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TOPICAL REVIEW
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Abstract
In recent years, there has been a growing demand for miniaturization, low power consumption,
quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these
demands, healthcare professionals are seeking new technological paradigms that can improve
diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses
neural models in hardware and software to replicate brain-like behaviors, can help usher in a new
era of medicine by delivering low power, low latency, small footprint, and high bandwidth
solutions. This paper provides an overview of recent neuromorphic advancements in medicine,
including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and
biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we
provide examples of how brain-inspired models can successfully compete with conventional
artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to
meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting
neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for
future bottlenecks in hardware compatibility.

1. Introduction

Since the advent of cardiac defibrillators in 1930,
medical technologies have played an increasingly
vital role in patient care and diagnostics. The intro-
duction of the pacemaker in 1958, followed by dia-
lysis machines, insulin pumps, and advancements in
miniaturization and imaging have made medical care
and technological diagnostics more interdependent
[1–4]. Prosthetics have similarly revolutionized
patient care by assisting individuals with declin-
ing neurological functions due to neurodegenerative
diseases, as well as people who have suffered injur-
ies, such as amputees. Since the 1950s, the inven-
tion of cochlear and visual assistance implants has
paved the way for neuromodulating devices that
monitor, stimulate, and improve motor, auditory,
visual, vestibular, and communicative functions.
Neuroprosthetic devices have even restored function

to entirely defunct neurological relays, thus enabling
individuals to regain control over aspects of their lives
that were once impossible [5–9].

Despite the significant advances in medical tech-
nologies, there are still many areas that require
improvement. For instance, implantable devices face
power requirements that often result in the need for
extended battery life [10]. Fully implantable devices
also suffer bandwidth issues which necessitate more
frequent clinical visits to offload important neurolo-
gical data. Moreover, typical tomography machines
generate large images that require segmentation, clas-
sification, and recognition algorithms, which come
at an extremely high computational cost [11, 12]. At
a more fundamental level, bidirectional communic-
ation with the nervous system (i.e., neural record-
ing and stimulation) remains largely asymmetric, as
analog neuronal activity based on action potentials
is generally translated into basic digital data, which
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limits our ability to comprehend and communicate
with the brain.

To address these challenges, Carver Mead and
Misha Mahowald pioneered the field of neur-
omorphic computing and engineering with their
invention of the first neuromorphic silicon in 1989
[13]. Neuromorphic computing and engineering
involve creating hardware and software models that
emulate the structure of biological neural networks
(BNNs), with a focus on developing designs that
closely mimic the architecture of the human brain.
Therefore, neuromorphic devices are designed to
exploit the brain’s efficiency in compression, com-
munication, and the computational cost of hardware.

One significant advantage of neuromorphic
approaches is their potential for low power consump-
tion and extended battery life. Neuromorphic models
are typically designed to be highly parallel, allowing
them toperformcomputations using significantly less
power than traditional computing systems [14]. This
energy efficiency is particularly important in medic-
ally implanted devices, which frequently require or
significantly benefit from long-lasting and reliable
power sources. By leveraging neuromorphic com-
puting, medical technologies can achieve higher per-
formance and functionality while minimizing power
consumption, leading to better patient outcomes and
improved quality of life. Other advantages offered
by neuromorphic devices are the ability to com-
press information to event-based data that can be
manipulated easily into spikes [15, 16], minimize
device sizes through novel complementary metal-
oxide semiconductor (CMOS) technologies, improve
computational speed, and reduce overall costs while
mimicking the native computing architecture of the
human brain [5, 17, 18].

Since the original conception by Mead and
Mahowald’s, engineers have developed a range of
innovative devices, including silicon retinas, com-
pressed event-based sensing schemes, olfactory sys-
tems, auditory systems, depression detection mech-
anisms, robotic limbs, on-chip disease detection
devices [19], among others. Most of these inven-
tions have demonstrated remarkable features such as
low latency, low power, high bandwidth, and high
dynamic range, all of which aim to achieve dra-
matic improvements in energy efficiency and overall
performance [17, 20, 21].

This paper presents an overview of the potential
of neuromorphic technologies in improving medical
diagnostics and treatments. The examples discussed
in this review cover a wide range of applications,
including software and hardware, medical imaging
and diagnosis [22], cell culture analysis, neuropros-
thetic control, perception, and more, as shown in
figure 1. To organize this content effectively, this
paper is divided into six sections:

• A brief introduction to neuromorphic engineering.

• Neuromorphic approaches for diagnosis.
• Neuromorphic approaches for biosignal analysis.
• Neuromorphic approaches for neural interfaces.
• Advancements in neuromorphic tools for reverse
engineering human biological senses.

• Difficulties in integrating neuromorphic engineer-
ing with medicine.

We conclude by discussing potential avenues for
integrating neuromorphic engineering into tradi-
tional medicine to improve patient care and out-
comes.

2. A brief introduction to neuromorphic
engineering

Neuromorphic engineering aims to develop hardware
and software systems that replicate the structure and
function of BNNs. This brain-inspired approach has
prompted researchers to investigate how the brain
performs fundamental operations and apply those
principles to both software and hardware designs.

However, it is important to note that both soft-
ware and hardware approaches to neuromorphic
engineering have their own advantages and chal-
lenges. Software approaches are often more flexible
and easier to modify, but they may be less efficient
than hardware approaches. Hardware approaches are
often more efficient, but they can be more difficult to
design and modify.

2.1. Neuromorphic hardware
Hardware neuromorphic engineering involves
designing and building custom hardware that is
optimized for performing the types of computations
required by the aforementioned neural networks.
Neuromorphic hardware typically consists of artifi-
cial neurons and synapses that are designed to mimic
the behavior of biological neurons and synapses [23].

Compared to traditional computing systems,
neuromorphic hardware has several advantages.
Firstly, it functions similarly to the human brain,
which is highly energy-efficient since it operates on
the concept of in-memory computing and is not
restricted by the von Neumann bottleneck [24]. This
bottleneck is a limitation that arises in traditional
computing systems and is named after the mathem-
atician and computer scientist John von Neumann.
In these systems, the central processing unit (CPU)
andmemory are separate components, and datamust
be transferred back and forth between them for pro-
cessing. This data transfer creates processing speed
restrictions and more energy usage.

Secondly, neuromorphic architectures perform
parallel processing, which results in faster and more
efficient computing [14]. Since the synapse and neur-
ons are massively interconnected, computations can
be performed simultaneously since each element can
work independently.
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Figure 1. Neuromorphic computing has many applications and inspirations to-and-from medicine. Besides interfaces,
neuromorphic detection algorithms also assist in diagnostic care (bottom-right).

Thirdly, it can adapt and learn from new inputs,
making it well-suited for machine learning and arti-
ficial intelligence (AI) [25]. This concept is known
as plasticity, where new information can easily be
integrated. Thismakes neuromorphic hardware com-
patible with unsupervised learning, which naturally
relies on the ability to change based on varying
inputs.

Lastly, neuromorphic hardware is fault-tolerant,
meaning it can function even if individual com-
ponents fail [26–28]. In traditional computing sys-
tems, individual components, such as transistors, can
fail causing large portions of the system to mal-
function. However, in neuromorphic hardware, mul-
tiple artificial neurons and synapses are used to
perform the same function [29]. This redundancy
helps build resilience to systems failing. Additionally,
neuromorphic hardware often employs distributed
computation, which means that the processing is
distributed across many computing elements rather

than being centralized in a single processing unit. For
a more detailed exploration of medical applications
using neuromorphic circuitry, please see this review
paper [30].

2.2. Neuromorphic software
Neuromorphic software often employs a variety of
algorithms that are designed to mimic the functions
of neurons and synapses in the brain. Some of the
most popular algorithms used in neuromorphic soft-
ware include spiking neural networks (SNNs) and
spike-timing-dependent plasticity (STDP) [31].

SNNs model how biological neurons use spikes,
or action potentials, to communicate between neur-
ons, and store neuronal and synaptic states [31].
Therefore, unlike traditional artificial neural net-
works (ANNs), which use continuous values to rep-
resent information, SNNs use discrete pulses to com-
municate information. In addition, compared to
ANNs which use non-biological activation functions
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like rectified linear units and hyperbolic tangents
(tanh) [32], SNNs rely on implementing neural mod-
els, such as the leaky integrate-and-fire (LIF) neuron
[33]. This makes themmore biologically realistic and
energy efficient. As a result, they are considered neur-
omorphic in nature because they are event-driven
(e.g., discrete in value and continuous in time), bio-
logically inspired, and can be deployed on compatible
neuromorphic hardware. It is important to note that
there are other methods the brain uses to encode/de-
code information, such as synaptic background noise
[34], but the knowledge on action potentials is suffi-
cient enough to make them more amenable to hard-
ware implementations.

STDP is a learning algorithm that is used in SNNs
to adjust the strength of the connections between
neurons based on the timing of their spikes. The
basic idea behind STDP is that when a presyn-
aptic neuron consistently fires before a postsynaptic
neuron, the connection between them is strengthened
[31]. Conversely, when a presynaptic neuron consist-
ently fires after a postsynaptic neuron, the connec-
tion between them is weakened. This type of learning
can help SNNs adapt to new inputs and learn from
experience.

Neuromorphic software has adapted conven-
tional algorithms commonly used in traditional
software to mimic the behavior of BNNs. These
algorithms include deep learning convolutional
neural networks (CNNs) [35], and recurrent neural
networks (RNNs) [36]. Briefly, deep learning
algorithms are capable of learning multiple levels
of representation in data, making them a power-
ful machine learning tool. CNNs, which excel at
recognizing spatial patterns in data, are often used
in computer vision applications [37–39]. RNNs are
well-suited for tasks involving sequential data, such
as language translation and speech recognition.

While there will be instances that showcase
the potential of hardware, most examples presen-
ted in this paper will concentrate on neuromorphic
software. This is because software algorithms are
not constrained by fabrication and hardware real-
ization. Nonetheless, all the examples of neur-
omorphic applications will demonstrate that both
brain-inspired hardware and software hold a prom-
ising future in healthcare.

3. Neuromorphic approaches for diagnosis

The use of medical imaging is particularly crucial
in the detection of cancer, where early diagnosis
can greatly improve a patient’s chances of survival.
Diagnostic imaging techniques enable doctors to
identify tumors at their earliest stages. Therefore,
there is a pressing need to develop intelligent, low-
cost, portable, and low-power preliminary diagnostic
hardware to facilitate early detection. Neuromorphic
hardware has the potential to enable real-time data

processing, significantly reducing power consump-
tion, which is one of the major burdens of clinical
applications.

This section provides an overview of how differ-
ent neuromorphic hardware designs can be utilized in
various stages of medical image processing. The focus
is on specific clinical applications of cancer detection
and diagnosis, where the benefits of neuromorphic
hardware are particularly evident.

3.1. Imaging
Medical image processing refers to the process of
digitizing data from an image and applying various
mathematical operations to generate an enhanced
image that is better suited for interpretation and
analysis, especially for diagnostic purposes. However,
diagnosing medical conditions based on images is
a complicated task because diagnostic information
is demonstrated differently by different imaging
devices. Therefore, a combination of image sequences
is often necessary to effectively interpret the clinical
data.

