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While anomalous diffusion coefficients with non-Arrhenius like temperature dependence are observed in a 
number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date. 
Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coefficients 
in the bcc metals Mo and /3-Ti by coupling quasiharmonic transition state theory and large displacement 
phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous 
temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire 
temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal 
such as /3-Ti. Thermal expansion is found to weakly affect the activation enthalpy but has a strong effect on 
the prefactor of the diffusion coefficient, reproducing the non-linear, non-Arrhenius “anomalous” self-diffusion 
in both bcc systems with good agreement between calculation and experiment. The proposed methodology is 
general and simple enough to be applicable to other mechanically unstable crystals. 

would leave some form of anharmonicity as the expla- 
nation for the diffusion anomaly, since within harmonic 
transition state theory [12, 13], the temperature depen- 
dence of the diffusion coefficient should exactly follow 

I.  INTRODUCTION 

Self-diffusion in metals is believed to be understood 
rather well and their coefficients obey a linear tempera- 

the Arrhenius equation D (T ) = D0exp(−Q/k BT ) with ture dependency on an Arrehenius plot (log(D) vs. 1/T ). 
temperature-independent prefactor D0 and activation en- 
ergy Q, which for mono-vacancy diffusion is the sum of 
vacancy formation enthalpy E f and migration enthalpy 
Em. The anharmonicity was initially suggested to mani- 
fest itself in the form of soft phonons due to the specific 
distribution of the d-electrons [14, 15]. 

By now, the continuous advances in atomistic simu- 
lation methods and computational capabilities have pro- 
vided new opportunities to gain insight into the micro- 
scopic origin of anomalous diffusion, and lead to a va- 
riety of explanations for non-Arrhenius diffusion. Pro- 
posed mechanisms include a vacancy-interstitial model 
in Ti [16], anharmonic effects in both /3-Ti [17] and in 
Mo [18], and concerted atomic motion [19, 20]. 

The previous work has been performed either with clas- 
sical molecular dynamics (MD) based on empirical po- 
tentials or with density-functional theory (DFT). On the 
classical MD side, in Ref. [16] diffusion coefficients in 
/3-Ti were determined from the mean-square displace- 
ment of the atoms. The results suggested that intersti- 
tials would play a non-negligible role at self-diffusion 
near melting temperature and the sum of Arrhenius-like 
vacancy and interstitial diffusions with different slopes 
would result in the observed anomalous diffusion. The 
spontaneous formation of Frenkel pairs was also found 
in Ref. [20], leading to temperature-dependent formation 
energies. While no diffusion coefficients were calculated 
in Ref. [20], it was argued that the temperature-dependent 
formation energy would give rise to anomalous diffusion. 
The fact that the high-temperature defect concentrations 
varied by several orders of magnitude between Refs. [16] 

However, a number of elements show a remarkable “cur- 
vature” and thus deviation from linearity. While such an 
anomaly is rare for non-bcc metals, it has been found to 
be especially strong in the group IVB metals Ti, Zr and 
Hf, whose bcc-phases are mechanically unstable at lower 
temperatures, while it is much weaker in other bcc metals 
like Mo and Nb [1] that are mechanically stable for all 
temperatures. 

Focusing on bcc Mo (in the following “Mo”) and 
bcc Ti (in the following “/3-Ti”) as prototypes for me- 
chanically stable and unstable bcc-metals, the underly- 
ing mechanism(s) for such a non-Arrhenius behavior has 
been under debate for many decades and remains un- 
settled. Given that self-diffusion in elementary metals 
is governed by vacancy jumps, initial explanations were 
mostly based on the contribution of “secondary” diffusion 
mechanisms and include diffusion via divacancies [2], 
next-nearest-neighbor (NNN) jumps [3, 4], diffusion via 
interstitials [5] or diffusion enhancement by phase trans- 
formations [6, 7]. While none of these mechanisms could 
be conclusively confirmed for either Mo or /3-Ti, it has 
been argued in the late 1980s that secondary mechanisms 
would not be consistent with experiments [8, 9], and it 
was suggested that self-diffusion should be dominated 
by the traditional mono-vacancy jumps through nearest- 
neighbor (NN) sites in both Mo and /3-Ti [9–11]. This 
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and [20] as well as the fact that interstitial concentra- 
tions have been found exceedingly small in Mo even at 
its melting temperature casts doubt on this explanation. 
In another MD study [19], it was proposed that concerted 
motion of atoms significantly contributed to diffusion at 
temperatures > 83% of the melting temperature, in addi- 
tion to the otherwise dominant vacancy diffusion which 
followed a straight Arrhenius behavior over the entire 
examined temperature range from 73% to 97% of the 
melting temperature. While the considerable variation in 
results of these studies may at least partially originate 
from the different interatomic potentials used [21–23], 
the fact that experiments show pronounced non-linearity 
already in the sub-1600 K range where all MD-studies 
find Arrhenius like behavior make further studies desir- 
able. 

