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1 Introduction

Researchers frequently make parametric assumptions about the distribution of latent

variables in structural models. These assumptions are typically made for computational

convenience1 or because simulation-based methods are used for estimation. In many

models, such as those we consider in this paper, the distribution of latent variables is

not nonparametrically identified. This raises the possibility that model parameters and

the outcomes of policy experiments, or counterfactuals, may be only partially identi-

fied when parametric assumptions are relaxed. That is, di↵erent distributions may fit

the data equally well in-sample, but may yield di↵erent values of the counterfactual.

It is therefore natural to question whether counterfactuals are sensitive or robust to

researchers’ parametric assumptions, especially when evaluating the credibility of struc-

tural modeling exercises.

This paper proposes a framework for analyzing the sensitivity of counterfactuals to

parametric assumptions about the distribution of latent variables in a class of structural

models. In particular, we derive bounds on counterfactuals as the distribution of latent

variables spans nonparametric neighborhoods of a given parametric specification while

other “structural” features of the model are maintained. This approach is in the spirit of

global sensitivity analysis advocated by Leamer (1985) (see also Tamer (2015)). Global

sensitivity analyses are important in this context: many structural models are nonlinear

so policy interventions can have di↵erent e↵ects at di↵erent points in the parameter

space. But a major di�culty with implementing global sensitivity analyses is tractabil-

ity. A more tractable alternative are local sensitivity analyses, which are based on small

perturbations around a chosen specification. Because local approaches rely on lineariza-

tion, they may fail to correctly characterize the range of counterfactuals predicted by a

nonlinear model when the distribution di↵ers nontrivially from the researcher’s chosen

parametric specification.

Our main insight is to borrow from the robustness literature in economics pioneered

by Hansen and Sargent (2001, 2008) to simplify computation using convex program-

ming.2 Following this literature, we define neighborhoods around the researcher’s para-

1Examples include the conventional Gumbel (or type-I extreme value) assumption in discrete choice
models following McFadden (1974), dynamic discrete choice models following Rust (1987), and matching
models with transferable utility following Dagsvik (2000) and Choo and Siow (2006). Models of static or
dynamic discrete games often impose parametric assumptions about the distribution of payo↵ shocks—
see, e.g., Berry (1992), Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), and Ciliberto
and Tamer (2009).

2Our approach is also related to the field of distributionally robust optimization in operations re-
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metric specification using statistical divergence (e.g., Kullback–Leibler divergence), with

the option to add certain shape restrictions as appropriate. For tractability, we restrict

our attention to models that may be written as a finite number of moment (in)equalities,

where the expectation is with respect to the distribution of latent variables. While re-

strictive, this class accommodates many important models of static and dynamic discrete

choice, discrete games, and matching.

To describe our procedure, consider the problem of minimizing or maximizing the

counterfactual at a fixed value of structural parameters by varying the distribution of

latent variables over a neighborhood, subject to the model’s (in)equality restrictions.

We use duality to recast this infinite-dimensional optimization problem as a finite-

dimensional convex program. The value of this inner program is treated as a criterion

function, which is optimized in an outer optimization with respect to structural parame-

ters. Importantly, the dimension of the inner problem is independent of the neighborhood

size, making our procedure tractable over both small and large neighborhoods. To further

simplify computation, we develop an MPEC version of our procedure for models featur-

ing endogenous parameters (e.g., value functions) defined by equilibrium constraints. We

show that this implementation can produce significant computational gains for dynamic

discrete choice models in particular.

Our approach is conceptually di↵erent from nonparametric partial identification anal-

yses which derive bounds on counterfactuals under minimal distributional assumptions.

But as we show, bounds computed using our procedure converge to the (sharp) nonpara-

metric bounds in the limit as the neighborhood size becomes large. Aside from sensitivity

analyses, our methods may therefore be used to approximate nonparametric bounds by

taking the neighborhood size to be large but finite.

For estimation and inference, we propose simple plug-in estimators of the bounds

and establish their consistency. We also propose and theoretically justify two methods

for inference: a computationally simple but conservative projection procedure and a

relatively more e�cient bootstrap procedure.

We illustrate our procedures with two empirical applications. The first revisits the

“marital college premium” estimates reported in Chiappori, Salanié, and Weiss (2017),

which relied on an i.i.d. Gumbel (type-I extreme value) assumption for the distribution

of individuals’ idiosyncratic marital preferences (see also Choo and Siow (2006)). The

second empirical application performs a counterfactual welfare analysis in the canonical

dynamic discrete choice model of Rust (1987).

search. See, e.g., Shapiro (2017), Duchi and Namkoong (2021), and references therein.
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Related literature. Our approach has connections with global prior sensitivity in

Bayesian analysis (Chamberlain and Leamer, 1976; Leamer, 1982; Berger, 1984), most

notably Giacomini, Kitagawa, and Uhlig (2016) and Ho (2018) who consider sets of

priors constrained by Kullback–Leibler divergence relative to a default prior.

Motivated by questions of sensitivity, Chen, Tamer, and Torgovitsky (2011) study

inference in semiparametric likelihood models using sieve approximations for the infinite-

dimensional nuisance parameter (the distribution of latent variables in our setting). For

the class of moment-based models we consider, our approach instead eliminates the

infinite-dimensional nuisance parameter via a convex program of fixed dimension.

Several other works have used convex duality to characterize identified sets in models

with latent variables. Most closely related are Ekeland, Galichon, and Henry (2010)

and Schennach (2014).3 The problem we study is di↵erent, both because of its focus

on counterfactuals, rather than structural parameters, and because the optimization is

performed over a neighborhood, rather than over all distributions. As a consequence,

our estimation and inference methods are also quite di↵erent.

Torgovitsky (2019b) uses linear programming to characterize sharp identified sets in

latent variable models defined by quantile restrictions. Within this class, his approach

is more computationally convenient than ours for characterizing identified sets. Several

important moments or counterfactuals cannot be expressed as quantile restrictions, such

as social surplus in discrete choice models and Bellman equations in dynamic discrete

choice models. Our approach is compatible with these moments and counterfactuals,

thereby allowing the user to characterize identified sets in broader classes of model as

well as to perform sensitivity analyses.

There is also a literature deriving nonparametric bounds in specific latent variable

models. Examples include Manski (2007, 2014), Allen and Rehbeck (2019), Tebaldi,

Torgovitsky, and Yang (2019), La↵érs (2019), Torgovitsky (2019a), and Gualdani and

Sinha (2020). Most closely related is Norets and Tang (2014), who construct identified

sets of counterfactual conditional choice probabilities (CCPs) in dynamic binary choice

models. Their approach is specific to counterfactual CCPs and to dynamic binary choice

models. Our approach allows for a wider range of counterfactual (e.g., welfare), shape

restrictions, and multinomial choice, in addition to performing sensitivity analyses.4

3Works using other notions of “duality” to construct identified sets include Beresteanu, Molchanov,
and Molinari (2011), Galichon and Henry (2011), Chesher and Rosen (2017), and Li (2018).

4Kalouptsidi, Scott, and Souza-Rodrigues (2021) and Kalouptsidi, Kitamura, Lima, and Souza-
Rodrigues (2020) consider the converse problem, in which flow payo↵s are nonparametric (as they can
be in our setting) but the distribution of latent payo↵ shocks is known.
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Finally, our work is complementary to the recent literature on local sensitivity—see,

e.g., Kitamura, Otsu, and Evdokimov (2013), Andrews, Gentzkow, and Shapiro (2017,

2020), Armstrong and Kolesár (2021), Bonhomme and Weidner (2021), and Mukhin

(2018). Much of this literature is concerned with local misspecification of moment con-

ditions, which is di↵erent from the setting we consider.

Outline. Section 2 introduces our procedure, estimators of the bounds, and shows

our approach recovers nonparametric bounds as the neighborhood size becomes large.

Section 3 discusses practical aspects and implementation details. Section 4 gives guidance

for interpreting the neighborhood size. Empirical applications are presented in Section 5.

Section 6 discusses estimation and inference. The online appendix presents extensions

of our methodology, connections with local sensitivity analyses, additional empirical

results, and proofs of our main results. A secondary appendix of our working paper

version Christensen and Connault (2022) presents background material on Orlicz classes

and supplemental proofs.

2 Procedure

We begin in Section 2.1 by describing the class of models to which our procedure may

be applied. Section 2.2 describes our approach, Section 2.3 shows how duality is used to

simplify the bounds, and Section 2.4 introduces our estimators of the bounds. Section 2.5

shows our bounds converge to the sharp nonparametric bounds as the neighborhood size

becomes large.

2.1 Setup

We consider a class of models that link a structural parameter ✓ 2 ⇥ ⇢ Rd✓ , a vector of

targeted moments P0 2 P ✓ RdP , and possibly an auxiliary parameter �0 2 � (a metric

space) via the moment restrictions

EF [g1(U, ✓, �0)]  P10, (1a)

EF [g2(U, ✓, �0)] = P20, (1b)

EF [g3(U, ✓, �0)]  0, (1c)

EF [g4(U, ✓, �0)] = 0, (1d)
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where g1, . . . , g4 are vectors of moment functions, P0 = (P10, P20) is partitioned con-

formably, and EF denotes expectation with respect to a vector of latent variables U ⇠ F .

We assume that the researcher has consistent estimators (P̂ , �̂) of (P0, �0). We also as-

sume that the researcher is interested in a (scalar) counterfactual of the form

 = EF [k(U, ✓, �0)] . (2)

This setup accommodates counterfactuals that do not depend explicitly on U , in which

case (2) reduces to  = k(✓, �0). Note that  will still depend on the distribution of U

through ✓, whose values are disciplined by the moment conditions (1).

Several models and counterfactuals of interest fall into this framework. We review

three examples before proceeding.

Example 2.1 (Discrete choice and consumer welfare) Suppose an individual de-

rives utility hj(X, ✓)+Uj from choice j 2 J0 := {0, 1, . . . , J}, where X 2 X are observed

covariates and U = (Uj)j2J0 is latent (to the econometrician). We assume, as typical,

that U is drawn independently across individuals from a continuous distribution F . The

probability that an individual with characteristics x chooses j is

p(j|x) = PF (hj(x, ✓) + Uj = maxj02J0 (hj0(x, ✓) + Uj0)) , (3)

where PF denotes probabilities when U ⇠ F . In empirical work, ✓ is typically estimated

using a criterion that fits the model-implied choice probabilities (3) to probabilities

observed in the data. Welfare analyses are often based on the social surplus (McFadden,

1978)

W (x) = EF [maxj2J0 (hj(x, ✓) + Uj)] ,

which is the average utility consumers with characteristics x derive from the choice

problem. A related welfare measure is the change in surplus �W (xa, xb) = W (xa) �

W (xb) associated with a shift from xb to xa. In practice, it is common to assume the Uj

are i.i.d. Gumbel (type-I extreme value), as this yields closed-form expressions for choice

probabilities and the welfare measures W (x) and �W (xa, xb).

Our approach may be used to perform a sensitivity analysis of W (x) and �W (xa, xb)

to parametric assumptions about F when X is finite. A leading example is matching

models with finitely many agent types—see Section 5.1 and references therein. Under-

standing the sensitivity of W (x) and �W (xa, xb) to F is important in this case because
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W (x) and �W (xa, xb) are not nonparametrically identified.5

In our notation, g2 collects indicator functions representing the choice probabilities

(3) across covariates x 2 X and choices j 2 J := {1, . . . , J} (j = 0 is redundant):

g2(U, ✓) = (1l {hj(x, ✓) + Uj = maxj02J0 (hj0(x, ✓) + Uj0)})(j,x)2J⇥X

and P20 = (Pr(j|x))(j,x)2J⇥X is the vector of true choice probabilities. There are no

g1, g3, g4, or � in this model. Finally, k(U, ✓) = maxj2J0 (hj(x, ✓) + Uj) for W (x) and

k(U, ✓) = maxj2J0 (hj(xa, ✓) + Uj)�maxj2J0 (hj(xb, ✓) + Uj) for �W (xa, xb). ⇤

Example 2.2 (Discrete games) Following Bresnahan and Reiss (1990, 1991), Berry

(1992), and Tamer (2003), consider the complete-information game in Table 1.

Firm 2
0 1

Firm 1
0 (0, 0) (0, �0

2x+ U2)
1 (�0

1x+ U1, 0) (�0
1x��1 + U1, �

0
2x��2 + U2)

Table 1: Payo↵ matrix for (Firm 1, Firm 2) when X = x.

Here U = (U1, U2) is the latent (to the econometrician) component of firms’ profits,

which is independent of covariates X. Suppose that the solution concept is restricted to

equilibria in pure strategies. The econometrician may estimate the probabilities of the

potential market structures (0, 0), (0, 1), (1, 0), (1, 1) (conditional on X) from data on a

large number of markets. As the model is incomplete—there are values of U for which

there are multiple equilibria—moment inequality methods are typically used in empirical

work to avoid restricting the equilibrium selection mechanism. However, strong paramet-

ric assumptions are often made about the distribution of U (typically bivariate Normal)

to derive the model-implied probabilities for di↵erent market structures; see, e.g., Berry

(1992), Ciliberto and Tamer (2009), Beresteanu et al. (2011), and Kline and Tamer

(2016). It therefore seems natural to also question the sensitivity of counterfactuals to

parametric assumptions for U .

This model falls into our setup when the regressors X have finite support X .6 In

5See, e.g., Berry and Haile (2010, 2014) and Allen and Rehbeck (2019) for nonparametric identifi-
cation of utilities and welfare measures in discrete choice models when characteristics have continuous
support.

6Continuous regressors are often discretized in empirical applications; see, e.g., Ciliberto and Tamer
(2009), Grieco (2014), Kline and Tamer (2016), and Chen, Christensen, and Tamer (2018).
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our notation, g1 collects the moment inequalities that bound the probabilities of (0, 1)

and (1, 0) across x 2 X , with P10 denoting the corresponding true probabilities. The

inequalities are typically expressed as upper bounds on the probabilities of (0, 1) and

(1, 0); we flip the sign to be compatible with (1a):

g1(U, ✓) =

"
(�1l{U1 � ��

0
1x;U2  �2 � �

0
2x})x2X

(�1l{U1  �1 � �
0
1x;U2 � ��

0
2x})x2X

#
, P10 =

"
(�Pr((1, 0)|X = x))

x2X

(�Pr((0, 1)|X = x))
x2X

#
,

where ✓ = (�1,�2, �1, �2). Similarly, g2 and P20 collect the moment conditions and

probabilities for outcomes (0, 0) and (1, 1), which are always realized as the result of

unique equilibria:

g2(U, ✓) =

"
(1l{U1  ��

0
1x; U2  ��

0
2x})x2X

(1l{U1 � �1 � �
0
1x; U2 � �2 � �

0
2x})x2X

#
, P20 =

"
(Pr((0, 0)|X = x))

x2X

(Pr((1, 1)|X = x))
x2X

#
.

There is no g3, g4, or � in this model. Ciliberto and Tamer (2009) compute upper bounds

on the probability of entrants under a counterfactual payo↵ shift, say ⌧(✓). The function

k(U, ✓) = 1l{U1 � ⌧(✓)��
0
1x} corresponds to the upper bound on the probability of firm

1 entering when X = x under this counterfactual. ⇤

Example 2.3 (Dynamic discrete choice) Consider a canonical dynamic discrete choice

(DDC) model following Rust (1987). The decision maker solves

V (s) = EF


max
d2D0

(⇡d,s(✓⇡) + Ud + �E[V (s0)|d, s])

�
, (4)

where s 2 S is a Markov state variable, D0 = {0, 1, . . . , D} is the set of actions, ⇡d,s is

the flow payo↵ for action d in state s which is parameterized by ✓⇡, Ud is a latent payo↵

shock, � 2 (0, 1) is a discount parameter, and E[ · |d, s] denotes expectation with respect

to the future state s
0. The distribution F of U = (Ud)d2D0 is typically assumed to be

continuous and independent of s. The CCP of action d in state s is

p(d|s) = PF

✓
⇡d,s(✓⇡) + Ud + �E[V (s0)|d, s] = max

d02D0

(⇡d0,s(✓⇡) + Ud0 + �E[V (s0)|d0, s])

◆
,

(5)

where PF denotes probabilities when U ⇠ F .

It is standard to assume the Ud are i.i.d. Gumbel, as this yields closed-form expres-

sions for the expectation in (4) and multinomial-logit expressions for the CCPs (5).
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Parameters ✓⇡ or (✓⇡, �) are typically estimated using a criterion function that fits the

model-implied CCPs (5) to probabilities observed in the data. Counterfactuals are then

computed by solving (4) under alternative laws of motion, flow payo↵s, or other inter-

ventions.

When S is finite, model parameters, counterfactual CCPs, and counterfactual welfare

measures are typically not identified without parametric restrictions on F . Our procedure

may be used perform a sensitivity analysis of counterfactuals to parametric assumptions

on F as follows. Let ✓ = (✓⇡, v, ṽ) or ✓ = (✓⇡, �, v, ṽ), where v = (V (s))s2S and ṽ =

(Ṽ (s))s2S collect the baseline and counterfactual value functions across s 2 S. Also let

� = (Md)d2D0 collect the transition matrices for s, g2 collect indicator functions for the

CCPs (5) across states s 2 S and choices d 2 D := {1, . . . , D} (d = 0 is redundant):

g2(U, ✓, �) =

✓
1l

⇢
⇡d,s(✓⇡) + Ud + �Md,sv = max

d02D0

(⇡d0,s(✓⇡) + Ud0 + �Md0,sv)

�◆

(d,s)2D⇥S

with Md,s denoting the sth row of Md, and P20 = (Pr(d|s))(d,s)2D⇥S collect the cor-

responding true CCPs. Finally, g4 collects moment functions representing (4) in the

baseline model and under the counterfactual:

g4(U, ✓, �) =

2

4
(maxd2D0{⇡d,s(✓⇡) + Ud + �Md,sv}� vs)s2S

(maxd2D0{⇡̃d,s(✓⇡) + Ud + �̃M̃d,sṽ}� ṽs)s2S

3

5 , (6)

where vs = V (s), ṽs = Ṽ (s), and ⇡̃, �̃, M̃d denote counterfactual flow payo↵s, dis-

count factor, and law of motion.7 We recommend including the location normalizations

EF [Ud] = 0 for d 2 D0 in g4 for interpretability. We also recommend including scale

normalizations in g4 so that EF [maxd2D0 Ud] is finite. For instance, in Section 5.2 we

normalize EF [U2
d
] for all d 2 D0.