Traditional image analysis methodologies involve
segmentation, fusion, and contrast optimization
(enhancement) to convert imaging data into mean-
ingful biomarkers that provide insights into the
physiology and pathophysiology of a tissue [40, 41].
More recently, the integration of high-performance
computing and the accessibility of extensive medical
imaging datasets have facilitated the deployment of
sophisticated machine learning techniques and deep
learning models, bringing analysis closer to the cap-
abilities of the human brain. ANNs have demon-
strated promising potential in image processing,
speech recognition, pattern recognition, and med-
ical diagnostics [42].

While ANNs are not inherently neuromorphic
because they lack a biological basis for their oper-
ation, some have been adapted and reconfigured
to be neuromorphic. A type of ANN that is highly
relevant to image processing is the pulse-coupled
neural network (PCNN). PCNNs are unsupervised
neural models that are implemented to resemble the
function of the visual cortex and therefore allow
high-performance biomimetic image processing
[43, 44].Modeling the architecture of biologicalmod-
els is inherently neuromorphic in function and is an
attempt to exploit energy-efficient and computa-
tionally intelligent mechanisms. Figure 2 illustrates
the structure of the PCNNs. The functioning of the
PCNN is based on a biologicalmodel that comprises a
receptive field, modulation step to integrate convolu-
tions, threshold detector, pulse generator, and binary
output. The receptive field is equivalent to the dend-
ritic part of a biological nerve network. Whether the
pulse is generated depends on whether the internal
activity term exceeds the dynamic threshold, and the
threshold value is a function of the output state of
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Figure 2. Pulse-coupled CNN. A typical convolution is performed using retinomorphic neural connectivity. Each pixel in the
image (left) is connected to a neuron (body connections) and surrounding neurons (linking connections), both of which
make-up the receptive field. Each connection has its own associated weights based on the distance from the computing pixel (e.g.,
linking radius). After pixel convolution, the outputs are passed through a threshold detector and pulse generator which fires a
spike (‘event’ or ‘pulse’) based on whether the internal dynamics of the neurons have exceeded a limit.

the neuron. In summary, the PCNN model is a two-
dimensional (2D), single-layered, horizontally linked
neural network in which each pixel in the image
(i, j) is connected to a unique neuron (i, j), and each
neuron relates to the surrounding neurons within an
arbitrary radius.

Another type of ANN, known as deep neural
networks (DNNs), has emerged as a robust tool
for biomedical image computing. DNNs are mul-
tilayer neural network algorithms that can learn com-
plex features and create more abstract deep repres-
entations by combining low-level features, known
as attribute classes or features [20]. Consequently,
instead of relying on complicated image representa-
tion engineering, DNNs directly deal with raw image
data and autonomously learn the representations
for different tasks [21]. However, pre-processing raw
images is often performed prior to feeding them into a
DNN. This pre-processingmay include standardizing
the size of the images through resizing or cropping,
normalizing the pixel values to have zero mean and
unit variance, and applying data augmentation tech-
niques like flipping, rotating, or introducing noise to
the images to amplify the diversity of the training
data [45–48]. These transformations serve to enhance
the input data consistency and richness for the DNN,
while also preventing overfitting by increasing the
diversity and size of the training dataset. By apply-
ing these transformations, the DNN is better able
to understand the underlying patterns and features
in the data, potentially resulting in improved per-
formance on tasks such as image classification, object
detection, or segmentation. In addition, DNNs typ-
ically require a substantial quantity of training data,
which may not be readily available.

Another obstacle for DNNs stems from
their innate characteristic of high computational

complexity, necessitating large amounts of memory
for both the original data storage and temporary data
processing. DNNs are incapable of handling shifts in
input data distribution, a problem known as classific-
ation under covariate shift. Different strategies have
been developed to mitigate the limitation of cov-
ariance shift, including importance weighted cross
validation [49], discriminative learning through
integrated optimization that does not explicitly
model either the training or test distribution [50],
and weighting the observed samples in maximize the
log-likelihood function [51].

To overcome the limitations of DNNs and other
ANN-based architectures, the latest research has
explored the potential of bio-inspired neuromorphic
hardware. Specifically, three neuromorphic designs,
namely field programmable gate arrays (FPGAs),
memristors or in-memory passive devices [52], and
CMOS architectures, have been studied for their suit-
ability in various stages of the medical image pro-
cessingmethodology. Finally, there has been an emer-
gence of other neuromorphic models, such as SNNs
(as depicted in figure 3), which are neural networks
that muchmore closely resemble biology than typical
ANNs, as discussed in the previous section. Specific
examples of the use of each of these neuromorphic
designs in different applications are presented in the
following sections.

3.1.1. Image segmentation for medical diagnostics
Image segmentation is the process of dividing an
image intomultiple distinct regions or segments, each
of which corresponds to a different object or part
of the image. This technique is widely used in med-
ical diagnostics, particularly in cytopathology and
microscopic cellular imaging. The shape, size, and
structure of nuclei observed in microscopic color
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Figure 3. Examples of processing biosignals. Inputs (right) can come from images (MRIs, PET, calcium imaging), EEG
measurements, sEMG recordings and more. Measurements that have a low-signal-to-noise ratio are often filtered, compressed,
and/or sorted to pure-spikes for neuromorphic compatibility. In the case of learning, classification, and inference, different
features are learned for control, perception, localizing patterns, and various feedback mechanisms. These feedback mechanisms
then inform recording inputs and learning architectures for improved monitoring and accuracy. The outputs correspond different
applications, where neuromorphic engineering is involved in tool development and engineering (replicating biosignals),
diagnostics and rehab (i.e, cancer detection), and neural interfaces (prosthesis).

images provide crucial information to pathologists,
assisting them in the identification of abnormal cel-
lular changes that could indicate the presence of
cancer [53]. Image segmentation can be achieved
through various methods, including thresholding
[54], region-based [55], edge detection [56], and
clustering [57].

The techniquemost commonly used for segment-
ation is edge detection, which involves identifying
points in an image where intensity changes sharply
[56, 57]. In medical image processing, edge detection
and extraction are particularly important for identify-
ing clinical biomarkers and assessing tissue function-
ality and integrity. Edges can be broadly classified into
two types: step edges, where there are sudden changes
in pixel intensity values and roof edges, where the
image intensity changes gradually and then returns
to the starting value within a short distance, cre-
ating a ‘roof shape’ [58]. Memristive PCNNs (M-
PCNNs) have been used to detect differences in
gray scale values on edges to perform image edge
detection of computed tomography (CT) images in
grayscale [44]. The working principle of M-PCNN
involves a corresponding neuron firing a pulse, which
in turn excites the neighboring neurons it is con-
nected to [44]. The stimulus on the connected net-
work comprises the input pixel and the activation
from the previous neuron. When the stimulus sur-
passes a threshold, the neuron will fire, leading to
the propagation of the effect throughout the network
based on the input image and the network connec-
tions. In areas with similar grayscale values, the spik-
ing behavior of a single neuron will trigger a cluster of

collective spiking activities [59]. The resulting output,
therefore, provides information about the consist-
ency of grayscale values in the images and their edges,
as well as cell background, cytoplasm, and nuclei [60].

SNNs have proven to be an efficient tool for
identifying objects in cell-stained images, which are
colorized [61] Two SNN topologies are commonly
used for unsupervised and supervised learning, both
consisting of an input layer, hidden layer, and out-
put layer [60, 62]. In unsupervised learning, the SNN
learns directly from the pixels of an image, while
supervised learning involves using a reference data-
set. In previous work, the hidden layer of an SNN
included radial basis functions with localized activ-
ation to transform red-green-blue (RGB) values into
temporal values [61]. Once input data were segmen-
ted using an SNN, the activity of each output neuron
was recorded, with a binary 1 indicating an active
neuron and 0 indicating an inactive neuron for each
input pixel [60]. These binary activation matrices
were subsequently used to create binary images that
show the edges detected by the neurons for each class.
The final set of edgeswas obtained by fusing all images
together.

3.1.2. Medical image (CT image and MRI) fusion
As mentioned earlier in this section, combining com-
plementary information acquired fromdifferent ima-
ging techniques can offer a more comprehensive
understanding of pathological aspects for clinical dia-
gnosis. CT provides the most detailed information
on denser tissues with less distortion. On the other
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hand, magnetic resonance imaging (MRI) offers bet-
ter information on soft tissues with more distor-
tions. In clinical applications, multimodal medical
images are readily available, and combining images
from different modalities has become very import-
ant. As a result, medical image fusion has emerged as
a promising new research field. Image fusion meth-
ods can be broadly categorized as spatial domain
fusion and transform domain fusion. Spatial domain
fusion involves directly processing the source images,
such as using the weighted average method [63, 64].
However, this approach often leads to a reduction in
the signal-to-noise ratio (SNR) and the spatial distor-
tion can persist in the fused image.

On the other hand, the multiresolution image
fusion technique, which is based on the wavelet
transform [65], is the most commonly used approach
for fusion in the transform domain. This technique
involves decomposing the input images into mul-
tiple levels based on their transform coefficients,
after which a fusion technique is employed [64]
to produce a fusion decision map. Performing an
inverse transformation of this decision map yields a
fused image that includes all the details of the source
images and reduces spatial distortion. However, this
approach may also have some weaknesses, such as
inadvertently reducing the SNR of the synthesized
image being sensitive to various factors that can affect
the fusion process. Yet, it is worth noting that many
fusion techniques are based on the wavelet transform
[66–68]. While the implementation of this wave-
let fusion solely in software can be slow and com-
putationally expensive, it can be combined with
FPGA hardware to increase the computational
speed [69, 70].

Consequently, a double-channel M-PCNN [44]
can be a beneficial approach for image fusion. In this
case, if a pixel in the fusion image is from image A and
most adjacent pixels are from image B, then the pixels
are replaced by image B’s pixel in the original posi-
tion, thereby improving the stability and continuity
of the fused image. The double-channel M-PCNN’s
ability to input two images simultaneously enables it
to consider both internal balance factors and non-
linear modulation characteristics, which are used to
modulate the output of the initial fusion.

3.1.3. Medical image de-noising and enhancement
Pre-processing steps like medical image denoising
and contrast enhancement are essential for sub-
sequent medical image processing stages. M-PCNNs
have also been utilized for image denoising, where
each neuron is connected to its corresponding pixel
and adjacent 3 × 3 neurons, as described in the pre-
vious section [44]. The output of a neuron is determ-
ined by whether its internal activity exceeds a certain
threshold, resulting in either ignition or non-ignition.
As a result, the output is significantly dependent
on the pixel brightness and the correlation between

them. In most cases, the brightness values of pixels
affected by noise pollution are different from those of
the surrounding pixels and have a weak correlation.
Therefore, the output of these noisy pixels is differ-
ent from that of the surrounding pixels. To summar-
ize, M-PCNN is a useful approach for image denois-
ing as it can differentiate the grayscale values of noise
based on the firing of each neuron and its neighbor-
ing neurons. This ultimately results in adjustments to
the brightness of the corresponding pixel values, lead-
ing to noise reduction and improved identification of
biomarkers.