Other than classical MD, density functional theory 
(DFT)-based methods do not rely on empirical inter- 
atomic potentials. Performing harmonic transition-state 
theory based DFT calculations of diffusion coefficients 
started to become standard in the late 1990 for semicon- 
ductors [24] and were adopted into the metallic systems 
a decade later [25–28]. Mattson et al. [18] proposed a 
large quadratic temperature dependence of the vacancy 
formation energy in bcc Mo based on ab intio molecular 
dynamics (AIMD) simulations, but did not study the tem- 
perature dependence of the formation entropy. Further, 
the two data points obtained at > 2400 K were insuffi- 
cient to address the nonlinearity right above the transition 
temperature. Non-MD based first principles calculations 
on the high temperature bcc phases of group IVB met- 
als like titanium, zirconium and hafnium have remained 
quite challenging due to their mechanical instability at 
zero-temperature [29, 30], with a manifestation of de- 
creasing energies and negative curvatures as a function 
of atomic displacement [30] or strain [29] in certain di- 
rections at 0 K. Since phonon frequencies are determined 
by square roots of energy versus displacement curva- 
tures, this corresponds to vibrational modes with imagi- 
nary frequencies. Since within the common harmonic or 
quasiharmonic approximations, vibrational free energies 
in solids are calculated from phonon frequencies, the ap- 
pearance of imaginary frequencies impedes free-energy 
calculations at finite temperatures for mechanically un- 
stable crystals. 

A number of approaches have been suggested to 
overcome the limitations from mechanical instabilities 
through molecular-dynamics [31] or phonon calculations 
on cells with self-consistently displaced atoms [32] to 
capture the temperature-induced anharmonicity, but most 
of them are computationally too expensive to perform cal- 
culations on supercells with point defects. Kadkhodaei et 
al. employed a combination of self-consistent ab initio 
lattice dynamics (SCAILD) and the temperature depen- 
dent effective potential (TDEP) method and examined in 
a thorough study the influence of phonon anharmonic- 

ity on the diffusion coefficient [17] in /3-Ti, but did not 
include thermal expansion and left the lattice parame- 
ters fixed. While the results could explain differences in 
magnitude between modeling and experiment that arise 
when straight harmonic transition state theory is used, 
it did not reproduce non-Arrhenius behavior, suggesting 
thermal expansion as a prime suspect to cause anomalous 
temperature dependence. 

Herein, we perform for a comprehensive study of the 
thermal expansion and self-diffusion anomaly in the me- 
chanically stable Mo and the unstable /3-Ti with an ac- 
curate and efficient ab initio approach. Our work utilizes 
the large displacement method (LDM), first proposed by 
Antolin et al. [30], from which we demonstrate that the 
thermal expansion coefficients are well captured in the 
temperature range where the quasi harmonic approxi- 
mation (QHA) applies. For the minimum-volume at each 
temperature, we then calculate the free energy of vacancy 
formation and diffusion coefficients within LDM-based 
harmonic transition state theory, effectively forming a 
quasiharmonic version of it. Our predicted self-diffusion 
coefficients and their anomalous temperature dependence 
in both Mo and /3-Ti agree well with previous measure- 
ments, a strong indication that going beyond harmonic 
to quasiharmonic transition state theory explains anoma- 
lous temperature dependence of self-diffusion in a natural 
way that eliminates the need to invoke ad-hoc non tradi- 
tional assumptions about the diffusion mechanism. Fi- 
nally, we quantified the non-linearity in the self-diffusion 
coefficients and compared it with both experimental data 
and previous computational work. We show that the non- 
linear Arrhenius self-diffusion arises mostly from the 
thermal expansion, and further pinpoint that it is not the 
migration enthalpy, but the formation entropy and, in the 
case of /3-Ti, attempt frequency that carries the majority 
of the temperature dependence. This work uncovers the 
nature of anomalous self-diffusion in Mo and /3-Ti, and 
validates that LDM is an effective way to perform such 
calculations in mechanically unstable metals. 

II.  METHODOLOGY 

1.  Self-Diffusion Theory for the bcc Lattice 

In the mono-vacancy mechanism of self-diffusion in 
the bcc lattice, the atom-vacancy exchange jump happens 
between two nearest neighbor positions along ½[111]. 
The bcc self-diffusion coefficient can be written as 

D = g f a2Cv r, (1) 

where g is the geometrical factor (1 for cubic lattices), 
f the correlation factor (0.7272 for bcc [33, 34]), a the 
lattice constant, Cv the vacancy concentration and r the 
atom-vacancy exchange jump frequency along ½[111]. 
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The atomic fraction of vacancy lattice sites Cv is given r-point calculations as described in previous work [37]. 
by There, the entropy is approximated by 

f 
f
 (   (   (    hv 

!'!G  !'!H !'!S  kBT  
S(V, ) = k g [v(V )]dv 

 f 

k BT 
f (6) C = exp − = exp exp − (2) , v exp( ) − 1  hv k BT k B 

) kBT 
r (  l r 

where !'!G f is the free energy of vacancy formation 
within the bcc lattice. !'!S f and !'!H f are the vacancy 
formation entropy and enthalpy, respectively. The atom- 
vacancy exchange jump frequency r can be calculated 
within transition state theory as [35] 

hv − g [v(V )]ln 1 − exp − k dv , 
T B 

where g [v(V )] is the phonon density of states [37] and 
the r-point phonon frequencies v(V ) are calculated for a 
supercell with volume V . 

The attempt frequency v∗ can be calculated as 
(   

!'!H m r = v∗exp − (3) , ; n n k BT 3N 
 

3 3N −4 

(7) v∗ = vi v j, 
where !'!H denotes the migration enthalpy and v∗ the m i=1 j=1 
attempt frequency. Substituting Eqs. 2 and 3 into Eq. 1, the 
self-diffusion coefficients in bcc metals can be calculated 
by 

where vi and v j are the normal mode (r–point phonon) 
frequencies of the stable and saddle point configurations, 
respectively, for a system of N atoms and one vacancy. 
The product in the denominator specifically excludes 
the (imaginary) frequency corresponding to the unstable 
mode at the transition state. 