Counterfactual CCPs can be computed using

k(U, ✓, �) = 1l

⇢
⇡̃d,s(✓⇡) + Ud + �̃M̃d,sṽ = max

d02D0

⇣
⇡̃d0,s(✓⇡) + Ud0 + �̃M̃d0,sṽ

⌘�
.

Change in average welfare corresponds to k(✓, �) = w
0(ṽ � v) for a weight vector w. ⇤

7If EF [maxd2D0 Ud] is finite, then v 7! (EF [maxd2D0{⇡d,s(✓⇡) + Ud + �Md,sv}])s2S is a `
1-

contraction of modulus � on R|S|. Hence, there is a unique (v, ṽ) solving EF [g4(U, ✓, �)] = 0 at any
fixed (✓⇡,�, �̃, F ). The solution (v, ṽ) must collect the solutions to (4) in the baseline model and coun-
terfactual across states: v = (V (s))s2S and ṽ = (Ṽ (s))s2S . It follows that F satisfies EF [g4(U, ✓, �)] = 0
at ✓ = (✓⇡,�, v, ṽ) if and only if (v, ṽ) corresponds to the value functions V and Ṽ under F .
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Remark 2.1 We allow for conditional moments models with E[g1(U,X, ✓, �)|X = x] 

P10(x) (and similarly for (1b)-(1d)) if U is independent of X and X takes values in a

finite set X . Moment functions are then stacked across x 2 X to form g1, g2, g3, and g4

(see Examples 2.1-2.3). Appendix A discusses extensions to conditional moment models

where the distribution of U may vary with the value of (discrete) covariates, and to non-

separable models with discrete covariates. Models with continuous covariates fall outside

the scope of our procedure.

Remark 2.2 Our setup relies on the counterfactual being expressible as (2). If k is

vector-valued, our procedure can be applied to compute the support function
8
of the iden-

tified set of counterfactuals: set k
⌧ (U, ✓, �) = ⌧

0
k(U, ✓, �) for a conformable unit vector ⌧

and replace (2) with 
⌧ = EF [k⌧ (U, ✓, �0)]. Our setup excludes counterfactuals that are

infinite-dimensional, such as the distribution of the number of firms in a market.

Remark 2.3 The distribution F is not nonparametrically identified in any of the above

examples or, more generally, in the class of models (1) when the support of U con-

tains many more points than there are moment conditions (e.g., when U is continuously

distributed).

In common practice, a seemingly reasonable or computationally convenient distribu-

tion, say F⇤, is assumed by the researcher and maintained throughout the analysis (e.g.,

bivariate Normal in Example 2.2 and i.i.d. Gumbel in Examples 2.1 and 2.3). Given F⇤

and estimates P̂ = (P̂1, P̂2) of P0 and �̂ of �0, the researcher computes an estimate ✓̂ of

✓ using a criterion function based on the moment conditions

EF⇤ [g1(U, ✓, �̂)]  P̂1 , EF⇤ [g2(U, ✓, �̂)] = P̂2 ,

EF⇤ [g3(U, ✓, �̂)]  0 , EF⇤ [g4(U, ✓, �̂)] = 0 .
(7)

Finally, the researcher estimates the counterfactual using ̂ = EF⇤ [k(U, ✓̂, �̂)]. If k does

not depend on U , then the estimated counterfactual is simply ̂ = k(✓̂, �̂). In this case

̂ will still depend implicitly on F⇤ through ✓̂.9

The researcher’s chosen specification F⇤ is used both for estimation of ✓ and again

when computing the counterfactual. A natural question is: to what extent does the

counterfactual depend on the choice of distribution? The main contribution of this paper

is to provide a tractable econometric framework for answering this question.

8A closed convex set is determined by its support function—see Rockafellar (1970, Section 13).
9While this discussion has assumed point identification of ✓ and  for sake of exposition, our methods

allow structural parameters and counterfactuals to be partially identified.

9



2.2 Our Approach

As a sensitivity analysis, we shall relax the researcher’s parametric assumption and

allow F to vary over nonparametric neighborhoods N� of F⇤, where � is a measure of

neighborhood “size”. When we do so, there may be multiple pairs (✓, F ) 2 ⇥⇥N� that

satisfy (1) but which yield di↵erent values of the counterfactual. Our objects of interest

are the smallest and largest values of the counterfactual over all such (✓, F ) pairs:


�
= inf

✓2⇥,F2N�

EF [k(U, ✓, �0)] subject to (1), (8)

� = sup
✓2⇥,F2N�

EF [k(U, ✓, �0)] subject to (1). (9)

By focusing on 
�
and �, our approach naturally accommodates models with partially-

identified structural parameters and counterfactuals. Our approach also sidesteps having

to compute the identified set of structural parameters.

The optimization problems (8) and (9) are made tractable by a convenient choice of

N�. Following Hansen and Sargent (2001) and Maccheroni, Marinacci, and Rustichini

(2006), we consider neighborhoods constrained by �-divergence (Csiszár, 1975):

N� = {F 2 F : D�(FkF⇤)  �} ,

D�(FkF⇤) =

2

4

Z
�

✓
dF

dF⇤

◆
dF⇤ if F ⌧ F⇤,

+1 otherwise,

(10)

where F denotes all probability measures on the support10 U of U and F ⌧ F⇤ denotes

absolute continuity of F with respect to F⇤. The convex function � : [0,1) ! R+[{+1}

penalizes deviations of F from F⇤. For example, �(x) = x log x � x + 1 corresponds to

Kullback–Leibler (KL) divergence, �(x) = 1
2(x � 1)2 corresponds to Pearson �

2 diver-

gence, and

�(x) =
x
p
� 1� p(x� 1)

p(p� 1)
, (p > 1) ,

corresponds to L
p divergence. If F⇤ has positive (Lebesgue) density, then the absolute

continuity condition merely rules out F with mass points.

Remark 2.4 Normalizations and other shape restrictions may be added by augment-

ing the moment functions g1, . . . , g4. Examples include: (i) location normalizations, e.g.

10That is, U is the set of all values that U could conceivably take according to the model, which is
possibly larger that the support of the measure F⇤.
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EF [U ] = 0 or EF [1l{Ui  0} � 0.5] = 0 for each element Ui of U ; (ii) scale normal-

izations, e.g. EF [U2
i
] = 1; (iii) covariance normalizations, e.g. EF [UU

0] = I; and (iv)

smoothness restrictions, e.g. EF [1l{Ui  ak+1} � 1l{Ui  ak}]  C for a1 < . . . < aK

and a positive constant C.

Remark 2.5 Appendix A.1 shows that shape restrictions including symmetry, exchange-

ability, and, more generally, invariance under a finite group of transforms, are also easy

to impose.

2.3 Dual Formulation

We use convex duality to simplify computation of 
�
and �. We start by noting 

�
and

� may be written as the solution to two profiled optimization problems:


�
= inf

✓2⇥
K

�
(✓; �0, P0) , � = sup

✓2⇥
K�(✓; �0, P0) ,

where the criterion functions K
�
(✓; �0, P0) and K�(✓; �0, P0) are, respectively, the infi-

mum and supremum of EF [k(U, ✓, �0)] with respect to F 2 N� subject to the moment

conditions (1). In what follows, it is helpful to define the criterion functions at a generic

(�, P ). To do so, we say that the moment conditions (1) hold “at (✓, �, P )” if they hold

when �0 is replaced by � and P0 is replaced by P . Then

K
�
(✓; �, P ) = inf

F2N�

EF [k(U, ✓, �)] subject to (1) holding at (✓, �, P ) , (11)

K�(✓; �, P ) = sup
F2N�

EF [k(U, ✓, �)] subject to (1) holding at (✓, �, P ) , (12)

with the understanding that K
�
(✓; �, P ) = +1 and K�(✓; �, P ) = �1 if there does not

exist a distribution in N� for which the moment conditions (1) hold at (✓, �, P ).

We first impose some mild regularity conditions on F⇤, �, and the moment functions

to justify the dual formulation. Similar conditions are used in generalized empirical

likelihood estimation (see, e.g., Komunjer and Ragusa (2016)). Let �0 denote the set of

all � : [0,1) ! R [ {+1} such that � is continuously di↵erentiable on (0,+1) and

strictly convex, with �(1) = �
0(1) = 0, �(0) < +1, limx#0 �

0(x) < 0, limx!+1 �(x)/x =

+1, limx!+1 �
0(x) > 0, and limx!+1 x�

0(x)/�(x) < +1. The functions inducing KL,

�
2, and L

p divergence all belong to �0.

Let �?(x) = sup
t�0:�(t)<+1(tx� �(t)) denote the convex conjugate of � 2 �0 and let

 (x) = �
?(x)�x. Define E = {f : U ! R for which EF⇤ [ (c|f(U)|)] < 1 for all c > 0}.

11



The class E is an Orlicz class of functions (see Appendix F of Christensen and Connault

(2022) for details). For example,

E = {f : U ! R : EF⇤ [ec|f(U)|] < 1 for all c > 0} for KL divergence,

E = {f : U ! R : EF⇤ [f(U)2] < 1} for �2 divergence, and

E = {f : U ! R : EF⇤ [|f(U)|q] < 1} for Lp divergence (p�1 + q
�1 = 1).

Let g = (g1, g2, g3, g4) denote the vector formed by stacking each of the moment functions

from (1a)–(1d). Our key regularity condition is the following:

Assumption F (i) � 2 �0.

(ii) k( · , ✓, �) and each entry of g( · , ✓, �) belong to E for each ✓ 2 ⇥ and � 2 �.

For KL divergence, the class E contains bounded functions (e.g., indicator functions)

and functions that are additively separable in U provided F⇤ has tails that decay faster

than exponentially (e.g., Gaussian but not Gumbel). Assumption F therefore fails for

KL divergence in Examples 2.1 and 2.3, but holds for �2 or Lp divergence as these only

require finite second or qth moments, respectively.

Let d =
P4

i=1 di where di is the dimension of gi, let ⇤ = Rd1
+ ⇥ Rd2 ⇥ Rd3

+ ⇥ Rd4 ,

and let �12 denote the first d1 + d2 elements of �. A derivation of the following criterion

functions is presented in Appendix G.2 of Christensen and Connault (2022).

Proposition 2.1 Suppose that Assumption F holds. Then the criterion functions (11)

and (12) may be restated as

K
�
(✓; �, P ) = sup

⌘>0,⇣2R,�2⇤
�⌘EF⇤

h
�
?

⇣
k(U,✓,�)+⇣+�

0
g(U,✓,�)

�⌘

⌘i
� ⌘� � ⇣ � �

0
12P , (13)

K�(✓; �, P ) = inf
⌘>0,⇣2R,�2⇤

⌘EF⇤
h
�
?

⇣
k(U,✓,�)�⇣��

0
g(U,✓,�)

⌘

⌘i
+ ⌘� + ⇣ + �

0
12P . (14)

Moreover, the value of (13) is +1 (equivalently, the value of (14) is �1) if and only

if there is no distribution in N� under which (1) holds at (✓, �, P ).

Remark 2.6 Problems (13) and (14) are convex in (⌘, ⇣,�). The parameter ⌘ is the

Lagrange multiplier for the constraint D�(FkF⇤)  �. Similarly, � collects the Lagrange

multipliers for the moment (in)equalities (1a)–(1d). These multipliers are non-negative

if they correspond to inequality restrictions and unconstrained otherwise. Finally, ⇣ is

the Lagrange multiplier for the constraint
R
dF = 1, which ensures that the optimization

is over probability measures.

12



Problems (13) and (14) simplify in some special cases. For KL neighborhoods, �?(x) =

e
x
� 1 and the multiplier ⇣ has a closed-form solution, leading to

K
�
(✓; �, P ) = sup

⌘>0,�2⇤
�⌘ logEF⇤

h
e
�(k(U,✓,�)+�

0
g(U,✓,�))/⌘

i
� ⌘� � �

0
12P ,

K�(✓; �, P ) = inf
⌘>0,�2⇤

⌘ logEF⇤
h
e
(k(U,✓,�)��

0
g(U,✓,�))/⌘

i
+ ⌘� + �

0
12P .

Another special case is when k(u, ✓, �) does not depend on u. To analyze this case,

consider

�(✓; �, P ) := inf
F

D�(FkF⇤) subject to (1) holding at (✓, �, P ). (15)

The value �(✓; �, P ) is the minimum �-divergence between F⇤ and a distribution F

for which the moment conditions hold at (✓, �, P ). Proposition G.2 of Christensen and

Connault (2022) shows that �(✓; �, P ) has an equivalent dual formulation:

�(✓; �, P ) = sup
⇣2R,�2⇤

�EF⇤
h
�
?(�⇣ � �

0
g(U, ✓, �))

i
� ⇣ � �

0
12P . (16)

For KL divergence, ⇣ may be solved for in closed-form and problem (16) simplifies to

�(✓; �, P ) = sup
�2⇤

� logEF⇤
h
e
��

0
g(U,✓,�)

i
� �

0
12P .

When k does not depend on u, by a change of variables11 we may then restate problems

(13) and (14) as

K
�
(✓; �, P ) =

"
k(✓, �)

+1

, K�(✓; �, P ) =

"
k(✓, �) if �(✓; �, P )  �,

�1 if �(✓; �, P ) > �.
(17)

An important feature of our approach is that the optimization problems (13), (14),

and (16) are convex and their dimension does not increase with �. This feature is not

shared by other seemingly natural approaches to flexibly model F , such as mixtures or

other finite-dimensional sieves. As we show in Section 2.5, our procedure may be used

to approximate sharp nonparametric bounds on counterfactuals by taking � to be large

but finite.

11Substitute ⌘⇣ � k(✓, �) in place of ⇣ in (13) and ⌘⇣ + k(✓, �) in place of ⇣ in (14), then substitute
⌘� in place of � in both (13) and (14).
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2.4 Estimation

We now propose simple estimators of the bounds 
�
and � based on “plugging in”

consistent estimators (P̂ , �̂) of (P0, �0). Estimators ̂
�
and ̂� are computed by optimizing

criterion functions with respect to ✓:

̂
�
= inf

✓2⇥
K̂

�
(✓) , ̂� = sup

✓2⇥
K̂�(✓) ,

where

K̂
�
(✓) =

"
K

�
(✓; �̂, P̂ )

+1

, K̂�(✓) =

"
K�(✓; �̂, P̂ ) if �(✓; �̂, P̂ ) < �,

�1 if �(✓; �̂, P̂ ) � �,

and K
�
(✓; �̂, P̂ ), K�(✓; �̂, P̂ ), and �(✓; �̂, P̂ ) are the criterion functions (13), (14), and

(16) evaluated at (�̂, P̂ ). If k(u, ✓, �) = k(✓, �), then we simply have

K̂
�
(✓) =

"
k(✓, �̂)

+1
, K̂�(✓) =

"
k(✓, �̂) if �(✓; �̂, P̂ ) < �,

�1 if �(✓; �̂, P̂ ) � �.

In Section 6.1 we establish consistency of ̂
�
and ̂� and derive their asymptotic distri-

bution.

2.5 Nonparametric Bounds on Counterfactuals

We define the (nonparametric) identified set of counterfactuals as

K =
�
EF [k(U, ✓, �0)] : (1) holds for some ✓ 2 ⇥ and F 2 F✓

 
,

where F✓ = {F 2 F : EF [g(U, ✓, �0)] is finite and F ⌧ µ} denotes all distributions on U

that are absolutely continuous with respect to a �-finite dominating measure µ and for

which the moments in (1) are finite at ✓. We impose existence of a density with respect

to µ as it is often a structural assumption used, e.g., to avoid ties in CCPs or to establish

existence of equilibria. The main result of this section shows that 
�
and � approach

the sharp nonparametric bounds inf K and supK as � becomes large.

We first introduce some additional regularity conditions. Say k is “µ-essentially

bounded” if |k(·, ✓, �0)| has finite µ-essential supremum12 for each ✓ 2 ⇥. This holds

12The µ-essential supremum of a function f is denoted µ-ess sup f and is the smallest value c for
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trivially if k is bounded (e.g., counterfactual CCPs in Examples 2.2 and 2.3 and change

in average welfare in Example 2.3). Models with unbounded k may be reparameterized

(as a proof device) by setting ✓̃ = (✓,), appending k(U, ✓, �0) �  as an element of g4,

and setting k(U, ✓̃, �0) = .

We also require a constraint qualification condition. This is a su�cient condition for

establishing equivalence of “nonparametric” primal and dual problems in Appendix B,

which is an intermediate step in the proof of the following result. Let 0di denote a di⇥ 1

vector of zeros, C = Rd1
+ ⇥ {0d2} ⇥ Rd3

+ ⇥ {0d4}, G(✓, �) = {EF [g(U, ✓, �)] : F 2 N1}

where N1 = {F : D�(FkF⇤) < 1}, and ~P = (P, 0d3+d4). For A,B ✓ Rd, we let ri(A)

denote the relative interior of A and A+ B = {a+ b : a 2 A, b 2 B}.

Definition 2.1 Condition S holds at (✓, �, P ) if ~P 2 ri(G(✓, �) + C).

Using relative interior instead of interior allows for moment functions that are collinear

at some ✓ (i.e., some moments are redundant). To give some intuition, consider moment

equality models. Condition S requires that (1) holds at (✓, �, P ) under some F 2 N� that

is “interior” to N1, in the sense that one can perturb the (non-redundant) moments in

any direction by perturbing F . For moment inequality models, Condition S also requires

that there is F 2 N1 under which all moment inequalities hold strictly at (✓, �, P ).

Let ⇥I = {✓ 2 ⇥ : (1) holds for some F 2 F✓} denote the (nonparametric) identified

set for ✓. Define the “nonparametric” objective function

K
np
(✓; �, P ) = inf

F2F✓

EF [k(U, ✓, �)] subject to (1) holding at (✓, �, P ) , (18)

with the understanding that K
np
(✓; �, P ) = +1 if the infimum runs over an empty set.

Let Knp(✓; �, P ) denote the analogous supremum. Evidently,

inf K = inf
✓2⇥

K
np
(✓; �0, P0) and supK = sup

✓2⇥
Knp(✓; �0, P0) .