Another commonly used strategy for improv-
ing image quality is called Automated Transform
by Manifold Approximation (AUTOMAP) [71]. This
method relies on deep learning methods for recon-
structing images from under-sampled or incomplete
data, and is particularly useful in MRI applications.
During the training process, AUTOMAP employs a
dataset of pairs of sensor and image data generated
using a known forward encoding model. By learn-
ing the spatial decoding transformbetween the sensor
and image spaces, AUTOMAP can accurately recon-
struct images from under-sampled or noisy data. The
neural network architecture of AUTOMAP typically
consists of multiple fully connected layers, followed
by sparse convolutional layers. These layers oper-
ate between low-dimensional manifolds to improve
the robustness of the reconstruction to noise and
other artifacts. AUTOMAP has been shown to out-
perform other contemporary image-based denois-
ing algorithms, such as a deep CNN Gaussian noise
denoiser [67] and the block-matching and three-
dimensional (3D) filtering denoising algorithm [72].
Additionally, AUTOMAP is effective in suppressing
noise-like spike artifacts thatmay appear in the recon-
structed images.

3.1.4. Feature extraction & classification in images
One of the more critical steps in the processing of
medical images is efficient feature extraction clin-
ical diagnosis decisions. In recent years, deep learn-
ing has become increasingly dependent in decision
making based on medical images [73–75]. Firstly,
deep learning enables data-driven automatic feature
extraction, thereby reducing theworkload and impact
of the traditional manual feature extraction by clini-
cians. Secondly, the intrinsic deep structure of neural
networks can represent the hierarchical interaction
between features, revealing the relationship between
high-dimensional features. Thirdly, optimizing the
same deep structure an achieve extraction, selection,
and classification simultaneously.

Consequently, deep learning has found broad
applications in image recognition and classification
tasks in the medical field. For example, CNNs, as
well as a more complex versions such as deep CNNs,
have been extensively used to classify pathological
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images. For instance, CNNs have been used to clas-
sify diabetic retinopathy [76, 77], colorectal polyps
[78], gliomas [79], papillary thyroid carcinomas
[80], and lung carcinomas [81] based on cytological
images. In addition, CNNs have also been used to
identifymicroaneurysms, exudates, and hemorrhages
in fundus imaging [82].

Several deep CNN architectures demonstrated
high-performance accuracy in ImageNet, a massive
dataset of over 14 million images belonging to 1000
classes. Among them, AlexNet [83], VGGNet [84],
ResNet [85], and InceptionNet [86] are the most
commonly used. They can be efficiently run on
CMOS chips such as the Eyeriss chip [87] and the
LNPU chip [88], which make them well-suited as
mobile diagnostic tools. These tools can be integrated
into or complement medical imaging systems at the
point of care for several medical imaging applications
and cancer diagnosis [89].

SNNs have also shown promising results when
trained on the Intel Loihi neuromorphic chip
[90–92], where the spike count of output neurons
was used for brain tumor image classification. This
model consumes much less power while achieving
reasonable accuracy by reducing model size [22],
which enables efficient learning for edge computing.

In addition to CMOS-based technology, med-
ical image classification implementation on FPGA
is a well-researched topic, specifically to compare
FPGA performance with CPU and GPU to explore
the capabilities of FPGA in this field [76, 93, 94].
As an illustrative study, Ghani et al compared CPU
and FPGA performances for image classification of
fundus images in healthy subjects and glaucoma
patients [94]. They used various preprocessing tech-
niques based on adaptive thresholding, discrete wave-
let transforms, and histograms to extract features that
are then fed into a classifier made up of ANNs. They
used a Nexy4 DDR FPGA and Intel i5-6200 CPU
for comparison. They concluded that the FPGA sur-
passed the CPU in terms of both power efficiency and
execution time.

Memristors are passive memory-holding devices
that rely on electrical flow in a circuit. Three types
of memristors include thin-film, spin/magnetic field-
based, and three-terminal. Memristor crossbars, cap-
able of carrying out multiply add operations in paral-
lel in the analog domain, have also been implemented
alone or coupled with CMOS systems for cluster-
ing and classification tasks. For example, memristor
crossbars have been used in the binary classification
of breast cancer (benign ormalignant) using principal
component analysis (PCA) [95, 96]. The typical pro-
cess consists of two stages, which can be conducted
in two layers of a memristor crossbar [96]. Firstly, an
unsupervised algorithm is used to train the crossbar
arrays of the memristors to learn and determine the
principal components from the cancer data. The net-
work learns the principal components by adjusting

the memristor weights during training using Sanger’s
rule [97], also known as the generalized Hebbian
algorithm, which is derived from Hebb’s learning
rule [98]. Secondly, the PCA stage effectively separ-
ates unlabeled data into clusters but does not classify
them. To achieve classification, a conventional super-
vised learning process can be used to define a decision
boundary and effectively classify tumors as malig-
nant or benign. This is made possible by the memris-
tor’s intrinsic capacity to perform matrix operations,
with the output vector determined by the dot product
of the input vector and memristor weight matrix.
In general, neuromorphic hardware is known for its
low power consumption and is safe for use in low-
cost portable microscopes and scanners [76]. This is
of remarkable importance because DNNs have been
reported to be the most effective method for nucle-
us/cell detection [99]. In summary, combining state-
of-the-art imaging hardware with ANNs and DNNs
implemented on low-power neuromorphic hardware
can strongly augment the quality of screening and
analysis, enabling the required early diagnosis.

4. Neuromorphic approaches for biosignal
analysis

To understand the underlying mechanisms of health
issues, scientists have assessed the body’s function by
capturing biosignals in many forms such as electro-
encephalograms (EEGs), electrocorticograms, elec-
trocardiograms (ECGs), electro-oculography, sur-
face electromyogram (sEMG), galvanic skin response,
local field potentials, and respiration, as illustrated
in figure 3. Different technologies are required for
various scenarios that involve the analysis of biosig-
nals. There are other biosignals such as bioimped-
ance and biomagnetic signals, but they are not often
used because of their measurement complexity and
implementation [100]. Biosignals originating from
various internal or external sites such as the skin,
heart, chest, skull, and skeletal muscles are easier to
implement and process since they result from a sum
of action potentials. However, their diverse character-
istics require different extraction methods [100].

For example, one-dimensional signals, such as
those related to heart conditions, can be detected
using ECGs which detect changes associated with
heart muscle contraction. 2D signals requiring spa-
tial representations can be measured using func-
tional MRIs (fMRIs) which monitor brain activity
in relation to blood flow [101, 102]. Finally, 3D sig-
nals require medical ultrasound equipment to meas-
ure changes in sound waves across the internal tis-
sue. Madan et al have also innovated on imaging
by producing a ‘glass brain’ from fMRIs that can
provide 3D renderings to visualize activation clusters
that are both cortical and subcortical [103]. Each of
these instances has different raw signal characteristics,
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including amplitudes, noise, variability, dimension-
ality, and frequencies. For example, electromyogram
(EMG) signals typically range from 0 to 10mV (+5 to
−5) at 6–30 Hz [104], while ECGs, traditionally col-
lected by electrodes placed on the chest, arm, and legs,
are characterized between 0.1 and 2 mV at 0.6–50 Hz
[105].

4.1. Primary cortex
Researchers have used intelligent neuromorphic
paradigms to develop real-time detection for epi-
leptic seizures using neuromorphic technology.
There is a growing literature that uses typical brain-
related biosignals to separate, identify, and even clas-
sify seizure-related markers [106–109]. We hereby
include some representative examples to illustrate the
capabilities and potential of these systems. The sim-
ilarity of SNNs and the behavior of biological neur-
ons in the brain, along with their high efficiency in
tasks requiring temporal processing [110], has made
them popular models for identifying seizures. Zarrin
et al designed a deep SNN to classify three types of
epileptic signals, namely seizure (ictal), pre-seizure
(preictal), and seizure-free (interictal) signals. The
SNN consists of an input layer that converts ana-
log intracranial EEG spectrograms into spikes, two
hidden convolutional layers, and a softmax activa-
tion function leading to the seizure and seizure-free
categories [111].

Researchers have also designed a two-layer SNN
that uses LIF neurons and synapses with biologically
realistic temporal dynamics to detect high-frequency
oscillations (HFOs) correlated with epilepsy. They
collected EEG data from 11 patients and, by exploit-
ing SNNs, were able to identify the occurrence of
HFOs correlated with epileptic episodes with an
accuracy of 80% [112, 113].

4.2. Cardiac anomalies and chest conditions
Real-time detection of arrhythmia has become
increasingly important in monitoring cardiac anom-
alies to aidmedical professionals to best treat patients.
Neuromorphic devices, with their low power and
low latency features, can assist in classifying the five
beat types necessary for detection. An instance of
this would be a hardware implementation of a feed-
forward neural network, composed of a memristive
crossbar array with dimensions of 300 × 210 × 5,
where the first layer has 300 neurons, the second has
210 neurons, and the last layer has five neurons. This
network can achieve 96.17% accuracy without feature
manipulation, such as wavelet transforms or spectral
correlation [114].

Accurate detection of ECG anomalies has also
been a top priority for scientists to prevent future car-
diac arrest episodes. Due to the high cost and time it
takes to diagnose humans in real-time, neuromorphic
chips have been used to detect various pathologies

by leveraging SNNs’ quick and low-power classifica-
tion capabilities. By using several analog ECG traces
encoded as asynchronous streams of binary events,
Moradi et al and their group have been able to identify
pathologies such as paced beats and atrial premature
beats using an event-driven neuron output layer to
generate a binary trigger signal, indicating the pres-
ence or absence of a pattern. This technique was val-
idated on the dynamic neuromorphic asynchronous
processor chip (DYNAP) chip [120], further confirm-
ing the usefulness of neuromorphic chips in biomed-
ical applications.

Not limited to direct neural interfaces involving
nerves or cortical neurons, efficient processing-
enabled neuromorphic designs have been found in
various real-time biomedical interfaces. For example,
a DYNAP chip was used to implement an SNN for
arrhythmia detection [121]. The network was trained
on labeled ECG data from ambulatory recordings,
and the output spike trains of the neuromorphic chip
were used for prediction. The results showed that the
system achieved a 91% true-positive rate with only a
2.4% false-positive rate for detecting anomalous ECG
readings. By leveraging the real-time processing cap-
abilities of the neuromorphic chip, the system can
timely warnings or preliminary diagnoses.

In addition, the novel coronavirus pandemic has
called for methods to quickly and accurately detect
chest anomalies associated with COVID-19. One
promising method is the use of deep-convolutional
SNNs, which can be integrated into neuromorphic
chips due to their biological compatibility [122].
Firstly, Garain et al process chest CT scans through
Gabor filters and translate them into spikes using
intensity-to-latency encoding. Then, the resulting
spikes are propagated through convolutional and
pooling layers before being fed into a classifier to
provide a diagnosis. The technique resulted in a
remarkably high accuracy of 99% when classifying
COVID-10 vs non-COVID-19 diagnoses.