The climbing image nudged elastic band method (CI- 
NEB) [38] with 3 images was employed to determine the 
transition state (saddle point) structures for Mo and Ta 
(see Sec. II 4 why Ta), with the saddle point configuration 
of Ti determined from those as described in the following 
section due to the relaxation problems in mechanically 
unstable high-temperature structures. The initial and final 
structures, i.e. stable states, were fully relaxed first. Then 
during the CI-NEB calculations, all supercell volumes 
were fixed. 

   '-   
D0 

   '- 
Q 

      (   ------------------------ -------- ---------------- --------- --------- 
1 1 !'!S f !'!H  +  !'!H 

D (T ) = 0.7272a2v∗exp f  m exp − 1 k BT 1 
. 

1 1 k B 

    
(4) 

Therefore, 4 parameters will be calculated to ob- 
tain self-diffusion coefficients through DFT calculations: 
!'!H f , !'!S f , !'!Hm, and v∗. Of those, !'!H f and !'!Hm con- 
tribute to the thermal activation energy Q, while !'!S f 
and v∗ contribute to the prefactor D0. We will describe 
their calculation in Sec. II 2. Before that, the vacancy 
structures of Mo and /3-Ti need to be relaxed, which is 
a straightforward task for Mo, but requires some extra 
attention for Ti, which we will discuss in Sec. II 4. The 
basic parameters for the DFT calculations are then dis- 
cussed in Appendix II 8, the large-displacement method 
in Sec. II 3, and the calculation of lattice expansion to 
introduce vibrational anharmonicity in Sec. II 5. 

3. Large-Displacement Quasiharmonic Transition State 
Theory 

The large displacement method (LDM) treats the an- 
harmonicity through large atomic displacements into the 
high-temperature anharmonic range of the atoms’ 
energy wells. Within LDM, phonons are calculated from 
the cur- vature of the harmonic envelope of the quartic 
energy- vs.-displacement curve (red curve in fig. 1). At 
high tem- peratures, or above the transition temperature, 
the atoms actually sample at the large vibrational 
amplitudes, which makes them carry across the “hump” 
at zero displace- ment (black circles in fig. 1), i.e. the 
local energetic bar- rier, and thus overcomes the 
mechanical instability of the bcc phase, therefore 
eliminating all imaginary fre- quencies from the 
phonon dispersions. Technically, this approach thus 
works like any standard finite-difference phonon 
calculation with the exception that the displace- ments 
are one or two orders of magnitude larger. The only 
question there is how large the displacement should be. 
In [30], a large displacement value of 0.88 Å was pro- 

         

2.  Calculation of the Diffusion Coefficient 

Formation quantities such as !'!G f , !'!S f or !'!H f can 
be calculated by the respective difference between perfect 
supercell and the relaxed cell with one vacancy. As an 
example, 

− 1 N  
(5) !'!G = G ( X V ) − G ( X ), N −1 1 f N N 

where X is the lattice atom, V indicates a vacancy and N 
indicates the number of lattice sites in the supercell. 

In order to calculate the vibrational contribution to the 
free energies of formation at finite temperatures, Ff (T ), 
and the entropy of formation, S f (T ), we use the quasi- 
harmonic approximation (QHA) [36] based on supercell 

 
  

 

 

 



4 

this problem, we first perform an approximate, nearest- 
neighbor (NN) only, relaxation based on free energies 
for Ti, where free energy calculations based on the LDM 
(Sec. II 3) at three different temperatures between phase 
transformation temperature (1150 K) and melting temper- 
ature (1940 K) were performed for differently displaced 
NN shells in an otherwise unrelaxed vacancy cell. The 
minimum-energy displacement was then linearly extrap- 

0.15 

d2E > 0 
0.10 du2 

0.05 
d2E < 0 
du2 

0.00 0 olated to zero temperature, d (T ) = d +llT . Since in the Ti Ti 
final calculations, we want to use full instead of NN only 
relaxation, we now use the zero-temperature extrapolated 
value to identify an appropriate surrogate structure for 
Ti from other mechanically stable bcc materials, scaled 
to the correct lattice constant. For NN-only relaxation, 
Mo is found to have one of the smallest, and Ta one of 
the largest relative NN relaxations. Thus, the positions 
of the atoms in the interpolated surrogate Ti-cell can be 
calculated from 

0.05 

0.10 

0.15 

DFT data 
Parabolic fit 0.20 

1.5 1.0 0.5 0.0 0.5 1.0 1.5 
Phonon displacement (Å) 

d
 

− d0 d
 

0 − d Ta Ti xMo + Ti Mo xTa, (8) xTi 
 d0 0 d

 

0 − d − d Figure 1. The energy difference (eV per Ti atom) with respect to 
the perfect cell in a frozen-phonon cell for the unstable N-point 
displacement pattern as a function of displacement (Å) (black 
circles). The energy “hump” at zero displacement highlights the 
mechanical instability, i.e. a negative curvature, or the second 

Ta Mo Ta Mo 

a procedure that is easily transferable to other mechani- 
cally unstable bcc crystals. The saddle point structure of 
/3-Ti is calculated in the same way from CI-NEB results 
for Mo and Ta. Results for these relaxation calculations 
are shown in Sec. III 2. 