Definition 2.2 ⇥I is S-regular if for all ✏ > 0 there exist ✓, ✓ 2 ⇥I such that Condition

S holds at (✓, �0, P0) and (✓, �0, P0), K
np
(✓; �0, P0) < inf K + ✏, and Knp(✓; �0, P0) >

supK � ✏.

Intuitively, S-regularity requires that the values the counterfactual takes at “boundary”

points of ⇥I (i.e., at which Condition S fails) are not materially more extreme than values

which µ({u : f(u) > c}) = 0. The µ-essential infimum, denoted µ-ess inf, is defined analogously.
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it can take at points “inside” ⇥I (i.e., at which Condition S holds). This condition can

be verified under more primitive continuity conditions on k and g. A su�cient (but

not necessary) condition for S-regularity is that Condition S holds at (✓, �0, P0) for all

✓ 2 ⇥I .

Theorem 2.1 Suppose that Assumption F holds, k is µ-essentially bounded, ⇥I is S-

regular, and µ and F⇤ are mutually absolutely continuous. Then

lim
�!1


�
= inf K , lim

�!1
� = supK .

Theorem 2.1 shows that our procedure can be used to approximate the sharp non-

parametric bounds inf K and supK by setting � to be large but finite. If µ is Lebesgue

measure—which it often is in applications—then the mutual absolute continuity condi-

tion in Theorem 2.1 is satisfied whenever F⇤ has strictly positive density over U .

Remark 2.7 Appendix B presents the dual forms of K
np

and Knp. Unlike K
�
and K�,

the duals of K
np

and Knp are min-max and max-min problems which involve an inner

optimization over u. These problems may be computationally challenging, especially when

u is multivariate. Comparing Proposition 2.1 with the duals in Appendix B, we see that

setting � < 1 replaces a “hard-max” (an optimization over u) with a “soft-max” (a

convex expectation). In this respect, adding the constraint F 2 N� may be viewed as a

regularization of the nonparametric objective functions, similar to the use of entropic

penalization to regularize objective functions in optimal transport problems—see, e.g.,

Cuturi (2013). Smaller values of � impose a stronger regularization.

Theorem 2.1 is silent on the issue of how large � needs to be so that 
�
and �

are close to the nonparametric bounds. While this is model- and counterfactual-specific,

the following toy example suggests that relatively small values of � may su�ce in some

problems where the counterfactual is a choice probability.

Example 2.4 Consider the problem

� = sup
✓2R,F2N�

EF [1l{U  ✓}] subject to EF [U � ✓] = 0,

where N� is defined by KL divergence and F⇤ is the N(0, 1) distribution. When F = F⇤,

the only solution to EF [U � ✓] = 0 is ✓ = 0. Therefore, the value of the counterfactual

under F⇤ is EF⇤ [1l{U  0}] = 1
2 whereas supK = 1. The large-� approximation � =
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1 � 2⇡e�2��1(1 + o(1)) is derived in Appendix H of Christensen and Connault (2022).

By symmetry, 
�
= 2⇡e�2��1(1+o(1)) and inf K = 0. Therefore, in this example, 

�
and

� converge rapidly to inf K and supK as � increases. ⇤

More generally, suppose the dual problems (13) and (14) have unique solutions ⌘ and

⌘ for ⌘, where the optimization is performed over ⌘ � 0.13 Under appropriate regularity

conditions (see, e.g., Milgrom and Segal (2002)), it follows that

@K
�
(✓; �, P )

@�
= �⌘,

@K�(✓; �, P )

@�
= ⌘.

One can therefore infer from ⌘ and ⌘ the extent to which, if at all, the bounds at any

fixed ✓ would widen further if � was increased.

3 Practical Considerations

We now discuss practical details for implementing our procedure. Section 3.1 discusses

computational methods, Section 3.2 presents our MPEC approach, and Section 3.3 dis-

cusses methods for dealing with over-identified models.

3.1 Computation

There are three aspects to computation: (i) computing the expectations with respect to

F⇤ in the objective functions, (ii) solving the inner optimization problems over Lagrange

multipliers, and (iii) solving the outer optimization problems over ✓.

The expectations in the objective functions (13), (14), and (16) are available in closed

form for certain settings,14 in which case the dimension of u does not play a role in the

computational complexity of our procedure. Otherwise, the expectations will need to be

computed numerically. If so, the dimension of u will play a role in terms of determining

how many quadrature points or Monte Carlo draws are needed to control numerical

approximation error. In the empirical applications we used a randomized quasi-Monte

Carlo approach based on scrambled Halton sequences as in Owen (2017).

13Optimizing over ⌘ � 0 rather than ⌘ > 0 does not a↵ect the optimal value—see Proposition G.1
of Christensen and Connault (2022).

14An earlier draft derived closed-form expressions for a discrete game of complete information with
Gaussian payo↵ shocks and KL neighborhoods—see https://arxiv.org/abs/1904.00989v2.
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The inner optimization with respect to Lagrange multipliers can be solved rapidly: it

is convex and gradients and Hessians are available in closed-form. The envelope theorem

can be used to derive gradients for the outer optimization when k and g are di↵eren-

tiable in ✓.15 Our procedures were all implemented in Julia with the inner and outer

optimizations solved using Knitro. A general-purpose implementation of our methods in

Julia is provided in the supplemental material.

As with parameter estimation in nonlinear structural models, the outer optimization

with respect to ✓ is typically non-convex. In applications, we used an iterative multi-start

procedure in an attempt to converge to global optima. Computation times are reported

in the applications below.

3.2 MPEC Approach

We now describe and formally justify an MPEC version of our procedure in the spirit of

Su and Judd (2012). This approach simplifies computation in models with endogenous

parameters defined by equilibrium conditions (e.g., value functions defined by Bellman

equations), resulting in significant computational gains for DDC models in particular.

Suppose ✓ = (✓s, ✓e) and g4 = (g4s, g4e) where ✓s are “deep” structural parameters

and ✓e are “endogenous” parameters that are defined implicitly by g4e. That is, for any

(✓s, �, F ), the parameter ✓e = ✓e(✓s, �, F ) solves

EF [g4e(U, (✓s, ✓e), �)] = 0 .

For instance, in Example 2.3 we have ✓s = ✓⇡ or (✓⇡, �), while ✓e = (v, ṽ) collects the

value functions in the baseline model and counterfactual, and g4e collects the functions

representing the corresponding Bellman equations, as in display (6). Although our pro-

cedure can be implemented as described in Section 2, that implementation does not

make use of the fact that ✓e is defined implicitly by g4e.

To leverage this structure, consider the subset of moments conditions excluding g4e:

EF [g1(U, ✓, �0)]  P10, EF [g2(U, ✓, �0)] = P20,

EF [g3(U, ✓, �0)]  0, EF [g4s(U, ✓, �0)] = 0,
(19)

15In practice, we smoothed any non-smooth moments and used automatic di↵erentiation to compute
derivatives with respect to ✓ if these were not easily available analytically.
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and define criterion functions using these only:

K
s

�
(✓; �, P ) = inf

F2N�

EF [k(U, ✓, �)] subject to (19) holding at (✓, �, P ) , (20)

K
s

�
(✓; �, P ) = sup

F2N�

EF [k(U, ✓, �)] subject to (19) holding at (✓, �, P ) . (21)

Under the conditions of Proposition 2.1, these criterion functions may be restated as

K
s

�
(✓; �, P ) = sup

⌘>0,⇣2R,�2⇤s

�⌘EF⇤
h
�
?

⇣
k(U,✓,�)+⇣+�

0
gs(U,✓,�)

�⌘

⌘i
� ⌘� � ⇣ � �

0
12P , (22)

K
s

�
(✓; �, P ) = inf

⌘>0,⇣2R,�2⇤s

⌘EF⇤
h
�
?

⇣
k(U,✓,�)�⇣��

0
gs(U,✓,�)

⌘

⌘i
+ ⌘� + ⇣ + �

0
12P , (23)

with gs = (g1, g2, g3, g4s) and ⇤s = Rd1
+ ⇥Rd2 ⇥Rd3

+ ⇥Rd4s with d4s = dim(g4s). Problems

(22) and (23) simplify analogously to (17) when k does not depend on u, with the

minimum divergence problem � defined using gs in place of g.

In our MPEC approach, the criterion functions (22) and (23) are optimized with re-

spect to ✓, with the remaining moment conditions involving g4e appended as constraints.

Importantly, these constraints are evaluated under the “least favorable” distributions

F
�,✓

and F �,✓ that solve problems (20) and (21), respectively. The following proposition

formally justifies this approach.

Proposition 3.1 Suppose that Assumption F holds. Then the problems

inf
✓2⇥

K
�
(✓; �, P )

and

inf
✓2⇥

K
s

�
(✓; �, P ) subject to EF �,✓ [g4e(U, ✓, �)] = 0

have the same value. An analogous result holds for the upper bound.

To implement our MPEC approach, note that the expectations in the constraints may

be expressed in terms of changes of measure. Let m
�,✓

= dF
�,✓
/dF⇤ and m�,✓ = dF �,✓/dF⇤

so that

EF �,✓ [ · ] = EF⇤ [m
�,✓
(U) · ] , EF �,✓ [ · ] = EF⇤ [m�,✓(U) · ] .

If k depends on u, then we construct m
�,✓

and m�,✓ from solutions to (22) and (23),

say (⌘, ⇣,�) and (⌘, ⇣,�) (these solutions exist under the regularity conditions below).

If ⌘ > 0, then the distribution solving (20) is unique and is induced by the change of
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measure

m
�,✓
(u) = �̇

?

 
k(u, ✓, �) + ⇣ + �

0
gs(u, ✓, �)

�⌘

!
, (24)

where �̇?(x) = d�
?(x)
dx

. The function m�,✓(u) is constructed similarly, replacing (⌘, ⇣,�) in

(24) by (�⌘,�⇣,��). For KL divergence the change of measure simplifies to

m
�,✓
(u) =

e
(k(u,✓,�)+�

0
gs(u,✓,�))/�⌘

EF⇤

h
e
(k(u,✓,�)+�

0
gs(u,✓,�))/�⌘

i ,

and similarly for m
�,✓
(u).

If ⌘ = 0, then there may be multiple minimizing distributions. As shown in the proof

of Proposition 3.2, each such distribution must be supported on

A
�,✓

:= {u : k(u, ✓, �) + �
0
gs(u, ✓, �) = F⇤-ess inf(k(·, ✓, �) + �

0
gs(·, ✓, �))} .

Note F⇤(A�,✓
) > 0 is required for ⌘ = 0 to be a solution. Otherwise, any distribution

supported on A
�,✓

is not absolutely continuous with respect to F⇤ and is therefore not

in N�. If ⌘ = 0 and F⇤(A�,✓
) > 0, then we construct m

�,✓
by restricting F⇤ to A

�,✓
and

rescaling:

m
�,✓
(u) = 1l{u 2 A

�,✓
}/F⇤(A�,✓

).

The function m�,✓(u) is constructed analogously, replacing � with �� and the set A
�,✓

with A�,✓ = {u : k(u, ✓, �)� �
0
gs(u, ✓, �) = F⇤-ess sup(k(·, ✓, �)� �

0
gs(·, ✓, �))}.

If k does not depend on u, then m
�,✓

and m�,✓ are constructed from solutions to a

version of problem (16) with gs in place of g. Under the regularity conditions below, this

program has a solution, say (⇣,�). In this case, we define

m
�,✓
(u) = m�,✓(u) = �̇

?
�
�⇣ � �

0
gs(u, ✓, �)

�
. (25)

For KL divergence the change of measure simplifies to

m
�,✓
(u) = m�,✓(u) =

e
��

0
gs(u,✓,�)

EF⇤
⇥
e��

0
gs(u,✓,�)

⇤ .

Proposition 3.2 Suppose that Assumption F holds, Condition S holds at (✓, �, P ), and

there exists a distribution F with D(FkF⇤) < � under which (19) holds at (✓, �, P ). Then

the distributions F
�,✓

and F �,✓ induced by m
�,✓

and m�,✓ solve (20) and (21), respectively.
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Table 2: Computation times (in seconds) for the inner problems

Implementation Objective

K0.01 K0.10 K1.00 �

MPEC (92 moments) 0.207 0.232 0.256 0.108

Full (272 moments) 4.317 12.978 43.699 3.365

Note: Expectations are computed using 50,000 scrambled Halton draws. Computations are
performed in Julia v1.6.4 and Knitro v12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

Example. We consider a numerical example for the DDC model of Rust (1987) based

on the parameterization in Section 5.4 of Norets and Tang (2014). The counterfactual

they consider is a hypothetical change in the law of motion of the state. We follow these

papers and use state-space of dimension 90. As |S| = 90 and D0 = {0, 1}, there are

90 functions in g2 representing the observed CCPs. There are another 180 functions in

g4e representing the Bellman equations in the baseline model and counterfactual across

states. We also impose the normalization EF [Ud] = 0 for d = 0, 1. Hence, g4s(U, ✓, �) =

(U0, U1). Our MPEC approach has 92 moments in the inner optimization (90 for CCPs

and two mean-zero normalizations on the shocks) with the remaining 180 moments

representing the Bellman equations appended as constraints. The full approach uses all

272 moments in the inner optimization.

Table 2 reports computation times for the inner optimization problems (14) and (23)

(denoted K�) for maximizing the counterfactual CCP in the highest mileage state.16 We

also report times for solving the minimum divergence problem (16) (denoted �) using

the full set of moment functions g and its MPEC analogue using gs. Neighborhoods are

constrained by a hybrid of KL and �
2 divergence as in the empirical applications—see

Section 5. As can be seen, the inner optimization problems are solved at least 20 times

faster for the MPEC implementation, with the relative e�ciency increasing in �.

3.3 Over-identification

In over-identified models (i.e., where the number of moment conditions d exceeds the

dimension d✓ of ✓), there might not exist ✓ 2 ⇥ for which the sample moment conditions

(7) hold under F⇤. We propose two methods for handling over-identified models.

16The times in Table 2 are based on initializing the solver at ⌘ = 1, ⇣ = 0, and � = 0. When embedded
in the outer optimization over ✓, computation times for the inner problem are reduced significantly by
using a warm start that initializes at the solution to the inner problem at the previous value of ✓.
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First, one may compute the smallest value of � for which there exists F 2 N� con-

sistent with the sample moment conditions (7) by solving the optimization problem

�̂ = inf
✓2⇥

�(✓; �̂, P̂ ).

The interval [̂
�
, ̂�] will be nonempty for � > �̂. If the model is correctly specified under

F⇤,17 then �̂ will converge in probability to zero under the conditions of Theorem 6.1.

In this case, the interval [̂
�
, ̂�] will be nonempty with probability approaching one for

each fixed � > 0.

It is also possible that �̂ = +1 in correctly specified but over-identified models

when P̂ is incompatible with certain model restrictions. For instance, CCPs are often

estimated nonparametrically using empirical choice frequencies. If some choices aren’t

observed in the data, then the estimated CCPs will be zero even though model-implied

CCPs are strictly positive.

This issue can be circumvented in models defined by equality restrictions only (hence

P0 ⌘ P20) using the following two-step approach. First, compute a preliminary estima-

tor ✓̃ of ✓ based on (7). Then, set P̂ = EF⇤ [g2(U, ✓̃, �̂)]. This second-step estimator P̂ is

compatible with the model by construction, thereby ensuring that the interval [̂
�
, ̂�] is

nonempty for each � > 0. The estimator P̂ will be consistent and asymptotically normal

under mild regularity conditions provided the model is correctly specified under F⇤, so

the consistency and inference results developed in Section 6 will also apply.

4 Interpreting the Neighborhood Size

This section presents some theoretical results and practical methods to help interpret the

neighborhood size �. Sections 4.1 and 4.4 discuss properties of �-divergences and their

implications for interpreting �. Section 4.2 shows how to construct the “least favorable”

distributions that minimize or maximize the counterfactual. Section 4.3 gives a practical,

model-based metric for interpreting �.

17Neither our theoretical results developed in Section 2 nor the estimation and inference results in
Section 6 require correct specification of the model under F⇤.
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4.1 Invariance

A defining property of �-divergences are their invariance to invertible transformations.

That is, if T is an invertible transformation and G and G⇤ denote the distributions

of T (U) when U ⇠ F and U ⇠ F⇤, respectively, then D�(FkF⇤) = D�(GkG⇤).18 An

important consequence of invariance is that � has the same interpretation under a change

in units. For instance, if one researcher writes a model in terms of dollars with U ⇠ F⇤

and another researcher uses thousands of dollars with U ⇠ G⇤ for G⇤(u) = F⇤(10�3
u),

then F is in N� if and only if its rescaled counterpart G is in a �-neighborhood of G⇤. A

second consequence is that neighborhood size is invariant under invertible location and

scale transformations of F⇤ (e.g., N(µ,⌃) versus N(0, I)).

4.2 Least Favorable Distributions

A useful feature of our approach is that the “least favorable” distributions (LFDs) that

attain the smallest or largest values of the counterfactual may easily be recovered. To

help interpret �, one may plot the LFDs and compute other quantities of interest (e.g.,

correlations or welfare measures) under them.

Section 3.2 describes how to construct LFDs when our MPEC approach is used.

LFDs for our full (i.e., non-MPEC) approach are a special case with g4 = g4s. To briefly

summarize, consider the LFD F
�,✓

solving the minimization problem (11). First suppose

that k depends on u. Let (⌘, ⇣,�) solve problem (13). If ⌘ > 0, then F
�,✓

is unique and

its change-of-measure m
�,✓

= dF
�,✓
/dF⇤ is given by

m
�,✓
(u) = �̇

?

 
k(u, ✓, �) + ⇣ + �

0
g(u, ✓, �)

�⌘

!
. (26)

The LFD F �,✓ solving the maximization problem (12) is constructed similarly, replacing

(⌘, ⇣,�) in (26) with (�⌘,�⇣,��), where (⌘, ⇣,�) solves (14). If ⌘ = 0 or ⌘ = 0, then

there may exist multiple distributions solving (11) and (12) at ✓. LFDs in this case are

constructed analogously to the method described in Section 3.2. Note that ⌘ = 0 or

⌘ = 0 is unlikely if k and/or elements of g are unbounded in u—see the discussion in

Section 3.2. If k does not depend on u, then we set

m
�,✓
(u) = m�,✓(u) = �̇

?
�
�⇣ � �

0
g(u, ✓, �)

�
(27)

18See, e.g., Liese and Vajda (1987). A more direct statement is in Qiao and Minematsu (2010).
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where (⇣,�) solves (16). While there may exist multiple distributions solving (11) and

(12) in this case, the distribution induced by (27) has smallest �-divergence relative to

F⇤ among all such distributions.