4.3. Wearable devices
The demand for edge computing in wearables has
increased dramatically, and devices must now incor-
porate low power and low latency characteristics
to remain relevant and desirable. Therefore, it is
obvious that wearable health monitoring systems
should exploit neuromorphic technologies for their
low latency, low power, small footprint, and data
size [123]. In fact, the biological plausibility of neur-
omorphic hardware makes it more compatible with
signal processing of biosignals while remaining secure
from data breaches, a persistent problem in health-
related instruments [124].

One promising example is from a team of scient-
ists at the University of Chicago which has created
an electrochemical transistor-based neuromorphic
device that is intrinsically stretchable and ideal for
accurately collecting health monitoring data such as
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heart rate and body temperature [125, 126]. They
tested the device’s signal acquisition and AI-based
data analysis by using the Physionet’s MIT-BIH
Arrhythmia dataset and achieved an accuracy rate of
90% in classifying ECG signals. To ensure the device
is suitable for the human skin’s stretching and shift-
ing properties, the researchers evaluated its perform-
ance under extremely strained conditions (0%–100%
strain) and a strain-free state.

Cleary et al have also developed a wearable smart
material called the microBrain (µBrain) [127]. The
device is capable of event-driven SNN integrations
in a fabric-based environment for applications in
neurostimulating patients suffering from stroke or
nerve compression dysfunctions that ultimately led
to the loss of physical sensations. The key neur-
omorphic component of the µBrain is the artificial
surface-mounted synapse resistors, which are capable
of holding states while emulating a SNN. The arti-
ficial synapses and neurons are placed in a crossbar
architecturewhichmakes themeasily configurable for
a machine-learning task. To demonstrate compres-
sional damage rejuvenation, the scientists proved the
garment-based SNN can classify haptic sensing com-
ing from artificial pressure sensors embedded into the
garment’s sleeve. This device holds a lot of potential
as smart-wearables are becomingmore popular, espe-
cially with the innovations in microfabrics.

Neuromorphic designs also offer great potential
for virtual reality surgery, thanks to their quick, low-
latency, low-power consumption, and high temporal
resolution features [128, 129]. As neuromorphic
hardware relies on events instead of continuous
signals, it can handle the small details and quick reac-
tions required for surgeries much more effectively
than traditional circuits. We anticipate that future
research will explore the combination of virtual real-
ity headsets and neuromorphic hardware in sur-
gical settings, as these brain-inspired circuits provide
everything that surgeons need to perform their
best.

4.4. Spintronics andmagnetics
In addition to the expected applications of neur-
omorphic devices and algorithms, spintronics and
magnetics have recently gleaned interest from many
scientists. These two emerging fields can bring
fast behaviors, low-power consumption, and retain-
able (non-volatile) memory—all features desirable
in neuromorphic engineering. Before we mention
neuromorphic applications, it is important to note
that magnetic and spintronic applications have been
used as neurostimulators in the form of highly tun-
able magnetic materials that are sometimes cap-
able of remote stimulation [130], tools detecting
magnetic signatures of the electric activity of the
human heart [131], and as cellular-level neuromod-
ulator using alternating ferromagnetic and anti-
ferromagnetic structures to produce charge-current

pulses suitable for affecting neuronal populations
[132].

Because of these advancements, researchers have
further investigated the potential for spintronic
devices for neuromorphic computing. Kanno et al
discusses howmagnetic tunnel junctions can be adap-
ted to behave similarly to neurons and synapses [133],
and how differing magnetic textures, like those men-
tioned regarding tunable magnetic materials, can
emulate functioning neurons [134, 135]. Scientists
believe that the first integrations of spintronics in
neuromorphic hardwarewill likely be the digitalmag-
netic memories they can provide, which has a proven
history in conventional circuit design.

5. Neuromorphic applications for neural
interfaces

Advance technologies now allow us to combine
machine learning algorithms with traditional neur-
omodulation techniques to enhance biomedical
interfaces, which aim to modulate and decode biolo-
gical signals to achieve immunotherapeutic or pros-
thetic outcomes [136]. Intensive real-time data pro-
cessing is often necessary for these interfaces, which
may require the transmission of data to an external
computer with the computational power needed for
processing [137, 138]. However, devices implanted in
the humanbody face several limitations to avoid com-
plications during use. In particular, the limited area
of the human body available for interfaces, especially
in the peripheral nervous system (PNS), and the reg-
ulatory guidelines and standards for implanted med-
ical devices pose significant challenges. For instance,
ISO14708-3 imposes restrictions on the outer sur-
face temperature increase above body temperature
(37 ◦C) for limited periods of time.

Given the constraints imposed on implanted bio-
medical interfaces, the emergence of neuromorphic
hardware provides a promising alternative for pro-
cessing data in real-time in situ. The structure of
SNNs implemented on hardware makes it possible
to perform complex parallel processing of large
amounts of data [139–141]. In-situ processing would
also improve the portability of the device, offering
greater convenience and facilitating closer outpatient
health monitoring [142]. Several research groups
have developed neuromorphic hardware for a wide
range of clinical applications, such asmotor interfaces
to interact with the environment, real-time health
monitoring, sensory prostheses to restore lost bio-
logical senses, and cognitive prostheses to modulate
brain activity or replace damaged brain circuitry [5,
123, 143, 144].

Circling back to the original inspiration from the
brain, themost intuitive application of neuromorphic
hardware lies in neural interfaces. Neuromorphic
neural interfaces enable direct interaction with the
central or peripheral nervous system by establishing
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Figure 4. Neural interfaces can be categorized into three large components: perception, control, and cognitive. On the right,
perception examples are illustrated where neuromorphic engineering has been used to create retinal implants [7], map texture
and pain through fabricated materials [6], and relay perception from artificial limbs [115]. On the left, the opposite relay from the
brain to the outside world has been demonstrated through controlling a cart [116], a computer cursor [117], and decode hand
gestures for prosthetic control [118]. In the center, cognitive examples are given where neuromorphic engineering has been used
to enhance disturbed neuron population communication [5] and stimulation [119] using optogenetics. The center is also
highlighted as half blue half orange/purple since cognitive implementations often directly affect either perception or control.

a communication channel between artificial and bio-
logical neurons, providing ameans to address impair-
ments or physical disabilities [145]. Inmost scenarios,
a bidirectional interfacewith a large biological neuron
population is necessary [146, 147]. Consequently,
multielectrode arrays (MEAs) are frequently used to
record neuronal firing patterns, while a stimulator
relays back information with pulses [148].

Many forms of neural interfaces exist, often falling
into one or more of three categories: perception, con-
trol, and cognitive interfaces. Perception interfaces,
such as retinal prostheses for the restoration of vis-
ion, aim to capture information about the outside
world from an external device and relay it to the brain
by stimulating sensory neurons [7]. This informa-
tion flows in control interfaces, such as prostheses
which enable users to control a computer cursor, and
is reversed compared to perception interfaces. In cog-
nitive interfaces, information flow is containedwithin
the brain. For example, a neuromodulation implant
designed to alter neuronal firing patterns may use
the recorded activity from one population of neurons
to determine stimulation parameters for modulating
another population of neurons. Examples of each cat-
egory are depicted in figure 4.

5.1. Perception interfaces
Neuromorphic interfaces for perception strive to
establish direct connections with biological nerves
through neural models to augment or entirely restore
the senses in real-time. Researchers have developed
sensors that mimic the highly sought-after features
of biological sensing organs, such as sensory learning

and spiking representations. When used in conjunc-
tion with neuromorphic processing techniques, these
biomimetic sensors can be applied back to the human
body and directly interfaced with biological sensory
nerves.

A retinal prosthesis silicon-on-chip with 1225
channels exploited neuromorphic hardware tomimic
the structure and processing performed by the bio-
logical retinal information network [7]. The sys-
tem uses a 35 × 35 grid of neuromorphic pixels,
each of which contains a spike-based photodiode
sensor, neuromorphic image processor (NMIP), and
stimulation generator. Similar to human recept-
ive fields and their ability to detect contrast, each
NMIP interacts with neighboring NMIPs to perform
outline extraction of the incident light. Park et al
have discovered that this outline extraction strategy
can help preserve image integrity by protecting the
image against current dispersion from retinal cells.
To address the temperature limitation on implanted
devices, a temperature regulation circuit was incor-
porated for every 5 × 5 pixel group, which disables
the region if it exceeds the temperature threshold.

Scientists innovated another neuromorphic
approach which involves the implementation of
a real-time tactile sensory feedback interface.
Researchers have invented an electronic-dermis (e-
dermis) to serve as fingertips on upper-limb pros-
theses to enable the perception of touch and even
pain [6]. Using Izhikevich models of mechanore-
ceptors and nociceptors [149], Osborn et al adjusted
the measured pressure on tactile sensors to stimula-
tion parameters for transcutaneous electrical nerve

11



J. Neural Eng. 20 (2023) 041004 K Aboumerhi et al

stimulation to elicit noxious and innoxious sensory
feedback. The prosthesis used a linear discrimin-
ant analysis algorithm to distinguish between three
objects with increasing sharpness, achieving a true
positive rate of over 85% across all three objects. The
reflex function was integrated bymimicking the PNS,
enabling the prosthesis to automatically release its
grip in the presence of a painful stimulus. A parti-
cipant using the prosthesis demonstrated the ability
to distinguish between the three objects with true-
positive rate of over 87% and also experienced pain
perception [115, 150, 151].

5.2. Control interfaces
In situations where individuals suffer from para-
lysis or loss of limb function, it is beneficial to have
devices that can directly interface with the nervous
system, such as an external prosthetic o supporting
devices, to assist patients in navigating day-to-day
tasks. Neuromorphic architectures are particularly
attractive in these scenarios due to the need of high-
fidelity signal recordings and real-time feedback for
the development of a functional control system [152].
Although neuromorphic cortical control interfaces
have not yet undergone clinical trials with human
patients, several proof-of-concept models have been
successfully tested in animals.

In one study, our team at Johns Hopkins
University demonstrated the use of neuromorphic
silicon integrate-and-fire neurons on a custom chip
to control the motor output of paralyzed animals
in real-time [153]. Using four neurons to represent
four populations of neurons in the spinal cord (right
hind limb flexor and extensor muscles) and the syn-
aptic connections between them, the scientists were
able to implement basic principles of forward loco-
motion similar to the normal gait of a cat. The silicon
central pattern generating hardware was validated
by using the chip to control three functionally para-
lyzed adultmale cats through intramuscular electrode
implantation, proving the design’s ability to produce
locomotion when provided with appropriate sensory
inputs.

In a follow-up study, Mazurek et al expanded
upon their earlier work by utilizing an integrated
circuit to implement neuromorphic integrate-and-
fire neurons as state-holding controls [154] to cre-
ate a functional electrical stimulator (FES) through
intraspinalmicrostimulation (ISMS). This innovative
approach allowed for the integration of external sens-
ory feedback, internal timing signals, and microstim-
ulation to create a closed-loop solution for restoring
locomotion. The custom chip controlled implanted
electrodes, successfully activating flexion or exten-
sion movements in the lower limbs of a feline sub-
ject. The scientists eventually followed-up their work
by improving long-distances of propulsive walking
over the ground by ten times than the previous
study by targeting the ventral horn and lamina IX

bilaterally [155]. ISMS was able to achieve a dis-
tance of over 800 m without experiencing fatigue,
which is a significant improvement compared to FES
which only managed around 50 m. This application
of ISMS ultimately proves the potential of neur-
omorphic engineering inmitigating spinal cord injur-
ies and overall, huge benefits for the future of loco-
motion rejuvenation.