derivative of energy on phonon displacement ( d
2 E < 0), of /3- du2 

Ti at zero temperature. A harmonic potential well (red curve) 
is obtained by matching energy and curvature of the energy 
data at a large displacement value of 0.88 Å as determined in 
Ref. [30]. This represents the high temperature regime (black 
dashed line), where the atomic vibration exhibits large amplitude 
(blue marker) with high thermal energy, resulting in the envelope 
harmonic potential governing its vibration and real phonon fre- 

5.  Thermal Expansion 

In the quasiharmonic version of transition state the- 
ory we employ in this paper, the four variables that de- 
termine vacancy self-diffusion according to Eq. 4 are 
!'!H f , !'!S f , !'!Hm and v∗. They are evaluated at the 
minimum-lattice constant in the Helmholtz free energy 
for each temperature, determined in turn from the tra- 
ditional quasi-harmonic approximation to vibrational en- 
tropy. The Helmholtz free energy of a system as a function 

quencies ( d
2 E > 0). du2 

and experimental phonon dispersion. The sensibility of 
this large-displacement value for /3-Ti proposed is further 
confirmed by the comparison of the theoretical thermal 
expansion coefficients with the experimental values (sec- 
tion III 1). As was also shown in Ref. 30, regular moder- 
ately small displacements (we use 0.05 Å) are the most 
sensible choice for Mo, which is mechanically stable at 
zero temperature. 

of volume (V ) and temperature (T ) is expressed as 
f 

F (V, K) = Etot (V ) + k BT g [v(V )] hvdv (9) 

g [v(V )]ln 1 − exp − 
 l 

dv

r

, 
r ( 

+ 
r 

   hv 
k BT 

4.  Relaxation of Vacancy Structure for Ti 

where E is the total (internal) energy at 0 K, in addition to 
the quantities defined for Eq. 6. As described in Sec. II 3, 
we used the LDM for the Ti phonon calculations and 
traditional displacements for Mo. 

In order to determine the thermal expansion 
coefficient, we fit the lattice constant data vs. 
temperature with a modified expression derived from 

    

Due to /3-Ti’s mechanical instability, one cannot simply 
relax its supercell with one vacancy at zero temperature 
like is commonly done for other crystals to determine the 
ground state structure. If one tried, one would end up with 
unphysically large atomic displacements and a negative 
formation energy as shown in result Sec. III 2. Because 
of the same reason, the CI-NEB method also cannot be 
used to find the saddle point structure. To circumvent a (T ) = a0 [1 + 0 (T )Ti(\D/T )], (10) 
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where a0 is the lattice parameter at 0 K, 0D is the De- 
bye temperature, and < is the Thacher function to ap- 
proximate the Bose-Einstein weighted integral from the 
Debye specific heat, Eq. (6) from [40]. Other than in 
the original model, we give Ja a linear temperature de- 

(2) Supercells with one vacancy (initial and final po- 
sition, separated by one bond length) were relaxed to 
their ground state in the traditional way for Mo and Ta, 
while the structure for Ti was determined as described in 
Sec. II 4. Then, the CI-NEB (Sec. II 2) was used to deter- 
mine the saddle point configuration for Mo and Ta, while 
Ti was again gained from the interpolation procedure. 

(3) The lattice constants calculated in (1) were as- 
signed to the ground state and transition state (saddle 
point) structures for Mo and Ti determined in (2). 

(4) r-point phonon calculations using a finite differ- 
ence method with displacements as described in Sec. II 3 
were performed for all temperature dependent structures, 
along with zero-temperature total energies. 

(5) Self-diffusion coefficients at different temperatures 
were calculated based on the results from (4) using Eqs. 4- 
7. 

(6) Analysis of the source of the non-linearity of the 
diffusion coefficient was carried out by quantifying the 
non-linearity of its different components as defined in 
Eq. 4. 

pendence, Ja (T ) = J0(1 + xT ) with J0 and x as fitting 
parameters in addition to 0D, since Ja, originally given by 
Ja = Kyk B/V0 (K is the compressibility; y the Grüneisen 
constant; and V0 the minimum volume of the cell) should 
be temperature dependent because both Grüneisen pa- 
rameter and elastic constants [41] are temperature depen- 
dent. Without this, the typically observed increase in ther- 
mal expansion with temperature in the high-temperature 
limit is not described well enough. The linear thermal ex- 

1 8a 
a0 8T pansion coefficient (a) is finally calculated by a = 

from the temperature derivative of Eq. 10. 

6.  Quantification of Non-Linearity 

In order to quantify the non-linearity in our calculated 
and previous (experimental) data, we fit the logarithm 
of the diffusion coefficient in an Arrhenius plot with 
an equation analogous to bowing parameter dependent 
quadratic equations used for lattice parameters or elastic 
constants [42], 

8.  Computational details 

First-principles calculations were employed to perform 
all structural relaxations and CI-NEB runs as well as 
energy and phonon-frequency calculations. To describe 
ion-electron interactions, we used projector augmented 
plane-wave potentials [44] as implemented in the Vienna 
ab initio simulation package (VASP) version 5.4.1 [44, 
45]. Exchange and correlation contributions to the total 
energy were described by the Perdew-Burke-Ernzerhof 
(PBE) functional [46]. After convergence tests, we chose 

/ 3  − /3l 
/3h − /3l 

/3 − /3 ( / 3  −  /3 )( /3 −  /3) h  l h  lnD ( /3) = lnD 
+ 

lnD +1 . h l 2 /3h − /3l ( /3 − /3 ) h l 
(11) 