4.3 Viewing Neighborhood Size through the Lens of the Model

Another method for interpreting � is based on measuring the variation in the moments

at the distributions solving (8) and (9) relative to their values under F⇤.

Consider the sets of minimizing and maximizing values of ✓ at which 
�
and � are at-

tained, say ⇥
�
and ⇥�. These are nonempty under the regularity conditions in Section 6.

While the moment conditions (1) hold at any ✓ 2 ⇥
�
[⇥� under the corresponding LFD,

they will typically not hold at ✓ under F⇤. We therefore define

size(�) = sup
✓2⇥�[⇥�

max
n�� �EF⇤ [g1(U, ✓, �0)]� P10

�
+

��
1,
��EF⇤ [g1(U, ✓, �0)]� P20

��
1,

�� �EF⇤ [g3(U, ✓, �0)]
�
+

��
1,
��EF⇤ [g4(U, ✓, �0)]

��
1

o
,

where (v)+ = (max{vi, 0})di=1 for a vector v 2 Rd. The quantity size(�) is the maximum

degree to which the moments at ✓ 2 ⇥
�
[⇥� violate (1) under F⇤.

This measure is informative about the extent to which the distortions to F⇤ required

to attain the smallest and largest values of the counterfactual over N� are reflected in (1).

Small values of size(�) indicate that the LFDs supporting 
�
and � distort F⇤ in a way

that moves the counterfactual but barely moves the moments. Conversely, large values of

size(�) indicate that distortions required to increase or decrease the counterfactual also

have a material impact on the moments. In practice, this measure can be computed by

replacing (P0, �0) by estimators (P̂ , �̂) and ⇥
�
and ⇥� by the minimizers and maximizers

of the sample criterions or by the estimators of ⇥
�
and ⇥� introduced in Section 6.2.

4.4 Relating Di↵erent Divergences

It is well known that �-divergences are equivalent over local neighborhoods (see, e.g.,

Theorem 4.1 of Csiszár and Shields (2004)). However, 
�
and � may depend on the

choice of � when � is not arbitrarily small. Bounds induced by di↵erent � functions may

be related as follows. Let N�,1 and N�,2 denote �-neighborhoods induced by �1 and �2,

respectively. The quantity

ā = sup
x�0,x 6=1

�1(x)

�2(x)
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is a measure of relative neighborhood size: if ā < 1 then N�,2 ✓ Nā�,1 for each � > 0,

as shown formally in the proof of Proposition 4.1 below. For instance, when comparing

KL divergence (�1(x) = x log x � x + 1) and �
2 divergence (�2(x) = 1

2(x � 1)2) we

obtain ā = 2. Therefore, �-neighborhoods under �
2 divergence are contained in 2�-

neighborhoods under KL divergence. Interchanging �1 and �2 produces ā = +1, which

reflects the fact that KL divergence is weaker than �
2 divergence.

Let 
�,1 and 

�,2 denote the smallest counterfactual from display (8) over N�,1 and

N�,2, respectively. Define �,1 and �,2 analogously.

Proposition 4.1 Suppose that Assumption F holds for both �1 and �2 and ā is finite.

Then [
�,2,�,2] ✓ [

ā�,1,ā�,1] for each � > 0.

It follows from Proposition 4.1 that bounds that are wide under �2 must necessarily

be wide under �1. Similarly, narrow bounds under �1 must also be narrow under �2.

Note also that the inclusion in Proposition 4.1 holds for any counterfactual.

5 Empirical Applications

5.1 Marital College Premium

Chiappori et al. (2017), henceforth CSW, study the evolution of marital returns to ed-

ucation using a frictionless matching model with transferable utility (Choo and Siow,

2006). Within this framework, the “marital college premium” is the additional expected

utility that an individual would derive from the marriage market if they had a (counter-

factually) higher level of education. CSW find that marital college premiums for women

in the United States increased significantly across cohorts from the mid to late 20th

century, particularly for the more highly educated.

As is conventional following Dagsvik (2000) and Choo and Siow (2006), CSW as-

sume latent variables representing individuals’ idiosyncratic marital preferences are i.i.d.

Gumbel. The marital college premium is only partially identified when the distribution

of these latent variables is not specified. We therefore perform a sensitivity analysis of

CSW’s estimates to departures from this conventional parametric assumption.

Our analysis makes several findings. First, it seems impossible to draw conclusions

about whether marital college premiums have increased or decreased over time under

small nonparametric relaxations of the i.i.d. Gumbel assumption. Interestingly, premi-

ums have narrow nonparametric bounds at fixed parameter values, but a slight relaxation
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of the i.i.d. Gumbel assumption allows for significant variation in parameters which, in

turn, produces uninformatively wide bounds. As parameters are just-identified under

any fixed distribution of shocks (Galichon and Salanié, 2021), further restrictions on

parameters or shape restrictions on the distribution are required to tighten the bounds.

We show that imposing exchangeability can tighten the bounds significantly.

Model and Benchmark Estimates. Agents are male or female and one of J types

(education levels). A type-a male receives utility "a0 if he chooses to be unmatched and

zab + "ab if he matches with a type-b female. Similarly, a type-b female receives utility

e0b if she chooses to be unmatched and tab + eab if she matches with a type-a male.

The parameters (zab, tab)Ja,b=1 represent the common deterministic component of marital

preferences. The latent shocks ("a0, . . . , "aJ) and (e0b, . . . , eJb) represent individuals’ id-

iosyncratic marital preferences. Shocks are i.i.d. across individuals and have mean zero.

The type b to b
0 marital education premium for females is the di↵erence in expected

marital utility between types b and b
0:

 = EF


max

a=0,...,J

⇣
tab0 + eab0

⌘�
� EF


max

a=0,...,J

⇣
tab + eab

⌘�
, (28)

where F denotes the distribution of (e0b, . . . , eJb0) and t0b = t0b0 = 0.

CSW use data from the American Community Survey. They form 28 cohorts indexed

by female birth year from 1941 (cohort 1) to 1968 (cohort 28), each of which is treated

as an independent marriage market. We focus on CSW’s estimates for whites. There are

J = 5 types: “high-school dropouts”, “high-school graduates”, “some college”, “college

graduate”, and “college-plus”. We center our analysis on the “some college” to “college

graduate” premium, though we obtained qualitatively similar results (not reported) for

the “college graduate” to “college-plus” premium. Figure 1 presents estimates and 95%

confidence sets (CSs) for the premium under the i.i.d. Gumbel assumption (cf. Figure

21 in CSW) based on CSW’s replication files.

Implementation. The model reduces to a standard individual-level discrete choice

problem for each type (see CSW’s Propositions 1 and 2). We assume that the distribution

of females’ preference shocks does not depend on their type, so we drop the b subscript

and consider a single random vector U = (e0, . . . , eJ). We allow the distribution F of U

to vary across cohorts and implement our procedures cohort-by-cohort.19

19In view of the just-identification results of Galichon and Salanié (2021), we would obtain the same
bounds if F was homogeneous across cohorts. Allowing for heterogeneity in own-type would result in
wider bounds.
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Under any fixed F , a cohort’s parameters (tab)Ja=1 are just-identified from the mar-

riage probabilities for that cohort’s type-b women (Galichon and Salanié, 2021). We

therefore impose only the moment conditions involving the parameters ✓ = (tab, tab0)Ja=1

appearing in (28), as the remaining parameters can be chosen to fit the remaining mar-

riage probabilities under the resulting least-favorable distribution. We form g2 to explain

the type b and b
0 marriage probabilities for women in a given cohort:

g2(U, ✓) =

"
(1l{tab + ea = maxa0=0,...,J(ta0b + ea0)})Ja=1

(1l{tab0 + ea = maxa0=0,...,J(ta0b0 + ea0)})Ja=1

#

and form P̂2 using CSW’s estimates of the corresponding type-b and b
0 marriage prob-

abilities. We set g4(U, ✓) = (ej, e2j � ⇡
2
/6)J

j=0 so that shocks have mean zero and the

same variance as the Gumbel distribution. The scale normalization also ensures that the

nonparametric bounds on the premium are finite at any fixed ✓. As J = 5, there are 22

moments (10 for marriage probabilities and 12 location/scale normalizations), and ✓ has

dimension 10.

We consider a second implementation which imposes invariance of F under rotations

and reflections of potential spouse types, so that the model-implied marriage proba-

bilities depend on ✓ but not the labeling of potential spouse types (though they may

depend on their ordering).20 Formally, this shape restriction corresponds to dihedral

exchangeability (see Appendix A.1); we refer to it simply as “exchangeability”. Under

this shape restriction, F must satisfy the 22 moment conditions under all 12 rotations

and reflections of the elements of U . This implementation therefore imposes a total of

264 moment conditions. Rather than including all 264 moments separately, it su�ces to

form g2 and g4 by taking the averages of the 22 moments across the 12 permutations

(see Appendix A.1). Both implementations therefore have inner optimization problems

of the same dimension.

Computations are performed as described in Section 3.1. The first implementation

uses 50,000 scrambled Halton draws to compute the expectations. The second uses 10,000

draws which are concatenated over the 12 permutations (see Remark A.2), for a total

of 120,000 draws. Computation times are reported in Appendix D.1. CSs for 
�
and

� are computed using the bootstrap procedure in Section 6.2. Appendix D.1 discusses

bootstrap details and presents projection CSs using the method from Section 6.3.

20Allowing dependence on the ordering of types seems desirable here as types correspond to education
levels, which are naturally ordered.
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Table 3: Metrics for interpreting �

Without exchangeability With exchangeability

� ⇢max, �
⇢max, � size ⇢max, �

⇢max, � size

0.01 -0.015 -0.014 0.010 -0.022 0.013 0.006
0.10 -0.071 -0.073 0.038 -0.061 0.054 0.023
1 -0.247 -0.197 0.112 -0.139 0.115 0.099
10 -0.502 -0.496 0.242 -0.204 0.236 0.176
100 -0.620 -0.576 0.266 -0.266 0.284 0.178

Note: Averages across cohorts of the largest element of the correlation matrix for U under
the LFDs at which the estimated lower bounds (⇢max, �) and upper bounds (⇢max, �) are
attained, and our size measure from Section 4.3. Each is computed at the parameter values at
which the estimated upper and lower bounds are attained.

We define neighborhoods using a hybrid of KL and �
2 divergence:

�(x) =

"
x log x� x+ 1 if x  e,
1
2e(x� e)2 + (x� e) + 1 if x > e.

We use this divergence because Assumption F(ii) fails for KL divergence, whereas hy-

brid divergence only requires finite second moments for Assumption F(ii). The LFDs

under hybrid divergence are also everywhere positive, which is not guaranteed under

�
2 divergence. We repeated our analysis with neighborhoods constrained by �

2 and

L
4 divergences as robustness checks. Overall, our findings are not sensitive to � (see

Appendix D.1 for a discussion).

Findings. Figure 1 presents a sensitivity analysis of the “some college” to “college

graduate” premium. Cohort-wise estimates and CSs for 
�
and � are presented, begin-

ning at � = 0.01 and increasing � by factors of 10 up to � = 100. Even with � = 0.01,

estimates of 
�
and � lie uniformly below and above zero across cohorts without ex-

changeability (see Figure 1a). Imposing exchangeability can tighten the bounds, with

the bounds for � = 0.01 significantly negative in early cohorts and significantly positive

in later cohorts (see Figure 1b). But the � = 0.1 bounds with exchangeability again

contain zero across all cohorts. Bounds for larger � presented in Figures 1c and 1d are

uninformatively wide.

To understand better what is meant by “small” and “large” neighborhoods, Figure 2

plots marginal CDFs for the LFDs under which the upper bounds for cohort 1 are

attained. Similar LFDs (not reported) were obtained for other cohorts and the lower

bounds. Without exchangeability, the LFDs with � = 0.1 are almost identical to Gumbel
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Smaller neighborhoods

(a) Without exchangeability (b) With exchangeability

Larger neighborhoods

(c) Without exchangeability (d) With exchangeability

Figure 1: Sensitivity analysis of the “some college” to “college graduate” premium across
cohorts. Note: Solid lines are estimates, dotted lines are (cohort-wise) 95% CSs. CSW’s
estimates and CSs correspond to � = 0.

(plots with � = 0.01 are indistinguishable from Gumbel). LFDs appear close to Gumbel

across most potential spouse types with � = 1, while for � = 10 and � = 100 the LFDs

have kinks and indicate shifts in mass from the center of the distribution to the tails.

Under exchangeability (Figure 2b), the marginal distribution of shocks is indepen-

dent of potential spouse type. In this case the LFDs for � = 1 or smaller are virtually

indistinguishable from Gumbel. LFDs with � = 10 and � = 100 are also less kinked than

Figure 2a because distortions are spread more evenly across potential spouse types.

We also computed the largest correlation of shocks under the LFDs at which the

bounds are attained and our size measure from Section 4.3. As these quantities are

stable across cohorts, we present their averages across cohorts in Table 3. Shocks are
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(a) Without exchangeability

Type 0 (Unmatched) Type 1 (High-school dropout)

Type 2 (High-school graduate) Type 3 (Some college)

Type 4 (College graduate) Type 5 (College-plus)

(b) With exchangeability (all types)

Figure 2: Marginal CDFs for the LFDs maximizing the “some college” to “college grad-
uate” premium in cohort 1 across potential spouse types.

30



independent when � = 0 and only very weakly correlated for small �, while for large

� some shocks are strongly negatively correlated. The maximal correlations under ex-

changeability are smaller, especially for large �. Turning to the size measure, the LFDs

for � = 0.01 without exchangeability shift the model-implied marriage probabilities by

0.01 (on average, across cohorts) from their values under the i.i.d. Gumbel assumption.

LFDs for � = 10 and � = 100 shift marriage probabilities around 0.25 (on average,

across cohorts). Imposing exchangeability reduces the size measure by around 25% be-

cause model parameters do not vary as much under this shape restriction.

In view of the small-� bounds in Figure 1, the LFDs in Figure 2, and the metrics in

Table 3, it seems impossible to draw conclusions about how the sign of the premium has

changed over time under slight nonparametric relaxations of the i.i.d. Gumbel assump-

tion. To help understand why, Figure 5 plots bounds where F is allowed to vary but ✓

is held fixed at CSW’s estimates. These “fixed-✓” bounds for � = 10 and � = 100 are

almost identical, and are roughly the same width as the � = 0.01 bounds in Figure 1. The

width of the bounds in Figure 1 therefore seems largely attributable to the additional

variation in ✓ that is permitted when parametric assumptions for F are relaxed.

Overall, our findings are complementary to Gualdani and Sinha (2020) who perform

a nonparametric reanalysis of CSW using the PIES methodology of Torgovitsky (2019b).

Although they do not derive nonparametric bounds on the marital education premium

itself, only terms that contribute to it, they also find no evidence of an increase in

premiums across cohorts.

5.2 Welfare Analysis in a Rust Model

Our second empirical illustration is a sensitivity analysis for welfare counterfactuals in

the DDC model of Rust (1987).

Model and Benchmark Estimates. We focus on the specification in Table IX of

Rust (1987) where maintenance costs are linear in the state (i.e., mileage). In the notation

of Example 2.3, |S| = 90, � = 0.9999, and ✓⇡ = (RC,MC) where RC is the replacement

cost and MC is a maintenance cost parameter. Our counterfactual of interest is the

change in average welfare arising from a 10% reduction in maintenance costs. Hence,

⇡1,s(✓⇡) = ⇡̃1,s(✓⇡) = �RC and ⇡0,s(✓⇡) = �0.001MC ⇥ s (baseline) and ⇡̃0,s(✓⇡) =

0.9⇡0,s(✓⇡) (counterfactual). The counterfactual function is k(✓, �) = w
0(ṽ � v) where w

is the stationary distribution of the state in the baseline model.

Under the i.i.d. Gumbel assumption, the estimated counterfactual at the maximum
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likelihood estimate (MLE) of ✓⇡ is 73.07 and its 95% CS is [48.25,101.31].21 Note the

counterfactual is point-identified under the i.i.d. Gumbel assumption because ✓⇡ is point-

identified.

Implementation. We estimate CCPs using Rust’s Group 4 data. Nonparametric es-

timates of the 90 CCPs are zero in many states, so we proceed as in Section 3.3 and

take the model-implied CCPs at the MLE of ✓⇡ (under the i.i.d. Gumbel assumption)

as our estimate P̂2. We drop moment conditions for CCPs in states where the replace-

ment probability is less than 0.001 to avoid numerical instabilities induced by including

near-degenerate moments. This reduces the dimension of g2 to 71. We normalize F so

that shocks have mean zero and the same variance as the Gumbel distribution by ap-

pending EF [Ud] = 0 and EF [U2
d
� ⇡

2
/6] = 0, for d = 0, 1, to g4. In total, there are 255

moments (71 for CCPs, 180 for Bellman equations, and 4 location/scale normalizations)

and ✓ = (✓⇡, v, ṽ) has dimension 182.

We implement our methods as described in Section 3.2. The inner optimization uses

75 moments (71 for CCPs and 4 for normalizations), with the remaining 180 moments

appended as constraints in the outer optimization. We define neighborhoods using hybrid

divergence from Section 5.1 so that Assumption F(ii) holds. Similar results are obtained

with �
2 and L

4 neighborhoods (see Appendix D.2). Expectations are computed using

50,000 scrambled Halton draws—see Appendix D.2 for computation times. We compute

95% CSs for 
�
and � using the bootstrap procedure from Section 6.2 and projection

procedure from Section 6.3. See Appendix D.2 for details.

Findings. Estimates and CSs for 
�
and � are plotted in Figure 3 for values of �

from 0.01 to 100.22 As can be seen, the bounds expand rapidly under slight relaxations

of the i.i.d. Gumbel assumption then stabilize around � = 1, where the lower bound is

6.45 and the upper bound of 160.5 represents approximately 220% of the value under

the i.i.d. Gumbel assumption.