Dethier et al at Stanford University have also used
an SNN implementation of a Kalman filter to control
a computer cursor in monkeys [117]. They obtained
cortical neural recordings using a 96-channel MEA.
And then fitted the parameters of the Kalman filter
to control the cursor based on arm kinematics. The
researchers successfully mapped the filter to an off-
line SNNwith 2000 neurons, achieving an RMS error
of 6%. In an online closed-loop cursor control task,
the system achieved a final success rate of over 94%.
While the data processing side was not implemen-
ted in the hardware, the researchers demonstrated the
potential use of a neuromorphic chip to enable in situ
real-time control of a cursor using an SNN.

In another study, a neuromorphic neural inter-
face was implanted in rats to drive a small mobile cart
[116]. The rat’s somatosensory cortex was stimulated,
and the motor cortex activity was recorded using an
MEA. To process the signal in real-time, researchers
at the Italian Institute of Technology, ETH Zurich,
and University of Zurich used a novel reconfigurable
online learning spiking neuromorphic processor. The
motor cortex’s recorded activity was mapped onto
252 post-synaptic neurons on the processor, which
weighed a force field using spike counts to drive a
small mobile cart toward a target. The cart’s position
was then encoded and used to generate stimulation
parameters back to the somatosensory cortex, creat-
ing a closed-loop control-perception interface. In the
target-convergence task, the system achieved a 100%
convergence rate in 100 trials. However, it is import-
ant to note that this study was performed on anes-
thetized rats, and the rats did not control the cart vol-
untarily. Nevertheless, this system demonstrates the
feasibility of an implanted control neural interface
running in real-time, using neuromorphic processing
as the backbone.

Finally, exploring the potential application
of neuromorphic computing to peripheral nerve
recording and stimulation is currently limited in the
literature, However, application of neuromorphic
designs in this context holds promise for a real time
sand seamless interface with nerves leading to low-
consumption and high-efficient systems [156, 157].
For example, neuromorphic devices for pudendal
nerve stimulation hold promise for advancing inter-
ventions aimed at improving urinary bladder control
[158, 159]. Investigating this intersection could lead
to innovative approaches that leverage the principles
of neuromorphic computing to enhance the effect-
iveness and efficiency of these implants.
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In addition to invasive neural interfaces, neur-
omorphic processing has also been applied to
non-invasive neural interfaces, specifically in decod-
ing sEMG recordings from motor neurons. In tradi-
tional EMG-controlled prosthetic limbs, nerve activ-
ity from the residual limb is used to control the device
through gesture prediction or regression. However,
integrating neuromorphic hardware into the signal
decoding stage for online processing could potentially
improve efficiency and reduce power consumption
[160].

The neuromorphic DYNAP chip was also used
to implement a hardware SNN for decoding sEMG
recordings from a Myo band (Ctrl Labs, New York,
NY, USA), which consists of eight surface elec-
trodes. The recordings were converted into spike
trains using a delta-modulator analog-to-digital con-
verter (ADC) algorithm and input into the SNN.
While the authors found the SNN to underper-
form other traditional classification algorithms,
and the system was not implemented online, the
study is a critical first step toward demonstrat-
ing the potential for ultralow-power neuromorphic
hardware to replace more power-hungry processing
pipelines [118].

5.3. Cognitive prostheses
Disruptions in neural circuitry or abnormal firing can
often significantly impair the function of associated
brain regions [161]. To address this issue, Buccelli
et al at the Italia Institute of Technology have explored
coupling the activity of a biological neuron pop-
ulation with neuromorphic hardware for real-time
neuromodulation. A hardware-implemented SNN
was utilized to establish bidirectional communica-
tion between two neuron populations via neuropros-
thesis and was tested in vitro [5]. A BNN consisting
of two neuron populations was grown on an MEA
electrode and subjected to a simulated lesion using
laser ablation. To restore communication between
the two populations, an FPGA board with spiking
neurons was used for real-time processing. If both
neuron populations were intact, the detection of a
network burst in one population would send a stim-
ulation pulse sent to the other population. To con-
sider scenarios where a neuron population was dam-
aged, a hardware SNN with 100 Izhikevich neurons,
consisting of 80 excitatory neurons and 20 inhib-
itory neurons, was employed to replace the biolo-
gical neuron population. Both cases demonstrated an
increased cross-correlation area of spike trains and a
decreased probability of isolated network bursts in the
lesion populations, indicating a partial restoration of
synchronicity.

To enable one-way communication from an SNN
to a BNN, a system was developed using optogen-
etic stimulation [119]. A neuronal culture expressing
ChIEF-mCitrine, a genetically-encoded protein that
can be expressed in neurons and can respond to blue

light stimulation, was grown on an MEA to enable
blue light responses. Similar to the previous study,
an SNN composed of 100 Izhikevich neurons was
implemented using an FPGA board. The SNN’s spik-
ing activity was used to stimulate the BNN via 8 × 8
pixels of blue LEDs. The experiment was repeated 12
times using four different sets of SNN parameters.
Mosbacher et almeasured the information transmis-
sion by analyzing the correlations between input sim-
ilarity to the BNN and the corresponding output sim-
ilarity of the corresponding output similarity from
the BNN. The results showed a high correlation coef-
ficient of 0.81, which was related to the intensity and
frequency of the stimulus from the SNN. The degree
of suppression of spontaneous network synchroniza-
tion (NS), i.e., the ratio of NS’s frequency in the BNN
with and without the SNN, was found to be positively
correlated with information transmission, indicating
some success in establishing connectivity.

6. Neuromorphic perception

Neuromorphic sensors offer significant value in
understanding the computational and memory effi-
ciency of the nervous system. These brain-inspired
sensors can provide insights into how biological
machinery processes information and exploiting
these observable features can lead to better medical
interfaces.

Compared to current electromechanical sensors,
biological sensing organs operate with much higher
efficiency. For example, while a video camera con-
tinuously captures frame-by-frame data full of
redundant information, the human retina uses
numerous localized units that individually respond to
incident light [21, 162]. The field of neuromorphic or
biomimetic sensors, which aims to emulate biological
sensing capabilities, has been extensively researched
for several decades. Early work that introduced sil-
icon retina, cochlea, and olfactory devices progressed
with the introduction of improved architectures and
novel materials [163–167].

The advancements of biomimetic sensors, along-
side improvements in artificial sensing capabilities,
offer various significant applications in the medical
field. For example, spiking neuromorphic sensors
can create more biologically faithful representations
of external stimuli in neural prostheses to restore
perception-related impairments (see section 5.1). In
addition to enabling the restoration of perception-
related impairments, more advanced biomimetic
sensing models have the potential to drive innova-
tions in health-monitoring devices and techniques,
such as telepresence surgery [168]. Neuromorphic
hardware has been used to replicate various senses,
including sight, sound, olfaction, touch, and balance
(vestibular mechanics). Many of these modern works
have been largely directed toward reproducing the
event-based representation of external stimuli and
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low-level signal processing that occurs in biological
synapses [163, 165]. Advanced sensing applications
can incorporate features such as learning through the
use of devices like memristors or synaptic transistors.

6.1. Vision
The development of retina-inspired cameras has led
to the creation and commercialization of event-based
vision sensors. Similar to the retina, these devices
use asynchronous spiking pixels that detect changes
in light intensity rather than the intensity itself, as
seen in the dynamic vision sensor. Further progress in
this area has been made by several groups exploiting
neuromorphic design to incorporate basic synaptic
processing [162, 169]. With the integration of neur-
omorphic design and basic synaptic processing, these
sensors hold great potential in detecting nuances and
aiding in imaging, as well as detecting involuntary
movements and paralysis in patients with conditions
such as Parkinson’s, stroke, Huntington’s chorea, and
more.

Neuromorphic phototransistors have been used
to implement light sensors with memory charac-
teristics. For example, a neuromorphic active pixel
image sensor array (NAPISA) demonstrated synaptic
plasticity [170]. Each pixel in the NAPISA contains
a hybrid heterostructure phototransistor consisting
of indium–gallium–zinc oxide and indium–zinc-
oxide hybrid. By taking advantage of the charge
trapping/de-trapping properties of the material, it
was possible to achieve synaptic potentiation and
depression in the photocurrent in response to light
pulses. Another neuromorphic light-sensing array
using the same charge-trapping concept also showed
synaptic learning [171]. The device was constructed
using carbonnanotubes and quantumdot phototran-
sistors that exhibit short-term and long-term synaptic
plasticity due to the dependency of the photoresponse
on both light intensity and time. Gradual weight
decay after a stimulus was used to emulate paired-
pulse facilitation (PPF).

In similar cases, reinforcement learning has been
demonstrated in phototransistors through long-term
synaptic potentiation after repeated light pulses. The
potential of neuromorphic phototransistors in medi-
cine is vast, as they offer the ability to identify
anomalies more quickly in screening results and help
physicians localize issues.With the demonstrated syn-
aptic learning and potentiation capabilities of these
devices, they could be used in the future for advanced
medical imaging techniques and even in the devel-
opment of neural prostheses to restore perception-
related impairments.

6.2. Touch
Many approaches to neuromorphic tactile sensors
have been investigated for potential applica-
tion in electronic skin (e-skin or e-dermis)
[150, 151, 168, 172] as mentioned in section 5.1.

These tactile systemsmimic the structure of the soma-
tosensory system by using resistive pressure sensors
that output spike-encoded information to a synaptic
device based on memristors or synaptic transistors.
By utilizing this strategy, neuromorphic tactile sys-
tems are capable of integrating multiple stimuli over
space and time and also exhibit synaptic learning
and memory similar to those observed in biological
systems.

Kim et al at Stanford University and Seoul
National University have also created a biomi-
metic artificial sensory nerve for pressure-sensing
using organic electronics [173]. The study util-
ized gold/carbon-nanotube hybrid resistive pressure
sensors connected to ring oscillators, which conver-
ted stimuli into voltage spikes to be used as inputs
to a synaptic transistor. The synaptic transistor’s
design allows it to integrate input pulses by con-
necting the gate electrode to multiple ring oscillat-
ors. In their study, the researchers used Braille letters
as inputs and found incorporating synaptic transist-
ors improved the distinguishability of different let-
ters. Spiking sensors have also shown an inherent
advantage of being naturally compatible with biolo-
gical nerves. This was demonstrated by connecting a
synaptic transistor to an efferent nerve on a roach leg,
which successfully established a simple reflex arc with
tactile stimuli.