There, the first two terms are the linear interpolation 
between the logarithms of highest (l) and lowest (l) diffu- 
sion coefficients (respectively, Dh and Dl can be fitting 
coefficients), /3 = 1/k BT , and 1 is the “bowing parame- 

a 54-atom supercell (3 × 3 × 3 conventional bcc unit cells) ter”, i.e. the measure of the quadratic term, whose form 
is chosen to be zero at the extremal temperatures. An 
absolute non-linearity parameter A can then be used to 
compare the degree of non-linearity between the differ- 
ent elements independent of if the temperature ranges 
exactly overlap or not. Following Eqs. 3 and 9 in Ref. 43, 
we calculate A by 

with 4 × 4 × 4 Monkhorst-Pack k-point mesh for Brillouin 
zone integration. Cutoff energies of 300 eV for Mo and 
700 eV for Ti were found to be necessary for convergence 
in the phonon calculations. For Ta, the cutoff energy was 
300 eV as well. The settings were kept constant for all 
runs. 

1 
1 1 . (12) III.  RESULTS AND DISCUSSION A = 1 √  1 30(lnD − lnD ) h l 

1. Thermal Expansion in Mo and /3-Ti 

7.  Overall Procedure The results from the quasiharmonic approximation for 
the Helmholtz free energy vs. volume for temperatures 
between 0 and 1800 K in steps of 200 K for Mo and 
/3-Ti are shown in Fig. 2(a). The energy minima are de- 
termined by a fit based on the assumption of a harmonic 
dependence of energy on the volume and are indicated 
by crosses in the plot at the minima of the parabolas. 
The minimum-energy lattice constants for both materi- 
als as a function of temperature are shown in Fig. 2(b). 

In order to determine the diffusion coefficients for Ti 
and Mo within the quasiharmonic transition state theory 
employed in this paper, we performed the following steps: 

(1) The thermal expansion, i.e. the temperature depen- 
dence of the lattice constants, was calculated within the 
quasiharmonic approximation as described in Sec. II 5 
based on perfect bcc supercells for Ti and Mo. 
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The results for thermal expansion in Mo, based on tradi- 
tional phonon calculations, are shown in Fig. 2(a). Fitting 
Eq. 10 to the DFT data results in parameter values of 

2.  Groundstate of Vacancy Structure in /3-Ti 

Following the procedure described in Sec. II 4, we have 
performed free-energy calculations of vacancy formation 
energies in constant-volume cells of /3-Ti (lattice con- 
stant the zero-temperature value from Fig. 2(b), 3.237 Å) 
for three different temperatures (1155 K (experimental 
transition temperature), 1941 K (experimental melting 
point) and 1548 K (halfway in-between) as a function 
of simultaneous nearest-neighbor displacement along the 
bond direction to the vacancy. For each temperature, 
the minimum-energy displacement and energy minimum 
were determined from a parabolic fit. The results are 
shown in Fig. 3. 

Fig. 3c shows the free energy of formation as a function 
of temperature for the three calculation temperatures. In 
principle, the calculations performed here result in the 
Helmholtz free energy of formation at constant volume. 
In order to estimate the energy error with respect to the 
Gibbs free energy from the non-zero pressure that comes 
from neglecting the formation volume of the vacancy 
[20], we estimate the formation volume from the pressure 
in the VASP output for the NN-displaced cell and the bulk 
modulus and pressure derivative reported previously [30] 
through the pressure expression of the Murnaghan equa- 
tion [49]. We find typical pressures of < 10 kbar, indi- 
cating a volume relaxation in the supercell by less than 
1%. Multiplying the formation volume from that with 
the pressures, we find that the pV term contributes less 
than 0.04 eV to the free energy, and thus is small. Fitting 

a0 = 3.1514, 0D = 327 K, Ja = 5.91 × 10−6K−1, and 
x = 6.42 × 10−6K−1. The lattice constant at 298 K is 
calculated with Eq. 10 to be 3.155 Å, while the experi- 
mental lattice constant at room temperature is 3.147 Å. 
The thermal expansion coefficient of Mo is calculated 
from the temperature derivative of Eq. 10 and is shown in 
Fig. 2c in comparison to experimental data from Ref. 47. 
While the (weak) increase with temperature in the calcu- 
lations is slightly lower than what is found in experiment, 
the general agreement is rater good with an average de- 
viation in the linear regime between 600 and 1800 K of 
5%. 

The results for /3-Ti, which are based on phonon cal- 
culations from the LDM, are shown in Fig. 2(a) and (b). 
Since, as described in Sec. II 3, the LDM uses the har- 
monic envelope of the quartic energy-vs.-displacement 
curve irrespective of if the kinetic energy of the vibrating 
atoms is high enough to overcome the energy “hump” at 
zero displacement, which in the real system only happens 
above the transition temperature, it can also be used to 
calculate the energy vs. volume dependence of metastable 
/3-Ti below the transition temperature and thus is shown 
here for the entire range. As seen in Fig. 2(a), the calcu- 
lated values are well described by a quadratic fit for all 
temperatures, as was the case for Mo. Thus, we can use 
the entire range for fitting Eq. 9 to get more reliable coef- 
ficients and find parameters of a0 = 3.2383, 0D = 474 K, 
Ja = 7.08 × 10−6K−1, and x = 1.47 × 10−4K−1. 
 