To interpret �, in Figure 4 we plot the CDFs of U1 � U0 under the LFDs at which

the estimated bounds ̂
�
and ̂� are attained. LFDs were computed as described in

21We construct this CS by simulation. We draw ✓̂
⇤
⇡ ⇠ N(✓̂⇡, ⌃̂) where ✓̂⇡ is the MLE and ⌃̂ is an es-

timate of the inverse information matrix. For each ✓̂
⇤
⇡ draw, we compute the baseline and counterfactual

value functions v⇤ and ṽ
⇤, and hence the counterfactual ̂⇤ = w

0(ṽ⇤ � v
⇤).

22The width of the bootstrap CSs relative to the bounds reduces as � gets large. We re-estimated
our bounds using several di↵erent draws of bootstrapped CCPs in place of P̂2 and obtained bounds
that spanned a range similar to the bootstrap CSs for small �, but which for many draws converged to
values close to our estimates of the bounds for large �. This corroborates the behavior of our bootstrap
CSs. We conjecture that other features of the model are potentially more important than the numerical
values of the CCPs in determining nonparametric bounds on the welfare counterfactual.
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Figure 3: Sensitivity analysis for change in average welfare under a 10% maintenance
cost subsidy. Note: Solid lines are estimates, dotted lines are bootstrap CSs, dashed lines
are projection CSs.

Section 4.2 using the construction (27). The distributions appear very close to logistic

(their distribution when � = 0) for � = 0.01. Therefore, we see that large di↵erences

in welfare counterfactuals can arise under very slight departures from the i.i.d. Gumbel

assumption. LFDs for the upper bound shift increasing amounts of mass to the center

of the distribution of U1 � U0 as � increases. LFDs corresponding to the lower bound

are relatively less distorted, but have increasing amounts of mass shifted into the right

tail. These are similar for � = 0.1 through � = 100 because the estimated lower bound

stabilizes for smaller values of � than the upper bound (cf. Figure 3).

Table 4 lists other metrics to help interpret the neighborhood size. The first is the

correlation of U0 and U1 under the LFDs at which ̂
�
and ̂� are attained. These are

very small for � = 0.01 and remain small under the LFDs for ̂
�
as � increases, while

U0 and U1 are strongly positively correlated under the LFDs for ̂�, especially for larger

� values. Given the asymmetry in distortions between the lower and upper values, we

compute our size measure separately for both. We measure distortions to the moments

corresponding to the CCPs as these are most directly interpretable within the context of

the model. We see that the LFDs for � = 0.01 are distorting F⇤ in a manner that shifts

the model-implied CCPs by at most 0.016. By contrast, the LFDs for � = 10 and � = 100

shift the model-implied CCPs from their values under the i.i.d. Gumbel assumption by

at most 0.04 for ̂
�
and 0.47 for ̂�.

The parameters at which ̂
�
and ̂� are attained are also revealing about neigh-

borhood size. Table 4 presents MLEs of MC and RC, which are similar to the values
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Lower bound Upper bound

Figure 4: CDFs of U1 � U0 under the LFDs at which the estimated lower and upper
bounds on the welfare counterfactual are attained.

Table 4: Metrics for interpreting �

Lower bound Upper bound

� corr size RC MC corr size RC MC

0 0.000 0.000 10.208 2.294 0.000 0.000 10.208 2.294
0.01 0.036 0.010 7.357 1.411 -0.027 0.016 13.390 3.307
0.1 -0.058 0.039 5.186 0.553 0.149 0.109 16.134 4.374
1 -0.045 0.039 4.023 0.203 0.616 0.346 17.166 5.038
10 -0.040 0.039 4.022 0.202 0.765 0.461 17.595 5.331
100 -0.063 0.039 3.931 0.176 0.764 0.469 17.626 5.365

Note: Correlation of U0 and U1 under the LFD at which the estimated lower and upper bounds
are attained (corr), our size measure from Section 4.3, and replacement and maintenance cost
parameters at which the estimated lower and upper bounds are attained.

reported in Table IX of Rust (1987). We see from Table 4 that ̂
�
and ̂� are attained at

very di↵erent parameter values, with much smaller cost parameters for the lower bound

and larger parameters for the upper bound, even for � = 0.01. Intuitively, a smaller

MC means that the saving from the subsidy—which is proportional—must be small.

Correspondingly, a low RC is needed to help the model to fit the observed CCPs at the

smaller MC. While it is known that payo↵ parameters are not identified without para-

metric assumptions on F , it is perhaps surprising that these parameters vary by so much

under slight relaxations of the i.i.d. Gumbel assumption. For instance, with � = 0.01 the

lower bound is attained with cost parameters RC = 7.357 and MC = 1.411 while the

upper bound is attained with cost parameters that are roughly double these values.
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6 Estimation and Inference

We begin in Section 6.1 by establishing consistency and the asymptotic distribution of

the estimators ̂
�
and ̂� from Section 2.4. We then present a bootstrap-based inference

method in Section 6.2 and a projection-based inference method in Section 6.3.

6.1 Large-sample Properties of Plug-in Estimators

We first introduce some regularity conditions. Recall the space E from Assumption F.

We equip E with the Orlicz norm (see Appendix F of Christensen and Connault (2022))

kfk = inf
c>0

1

c

�
1 + EF⇤ [ (c|f(U)|)]

�
.

This norm is equivalent to the L2(F⇤) norm for �2 and hybrid divergence and equivalent

to the L
q(F⇤) norm for L

p divergence (p�1 + q
�1 = 1), while for KL divergence it is

stronger than any L
p(F⇤) norm with p < 1 but weaker than the sup-norm. Say that

a class of functions {fa : a 2 A} ⇢ E indexed by a metric space A is E-continuous in

a if a0 ! a in A implies kfa � fa0k ! 0. We also require a slightly stronger notion of

constraint qualification than Condition S from Section 2.5.

Definition 6.1 Condition S’ holds at (✓, �, P ) if ~P 2 int(G(✓, �) + C).

Condition S’ replaces “relative interior” in Condition S with “interior”. Finally, recall

�(✓; �, P ) from (16) and let ⇥�(�, P ) = {✓ 2 ⇥ : �(✓; �, P ) < �}.

Assumption M (i) k(·; ✓, �) and each entry of g(·; ✓, �) are E-continuous in (✓, �);

(ii) (✓, �) 7! EF⇤ [�?(a1+a2k(U, ✓, �)+a
0
3g(U, ✓, �))] is continuous for each (a1, a2, a3) 2

R⇥ R⇥ Rd
;

(iii) ⇥�(�0, P0) is nonempty and Condition S’ holds at (✓, �0, P0) for each ✓ 2 ⇥�(�0, P0);

(iv) cl(⇥�(�0, P0)) ◆ {✓ 2 ⇥ : �(✓; �0, P0)  �};

(v) ⇥ is a compact subset of Rd✓ .

Parts (i) and (ii) of Assumption M are continuity conditions. If k and g consist of

indicator functions, then these conditions hold provided the probabilities of the events

under F⇤ are continuous in (✓, �). In models without �, these conditions simply require

continuity in ✓.

There are two parts to Assumption M(iii). The nonemptyness condition holds when

the model is correctly specified under F⇤ or, more generally, when there is at least one
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F 2 N� that satisfies (1) for some ✓. The second part is a constraint qualification. This

condition requires that for each ✓ 2 ⇥�(�0, P0), there is a distribution F under which

(1) holds at (✓, �0, P0) that is “interior” to N1, in the sense that one can perturb the

moments at (✓, �0, P0) in all directions by perturbing F . Condition S’ also requires that

there is F 2 N1 under which any inequality restrictions at (✓, �0, P0) hold strictly. Note,

however, that we do not require that this F belongs to N�, only to N1. We therefore

do not view this condition as overly restrictive. We also conjecture it could be relaxed

using a notion similar to S-regularity from Section 2.5.

Assumption M(iv) is made for convenience and can be relaxed; this condition simply

ensures that there do not exist values of ✓ at which �(✓; �0, P0) = � that are separated

from ⇥�(�0, P0). Assumption M(v) is standard and can be relaxed.

Theorem 6.1 Suppose that Assumptions F and M hold and (�̂, P̂ ) !p (�0, P0) or, if

there is no auxiliary parameter, P̂ !p P0. Then ̂
�
!p �

and ̂� !p �.

To derive the asymptotic distribution of the estimators, we assume �0 is known

and suppress dependence of all quantities on � for the remainder of this section. This

entails no loss of generality for models without �, such as Examples 2.1 and 2.2 and

the application in Section 5.1. In DDC models this presumes the law of motion of the

state is known. The asymptotic distribution therefore reflects only sampling uncertainty

from the estimated CCPs, which is the case for confidence sets reported when laws of

motion are first estimated “o✏ine”. Extending our approach to accommodate sampling

variation in �̂ in a tractable manner appears to require exploiting application-specific

model structure, which we defer to future work.

Define
b
�
(P ) = inf

✓2⇥�(P )
K

�
(✓;P ) , b�(P ) = sup

✓2⇥�(P )
K�(✓;P ) . (29)

In this notation, 
�
= b

�
(P0) and � = b�(P0) (see Lemma E.3) and ̂

�
= b

�
(P̂ ) and

̂� = b�(P̂ ). We derive the asymptotic distribution of ̂
�
and ̂� by showing b

�
and b� are

directionally di↵erentiable and applying a suitable delta method. Say f : Rd1+d2 ! R
is (Hadamard) directionally di↵erentiable at P0 if there is a continuous map dfP0 [ · ] :

Rd1+d2 ! R such that

lim
n!1

t
�1
n

(f(P0 + tnhn)� f(P0)) = dfP0 [h]

for all sequences tn # 0 and hn ! h (Shapiro, 1990, p. 480). If dfP0 [h] is linear in h then

f is (fully) di↵erentiable at P0. We introduce some additional notation used to define
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the directional derivatives of b
�
and b�. Let

⌅
�
(✓;P ) = argsup

⌘�0,⇣2R,�2⇤ � EF⇤
h
(⌘�)?(�k(U, ✓)� ⇣ � �

0
g(U, ✓))

i
� ⌘� � ⇣ � �

0
12P ,

where (⌘�)? denotes the convex conjugate of x 7! ⌘ · �(x), and let ⌅�(✓;P ) denote the

analogous arginf for the minimization problem corresponding to the upper bound. Recall

that �12 = (�1,�2) collects the first d1 + d2 elements of �. Let

⇤
�
(✓;P ) = {(�1,�2) : (⌘, ⇣,�1,�2,�3,�4) 2 ⌅

�
(✓;P )}

denote the projection of ⌅
�
(✓;P ) for �12. We let ⇤�(✓;P ) denoting the analogous pro-

jection of ⌅�(✓;P ). Finally, let

⇥
�
(P0) = argmin

✓2⇥
K

�
(✓;P0) , ⇥�(P0) = argmax

✓2⇥
K�(✓;P0) .

The sets ⇥
�
(P0) and ⇥�(P0) are nonempty and compact under Assumptions F and M.

The following regularity conditions are presented for the general case where k depends

on u. It may be possible to weaken some of these regularity conditions in the special

case in which k does not depend on u.

Assumption M (continued) (vi) ⇥
�
(P0) ✓ ⇥�(P0) and ⇥�(P0) ✓ ⇥�(P0);

(vii) ✓ 7! ⇤
�
(✓;P0) and ✓ 7! ⇤�(✓;P0) are lower hemicontinuous at each ✓ 2 ⇥

�
(P0)

and ✓ 2 ⇥�(P0), respectively.

Theorem 6.2 Suppose that Assumptions F and M hold. Then b
�
and b� are directionally

di↵erentiable at P0, with

db
�,P0

[h] = min
✓2⇥�(P0)

max
�122⇤�(✓;P0)

��
0
12h , db�,P0 [h] = max

✓2⇥�(P0)
min

�122⇤�(✓;P0)
�
0
12h .

Moreover, if
p
n(P̂ � P0) !d Z ⇠ N(0,⌃) with ⌃ finite, then

p
n

  
̂�

̂
�

!
�

 
�


�

!!
!d

 
db

�,P0
[Z]

db�,P0 [Z]

!
.

The asymptotic distribution presented in Theorem 6.2 is non-Gaussian. In the special

case in which [✓2⇥�(P0)⇤�
(✓;P0) = {�12}, the asymptotic distribution of ̂

�
simplifies to

N(0,�0
12⌃�12). An analogous simplification holds for ̂� when [

✓2⇥�(P0)⇤�(✓;P0) is a

singleton.
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6.2 Inference Procedure 1: Bootstrap

Our first inference procedure specializes the general approach of Fang and Santos (2019)

for inference on directionally di↵erentiable functions to the present setting. Define

bdb
�,P0

[h] = inf
✓2⇥̂�,n

sup
�122⇤�(✓;P̂ )

��
0
12h ,

b
db�,P0 [h] = sup

✓2⇥̂�,n

inf
�122⇤�(✓;P̂ )

�
0
12h ,

where
⇥̂

�,n
= {✓ 2 ⇥�(P̂ ) : K

�
(✓; P̂ )  ̂

�
+ ⌫̂

p
log n/n} , and

⇥̂�,n = {✓ 2 ⇥�(P̂ ) : K�(✓; P̂ ) � ̂� � ⌫̂

p
log n/n} ,

with ⌫̂ a (possibly random) positive scalar tuning parameter for which ⌫̂ !p ⌫ > 0. Any

such ⌫̂ results in a confidence set with asymptotically correct coverage. We give some

practical guidance for choosing ⌫̂ below.

Let P̂ ⇤ denote a bootstrapped version of P̂ . In practice any bootstrap can be used

provided it satisfies mild consistency conditions. In the empirical application in Sec-

tion 5.1 we simply draw P̂
⇤
⇠ N(P̂ , ⌃̂/n) where ⌃̂ is a consistent estimator of ⌃. Let

ĉ
↵
= ↵-quantile of bdb

�,P0
[
p
n(P̂ ⇤

� P̂ )] , ĉ↵ = ↵-quantile of bdb�,P0 [
p
n(P̂ ⇤

� P̂ )] ,

where the quantiles are computed by resampling P̂
⇤ (conditional on the data). Lower,

upper, and two-sided 100(1� ↵)% CSs for 
�
and � are

CS
1�↵

�,L
=


̂
�
�

ĉ1�↵
p
n
,+1

◆
,

CS
1�↵

�,U
=

✓
�1, ̂� �

ĉ↵
p
n

�
, CS

1�↵

�
=

"
̂
�
�

ĉ1�↵/2
p
n

, ̂� �
ĉ↵/2
p
n

#
.

We require a slight strengthening of Assumption M(vii) to establish validity of the

procedure. As before, regularity conditions are presented for the general case where k

depends on u. It may be possible to weaken these conditions when k does not depend

on u.

Assumption M (continued) (vii’) (✓, P ) 7! ⇤
�
(✓;P ) and (✓, P ) 7! ⇤�(✓;P ) are

lower hemicontinuous at (✓, P0) for each ✓ 2 ⇥
�
(P0) and ✓ 2 ⇥�(P0), respectively.

Theorem 6.3 Suppose that Assumptions F and M(i)–(vi),(vii’) hold,
p
n(P̂ � P0) !d

Z ⇠ N(0,⌃) with ⌃ finite, and P̂
⇤
satisfies Assumption 3 of Fang and Santos (2019).
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Then the distribution of bdb
�,P0

[
p
n(P̂ ⇤

� P̂ )] and bdb�,P0 [
p
n(P̂ ⇤

� P̂ )] (conditional on the

data) is consistent for the asymptotic distribution derived in Theorem 6.2. Moreover, if

the CDFs of db
�,P0

[Z] and db�,P0 [Z] are continuous and increasing at their ↵/2, ↵, 1�↵,

and 1� ↵/2 quantiles, then

lim
n!1

Pr(
�
2 CS

1�↵

�,L
) = 1� ↵ ,

lim
n!1

Pr(� 2 CS
1�↵

�,U
) = 1� ↵ , lim inf

n!1
Pr([

�
,�] ✓ CS

1�↵

�
) � 1� ↵ .

Any ⌫̂ that satisfies ⌫̂ !p ⌫ > 0 results in asymptotically valid CSs. In view of the

functional forms of bdb
�,P0

[ · ] and bdb
�,P0

[ · ], smaller ⌫̂ produce (weakly) wider CSs. In the

CSW application, we set ⌫̂ equal to the minimum diagonal element of the covariance

matrix of the moments evaluated at (✓̂, �̂, P̂ ) under F⇤, where ✓̂ is computed under F⇤.

We chose this quantity as it is related to the convexity of the inner problem for small �.

In practice, this resulted in ⌫̂ between 0.001 and 0.01. We recommend setting ⌫̂ to be of

a similarly small magnitude, then performing a sensitivity analysis to check that critical

values aren’t too dependent on ⌫̂. Setting ⌫̂ = 0 and replacing ⇥̂
�,n

and ⇥̂�,n by {✓̂
�
}

and {✓̂�} where ✓̂
�
and ✓̂� minimize and maximize the sample criterions is also valid, but

may be conservative.

6.3 Inference Procedure 2: Projection

This second approach is computationally simple but possibly conservative.23 Suppose

we have random vectors P̂ 1�↵

1,U , P̂ 1�↵

2,U , and P̂
1�↵

2,L that form a 100(1�↵)% rectangular CS

for P0:

lim inf
n!1

Pr
⇣
P10  P̂

1�↵

1,U , P̂
1�↵

2,L  P20  P̂
1�↵

2,U

⌘
� 1� ↵ , (30)

where the inequalities should be understood to hold element-wise (we discuss how to

construct a rectangular CS for P0 below).

The idea behind this approach is to replace any moment conditions involving P by

inequalities constructed from the rectangular CS. Define the criterion functions

K̂
�,1�↵

(✓) =

"
K

�,cs
(✓; P̂1�↵)

+1

, K̂�,1�↵(✓) =

"
K�,cs(✓; P̂1�↵) if �cs(✓; P̂1�↵) < �,

�1 if �cs(✓; P̂1�↵) � �,

23We are grateful to a referee for suggesting this approach.
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where K
�,cs

, K�,cs, and �cs are versions of (13), (14), and (16) formed using

EF [g1(U, ✓)]  P̂
1�↵

1,U , EF [g2(U, ✓)]  P̂
1�↵

2,U , EF [�g2(U, ✓)]  �P̂
1�↵

2,L , (31)

as well as (1c) and (1d). In these criterions, ⇤ is replaced by ⇤cs = Rd1+2d2+d3
+ ⇥ Rd4 , g

is replaced by gcs = (g1, g2,�g2, g3, g4), P is replaced by P̂1�↵ = (P̂ 1�↵

1,U , P̂
1�↵

2,U ,�P̂
1�↵

2,L ),

and �12 denotes the first d1 + 2d2 elements of �.