The NeuTap neuromorphic tactile system uses
a strategy similar to that of a synaptic transistor,
connecting—resistive pressure-sensing to integrate
isolated spatiotemporal stimuli [174]. Transistors
made of polyvinyl alcohol, a biocompatible poly-
mer that responds to changes in humidity, and
indium–tungsten-oxide, a material commonly used
in thin-film transistors, exhibited PPF, mentioned
in section 5.1, when stimulated with two success-
ive input spikes. Additionally, the dynamic changes
in conductance resulting from stimuli and the sub-
sequent conductance decay may mimic the memory
and forgetting processes observed in biological syn-
apses. Wan et al at Nanjing University demonstrated
that the weights of the synaptic transistor could be
used to distinguish simple tactile patterns when used
as inputs to a supervised machine-learning model.
This presents remarkable advantages in the field of
prosthetics, where the ability to replicatememory and
forgetting processes is essential for the perception of
tactile sensations.

Memristors have also been used as synaptic
devices for tactile neurons in some studies. For
instance, a biomimetic e-skin using piezoresistive
sensors was interfaced with a Pt/HfO2/TiN memris-
tor, a memory-holding device capable of high endur-
ance and retention exhibiting a stable resistance state.
Similarly, the application of pressure stimuli to the
piezoresistive sensors induces conductance changes
across the two terminals of memristors, resulting in
the adjustment of artificial synaptic weights and thus
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enabling learning behaviors. These learning behavi-
ors can be replicated in prosthetic devices, allowing
patients to better interact with the world around
them. The memristor’s voltage response, which is
equivalent to the excitatory post-synaptic current in
neurons, was shown to increase with spike count,
exhibiting plasticity behaviors similar to those seen
in their biological counterparts. Kim et al at Seoul
National University found that memristors can be
utilized to store tactile memory in the form of con-
ductance or synaptic weights, which can persist for a
considerable amount of time after the stimuli [173],
which is extremely advantageous for long-term pros-
thetic limbs.

The ability of neuromorphic tactile systems
to mimic the somatosensory system and exhibit
bio-like learning and memory, as demonstrated
using synaptic transistors, holds great potential for
their application in electronic skin and medical
devices.

6.3. Hearing
Neuromorphic cochlear implants offer a promising
approach to enhance auditory processing in individu-
als with severe to profound hearing loss. Drawing
inspiration from the human nervous system, these
implants strive to provide a more natural perception
of sound while minimizing power consumption and
optimizing the device’s compactness.

One study by Jimenez-Fernandez et al introduced
a novel neuromorphic binaural auditory sensor archi-
tecture implemented on an FPGA [175]. Unlike
conventional digital cochlear implants, this design
directly processes audio signals encoded as spikes
using pulse frequency modulation. By employing
address-event representation (AER), the system gen-
erates a frequency-decomposed audio representation,
enabling researchers to investigate audio processing
and learning activity in the brain. The implemen-
ted system demonstrated adjustable frequency range,
maximum output event rate, power consumption,
and slices requirements.

Marienborg also developed a processing unit for
cochlear implants based on neuromorphic principles
[176]. By leveraging nerve-cell modulation in micro-
electronics and drawing parallels with delta-sigma
ADCs, the researchers proposed computationally effi-
cient solutions with reduced power consumption.
The work highlighted the potential of real-time sig-
nal processing in low-power electronics for cochlear
implants.

Furthermore, Lande et al proposed a biologically
inspired neuromorphic cochlear implant that incor-
porates spike-based signal processing [184]. This
implant utilizes a single-chip micropower CMOS
and digital control through neuromorphic coding
and redundancy, allowing for scalability to a large
number of channels. These studies contribute to the
advancement of neuromorphic cochlear implants by

integrating principles from neuroscience into micro-
electronics, ultimately leading to improved auditory
processing.

6.4. Smell balance & others
Although neuromorphic synaptic processing has
been primarily integrated into tactile and visual
sensors, researchers have also explored the use
of neuromorphic hardware for other senses. For
example, there has been a growing interest in the
development of artificial olfactory sensors, or e-
noses, neuromorphic models for gas-sensing. Like
the memory and learning exhibited in visual and
touch sensors, an organic transistor-based nitro-
gen dioxide (NO2) gas detector was implemented
on several occasions, which showed synaptic plasti-
city and memory [185]. Detecting NO2 is important
for medical professionals since the harmful gas can
cause respiratory problems and aggravate existing
heart and lung diseases and is often found in air pol-
lution. Researchers argue that the slow desorption
rate of detected molecules allows for the accumula-
tion of repeated and prolonged exposure. This could
be leveraged as a memory system to simulate organ
damage in healthmonitoring applications [186–188].
However, e-noses have not yet been fully exploited in
medicine to detect disease and abnormality biomark-
ers, such as metabolic biomarkers for Parkinson’s
disease [189].

Another synaptic e-nose was developed by Han
et al at the Korea Advanced Institute of Science and
Technology by using a semiconductor metal-oxide
gas sensor connected to a singlemetal-oxide semicon-
ductor field-effect transistor neuron [190]. To enable
firing at various frequencies, a parasitic capacitor was
connected in parallel with the transistor. Different
gases can elicit different spiking responses, and by
adjusting the gate voltage of the transistor, inhibitory
responses can also be achieved. Two sensing neurons
were used as inputs to the simulated software SNN to
classify four gases with an accuracy of 98.25% on 80
test samples. The authors also implemented a simple
single-layer hardware SNN on a printed circuit board
and tested its ability to classify the two wine brands.
The SNN showed different output neuronal firing fre-
quencies for each wine which can be used for accurate
classification [191]. The ability to distinguish between
odors has significant implications for olfactory dys-
function. Implementing these learning techniques on
an olfactory interface could lead to precise regulation
and smell dysfunction.

A neuromorphic model was also developed to
mimic the vestibular system for potential applic-
ations in prosthetics and robotics [183, 191]. In
humans, otolithic organs and semicircular canals
provide a sense of acceleration and rotation, which
supports natural balance and movement. This sys-
tem models both otolith organs and semicircular
canals using VLSI hardware. In this study, Corradi
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Table 1. Applications and techniques of neuromorphic computing with potential in medicine.

References Purpose Techniques and tools Results

Imaging using hardware or software

[88] DNN accelerator LNPU chip Supports
inference∼2×
energy
improvement

[87] DNN accelerator Eyeriss chip 200–300 mW
consumption

[44] Denoising/extraction on image fusion M-PCNN Edge extraction
denoising

[22] Breast cancer classification Memristor crossbar SNN and Loihi 85.6% accuracy
3.4 mJ per
inference

Biosignal processing

[19] Seizure biosignal classification DSNN 97.6% accuracy

[121] Real-time ECG classification SRNN and DYNAP 91% true
positive rate
722.1 µW total
power

[122] COVID-19 diagnosis DCSNN 99% accuracy

Neural interfaces

[7] Retinal implant Spiking photodiode sensors 2.7 mW
consumption

[154, 155, 177] Intramuscular/intraspinal stimulation in cats Silicon central pattern generator Controlled
forward
locomotion

[6] Upper limb e-dermis Izhikevich sensors Classified
fingers and
objects
perceived pain

[152] Monkey computer cursor control SNN >94% success
rate

[116] Rat mobile cart control SNN and ROLLs 100%
convergence rate

[118] sEMG and gesture prediction SNN, DYNAP, and Myo 95% accuracy
[5] Modulating and restoring network SNN and FPGA Bridged

lesioned
neurons

[119] Modulation and restoring network SNN optogenetic stimulation Demonstrated
network
connectivity

Biomimetic sensors

[168] Feedback for telepresence surgery Spiking sensors 63% accuracy
[178] Tactile sensor learning Synaptic transistor 0.4% error rate
[179] Photosensors emulating memory Memristor Memory

retention post
1 week

[180] Tactile sensor exhibiting learning Organic synaptic transistor Distinguished
Braille

[172] Tactile sensor memory Spiking sensor w/ memristor Demonstrated
plasticity

[170] Photosensors emulating memory Synaptic phototransistor Short/long-term
potentiation

[181] Gas sensor with memory Organic synaptic transistor Accumulated
gas exposure

[181, 182] Gas sensor with learning SNN synaptic transistor 98.25%
accuracy

[183] Vestibular prosthesis SNN and spiking sensors IMU
spike-encoded
output
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et al at the University of Zurich connected the spike-
encoded output from a six-axis inertial measure-
ment unit to a neuromorphic chip with 58 adapt-
ive exponential integrate-and-fire neurons using the
AER protocol [15, 16]. The AER is a neuromorphic
approach that encodes the event’s location, polar-
ity (increase or decrease in measurement), and the
time at which it occurs. In the implemented neur-
omorphic system, the otolith organs and semicircu-
lar canals were modeled separately. The neurons rep-
resenting otolith organs were arranged in a grid on
both the horizontal and vertical planes, with their
positions indicating the preferred acceleration stim-
ulus. For the semi-circular canals, the neurons were
arranged in three planes of rotation andwere encoded
with four rotation neurons each, representing both
clockwise and counterclockwise directions. An integ-
rator network with additional memory and inhibit-
ory neurons was used to develop a head direction
by remembering the angular position. The response
properties of the artificial neuronswere found to align
with biological vestibular afferent neurons, which val-
idates their plausibility for use in prosthetics and
robotics [180]. By mimicking the biological sys-
tem, the use of neuromorphic hardware can offer a
potentially more precise and natural sense of balance
and movement, leading to improved outcomes for
patients.

7. Challenges in integrating neuromorphic
engineering with medicine

While this paper has demonstrated many potential
applications of neuromorphic technology in medi-
cine (see table 1), there are still limitations that
make it challenging to incorporate traditional neur-
omorphic approaches.

One such limitation is the difficulty of recording
neural signals and transmitting them off-chip [192,
193]. Neural signals typically have bandwidths of up
to 10 kHz, which requires a sampling frequency of at
least 20 kHz. With an MEA containing hundreds of
recording sites, the resulting data can be on the order
of megabytes per second, and using neuromorphic
hardware for recording could exacerbate this issue by
capturing evenmore data at a higher temporal acquis-
ition rate. This can lead to challenges in data trans-
fer and power consumption, potentially complicating
medical decision-making.

Another challenge in integrating neuromorphic
technology with medicine is the development of
reliable and accurate algorithms for analyzing and
interpreting the large amounts of data generated by
neuromorphic devices. While traditional machine
learning approaches are currently state-of-the-art,
neuromorphic adaptations may not be suitable for
processing data from devices that operate in vary-
ing environments and with varying data streams.

For example, algorithms like SNNs can be dif-
ficult to train and are often dependent on spe-
cific datasets, which may limit their applicability
to real-world situations [194, 195]. Besides dataset
dependence, SNNs often require specialized learning
rules and training algorithms that are not as well-
established as those used for traditional neural net-
works. This added complexity can make it more chal-
lenging to fine-tune parameters for applications and
may require more effort to optimize performance.
Additionally, there is a need for standardized proto-
cols for data collection and analysis to ensure consist-
ency and reproducibility across different studies and
devices, which is not currently offered by standard
neuromorphic learning models.

