC'M P[0 : 8] linearly increments the output current.

Figure 7 showcases the ability of the SBCNN-PE to lever-
age the temporal filter for spatial processing. In this SPICE
simulation, spike streams containing frequencies of 5kHz (a)
and 1kHz (b) were injected into a 3x3 array of cells. The ISI-
TFE was configured with a passband of 400Hz to 1.3kHz.
The neuron threshold was set to Igyt = 5.5Igpy with
Igpy = 1nA. This corresponds to a Fiymm with ZRL of
6 which requires a minimum of 5 other active cells in the
clique to yield a spike. As shown in the bottom plot of Figure
7a, none of the SkHz stream is passed to the CM-CNN since
the ISI falls outside of the passband. When the 1kHz stream
arrives, all of the ISI-TFEs in the array start sending requests
to the CM-CNN. However, the bottom plot of Figure 7b shows
that only cells in the N, W, E, S and center indices produce
output responses thereby realizing the desired filter behavior.
This is because those cells have the requisite spatiotemporal
activity of 5 active neighbors with valid ISIs.

Table II showcases the metrics captured during verification.
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Fig. 7: Spatiotemporal response of 3x3 SBCNN array during
transient simulation. Yellow and purple shaded cells corre-
spond to 10 and O spikes per temporal sample respectively
(tsmp = 10/(fepk,to/1))- Cells outside the 3x3 are inactive.

TABLE II: SBCNN-PE Specifications

Metric Value
Devices 81T + 2C
Spatial Resolution 3x3 kernel
Max/Min Spike Frequency Comers | 4MHz, 72Hz
Worse-case latency 1.8us
Energy-per-Spike 1.6p]

Static Power 2nW

A total of 81 devices are needed for the ISI-TFE, CM-
CNN, and other modules. Maximum and minimum corner
frequencies were extracted using comparator thresholds of
Vine = 1.1,0.2V and currents Igrr = 50nA/10pA that
ensure subthreshold operation. Worse-case latency and energy-
per-spike were extracted using the configuration used to
demonstrate the spatiotemporal filtering in Figure 7. The
area, energy, and speed preliminary metrics presented are
all competitive or strictly better than other asynchronous,
neuromorphic architectures [2]-[4].

IV. CONCLUSION

This paper detailed the design and verification of a spike-
based, cellular neural network processing element. This work
utilized an analog encoding of spike timing to realize a
temporal bandpass filter. If the interspike interval of the
incident spike stream resided in the passband of the temporal
filter, a request was then sent to the current-mode CNN
backend to enable its computation. When simulated in a 65nm
technology node, the processing element was shown to be
energy (1.6pl/spike), area (81 devices), and time efficient
(< 1.8us latency) when performing spatiotemporal filtering.

Self-timed approaches will be the subject of future pursuits.
Such schemes would utilize delay-insensitive data representa-
tions, asynchronous buffer stages, and metastability filters to
coordinate the module handshaking and eliminate the need
for the error-prone analog timers used in this work [22].
Finally, implementation and integration need to be undertaken
in order to fully realize an asynchronous processor for efficent
spatiotemporal filtering.
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