Experimental values compiled in Ref. 48 are for pure 
Ti only available above the transition temperature from 
a-Ti to /3-Ti, which we have calculated previously to be 
at 1200 K with the LDM [30], within 4% of the experi- 
mental value of 1155 K. The calculated lattice constant 
of /3-Ti phase at 1200 K is 3.27 Å, compared to an ex- 
perimental value at the same temperature of 3.33 Å. The 
calculated linear thermal expansion coefficient shows ex- 
cellent agreement with the experimental values between 
1200 and 1300 K with a considerable temperature depen- 

F (T ) = E f −TS to the three values, we find E f = 1.90 eV 
and S f = 4.3k B. Combining these results with the lattice 
site density, we find an equilibrium vacancy concentra- 
tion of Ceq = 1.8 × 1021cm−3exp(−1.90[eV]/(k BT )). V ,Ti 
For the unrelaxed cell, we had previously found with the 
same method E f = 2.05 eV and S f = 8.15k B [30]. Over- 
all, the NN relaxation decreases the formation energy by 
0.14 eV. 

Next, we examine the NN-relaxation as a function of 
temperature and extrapolate from it a zero-temperature 
displacement which can be used for a fully relaxed sur- 
rogate structure with all neighbor shells relaxed. Having 
three temperatures, extrapolation can either be done lin- 
early (dashed line in Fig. 3 a) or with a second-degree 
polynomial. We perform here both and take their aver- 
age for our zero-temperature structure. For a linear ex- 
trapolation, we find a zero-temperature displacement of 
-0.035 Å, for a quadratic one -0.058 Å, with an aver- 
age of -0.047 Å. All of these are considerably smaller 
than the minimum-energy zero-temperature relaxation of 
-0.101 Å, which is another expression of the mechanical 
instability of the structure and its strong stabilization by 
entropy. Following the procedure described in Sec. II 4 
of interpolating fully relaxed cells of mechanically stable 
Mo and Ta vacancies with scaled lattice constants, which 
have NN relaxations of –0.008 Å and –0.082 Å in cells 

dence of da/dT = 2×10−10K−2 (Fig. 2c). For higher tem- 
peratures, it seems that anharmonic effect other than large 
displacements become important as already discussed in 
Ref. [30], causing a faster increase in thermal expansion 
in experiment than captured by LDM alone. Therefore, 
we restrict our calculations here to this temperature range. 

Overall, we have successfully determined the temper- 
ature dependence of the lattice constants in good agree- 
ment with experiments, which we will use in the follow- 
ing as input for vacancy and diffusion-coefficient calcu- 
lations. 
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Figure 2. (a) Free energy for bcc Mo and bcc Ti with respect to lattice constant at temperatures from 0 to 1800 K with 200 K step are 
depicted by circles. The values are fit by quadratic curves (solid lines). Crosses denote the energy minima of the respective curves 
and simultaneously the equilibrium lattice constant. (b) Ground-state lattice constants as a function of temperature for (a) Mo and 
(b) /3-Ti (open circles), determined from the minima of the parabolic fits to DFT calculations of the Helmholtz free energy in fig. 2a. 
(c) Calculated thermal expansion for /3-Ti (blue, upper line and data) and Mo (red, lower line and data). The lines are determined by 
fitting the DFT data from fig. 2b with Eq. 9 and taking the temperature derivative. The circles denote experimental data from Ref. 47 
for Mo and Ref. 48 for /3-Ti. 

with otherwise clamped other neighbors, we then create 
a “relaxed” /3-Ti cell which is more or less the straight av- 
erage of the atomic positions in relaxed Mo and Ta cells, 
scaled to the /3-Ti lattice constant. Both ground state struc- 
ture and saddle point configuration were determined this 
way. 

The formation energy from this process agrees with 
the formation energy from the interpolated structure dis- 
cussed in Sec. II 4 within 0.01 eV, which is less than the 
uncertainties in our numbers from the different approxi- 
mations and numerical calculations such as the 0.04 eV 
from enthalpy discussed in the present section. This sug- 
gests that relaxation beyond nearest neighbors adds only 
small changes to the calculated formation energies. 

shown with previous experimental [50–52] and simula- 
tion [18] data in Fig. 4. Our qhTST calculations with vary- 
ing lattice constants that include thermal expansion are 
represented by the six individual points (1400 − 1900 K, 
with 100 K step). We limit our highest calculated tem- 
perature to two third of its melting point, which is the 
commonly accepted applicability range for QHA [53]. 

In order to determine the degree of non-linearity in our 
data, we use Eqs. 11 and 12 and determine a non-linearity 
parameter of A = 0.051. While our data thus show good 
absolute agreement with the experimental results, they 
have a somewhat higher degree of non-linearity than the 
experimental values of Maier at al. [52], for which we cal- 
culate A = 0.021, and also the simulation data of Mattson 
et al. [18] with A = 0.022. 