The fabrication of neuromorphic hardware cur-
rently faces several limitations. The specialized com-
ponents and architectures used in neuromorphic
hardware can be different from those used in tra-
ditional computing hardware, resulting in increased
costs and complexity. Additionally, as mentioned in
section 2, analog architectures, which are often pre-
ferred due to their energy-efficient and computation-
ally efficient solutions, can suffer from fabrication
issues such as transistor–transistor mismatch. This
natural variation in the electrical properties of devices
can result in variations in behavior across the system,
affecting accuracy and reliability [196, 197].

While the challenges listed above may present sig-
nificant obstacles to development, researchers and
healthcare practitioners can take an optimistic per-
spective from the strides that scientists have made in
the many examples discussed throughout this review.
These advancements demonstrate the potential for
integrating neuromorphic technologies with medi-
cine and motivate continued progress in the field.

8. Conclusion

Neuromorphic computing is a discipline intersecting
engineering and neuroscience that exploits the brain’s
massively efficient mechanisms when performing
everyday tasks. Following discoveries in biologic-
ally plausible learning mechanisms, miniaturization,
emulative transistor design, and improved hardware
tools, neuromorphic solutions have ushered their way
into the application space. By mimicking the funda-
mental operations and architecture of our nervous
system, scientists can begin to improve typical med-
ical technology limitations by offering extremely low
energy, low latency, high bandwidth, and biologically
consistent solutions.

SNNs have emerged as contenders to typical
machine learning methods, event-based processing
has helped scientists reimagine communication pro-
tocols, and in-memory devices, like memristors, have
disrupted von Neumann designs, challenging their
dominance in the field of computing. These are a few
of the improvements this paper has discussed when
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providing promising insight into potential medical
technological improvements.

It is worth noting that neuromorphic engineer-
ing is still in its relative infancy when compared to
conventional computing. Both software and hard-
ware solutions have their restrictions simply because
these novel brain-inspired approaches have not exis-
ted as long as their non-brain-inspired counterparts.
Nevertheless, researchers have highlighted the poten-
tial of neuromorphic innovations to eventually com-
plement or even replace the traditional problem-
solving methods in medicine. We hope that this
review has helped glean more interest in neur-
omorphic engineering and ultimately assist medical
professionals in helping patients worldwide.
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[139] Tan C, Šarlija M and Kasabov N 2020 Spiking neural
networks: background, recent development and the
NeuCube architecture Neural Process. Lett. 52 1675–701

[140] Thakur C S et al 2018 Large-scale neuromorphic spiking
array processors: a quest to mimic the brain Front.
Neurosci. 12 891

[141] Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F,
Sumislawska D and Indiveri G 2015 A reconfigurable
on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses Front.
Neurosci. 9 141

[142] Solorio L, Babin B M, Patel R B, Mach J, Azar N and
Exner A A 2010 Noninvasive characterization of in situ
forming implants using diagnostic ultrasound J. Control.
Release 143 183–90

[143] Oxley T J et al 2020 Motor neuroprosthesis implanted with
neurointerventional surgery improves capacity for
activities of daily living tasks in severe paralysis: first
in-human experience J. Neurointerv. Surg. 13 102–8

[144] Broccard F D, Joshi S, Wang J and Cauwenberghs G 2017
Neuromorphic neural interfaces: from neurophysiological
inspiration to biohybrid coupling with nervous systems J.
Neural Eng. 14 041002

[145] Burkhard S, van Eif V, Garric L, Christoffels V and
Bakkers J 2017 On the evolution of the cardiac pacemaker
J. Cardiovasc. Dev. Dis. 4 4

[146] Greenwald E, Masters M R and Thakor N V 2016
Implantable neurotechnologies: bidirectional neural
interfaces—applications and VLSI circuit implementations
Med. Biol. Eng. Comput. 54 1–17

[147] Adewole D O, Serruya M D, Harris J P, Burrell J C,
Petrov D, Chen H I, Wolf J A and Cullen D K 2016 The
evolution of neuroprosthetic interfaces Crit. Rev. Biomed.
Eng. 44 123–52

[148] Ferguson M, Sharma D, Ross D and Zhao F 2019 A critical
review of microelectrode arrays and strategies for
improving neural interfaces Adv. Healthcare Mater.
8 1900558

[149] Izhikevich E M 2003 Simple model of spiking neurons IEEE
Trans. Neural Netw. 14 1569–72

[150] Osborn L, Lee WW, Kaliki R and Thakor N 2014 Tactile
feedback in upper limb prosthetic devices using flexible
textile force sensors 5th IEEE RAS/EMBS Int. Conf. on
Biomedical Robotics and Biomechatronics (IEEE) pp 114–9

21

https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.1109/IJCNN.2017.7966118
https://doi.org/10.1109/BIOCAS.2017.8325200
https://doi.org/10.3389/fnins.2016.00563
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1038/s41598-020-63934-4
https://doi.org/10.1038/s41598-020-63934-4
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2019.2953001
https://doi.org/10.1109/TBCAS.2019.2953001
https://doi.org/10.1007/s00521-021-05910-1
https://doi.org/10.1007/s00521-021-05910-1
https://doi.org/10.3389/fnins.2021.611300
https://doi.org/10.3389/fnins.2021.611300
https://doi.org/10.1109/COMPSAC.2016.8
https://doi.org/10.1016/j.matt.2022.07.016
https://doi.org/10.1016/j.matt.2022.07.016
https://doi.org/10.1002/smll.201907472
https://doi.org/10.1002/smll.201907472
https://arxiv.org/abs/2202.12984
https://arxiv.org/abs/2202.12984
https://doi.org/10.3390/s120403831
https://doi.org/10.3390/s120403831
https://arxiv.org/abs/2009.07083
https://doi.org/10.1088/1361-6528/ac49be
https://doi.org/10.1088/1361-6528/ac49be
https://doi.org/10.1063/1.3575591
https://doi.org/10.1063/1.3575591
https://doi.org/10.1021/acs.jpcc.9b07542
https://doi.org/10.1021/acs.jpcc.9b07542
https://doi.org/10.1038/s41598-022-10155-6
https://doi.org/10.1038/s41598-022-10155-6
https://doi.org/10.1088/1361-6463/ab39a7
https://doi.org/10.1088/1361-6463/ab39a7
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.3389/fnins.2021.725384
https://doi.org/10.3390/s20164604
https://doi.org/10.3390/s20164604
https://doi.org/10.1586/erd.11.16
https://doi.org/10.1586/erd.11.16
https://doi.org/10.1007/s11063-020-10322-8
https://doi.org/10.1007/s11063-020-10322-8
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1016/j.jconrel.2010.01.001
https://doi.org/10.1016/j.jconrel.2010.01.001
https://doi.org/10.1136/neurintsurg-2020-016862
https://doi.org/10.1136/neurintsurg-2020-016862
https://doi.org/10.1088/1741-2552/aa67a9
https://doi.org/10.1088/1741-2552/aa67a9
https://doi.org/10.3390/jcdd4020004
https://doi.org/10.3390/jcdd4020004
https://doi.org/10.1007/s11517-015-1429-x
https://doi.org/10.1007/s11517-015-1429-x
https://doi.org/10.1615/CritRevBiomedEng.2016017198
https://doi.org/10.1615/CritRevBiomedEng.2016017198
https://doi.org/10.1002/adhm.201900558
https://doi.org/10.1002/adhm.201900558
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/biorob.2014.6913762


J. Neural Eng. 20 (2023) 041004 K Aboumerhi et al

[151] Osborn L, Kaliki R R, Soares A B and Thakor N V 2016
Neuromimetic event-based detection for closed-loop
tactile feedback control of upper limb prostheses IEEE
Trans. Haptics 9 196–206

[152] Dethier J, Nuyujukian P, Ryu S I, Shenoy K V and
Boahen K 2013 Design and validation of a real-time
spiking-neural-network decoder for brain–machine
interfaces J. Neural Eng. 10 036008

[153] Vogelstein R J, Tenore F V G, Guevremont L,
Etienne-Cummings R and Mushahwar V K 2008 A silicon
central pattern generator controls locomotion in vivo IEEE
Trans. Biomed. Circuits Syst. 2 212–22

[154] Mazurek K A, Holinski B J, Everaert D G, Mushahwar V K
and Etienne-Cummings R 2016 A mixed-signal VLSI
system for producing temporally adapting intraspinal
microstimulation patterns for locomotion IEEE Trans.
Biomed. Circuits Syst. 10 902–11

[155] Holinski B J, Mazurek K A, Everaert D G, Toossi A,
Lucas-Osma A M, Troyk P, Etienne-Cummings R, Stein R B
and Mushahwar V K 2016 Intraspinal microstimulation
produces over-ground walking in anesthetized cats J.
Neural Eng. 13 056016

[156] Aboumerhi K and Etienne-Cummings R 2023 Intelligent
compression methods for peripheral nerve recordings 11th
Int. IEEE EMBS Conf. on Neural Engineering (NER)

[157] Aboumerhi K and Etienne-Cummings R 2023 Inducing
dynamic group sparsity on vagus nerve recordings 2023
57th Annual Conf. on Information Sciences and Systems
(CISS) (IEEE) pp 1–5

[158] Chen S, Wang S, Gao Y, Lu X, Yan J, Xuan L and Wang S
2021 Bilateral electrical pudendal nerve stimulation as
additional therapy for lower urinary tract dysfunction
when stage II sacral neuromodulator fails: a case report
BMC Urol. 21 37

[159] Hokanson J A, Langdale C L, Sridhar A and Grill W M
2018 Stimulation of the sensory pudendal nerve increases
bladder capacity in the rat Am. J. Physiol. Renal Physiol.
314 F543–50

[160] Coskun M, Yildirim O, Demir Y and Acharya U R 2021
Efficient deep neural network model for classification of
grasp types using sEMG signals J. Ambient Intell. Humaniz.
Comput. 13 4437–50

[161] Tosolini A P, Mentis G Z and Martin J H 2021 Editorial:
dysfunction and repair of neural circuits for motor control
Front. Mol. Neurosci. 14

[162] Lichtsteiner P, Posch C and Delbruck T 2008 A 128× 128
120 dB 15 us latency asynchronous temporal contrast
vision sensor IEEE J. Solid-State Circuits 43 566–76

[163] Tayarani-Najaran M-H and Schmuker M 2021 Event-based
sensing and signal processing in the visual, auditory, and
olfactory domain: a review Front. Neural Circuits 15 610446

[164] Suri M, Bichler O, Querlioz D, Palma G, Vianello E,
Vuillaume D, Gamrat C and DeSalvo B 2012 CBRAM
devices as binary synapses for low-power stochastic
neuromorphic systems: auditory (Cochlea) and visual
(Retina) cognitive processing applications 2012 Int.
Electron Devices Meeting (IEEE) pp 10.3.1–4

[165] Liu S-C and Delbruck T 2010 Neuromorphic sensory
systems Curr. Opin. Neurobiol. 20 288–95

[166] Mead C A and Mahowald M A 1988 A silicon model of
early visual processing Neural Netw. 1 91–97

[167] Mahowald M A and Mead C 1991 The silicon retina Sci.
Am. 264 76–82

[168] D’Abbraccio J et al 2019 Haptic glove and platform with
gestural control for neuromorphic tactile sensory feedback
in medical telepresence Sensors 19 641