Critical values are computed by optimizing the criterions K̂
�,1�↵

and K̂�,1�↵ with

respect to ✓:

̂
�,1�↵

= inf
✓2⇥

K̂
�,1�↵

(✓) , ̂�,1�↵ = sup
✓2⇥

K̂�,1�↵(✓) .

Lower, upper, and two-sided 100(1� ↵)% CSs for 
�
and � are then given by

CS
1�↵

�,L
=
⇥
̂
�,1�↵

,+1
�
, CS

1�↵

�,U
=
�
�1, ̂�,1�↵

⇤
, CS

1�↵

�
=
⇥
̂
�,1�↵

, ̂�,1�↵

⇤
.

Theorem 6.4 Suppose that Assumptions F and M(i),(iii)–(v) hold and P̂1�↵ satisfies

(30). Then

lim inf
n!1

Pr(
�
2 CS

1�↵

�,L
) � 1� ↵ ,

lim inf
n!1

Pr(� 2 CS
1�↵

�,U
) � 1� ↵ , lim inf

n!1
Pr([

�
,�] ✓ CS

1�↵

�
) � 1� ↵ .

To construct a rectangular CS for P0 satisfying (30), suppose
p
n(P̂�P0) !d N(0,⌃)

and we have a consistent estimator ⌃̂ of ⌃. Let �̂ denote the vector formed by taking

the square root of each diagonal entry of ⌃̂. Partition �̂ conformably as �̂ = (�̂(1), �̂(2))

and set

P̂
1�↵

1,L = P̂1 + n
�1/2

ĉ1�↵,1�̂(1) , P̂
1�↵

2,L = P̂2 � n
�1/2

ĉ1�↵,2�̂(2) , P̂
1�↵

2,U = P̂2 + n
�1/2

ĉ1�↵,2�̂(2) ,

where the (scalar) critical values ĉ1�↵,1 and ĉ1�↵,2 solve

Pr

✓
max
1id1

Zi/�̂i  ĉ1�↵,1, max
d1+1id2

|Zi/�̂i|  ĉ1�↵,2

◆
= 1� ↵ , Z ⇠ N(0, ⌃̂) .

If d2 = 0, then ĉ1�↵,1 is the (1�↵)-quantile of max1id1 Zi/�̂i; similarly, if d1 = 0, then

ĉ2,1�↵ is the (1� ↵)-quantile of max1id2 |Zi/�̂i|.
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7 Conclusion

This paper introduced a framework for analyzing the sensitivity of counterfactuals to

parametric assumptions about the distribution of latent variables in structural models. In

particular, we derived bounds on the set of counterfactuals obtained as the distribution of

latent variables spans nonparametric neighborhoods of a given parametric specification

while other “structural” model features are maintained. We illustrated our procedure

with empirical applications to matching models and dynamic discrete choice.
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Online Appendix to “Counterfactual Sensitivity and

Robustness”

Timothy Christensen Benjamin Connault

This supplement presents extensions of our methodology in Appendix A, additional

results on nonparametric bounds on counterfactuals in Appendix B, connections with

local approaches to sensitivity analysis in Appendix C, additional details on the empirical

applications in Appendix D, and proofs of results from the main text in Appendix E.

A Extensions

This appendix presents three extensions of our methodology. Proofs of all results in this

appendix are presented in Appendix G.7 of our working paper version Christensen and

Connault (2022).

A.1 Group Invariance

In certain settings it can be attractive to impose shape restrictions on F such as symme-

try, exchangeability, or, more generally, invariance to a finite group of transforms. For

instance, imposing exchangeability of F in discrete choice modeling ensures that alter-

natives’ choice probabilities depend on their deterministic components of utility but not

their labeling. These shape restrictions can be easily imposed whenever F⇤ is invariant.

Formally, let J denote the number of elements of U and let ⇧ be a finite commutative

group of transforms on RJ—see, e.g., Section 1.4 of Lehmann and Casella (1998). We

say that a distribution F of U is ⇧-invariant if $U ⇠ F for all $ 2 ⇧.

Example A.1 (Symmetry) Central symmetry corresponds to ⇧ = {I,�I} for I the

identity matrix. Sign symmetry corresponds to taking ⇧ to be the collection of all 2J

diagonal matrices with ±1 in each diagonal entry. ⇤

Example A.2 (Exchangeability) Let ⇧J denote the group of all J ! permutation

matrices of dimension J . Full exchangeability (permutation invariance) corresponds to

⇧ = ⇧J . Cyclic exchangeability (rotation invariance) corresponds to ⇧ = ⇧c

J
where

⇧c

J
is the collection of all J cyclic permutation matrices of dimension J (⇧c

J
= ⇧J

when J = 2 and is a strict subset otherwise). When J � 3, dihedral exchangeability
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(rotation and reflection invariance) corresponds to taking ⇧ to be the set of all 2J

permutation matrices representing rotations and reflections of {1, . . . , J}. These types

of exchangeability ensure the elements of U are identically distributed, but they have

di↵erent implications for the joint distribution of the elements of U . For instance, the

distribution of (Ui, Uj) for i 6= j depends on i� j and |i� j| under cyclic and dihedral

exchangeability, but is independent of (i, j) under full exchangeability. ⇤

Let N⇧
�
= {F 2 N� : F is ⇧-invariant}. We are interested in


⇧
�
:= inf

✓2⇥,F2N⇧
�

EF [k(U, ✓, �0)] subject to (1), (32)

and 
⇧
�
defined as the analogous supremum. One may write 

⇧
�
and 

⇧
�
as the value of

two optimization problems in which criterion functions K⇧
�
(✓; �0, P0) and K

⇧
�
(✓; �0, P0)

are optimized with respect to ✓. For a generic (✓, �, P ), define

K
⇧
�
(✓; �, P ) = inf

F2N⇧
�

EF [k(U, ✓, �)] subject to (1) holding at (✓, �, P ) , (33)

and define K
⇧
�
(✓; �, P ) as the analogous supremum. These criterions have dual represen-

tations as finite-dimensional convex programs when F⇤ is ⇧-invariant. Define

k
⇧(U, ✓, �) =

1

|⇧|

X

$2⇧

k($U, ✓, �) , g
⇧
j
(U, ✓, �) =

1

|⇧|

X

$2⇧

gj($U, ✓, �) , j = 1, 2, 3, 4,

where |⇧| denotes the cardinality of ⇧, and let g⇧ = (g⇧1 , g
⇧
2 , g

⇧
3 , g

⇧
4 ).

Proposition A.1 Suppose that Assumption F holds and F⇤ is ⇧-invariant. Then

K
⇧
�
(✓; �, P ) = sup

⌘>0,⇣2R,�2⇤
�⌘EF⇤

h
�
?

⇣
k
⇧(U,✓,�)+⇣+�

0
g
⇧(U,✓,�)

�⌘

⌘i
� ⌘� � ⇣ � �

0
12P , (34)

K
⇧
�
(✓; �, P ) = inf

⌘>0,⇣2R,�2⇤
⌘EF⇤

h
�
?

⇣
k
⇧(U,✓,�)�⇣��

0
g
⇧(U,✓,�)

⌘

⌘i
+ ⌘� + ⇣ + �

0
12P . (35)

Moreover, the value of problem (34) is +1 (equivalently, the value of problem (35) is

�1) if and only if there is no distribution in N
⇧
�

under which (1) holds at (✓, �, P ).

Remark A.1 If F is ⇧-invariant and satisfies (1), then it must also satisfy (1) under

all |⇧| transformations of the elements of U . Therefore, in e↵ect there are a total of

2



|⇧|⇥ d moment conditions imposed in the inner optimization, namely

EF [g1($U, ✓, �0)]  P10, EF [g2($U, ✓, �0)] = P20,

EF [g3($U, ✓, �0)]  0, EF [g4($U, ✓, �0)] = 0,
for all $ 2 ⇧ . (36)

In principle one could form a criterion by including all |⇧|⇥d moments. By ⇧-invariance

of F⇤ and convexity of the objective, the multipliers on the moments g($U, ✓, �) will be

identical across all $ 2 ⇧. It therefore su�ces to form the criterion using only the d

averaged moments g
⇧
rather than the full set of |⇧| ⇥ d moments, thereby reducing the

dimension of the inner optimization by a factor of |⇧|.

Remark A.2 When Monte Carlo integration is used to compute expectations, taking a

sample from F⇤ and then concatenating the sample across each of its |⇧| transformations

ensures the empirical distribution of the random draws is ⇧-invariant.

A.2 Conditional Moment Models

Consider the conditional moment model

EF [g1(U,X, ✓, �0)|X = x]  P10,x, EF [g2(U,X, ✓, �0)|X = x] = P20,x,

EF [g3(U,X, ✓, �0)|X = x]  0, EF [g4(U,X, ✓, �0)|X = x] = 0,
for all x 2 X

(37)

where X is a finite set, and a counterfactual24

 =
X

x2X

EF [k(U,X, ✓, �0)|X = x] . (38)

Suppose the researcher assumes U |X = x ⇠ F⇤ for each x. We wish to relax this

assumption and allow each conditional distribution of U given X = x, say Fx, to vary

in a neighborhood N�x of F⇤. In doing so, we are allowing the conditional distributions

Fx to vary with x, and therefore relaxing independence of U and X.25

We assume each N� is defined by the same � to simplify the exposition, but we allow

24Note  can be the expected value at a particular x0 if k(U, x, ✓, �0) = 0 for x 6= x0. More generally,
 can be a weighted average by incorporating the weighting into the definition of k(u, x, ✓, �0).

25The case with U independent of X is subsumed in (1) by stacking the moment functions and
reduced-form parameters by values of the conditioning variable, as in Examples 2.1–2.3.
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the neighborhood size to vary with x. Let � = (�x)x2X . We are interested in

� := inf
✓2⇥,(Fx2N�x )x2X

X

x2X

EFx [k(U, x, ✓, �0)] subject to (37), (39)

and � defined as the analogous supremum. One may write � and � as the value of two

optimization problems where K�(✓; �0, P0) and K�(✓; �0, P0) are optimized with respect

to ✓. Let P = (Px)x2X where Px = (P1,x, P2,x) is partitioned conformably with g1 and

g2. For a generic (✓, �, P ), define

K�(✓; �, P ) = inf
(Fx2N�x )x2X

X

x2X

EFx [k(U, x, ✓, �0)] subject to (37) holding at (✓, �, P ),

and define K�(✓; �, P ) as the analogous supremum. These criterion functions have dual

forms analogous to Proposition 2.1. Let g(·, x, ✓, �) = (g1(·, x, ✓, �), . . . , g4(·, x, ✓, �)).

Recall d =
P4

i=1 di where di is the dimension of gi, and ⇤ = Rd1
+ ⇥Rd2 ⇥Rd3

+ ⇥Rd4 . Let

�12,x denote the first d1 + d2 elements of �x 2 ⇤.

Assumption F-conditional (i) � 2 �0.

(ii) k( · , x, ✓, �) and each entry of g( · , x, ✓, �) belong to E for each (✓, �, x) 2 ⇥⇥�⇥X .

Proposition A.2 Suppose that Assumption F-conditional holds. Then

K�(✓; �, P ) (40)

= sup
(⌘x>0,⇣x2R,�x2⇤)x2X

X

x2X

⇣
�⌘xEF⇤

h
�
?

⇣
k(U,x,✓,�)+⇣x+�

0
xg(U,x,✓,�)

�⌘x

⌘i
� ⌘x�x � ⇣x � �

0
12,xPx

⌘
,

K�(✓; �, P ) (41)

= inf
(⌘x>0,⇣x2R,�x2⇤)x2X

X

x2X

⇣
⌘xEF⇤

h
�
?

⇣
k(U,x,✓,�)�⇣x��

0
xg(U,x,✓,�)

⌘x

⌘i
+ ⌘x�x + ⇣x + �

0
12,xPx

⌘
.

Moreover, the value of (40) is +1 (equivalently, the value of (41) is �1) if and only

if for some x 2 X there is no distribution in N�x under which (37) holds at (✓, �, P ).

As before, estimators ̂� and ̂� of � and � are computed by optimizing sample

criterions with respect to ✓. Let P̂ = (P̂x)x2X . The sample criterions are

K̂�(✓) =

"
K�(✓; �̂, P̂ )

+1

, K̂�(✓) =

"
K�(✓; �̂, P̂ ) if �x(✓; �̂, P̂x) < �x for each x 2 X ,

�1 if �x(✓; �̂, P̂x) � �x for some x 2 X ,
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where K�(✓; �̂, P̂ ) and K�(✓; �̂, P̂ ) denote the programs in Proposition A.2 evaluated at

(�̂, P̂ ), and

�x(✓; �̂, P̂x) = sup
⇣x2R,�x2⇤

�EF⇤
h
�
?(�⇣x � �

0
x
g(U, x, ✓, �̂))

i
� ⇣x � �

0
12,xP̂x.

A.3 Non-separable Models

Consider the model

EH [g̃1(U,X, ✓, �̃0)]  P10, EH [g̃2(U,X, ✓, �̃0)] = P20,

EH [g̃3(U,X, ✓, �̃0)]  0, EH [g̃4(U,X, ✓, �̃0)] = 0,
(42)

and counterfactual

 = EH [k̃(U,X, ✓, �̃0)] , (43)

where the expectation is with respect to the distribution H of (U,X) and X takes values

in a finite set X . Suppose the researcher assumes U |X = x ⇠ F⇤ for each x. We wish to

relax this assumption and allow the conditional distribution of U given X = x, say Fx,

to vary in a neighborhood N�x of F⇤.

Write H(u, x) = q0,x · Fx(u) where q0,x = Pr(X = x). The vector q0 = (q0,x)x2X

can be consistently estimated from data on X. Let �0 = (�̃0, q0). Define g1(U, x, ✓, �0) =

q0,x · g̃1(U, x, ✓, �̃0) and similarly for g2, g3, g4, and k. The model (42) and counterfactual

(43) can then be written as

X

x

EFx [g1(U, x, ✓, �0)]  P10,

X

x

EFx [g2(U, x, ✓, �0)] = P20,

X

x

EFx [g3(U, x, ✓, �0)]  0,
X

x

EFx [g4(U, x, ✓, �0)] = 0,
(44)

and  =
P

x
EFx [k(U, x, ✓, �0)]. We again assume each N� is defined by the same �

function, but allow the neighborhood size to vary with x. Let � = (�x)x2X . We are

interested in

� := inf
✓2⇥,(Fx2N�x )x2X

X

x

EFx [k(U, x, ✓, �0)] subject to (44),

and � defined as the analogous supremum. One may write � and � as the value of

two optimization problems where criterion functions K�(✓; �0, P0) and K�(✓; �0, P0) are
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optimized with respect to ✓. For a generic (✓, �, P ), define

K�(✓; �, P ) = inf
(Fx2N�x )x2X

X

x

EFx [k(U, x, ✓, �0)] s.t. (44) holding at (✓, �, P ) ,

and define K�(✓; �, P ) as the analogous supremum. These criterion functions have dual

forms analogous to Proposition 2.1. Let g(·, x, ✓, �) = (g1(·, x, ✓, �), . . . , g4(·, x, ✓, �)). The

remaining notation the same as Proposition 2.1.

Proposition A.3 Suppose that Assumption F-conditional holds. Then

K�(✓; �, P ) (45)

= sup
(⌘x>0,⇣x2R)x2X ,�2⇤

X

x

⇣
�⌘xEF⇤

h
�
?

⇣
k(U,x,✓,�)+⇣x+�

0
g(U,x,✓,�)

�⌘x

⌘i
� ⌘x�x � ⇣x � �

0
12P

⌘
,

K�(✓; �, P ) (46)

= inf
(⌘x>0,⇣x2R)x2X ,�2⇤

X

x

⇣
⌘xEF⇤

h
�
?

⇣
k(U,x,✓,�)�⇣x��

0
g(U,x,✓,�)

⌘x

⌘i
+ ⌘x�x + ⇣x + �

0
12P

⌘
.

Moreover, the value of (45) is +1 (equivalently, the value of (46) is �1) if and only

if there is no H(u, x) = q0,x · Fx(u) with Fx 2 N�x under which (42) holds at (✓, �, P ).

As before, estimators ̂� and ̂� of � and � are computed by optimizing sample

criterion functions with respect to ✓. The sample criterion functions are

K̂�(✓) =

"
K�(✓; �̂, P̂ )

+1

, K̂�(✓) =

"
K�(✓; �̂, P̂ ) if �nonsep(✓; �̂, P̂ ) < 0

�1 if �nonsep(✓; �̂, P̂ ) � 0,

where K�(✓; �̂, P̂ ) and K�(✓; �̂, P̂ ) denote the programs in Proposition A.3 evaluated at

(�̂, P̂ ) with �̂ = (ˆ̃�, q̂) for estimators ˆ̃� of �̃ and q̂ of q0, and

�nonsep(✓; �, P )

= sup
(⌘x�0,⇣x2R)x2X ,�2⇤P

x2X ⌘x1

 
�

X

x2X

EF⇤
h
(⌘x�)

?(�⇣x � �
0
x
g(U, x, ✓, �))

i
� ⌘x�x � ⇣x

!
� �

0
12P .

By similar arguments to Appendix G.3 of Christensen and Connault (2022),�nonsep(✓; �, P )

may be shown to be the dual of

inf
t2R,(Fx)x2X

t s.t. D�(FxkF⇤)  �x + t for each x 2 X and (44) holding at (✓, �, P ).
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Therefore, if there exists Fx with D�(FxkF⇤) < �x for each x such that (44) holds at

(✓, �, P ), then �nonsep(✓; �, P ) < 0.

B Additional Results on Nonparametric Bounds

This appendix presents further details to supplement Section 2.5. Proofs of all results in

this appendix are presented in Appendix G.8 of Christensen and Connault (2022). Our

first result concerns the behavior of 
�
and � as the neighborhood size � becomes large.