In order to explore the origin of the bowing anomaly, 
we now investigate the temperature dependence of for- 
mation and migration enthalpies, as well as of formation 
entropy and attempt frequency. The results are shown 
in Fig. 6(a), (b) and (c). The calculated vacancy forma- 

3.  Self-Diffusion in Mo 

Our calculated self-diffusion coefficients for Mo calcu- 
lated within the quasiharmonic transition-state theory are 
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Mattsson et al. (DFT-MD) 
This work 
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22 1
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Figure 3. (a) Free-energy of formation for a vacancy in a 54- 
atom supercell of /3-Ti as a function of simultaneous nearest- 
neighbor relaxation along (illustrated in b) the {111} bond di- 
rections with other atoms in fixed perfect lattice sites. Calcula- 
tions were performed with DFT within the LDM quasiharmonic 
approximation. The symbols are calculation results for 1155 K 
(black diamonds, experimental transition temperature), 1941 K 
(blue triangles, experimental melting temperature), and 1548 K 
(red squares, halfway in-between) with corresponding parabolic 
fits to find the minimum-energy displacements. The green cir- 
cles are zero-temperature results, and the orange dot the lin- 
ear extrapolation vs. temperature from the high-temperature 
minimum-energy displacements (hollow black circles along the 
dashed line) to the zero-temperature curve. (b) The nearest- 
neighbor displacement directions, with negative values moving 
towards the site of the vacancy (empty sphere). (c) Minimum- 
displacement free-energy of formation (indicated by the hollow 
circles in Figure 4) for a vacancy in a 54-atom supercell of /3-Ti 
as a function of temperature (circles), along with a linear fit with 
F (T ) = 1.90eV − 4.3k BT . 

4) 

Figure 4. Comparison between calculated self-diffusion coeffi- 
cient in bcc Mo with experimental data from Refs. 50–52 and 
DFT-MD results [18]. The solid line represents a parabolic fit of 
the experimental data by Maier et al. [52]. 

the curvature of the calculated self-diffusion coefficients 
in Fig. 4. In order to quantify the effect of the different 
contributions, we perform two fits of Eq. 11, first one 
for calculated diffusion coefficients where the prefactor 
is fixed to the average value of all calculated prefactors 
(which results in a value of Davg = 3.25 × 10−6m2/s), 0 
and secondly an analogous set of diffusion coefficients 
where the activation energy is fixed to the average calcu- 
lated value of Eavg = 4.268 eV. For the first fit, we find 0 
a non-linearity coefficient of which is 13% of the over- 
all non-linearity, while for fixed Ea, we find A = 0.041, 
which is 87%. Thus, the non-linearity in vacancy diffu- 
sion in Mo is clearly dominated by the non-linearity of 
the diffusion prefactor as a consequence of anharmonicity 
from thermal expansion. To investigate the effect further, 
a similar analysis was made with fixed averaged attempt 
frequency, resulting in a change of non-linearity by less 
than 1%, making the non-linearity in the formation en- 
tropy the by far most important factor. This conclusion 
is different from the DFT-MD calculation by Mattsson et 
al. [18], in which the anomaly was mostly attributed to 
anharmonicity in the vacancy formation enthalpy !'!Hv . 
However, in their simulations, thermal expansion was not 
considered and all MD simulations were performed at the 
zero-temperature volume of vacancy and bulk, which ne- 
glected important volume-dependent anharmonic effects 
from thermal expansion. The fundamental proportion- 
ality between Grüneisen parameter, the prime indicator 
for anharmonicity, and thermal expansion [39] as well 
as our results here are strong indicators that thermal ex- 

tion enthalpy !'!Hv increases monotonously with 
temper- ature from 3.08 eV to 3.17 eV between 1400 
and 1900 K (Fig. 6(a)) and is slightly larger than values 
proposed from analyzing experiments of 3.0 eV [44]. 
The calculated va- cancy migration enthalpy !'!Hm 
decreases slightly from 
1.167 eV to 1.163 eV (Fig. 6(a)), slightly smaller than the 
reported migration enthalpy of 1.30 eV from experimen- 
tal analysis [54]. The calculated attempt frequency v∗ also 

       from 2.3 × 1012 Hz to 2.2 × 1012 Hz as temperature in- 
creases from 1400 to 1900 K (Fig. 6(c)). The 
temperature dependence of the calculated vacancy 
formation entropy 
!'!S f on the other hand shows a much more pronounced 
temperature dependence and is found to be the major 
rea- son for non-Arrhenius like diffusion in Mo. It 
decreases from 3.27k B at 1400 K to 2.79k B at 1700 K, 
before re- covering back to 3.22k B at 1900 K, as shown 
in Fig  6(b)  The curved shape of !'!S f (T ) then directly 
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pansion cannot be neglected when trying to understand 
anharmonic effects. Our findings are further supported by 
the resistivity measurements by Schwirtlich and Schultz 
[55], which find that the temperature dependence of the 
formation enthalpy is small and constant to within 0.1 
eV between 2000 K and 2600 K, whereas Mattson et al. 
predict a much larger increase of 0.5 eV for that interval. 

T (K) 
1500 1900  1700 1300 1100 

10 1
 

11 1
 

4. Self-Diffusion in /3-Ti 
12 1

 

Our calculation results of self-diffusion coefficients in 
/3-Ti are plotted in Fig. 5 in comparison to experimen- 
tal data [15, 56]. Calculations based on TST and large 
displacement algorithm are applied at five temperatures: 
1200, 1230, 1250, 1280 and 1300 K. We choose again 
the upper limit of 1300 K as two thirds the melting point 
of Ti (1941 K), while the lower limit of 1200 K is the a- 
to-/3 transition temperature from LDM-DFT calculations 
[20]. Although these choices make the temperature range 
for the DFT calculations rather small, the anomaly of the 
self-diffusion coefficient can still be seen in Fig. 5, and the 
data are sufficient to extract the non-linearity parameter, 
which is independent of the temperature interval. 