[169] Brandli C, Berner R, Yang M, Liu S-C and Delbruck T 2014
A 240× 180 130 dB 3 µs latency global shutter
spatiotemporal vision sensor IEEE J. Solid-State Circuits
49 2333–41

[170] Hong S, Cho H, Kang B H, Park K, Akinwande D, Kim H J
and Kim S 2021 Neuromorphic active pixel image sensor
array for visual memory ACS Nano 15 15362–70

[171] Zhu Q-B et al 2021 A flexible ultrasensitive optoelectronic
sensor array for neuromorphic vision systems Nat.
Commun. 12 1798

[172] Xia Q, Qin Y, Zheng A, Qiu P and Zhang X 2021 A
multifunctional biomimetic flexible sensor based novel
artificial tactile neuron with perceptual memory Adv.
Mater. Interfaces 8 2101068

[173] Kim Y et al 2018 Nociceptive Memristor Adv. Mater.
30 1704320

[174] Wan C et al 2018 An artificial sensory neuron with tactile
perceptual learning Adv. Mater. 30 1801291

[175] Jimenez-Fernandez A, Cerezuela-Escudero E,
Miro-Amarante L, Dominguez-Moralse M J, de Asis
Gomez-rodriguez F, Linares-Barranco A and
Jimenez-Moreno G 2017 A binaural neuromorphic
auditory sensor for FPGA: a spike signal processing
approach IEEE Trans. Neural Netw. Learn. Syst. 28 804–18

[176] Marienborg J-T 2007 Neuromorphic Cochlear Implant
(University of Oslo)

[177] Mazurek K A, Holinski B J, Everaert D G, Stein R B,
Etienne-Cummings R and Mushahwar V K 2012 Feed
forward and feedback control for over-ground locomotion
in anaesthetized cats J. Neural Eng. 9 026003

[178] Sun B, Guo T, Zhou G, Ranjan S, Jiao Y, Wei L, Zhou Y N
and Wu Y A 2021 Synaptic devices based neuromorphic
computing applications in artificial intelligenceMater.
Today Phys. 18 100393

[179] Chen S, Lou Z, Chen D and Shen G 2018 An artificial
flexible visual memory system based on an UV-motivated
memristor Adv. Mater. 30 1705400

[180] Kim Y et al 2018 A bioinspired flexible organic artificial
afferent nerve Science 360 998–1003

[181] Vanarse A, Osseiran A and Rassau A 2016 A review of
current neuromorphic approaches for vision, auditory, and
olfactory sensors Front. Neurosci. 10

[182] Vanarse A, Osseiran A, Rassau A and van der Made P 2019
A hardware-deployable neuromorphic solution for
encoding and classification of electronic nose data Sensors
19 4831

[183] Corradi F, Zambrano D, Raglianti M, Passetti G, Laschi C
and Indiveri G 2014 Towards a neuromorphic vestibular
system IEEE Trans. Biomed. Circuits Syst. 8 669–80

[184] Lande T S, Marienborg J-T and Berg Y Neuromorphic
cochlea implants 2000 IEEE Int. Symp. on Circuits and
Systems. Emerging Technologies for the 21st Century. Proc.
(IEEE Cat No.00CH36353) (Presses Polytech. Univ.
Romandes) pp 401–4

[185] Han S, Yang Z, Li Z, Zhuang X, Akinwande D and Yu J
2018 Improved room temperature NO2 sensing
performance of organic field-effect transistor by directly
blending a hole-transporting/electron-blocking polymer
into the active layer ACS Appl. Mater. Interfaces 10 38280–6

[186] Li X, Shi W, Yu X and Yu J 2015 Performance improvement
of organic field-effect transistor based nitrogen dioxide gas
sensor using biocompatible PMMA/silk fibroin bilayer
dielectric J. Mater. Sci., Mater. Electron. 26 7948–54

[187] Yang Z, Zhuang X, Han S and Yu J 2019 Hole-transporting
polymer dilution driven high performance organic
transistor-based NO2 gas sensorMater. Lett. 236 285–8

[188] Zhao S, Hou S, Fan H, Wang Z and Yu J 2020 High
performance nitrogen dioxide sensor based on organic
thin-film transistor utilizing P3HT/OH-MWCNTs blend
film Synth. Met. 269 116569

[189] Trivedi D K et al 2019 Discovery of volatile biomarkers of
Parkinson’s disease from sebum ACS Cent. Sci. 5 599–606

[190] Han J, Kang M, Jeong J, Cho I, Yu J, Yoon K, Park I and
Choi Y 2022 Artificial olfactory neuron for an in-sensor
neuromorphic nose Adv. Sci. 9 2106017

[191] Passetti G, Corradi F, Raglianti M, Zambrano D, Laschi C
and Indiveri G 2013 Implementation of a neuromorphic
vestibular sensor with analog VLSI neurons 2013 IEEE
Biomedical Circuits and Systems Conf. (BioCAS) (IEEE)
pp 174–7

22

https://doi.org/10.1109/TOH.2016.2564965
https://doi.org/10.1109/TOH.2016.2564965
https://doi.org/10.1088/1741-2560/10/3/036008
https://doi.org/10.1088/1741-2560/10/3/036008
https://doi.org/10.1109/TBCAS.2008.2001867
https://doi.org/10.1109/TBCAS.2008.2001867
https://doi.org/10.1109/TBCAS.2015.2501419
https://doi.org/10.1109/TBCAS.2015.2501419
https://doi.org/10.1088/1741-2560/13/5/056016
https://doi.org/10.1088/1741-2560/13/5/056016
https://doi.org/10.1109/CISS56502.2023.10089732
https://doi.org/10.1186/s12894-021-00808-5
https://doi.org/10.1186/s12894-021-00808-5
https://doi.org/10.1152/ajprenal.00373.2017
https://doi.org/10.1152/ajprenal.00373.2017
https://doi.org/10.1007/s12652-021-03284-9
https://doi.org/10.1007/s12652-021-03284-9
https://doi.org/10.3389/fnmol.2021.669824
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.3389/fncir.2021.610446
https://doi.org/10.3389/fncir.2021.610446
https://doi.org/10.1109/IEDM.2012.6479017
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1016/0893-6080(88)90024-X
https://doi.org/10.1016/0893-6080(88)90024-X
https://doi.org/10.1038/scientificamerican0591-76
https://doi.org/10.1038/scientificamerican0591-76
https://doi.org/10.3390/s19030641
https://doi.org/10.3390/s19030641
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1021/acsnano.1c06758
https://doi.org/10.1021/acsnano.1c06758
https://doi.org/10.1038/s41467-021-22047-w
https://doi.org/10.1038/s41467-021-22047-w
https://doi.org/10.1002/admi.202101068
https://doi.org/10.1002/admi.202101068
https://doi.org/10.1002/adma.201704320
https://doi.org/10.1002/adma.201704320
https://doi.org/10.1002/adma.201801291
https://doi.org/10.1002/adma.201801291
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1088/1741-2560/9/2/026003
https://doi.org/10.1088/1741-2560/9/2/026003
https://doi.org/10.1016/j.mtphys.2021.100393
https://doi.org/10.1016/j.mtphys.2021.100393
https://doi.org/10.1002/adma.201705400
https://doi.org/10.1002/adma.201705400
https://doi.org/10.1126/science.aao0098
https://doi.org/10.1126/science.aao0098
https://doi.org/10.3389/fnins.2016.00115
https://doi.org/10.3390/s19224831
https://doi.org/10.3390/s19224831
https://doi.org/10.1109/TBCAS.2014.2358493
https://doi.org/10.1109/TBCAS.2014.2358493
https://doi.org/10.1021/acsami.8b07838
https://doi.org/10.1021/acsami.8b07838
https://doi.org/10.1007/s10854-015-3448-7
https://doi.org/10.1007/s10854-015-3448-7
https://doi.org/10.1016/j.matlet.2018.10.121
https://doi.org/10.1016/j.matlet.2018.10.121
https://doi.org/10.1016/j.synthmet.2020.116569
https://doi.org/10.1016/j.synthmet.2020.116569
https://doi.org/10.1021/acscentsci.8b00879
https://doi.org/10.1021/acscentsci.8b00879
https://doi.org/10.1002/advs.202106017
https://doi.org/10.1002/advs.202106017
https://doi.org/10.1109/BioCAS.2013.6679667


J. Neural Eng. 20 (2023) 041004 K Aboumerhi et al

[192] Zhang J, Suo Y, Mitra S, Chin S, Hsiao S, Yazicioglu R F,
Tran T D and Etienne-Cummings R 2014 An efficient and
compact compressed sensing microsystem for implantable
neural recordings IEEE Trans. Biomed. Circuits Syst.
8 485–96

[193] Suo Y, Zhang J, Xiong T, Chin P S, Etienne-Cummings R
and Tran T D 2014 Energy-efficient multi-mode
compressed sensing system for implantable neural
recordings IEEE Trans. Biomed. Circuits Syst. 8

[194] Grüning A and Bohte S 2014 Spiking neural networks:
principles and challenges ESANN

[195] Bouvier M, Valentian A, Mesquida T, Rummens F,
Reyboz M, Vianello E and Beigne E 2019 Spiking
neural networks hardware implementations and
challenges ACM J. Emerg. Technol. Comput. Syst.
15 1–35

[196] Liu S C, Delbruck T, Indiveri G, Whatley A and Douglas R
2014 Event-based Neuromorphic Systems (Wiley) (https://
doi.org/10.1002/9781118927601)

[197] Hasler J and Marr B 2013 Finding a roadmap to
achieve large neuromorphic hardware systems Front.
Neurosci. 7

23

https://doi.org/10.1109/TBCAS.2013.2284254
https://doi.org/10.1109/TBCAS.2013.2284254
https://doi.org/10.1109/TBCAS.2014.2359180
https://doi.org/10.1145/3304103
https://doi.org/10.1145/3304103
https://doi.org/10.1002/9781118927601
https://doi.org/10.1002/9781118927601
https://doi.org/10.3389/fnins.2013.00118

	Neuromorphic applications in medicine
	1. Introduction
	2. A brief introduction to neuromorphic engineering
	2.1. Neuromorphic hardware
	2.2. Neuromorphic software

	3. Neuromorphic approaches for diagnosis
	3.1. Imaging
	3.1.1. Image segmentation for medical diagnostics
	3.1.2. Medical image (CT image and MRI) fusion
	3.1.3. Medical image de-noising and enhancement
	3.1.4. Feature extraction & classification in images


	4. Neuromorphic approaches for biosignal analysis
	4.1. Primary cortex
	4.2. Cardiac anomalies and chest conditions
	4.3. Wearable devices
	4.4. Spintronics and magnetics

	5. Neuromorphic applications for neural interfaces
	5.1. Perception interfaces
	5.2. Control interfaces
	5.3. Cognitive prostheses

	6. Neuromorphic perception
	6.1. Vision
	6.2. Touch
	6.3. Hearing
	6.4. Smell balance & others

	7. Challenges in integrating neuromorphic engineering with medicine
	8. Conclusion
	References