Recall N1 = {F : D�(FkF⇤) < 1}. Let

K1 = {EF [k(U, ✓, �0)] : (1) holds at (✓, �0, P0) for some ✓ 2 ⇥, F 2 N1} .

Lemma B.1 Suppose that Assumption F holds. Then

lim
�!1


�
= inf K1 , lim

�!1
� = supK1 .

Next, we characterize bounds on K1 using profiled optimization problems and derive

their dual forms. Define

K1(✓; �0, P0) = inf
F2N1

EF [k(U, ✓, �0)] subject to (1) holding at (✓, F ) , (47)

and let K1(✓; �0, P0) denote the analogous supremum. By definition, we have

inf K1 = inf
✓2⇥

K1(✓; �0, P0) , supK1 = sup
✓2⇥

K1(✓; �0, P0) .

Let F⇤-ess inf and F⇤-ess sup denote the F⇤-essential infimum and supremum, respec-

tively.

Lemma B.2 Suppose that Assumption F holds and Condition S holds at (✓, �, P ). Then

K1(✓; �, P ) = sup
�2⇤:F⇤-ess inf(k(·,✓,�)+�0g(·,✓,�))>�1

(F⇤-ess inf(k(·, ✓, �) + �
0
g(·, ✓, �))� �

0
12P ) ,

K1(✓; �, P ) = inf
�2⇤:F⇤-ess sup(k(·,✓,�)��0g(·,✓,�))<+1

(F⇤-ess sup(k(·, ✓, �)� �
0
g(·, ✓, �)) + �

0
12P ) .

We now derive analogous dual representations for the criterion functionsK
np

andKnp

from Section 2.5 (see display (18)). We require a slightly di↵erent constraint qualification:
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Definition B.1 Condition Snp holds at (✓, �, P ) if ~P 2 ri({EF [g(U, ✓, �)] : F 2 F✓}+C).

If F⇤ and µ are mutually absolutely continuous, then Condition Snp is equivalent to

Condition S from Section 2.5 (see Lemma E.1).

Lemma B.3 Suppose that Condition Snp holds at (✓, �, P ) and k is µ-essentially bounded.

Then

K
np
(✓; �, P ) = sup

�2⇤:µ-ess inf(k(·,✓,�)+�0g(·,✓,�))>�1
(µ-ess inf(k(·, ✓, �) + �

0
g(·, ✓, �))� �

0
12P ) ,

Knp(✓; �, P ) = inf
�2⇤:µ-ess sup(k(·,✓,�)��0g(·,✓,�))<+1

(µ-ess sup(k(·, ✓, �)� �
0
g(·, ✓, �)) + �

0
12P ) .

C Local Sensitivity

In this appendix, we first introduce a measure of local sensitivity of the counterfactual

with respect to F . We then contrast our approach with recent work on local sensitivity.

C.1 Measure of Local Sensitivity

Our measure of local sensitivity of the counterfactual  with respect to F at F⇤ is

s = lim
�#0

(� � 
�
)2

4�
.

If s is finite, then under the regularity conditions below


�
= ⇤ �

p

�s+ o(
p

�) , � = ⇤ +
p

�s+ o(
p

�) , as � # 0,

where ⇤ = EF⇤ [k(U, ✓⇤, �0)] and ✓⇤ solves (1) under F⇤.

To draw connections with the local sensitivity literature, we restrict attention to

moment equality models and impose (standard) regularity conditions. These conditions

allow us to characterize s very tractably via an influence function representation, which

leads to a simple estimator ŝ of s. Assume that under F⇤ the moment conditions (1b)

and (1d) point identify a structural parameter ✓⇤ 2 int(⇥), where we again assume ⇥ is

compact. With some abuse of notation, let

g(u, ✓, �, P2) =

"
g2(u, ✓, �)� P2

g4(u, ✓, �)

#
,
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g⇤(u) = g(u, ✓⇤, �0, P20), and k⇤(u) = k(u, ✓⇤, �0). Let EF⇤ [g(U, ✓, �0, P20)] and EF⇤ [k(U, ✓, �0)]

be continuously di↵erentiable with respect to ✓ at ✓⇤, G = @

@✓0E
F⇤ [g(U, ✓, �0, P20)]

��
✓=✓⇤

have full rank, V = EF⇤ [g⇤(U)g⇤(U)0] be finite and positive definite, EF⇤ [k(U, ✓⇤, �0)2] be

finite, and k(·, ✓, �0) and g(·, ✓, �0, P20) be L
2(F⇤)-continuous in ✓ at ✓⇤.

Define the influence function of the counterfactual  with respect to F at F⇤ as

◆(u) = Mk⇤(u)� J
0(G0

V
�1
G)�1

G
0
V

�1
g⇤(u) ,

where Mk⇤(u) = k⇤(u) � ⇤ � EF⇤ [k⇤(U)g⇤(U)0](V �1
� V

�1
G(G0

V
�1
G)�1

G
0
V

�1)g⇤(u)

and J = @

@✓
EF⇤ [k(U, ✓, �0)]

��
✓=✓⇤

. The following theorem relates s and ◆. We restrict

attention to neighborhoods characterized by �
2 divergence. Other �-divergences are

locally equivalent to �2 divergence, so this restriction entails no great loss of generality.26

Theorem C.1 Suppose that the above GMM-type regularity conditions hold and neigh-

borhoods are defined using �
2
divergence. Then s = 2EF⇤ [◆(U)2].

The proof of Theorem C.1 is presented in Appendix G.9 of our working paper version

Christensen and Connault (2022). In addition to reporting an estimated counterfactual

̂ = EF⇤[k(U, ✓̂, �̂)], researchers could also report an estimate of its local sensitivity to

F :

ŝ = 2EF⇤ [(k̂(U)� ̂)2] + 2Q̂0
V̂ Q̂� 4EF⇤ [ĝ(U)(k̂(U)� ̂)]0Q̂ ,

where k̂(u) = k(u, ✓̂, �̂), ĝ(u) = g(u, ✓̂, �̂, P̂2), V̂ = EF⇤ [ĝ(U)ĝ(U)0], and

Q̂
0 = EF⇤ [k̂(U)ĝ(U)0](V̂ �1

� V̂
�1
Ĝ(Ĝ0

V̂
�1
Ĝ)�1

Ĝ
0
V̂

�1) + Ĵ
0(Ĝ0

V̂
�1
Ĝ)�1

Ĝ
0
V̂

�1
,

with Ĝ = @

@✓0E
F⇤ [g(U, ✓, �̂, P̂2)]|✓=✓̂

and Ĵ = @

@✓
EF⇤ [k(U, ✓, �̂)]|

✓=✓̂
. Lemma G.12 in Ap-

pendix G.9 of Christensen and Connault (2022) shows ŝ is consistent. Bounds on coun-

terfactuals as F varies over small neighborhoods of F⇤ can then be estimated using

̂±
p
�ŝ.

C.2 Comparison with Other Approaches

We now compare our approach with Andrews et al. (2017, 2020), henceforth AGS, and

Bonhomme and Weidner (2021), henceforth BW. To simplify the comparison, we con-

26See Theorem 4.1 of Csiszár and Shields (2004). The quantity 2EF⇤ [◆(U)2] should be rescaled by a
factor of �00(1) for other � divergences.
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sider models characterized by moments of the form (1b) with d2 � d✓ and in which there

is no �.

AGS consider a setting in which the moments (1b) are locally misspecified:

EF⇤ [g2(U, ✓⇤)] = P20 + n
�1/2

c . (48)

Suppose a researcher has a first-stage estimator P̂2, computes an estimator ✓̂ by mini-

mizing

(EF⇤ [g2(U, ✓)]� P̂2)
0
Ŵ (EF⇤ [g2(U, ✓)]� P̂2),

then estimates the counterfactual using ̂ = EF⇤ [k(U, ✓̂)]. AGS’s measure of sensitivity

of ̂ to P̂2 is J 0(G0
WG)�1

G
0
W , where W is the probability limit of Ŵ . The first-order

asymptotic bias of ̂ due to local misspecification is therefore J 0(G0
WG)�1

G
0
Wc. AGS’s

measure of informativeness of P̂2 for ̂ is 1, meaning that all sampling variation in ̂ is

explained by sampling variation in P̂2. Our measure s instead characterizes “specification

variation” in  as the researcher varies F subject to the moment condition (1b).

BW consider estimation of a target parameter ( in our context) using a reference

model MR = {(✓, F ) 2 ⇥ ⇥ {F⇤}} when the true (✓0, F0) possibly belongs to a larger

model ML = {(✓, F ) 2 ⇥ ⇥ N�} with � # 0 as the sample size n increases so that

n� ! ⌧ � 0. BW seek estimators of  under MR that minimize worst-case asymptotic

bias or MSE over ML. Consider the one-step estimator

̂ = EF⇤ [k(U, ✓̂)] + a
0(EF⇤ [g2(U, ✓̂)]� P̂2) ,

where ✓̂ is a
p
n-consistent estimator of ✓⇤ and a 2 Rd2 satisfies J

0 = �a
0
G so that

̂ does not depend asymptotically on ✓̂. The true counterfactual is 0 = EF0 [k(U, ✓0)]

where (✓0, F0) 2 ML satisfies EF0 [g2(U, ✓0)] = P20. If MR is correctly specified so that

EF⇤ [g2(U, ✓⇤)] = P20, then for any a the worst-case asymptotic bias of the one-step

estimator is

lim
n!1

sup
(✓0,F0)2ML:EF0 [g2(U,✓0)]=P20

|
p
n(⇤ � 0))| =

p
⌧s ,

where s is our measure of local sensitivity.

If we allow for local misspecification of MR, so that EF⇤ [g2(U, ✓⇤)] 6= P20, then the

worst-case asymptotic bias of the one-step estimator is

lim
n!1

sup
(✓0,F0)2ML:EF0 [g2(U,✓0)]=P20

��pn
�
⇤ � 0 + a

0 �EF⇤ [g2(U, ✓⇤)]� P20

���� =
p
⌧sa ,
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(a) Without exchangeability (b) With exchangeability

Figure 5: Fixed-✓ bounds on the “some college” to “college graduate” premium when
structural parameters are held fixed at CSW’s estimates.

where sa is our local sensitivity measure with k replaced by k + a
0
g2.

D Additional Details for the Empirical Applications

D.1 Marital College Premium

Bootstrap Details. CSs reported Section 5.1 with � > 0 are computed using the

bootstrap procedure from Section 6.2. To implement the bootstrap, we take 1,000 inde-

pendent draws of P̂ ⇤
2 ⇠ N(P̂2, ⌃̂) where ⌃̂ is CSW’s estimate of the covariance matrix

of P̂2. We compute P̂2 and ⌃̂ based on CSW’s replication files.

Fixed-✓ Bounds. Figure 5a plots lower and upper bounds on the “some college” to

“college graduate” premium across cohorts when ✓ is fixed at CSW’s estimates (com-

puted under F⇤) but F is allowed to vary. These bounds for large � contain zero across

each cohort, and are approximately the same width as the bounds with � = 0.01 re-

ported in Figure 1a where both ✓ and F are allowed to vary. Imposing exchangeability

(Figure 5b) is seen to tighten the bounds substantially, producing bounds that span

negative values only for early cohorts and positive values only in the latest few cohorts.

Projection CSs. Figure 6 reports projection CSs computed using the procedure in

Section 6.3. We formed 95% rectangular CSs for each cohort’s P20 as described in Sec-

tion 6.3 using CSW’s estimates for P̂2 and their asymptotic variance estimates for ⌃̂.

These CSs are significantly wider than the bootstrap CSs reported in Figure 1. Some

conservativeness is to be expected, as these CSs project a 95% CS for P20 down to one

11



(a) Without exchangeability (b) With exchangeability

Figure 6: Projection 95% CSs for bounds on the “some college” to “college graduate”
premium across cohorts.

Table 5: Computation times for the inner problem in the matching application

Implementation �

0.01 0.1 1 10 100

Without exchangeability 0.074 0.056 0.076 0.579 0.188

With exchangeability 0.146 0.184 0.350 0.311 0.488

Note: Times (in seconds) for solving the inner optimization problem for maximizing the pre-
mium in cohort 1 at CSW’s parameter estimate ✓. We use 50,000 Monte Carlo draws without
exchangeability and 120,000 draws with exchangeability. All computations are performed in
Julia version 1.6.4 and Knitro 12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

dimension. The relative ine�ciency is especially pronounced for the earlier cohorts. Note

also from Figure 6b that the projection CSs with � = 0.01 span zero across each cohort,

whereas the bootstrap CSs with � = 0.01 in Figure 1b contain negative values only in

some early cohorts and positive values only in later cohorts.

Computation Times. Table 5 reports times for solving the inner problem for maxi-

mizing the premium in cohort 1. This optimization problem defines the criterion function

K�(✓; P̂ ). As times vary with ✓, we report times at CSW’s estimates. Times increase

somewhat with �, but are all under 0.6 seconds. The outer optimization times varied

with cohort, �, and implementation but were typically solved in at most a few minutes

(often under 90 seconds).

Sensitivity to �. Using �
2 and L

4 divergences produced near identical bounds for

� = 0.01 and 0.1. The �
2 bounds with � = 1 and 10 were at most 10% narrower

than the hybrid bounds. The L
4 bounds were 60%-70% of the width of the hybrid

12



bounds for � = 1, 10, and 100 across cohorts (L4 divergence is stronger than �
2 and

hybrid divergence). The shapes of the sets were also similar to those reported for hybrid

divergence. Overall, these results show that the conclusions we draw from our analysis

are not sensitive to the choice of �.

D.2 Welfare Analysis in a Rust Model

Bootstrap Details. Bootstrap CSs reported Section 5.2 with � > 0 are computed

using the procedure from Section 6.2. We take 1,000 independent draws of ✓̂⇤
⇡
⇠ N(✓̂⇡, ⌃̂)

where ✓̂⇡ is the MLE of (RC,MC) under the i.i.d. Gumbel assumption and ⌃̂ is an

estimate of the inverse information matrix. We then set P̂
⇤
2 to be the model-implied

CCPs at ✓̂⇤
⇡
under the i.i.d. Gumbel assumption.

As k depends only implicitly on u through ✓, we compute ̂
�
and ̂� using the criterion

functions in display (17), which is more computationally e�cient than using criterions

(13) and (14). The � multipliers on the minimum divergence problem �(✓;P ) in (17)

di↵er from � in criterions (13) and (14) by the factor ⌘ (see the discussion in Section 2.3).

As our bootstrap methods are derived based on criterions (13) and (14), when imple-

menting the bootstrap we rescale the multiplier � solving (16) by the multiplier ⌘ on

the constraint �(✓; P̂ )  � in the outer optimization.27 As ⌘ and � are computed sep-

arately in the outer and inner optimizations, respectively, it is computationally most

convenient to implement our bootstrap CSs with ⌫̂ = 0. As discussed in Section 6.2, this

choice is valid but possibly conservative. Despite this potentially conservative choice, the

bootstrap CSs are not materially wider than the bootstrap CSs under the i.i.d. Gumbel

assumption.

To construct the projection CSs, we form a 95% rectangular CS for P20 as described

in Section 6.3. For each draw of ✓̂⇤
⇡
we compute the model-implied CCPs P̂ ⇤

2 under the

i.i.d. Gumbel assumption. We construct t-statistics for each CCP by centering P̂
⇤
2 at P̂2

and studentizing by its standard deviation across draws. For each draw we compute the

27This rescaling is also justified as follows. Let b�(P ) = sup✓2⇥:�(✓;P )� k(✓) and note � = b�(P0)

and ̂� = b�(P̂ ). By similar arguments to Corollary 5 of Milgrom and Segal (2002), one may deduce that
the directional derivative of b�(P ) at P0 involves multiplying the directional derivative of P 7! �(✓;P )
at P0 by the multiplier for �(✓;P )  �. The directional derivative of P 7! �(✓;P ) at P0 may be shown
to be

lim
n!1

t
�1
n (�(✓;P0 + tnhn)��(✓;P0)) = sup

�122⇤(✓;P0)
��

0
12h,

where ⇤(✓;P0) is constructed analogously to ⇤�(✓;P ) in Section 6.2 using the set of multipliers that
solve the minimum divergence problem (16).

13



Table 6: Computation times for the inner problem in the DDC application

�

0.01 0.1 1 10 100

Lower bound 0.124 0.144 0.164 0.285 0.265

Upper bound 0.101 0.119 0.142 0.266 1.039

Note: Times (in seconds) for solving the inner optimization problem at the parameter values
at which ̂� and ̂� are attained. All computations are performed in Julia version 1.6.4 and
Knitro 12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

maximum of the absolute value of the t-statistics. We then take the critical value ĉ2,1�↵

to be the 1� ↵ quantile of the maximum statistic across draws.

Computation times. Table 6 reports computation times for the inner optimization

for evaluating the criterion functions K̂
�
(✓; �̂, P̂ ) and K̂�(✓; �̂, P̂ ) at the parameter values

at which ̂
�
and ̂� are attained. The computation times correspond to solving the min-

imum divergence problem �(✓; �̂, P̂ ) because k does not depend on u (cf. display (17)).

The outer optimizations were typically solved in a few minutes in a 8-core environment

with 64GB memory.

Sensitivity to �. Bounds with �
2-divergence were between 4% narrower and 1% wider

than the bounds for hybrid divergence for all values of �. Repeating the analysis with

L
4-divergence, which is stronger than �

2 and hybrid divergence, produced bounds that

were 10-30% narrower than the hybrid divergence bounds up to � = 1 and at most 5%

narrower than the hybrid divergence bounds for larger values of �. As with the matching

application, these results again show that the conclusions we draw from our analysis are

not sensitive to the choice of � function.

E Proofs of Main Results

Throughout the proofs, we abbreviate upper-semicontinuous and upper-semicontinuity

to u.s.c. and lower-semicontinuous and lower-semicontinuity to l.s.c.

E.1 Proofs for Section 2

Proof of Proposition 2.1. Immediate from Proposition G.1 in Appendix G.2 of

Christensen and Connault (2022).

Recall Condition S from Definition 2.1 and Condition Snp from Definition B.1.
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Lemma E.1 Suppose that Assumption F holds and µ and F⇤ are mutually absolutely

continuous. Then Condition S holds at (✓, �, P ) if and only if Condition Snp holds at

(✓, �, P ).