From the LDM-DFT calculations, we find for /3-Ti 
a non-linearity coefficient of 0.091, about 80% larger 
than what we had found for Mo. A similarly stronger 
non-linearity by about a factor of two is also found in 
experiments, where we fit a non-linearity parameter of 
A = 0.046, which is 120% larger than the Mo value. 
While thus these trends from experiment are reproduced 
well by the calculations, and while the values of our diffu- 
sion coefficients agree well with experimental values, the 
calculated non-linearity is considerably stronger than the 
experimentally observed one, which is true to a similar 
degree for /3-Ti and for Mo. 

In order to explore if the origins of the bowing anoma- 
lies in /3-Ti and Mo differ, we again investigate the temper- 
ature dependence of formation and migration enthalpies, 
as well as of formation entropy and attempt frequency. 
The results are shown in Fig. 6(d), (e) and (f). The va- 
cancy formation enthalpy !'!H f increases from 1.91 eV 
to 1.92 eV at the temperature from 1200 K to 1300 K 
(Fig. 6(d)), compared with an experimental estimation 
of > 1.50 eV [57]. This value from interpolated Mo 
and Ta zero-temperature cells (Secs. II 4and III 2) agrees 
well with the results from the nearest-neighbor only free- 
energy minimization, where the nearly perfect linearity 
with temperature indicated a very weak temperature de- 
pendence of the formation enthalpy (Fig. 6). Similarly, the 
vacancy migration enthalpy !'!Hm increases only slightly 
from 0.146 eV to 0.147 eV as temperature increases 
(Fig. 6(d). Indeed, when we fit the calculated diffusion 

13 1
 Murdock et al. 

Kohler et al. 
Kadkhodaei et al. 
This work 

14 1
 5 6 7 

104/T (K 
8 9 

4) 

Figure 5. Comparison between calculated self-diffusion coeffi- 
cients in bcc Ti with experimental data from Ref. 14 and 56. Solid 
line represents the fitting curve of experimental data. 

again only 15% of the overall bowing. Thus, it is once 
again the prefactor that we identify as the major source 
(85%) of the non-linearity. Unlike Mo, however, both 
vacancy formation entropy and attempt frequency con- 
tribute to a more comparable degree to the non-linear 
Arrhenius curve in /3-Ti. Specifically, the vacancy forma- 
tion entropy !'!S decreases from 5.08k at 1200 K to a f B 
minimum of 4.92k B at 1230 K before increasing back to 
4.95k B at 1300 K (Fig. 6(d)) and the attempt frequency 
v∗ decreases from 3.1×1012 Hz at 1200 K to 2.9×1012 Hz 
at 1250 K, then increases back to 3.1 × 1012 Hz at 1300 K 
(Fig. 6(f)). With that, the formation entropy carries 64% 
of the non-linearity, leaving the remaining 36% to the 
attempt frequency. Without the anharmonic attempt fre- 
quency, the calculated non-linearity in /3-Ti would only 
be 25% larger than that in Mo, and thus the effect of the 
formation entropy is rather comparable in both materials. 

IV. CONCLUSIONS AND OUTLOOK 

In this paper, we have demonstrated that the framework 
of quasiharmonic transition state theory allows reproduc- 
ing anomalous self-diffusion in bcc metals for the exam- 
ples of Mo and /3-Ti by including thermal expansion into 
the calculations. In order to be able to calculate phonon 
frequencies needed for attempt frequency and formation 
entropy in the mechanically unstable /3-Ti, we use the 
previously proposed large-displacement method [30] and 
introduce two approaches to relax vacancies in mechan- 
ically unstable crystals, which is free-energy relaxation 

coefficients once again with an averaged prefactor (which 
has a value of Davg = 3.403 × 10−5m2/s for /3-Ti), we 0 
only find a non-linearity parameter of A = 0.013, once 
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is somewhat cumbersome. We find that phonon frequen- 
cies, at the heart of the two quantities that define the 
diffusion prefactor – vibrational entropy and attempt fre- 
quency – change more sensitively with volume changes 
than formation enthalpy and migration energy and thus 
dominate the non-linearity in the Arrhenius plots, which 
is in contrast to previous suggestions. In order to quan- 
tify the degree of non-linearity, we have proposed to use 
the non-linearity parameter from Ref. 43 and find that 
for both metals studied 85% of the non-linearity comes 
from the diffusion prefactor. While these values are sim- 
ilar, we find a considerable difference in the distribution 
of the non-linearity on formation entropy: While nearly 
all of the bowing in Mo comes from the formation en- 
tropy, the non-linearity in /3-Ti is divided 2/3:1/3 between 
formation entropy and attempt frequency, respectively, 
again in contrast to previous suggestions. Our calculated 
diffusion coefficients agree well with measured values, 
although we calculate a somewhat larger non-linearity 
than what we extract from experimental datasets. The 
proposed methodology is general enough that it also can 
be applied to other mechanically unstable crystals. 

bcc Mo bcc Ti 
(a) (d) 

ΔHf 
ΔH f 

ΔHm ΔHm 

(b) (e) 

ΔSf ΔS f 

(c) (f) 

ν* ν* 

Figure 6. Formation enthalpy !'!H f , migration enthalpy !'!Hm, 
formation entropy !'!S f , and diffusion attempt frequency v∗ for 
Mo [(a), (b), (c)] and /3-Ti [(d), (e), (f)], calculated with DFT within 
quasiharmonic transition state theory. 
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