Proof of Lemma E.1. In view of Hölder’s inequality for Orlicz classes (see (A.1)),

Assumption F implies N1 = {F : D�(FkF⇤) < 1} ✓ F✓. Therefore,

G1 := {EF [g(U, ✓, �)] : F 2 N1} ✓ {EF [g(U, ✓, �)] : F 2 F✓} =: G✓ .

By Corollary 6.6.2 of Rockafellar (1970), it su�ces to show ri(G1) = ri(G✓). As ri(G1) ✓

G1 ✓ G✓, it su�ces to show G✓ ✓ cl(G1) (Hiriart-Urruty and Lemaréchal, 2001, Remark

2.1.9). For any x 2 G✓, we have x = EF [g(U, ✓, �)] for some F 2 F✓. As F ⌧ µ and F⇤

and µ are mutually absolutely continuous, F has a density, say m, with respect to F⇤.

For each n � 1, let m(u) ^ n = min{m(u), n} and define

mn(u) =
m(u) ^ nR

(m(u) ^ n) dF⇤(u)
.

Each Fn defined by dFn = mndF⇤ belongs to N1. It follows that EFn [g(U, ✓, �)] 2 G1.

By monotone convergence, we have EFn [g(U, ✓, �)] ! x. Therefore, x 2 cl(G1).

Proof of Theorem 2.1. We prove only the result for inf K; the result for supK follows

similarly. Note

inf K = inf
✓2⇥

K
np
(✓; �0, P0) = inf

✓2⇥I

K
np
(✓; �0, P0) ,

where the first equality is by definition and the second equality holds because, if ✓ 62 ⇥I ,

then there does not exist a distribution F 2 F✓ under which the moment conditions

hold at (✓, �0, P0) and consequently K
np
(✓; �0, P0) = +1. If ✓ 62 ⇥I , then there does

not exist F 2 N1 under which the moment conditions hold at (✓, �0, P0) either because

N1 ✓ F✓ for all ✓ under Assumption F. Therefore, K1(✓; �0, P0) = +1 in that case

too. We therefore have

inf K1 = inf
✓2⇥I

K1(✓; �0, P0) .

In view of Lemma B.1, it su�ces to show inf K = inf K1. Note that inf K  infK1

holds by virtue of the inclusion N1 ✓ F✓ for all ✓. For the reverse inequality, choose any

✏ > 0. By S-regularity of ⇥I , there exists ✓ 2 ⇥I for which Condition S holds at (✓, �0, P0)

and for which K
np
(✓; �0, P0)  inf K + ✏. As Condition S holds at (✓, �0, P0) and µ ⌧

F⇤ ⌧ µ, Lemma E.1 implies that Condition Snp must also hold at (✓, �0, P0). Moreover,

the µ-essential infimum and F⇤-essential infimum of any function are equal because µ ⌧
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F⇤ ⌧ µ. Therefore by Lemmas B.2 and B.3, we have K1(✓; �0, P0) = K
np
(✓; �0, P0). It

follows by definition of inf K1 that inf K1  K1(✓; �0, P0) = K
np
(✓; �0, P0)  inf K+ ✏.

Therefore, inf K1  inf K.

E.2 Proofs for Section 3

Proof of Proposition 3.1. We prove the result for K
�
; the proof for K� follows

similarly. Consider

v
A := inf

✓2⇥,F2N�

EF [k(U, ✓, �)] subject to (1) holding at (✓, �, P ) , (Program A)

v
B := inf

✓2⇥
EF �,✓ [k(U, ✓, �)] subject to EF �,✓ [g4e(U, ✓, �)] = 0 , (Program B)

where F
�,✓

solves

inf
F2N�

EF [k(U, ✓, �)] subject to (19) holding at (✓, �, P ) ,

and v
B = +1 if there is no solution to this problem. Program A is the approach

described in Section 2 whereas Program B is equivalent to our MPEC implementation.

The inequality v
A
 v

B is trivial if vB = +1. If vB is finite, for any " > 0 there exists

✓
B

"
2 ⇥ for which EF

�,✓B" [k(U, ✓B
"
, �)]  v

B + " and EF
�,✓B" [g4e(U, ✓B" , �)] = 0 where F

�,✓B"

is well defined by Lemma G.2(ii) of Christensen and Connault (2022). As (✓B
"
, F

�,✓B"
)

are feasible for Program A, we have v
A
 v

B + ". As " is arbitrary, we have v
A
 v

B

whenever vB > �1.

A similar argument applies when v
B = �1: for any n 2 N there exists ✓B

n
2 ⇥ for

which EF
�,✓Bn [k(U, ✓B

"
, �)]  �n and EF

�,✓Bn [g4e(U, ✓B" , �)] = 0, where the distribution F
�,✓Bn

is well defined by Lemma G.2(ii) of Christensen and Connault (2022). As (✓B
n
, F

�,✓Bn
) are

feasible for Program A, we have v
A
 �n. Hence, vA = v

B = �1.

Note v
B
 v

A holds trivially if vA = +1. If vA is finite, rewrite Program B as

inf
2R,✓2⇥

 subject to EF �,✓, [g4e(U, ✓, �)] = 0 ,

where F
�,✓,

solves the feasibility program

inf
F2N�

0 subject to (19) and EF [k(U, ✓, �)] =  holding at (✓, �, P ). (49)

For any " > 0 there exists ✓A
"
2 ⇥ and F

A

"
2 N� such that the constraints in Program A
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are satisfied, i.e. EF
A
" [g1(U, ✓A" , �)]  P1, . . ., EF

A
" [g4(U, ✓A" , �)] = 0, and

EF
A
" [k(U, ✓A

"
, �)]  v

A + " .

Then F
A

"
solves the feasibility program (49) with ✓ = ✓

A

"
and  = 

A

"
:= EF

A
" [k(U, ✓A

"
, �)].

Note that EF
A
" [g4e(U, ✓A" , �)] = 0 also holds by construction. Therefore, (A

"
, ✓

A

"
) are

feasible for the augmented form of Program B. It follows that vB  
A

"
 v

A + " holds

for each " > 0. As " > 0 is arbitrary, we have v
B
 v

A whenever vA > �1.

A similar argument applies if vA = �1: for any n 2 N, we may choose ✓
A

n
2 ⇥ and

F
A

n
2 N� such that the constraints in Program A are satisfied and EF

A
n [k(U, ✓A

n
, �)]  �n.

It follows that vB  �n. Hence, vB = v
A = �1.

Proof of Proposition 3.2. We prove the result for F
�,✓
, the result for F �,✓ follows

similarly. We drop dependence of k and g on (✓, �) to simplify notation in what follows.

First, suppose k depends on u. The dual formulation is justified by Proposition 2.1. A

dual solution (⌘, ⇣,�) exists by Proposition G.1(iii) of Christensen and Connault (2022).

Suppose ⌘ > 0. We wish to show that the change of measurem
�,✓
(u) = �̇

?(�⌘
�1(k(u)+

⇣ + �
0
gs(u))) induces a distribution that solves the primal problem (20) at ✓. Di↵eren-

tiability of the objective function in (⌘, ⇣,�) is guaranteed by Assumption F. Also note

that Assumption F(i) ensures �̇?
� 0. The first-order condition (FOC) for ⇣ is

0 = EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))

i
� 1

which implies EF⇤ [m
�,✓
] = 1 and hence that F

�,✓
is a probability measure. The FOC for

� is

0 � EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))g1(U)

i
� P1 ,

0 = EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))g2(U)

i
� P2 ,

0 � EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))g3(U)

i
,

0 = EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))g4s(U)

i
,

hence (1a)–(1c) and EF [g4s(U, ✓, �)] = 0 hold at (✓, �, P ) under F
�,✓
. The FOC for ⌘ > 0
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is

0 = EF⇤
h
�̇
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))

i

� EF⇤
⇥
�
?(�⌘

�1(k(U) + ⇣ + �
0
gs(U)))

⇤
� � .

By Assumption F(i), we may write the convex conjugate �
?? of �? using its Legendre

transform:

�
??(x?) = x

?(�̇?)�1(x?)� �
?((�̇?)�1(x?))

for any x
? in the range of �̇? (Rockafellar, 1970, Theorem 26.4). Setting x

? = �̇
?(x) and

noting that �?? = � holds by the Fenchel–Moreau theorem, we obtain

�(�̇?(x)) = x�̇
?(x)� �

?(x) .

It follows that we may rewrite the FOC for ⌘ as � = EF
⇤ ⇥
�(m

�,✓
(U))

⇤
and so F

�,✓
2 N�.

Now suppose ⌘ = 0. Here we wish to show that m
�,✓
(u) = 1l{u 2 A

�,✓
}/F⇤(A�,✓

)

induces a distribution that solves the primal problem (20) at ✓. As the neighborhood

constraint F 2 N� is not binding, the value of the objective must be the same as the

optimal value when � = 1. In view of Lemma B.2, the value is F⇤-ess inf(k(·)+�
0
gs(·))�

�
0
12P . We can write problem (22) as a nested optimization:

sup
�2⇤s

✓
sup

⌘>0,⇣2R
�⌘EF⇤

h
�
?

⇣
k(U)+⇣+�

0
gs(U)

�⌘

⌘i
� ⌘� � ⇣ � �

0
12P

◆
.

At � = �, the inner problem is the dual of infF2N�
EF [k(U) + �

0
gs(U) � �

0
12P ]. As

⌘ = 0, the constraint F 2 N� is not binding and so the minimizing distribution must be

supported on A
�,✓
. Finally, by convexity of �, the distribution induced by m

�,✓
minimizes

D�( · kF⇤) among all distributions with support A
�,✓
.

Now suppose k does not depend on u. By Proposition G.2 of Christensen and Con-

nault (2022), the primal and dual values of (15) are equal and a dual solution exists.

By similar arguments to above, EF⇤ [m
�,✓
(U)] = 1, and (1a)–(1c) and EF [g4s(U, ✓, �)] = 0

hold at (✓, �, P ) under F
�,✓
. Finally, as there exists F 2 N� under which the mo-

ment conditions (1a)–(1c) and EF [g4s(U, ✓, �)] = 0 hold at (✓, �, P ), we must have

D(F
�,✓
kF⇤)  D(FkF⇤)  �, as required.
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E.3 Proofs for Section 4

Proof of Proposition 4.1. As �1(x)  ā�2(x) for all x > 0, we have D�1(FkF⇤) 

āD�2(FkF⇤). Hence, N�,2 ✓ Nā�,1 for each � > 0. The result follows from this inclusion,

noting that 
ā�,1 and 

ā�,1 are both finite because Assumption F holds for �1.

E.4 Proofs for Section 6

We first present some preliminary lemmas.

Lemma E.2 Suppose that Assumptions F and M(i),(v) hold. Let {(Fn, ✓n, �n, Pn)} ✓

N� ⇥ ⇥ ⇥ � ⇥ P with (�n, Pn) ! (�̃, P̃ ) 2 � ⇥ P and with (1) holding under Fn at

(✓n, �n, Pn). Then: there exists a convergent subsequence (Fnl
, ✓nl

, �nl
, Pnl

) ! (F̃ , ✓̃, �̃, P̃ ) 2

N� ⇥⇥⇥�⇥P along which liml!1 EFnl [k(U, ✓nl
, �nl

)] = EF̃ [k(U, ✓̃, �̃)] and similarly for

each entry of g1, . . . , g4, and (1) holds under F̃ at (✓̃, �̃, P̃ ).

Proof of Lemma E.2. Let mn = dFn
dF⇤

. By Assumption M(v), {✓n} has a convergent

subsequence {✓nl
}. As {mnl

} is k · k�-norm bounded (Lemma F.1(ii) of Christensen and

Connault (2022)), taking a further subsequence if necessary we may assume {mnl
} is

E-weakly convergent to m̃ 2 L (see Appendix F of Christensen and Connault (2022)).

By the triangle inequality, the Hölder inequality (A.1), E-weak convergence, and As-

sumption M(i), we have

���EFnl [mnl
(U)k(U, ✓nl

, �nl
)]� EF⇤ [m̃(U)k(U, ✓̃, �̃)]

���

 |EF⇤ [(mnl
(U)� m̃(U))k(U, ✓̃, �̃)]|+ kmnl

k�kk( · , ✓nl
, �nl

)� k( · , ✓̃, �̃)k ! 0.

It follows by similar arguments that

EF⇤ [m̃(U)] = 1 , EF⇤ [m̃(U)g1(U, ✓̃, �̃)]  P̃1 , EF⇤ [m̃(U)g2(U, ✓̃, �̃)] = P̃2 ,

EF⇤ [m̃(U)g3(U, ✓̃, �̃)]  0 , EF⇤ [m̃(U)g4(U, ✓̃, �̃)] = 0 .

Finally, by Lemma F.1(i) of Christensen and Connault (2022), we have the inequality

� � lim inf l!1 EF⇤ [�(mnl
(U))] � EF⇤ [�(m̃(U))].

Lemma E.3 Suppose that Assumptions F and M(i),(iii)–(v) hold. Then 
�
and � are

finite, and


�
= inf

✓2⇥�(�0,P0)
K

�
(✓; �0, P0) , � = sup

✓2⇥�(�0,P0)
K�(✓; �0, P0) .
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Proof of Lemma E.3. We prove the result only for 
�
; the result for � follows

similarly.

Finiteness of 
�
follows by Assumptions F and M(i)(v) and the Hölder inequality

(A.1). To simplify notation, we suppress dependence of ⇥�(�0, P0) on (�0, P0) in what

follows. Suppose there is ✓ 62 ⇥� with K
�
(✓; �0, P0) < inf✓2⇥�

K
�
(✓; �0, P0). Then there

must exist F✓ 2 N� satisfying (1) at (✓, �0, P0). As�(✓; �0, P0) = �, it follows by convexity

of � that F✓ must be unique. Therefore

EF✓ [k(U, ✓, �0)] = K
�
(✓; �0, P0) < inf

✓2⇥�

K
�
(✓; �0, P0)  inf

✓2⇥�

EF✓ [k(U, ✓0, �0)] , (50)

where, for each ✓ 2 ⇥�, the distribution F✓ solves infF D�(FkF⇤) subject to (1). Existence

of F✓ follows by similar arguments to the proof of Lemma G.2(ii) of Christensen and

Connault (2022); its uniqueness follows by strict convexity of �.

Choose {✓n} ⇢ ⇥� with ✓n ! ✓ (we may choose such a sequence by Assump-

tion M(iv)). By Lemma E.2, there is a subsequence {(✓nl
, F✓nl

, �0, P0)} with (✓nl
, F✓nl

) !

(✓, F ) for some F 2 N� for which (1) holds under F at (✓, �0, P0). It follows by uniqueness

of F✓ that F = F✓. By Lemma E.2, we therefore have

inf
✓2⇥�

EF✓ [k(U, ✓, �0)]  lim
l!1

EF✓nl [k(U, ✓nl
, �0)] = EF✓ [k(U, ✓, �0)] ,

which contradicts (50).

Define

b
�
(�, P ) = inf

✓2⇥�(�,P )
K

�
(✓; �, P ) , b�(�, P ) = inf

✓2⇥�(�,P )
K�(✓; �, P ) .

Lemma E.4 Suppose that Assumptions F and M(i)–(v) hold. Then b
�
(�, P ) and b�(�, P )

are continuous at (�0, P0).

Proof of Lemma E.4. We prove the result only for b
�
; the result for b� follows similarly.

Fix " > 0. By Lemma E.3, we may choose ✓" 2 ⇥�(�0, P0) such that K
�
(✓"; �0, P0) <

b
�
(�0, P0)+". By Lemma G.8 of Christensen and Connault (2022) and Assumption M(ii)

we have �(✓"; �, P ) < � on a neighborhood N of (�0, P0). Moreover, by Lemma G.9(i)

of Christensen and Connault (2022) and Assumption M(i)–(iii) we have

K
�
(✓"; �, P ) < K

�
(✓"; �0, P0) + "
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on a neighborhood N
0 of (�0, P0). On N \N

0 we therefore have

b
�
(�, P )  K

�
(✓"; �, P ) < K

�
(✓"; �0, P0) + " < b

�
(�0, P0) + 2" ,

establishing u.s.c. of b
�
(�, P ) at (�0, P0).

To establish l.s.c., suppose there is " > 0 and (�n, Pn) ! (�0, P0) along which

b
�
(�n, Pn)  b

�
(�0, P0)� 2" . (51)

Note ⇥�(�n, Pn) is nonempty for n su�ciently large by Lemma G.8 of Christensen and

Connault (2022) and Assumption M(ii)(iii). For each n su�ciently large, choose ✓n 2

⇥�(�n, Pn) and Fn 2 N� for which

EFn [k(U, ✓n, �n)] < b
�
(�n, Pn) + " . (52)

By Lemma E.2 there is a subsequence (Fnl
, ✓nl

, �nl
, Pnl

) ! (F , ✓, �0, P0) for some F 2 N�

and ✓ 2 ⇥, such that (1) holds under F at (✓, �0, P0), and for which

lim
l!1

EFnl [k(U, ✓nl
, �nl

)] = EF [k(U, ✓, �0)] � K
�
(✓; �0, P0) .

In view of (51) and (52) and Lemma E.3, this implies K
�
(✓; �0, P0)  b

�
(�0, P0) � " =


�
� ", contradicting the definition of 

�
.

Proof of Theorem 6.1. Note that 
�
= b

�
(�0, P0) and � = b�(�0, P0) by Lemma E.3

and ̂
�
= b

�
(�̂, P̂ ) and ̂� = b�(�̂, P̂ ) by definition. The result now follows by Lemma E.4

and Slutsky’s theorem.

Lemma E.5 Suppose that Assumptions F and M(i),(ii) hold, Condition S’ holds at

(✓, �, P ), and �(✓; �, P ) < �. Then there is a neighborhood N of (✓, �, P ) such that

Condition S’ holds at (✓̃, �̃, P̃ ) and �(✓̃; �̃, P̃ ) < � for all (✓̃, �̃, P̃ ) 2 N .

Proof of Lemma E.5. By Lemma G.7 of Christensen and Connault (2022), Condition

S’ holds at all (✓̃, �̃, P̃ ) in a neighborhood N
0 of (✓, �, P ). Moreover, �(✓̃; �̃, P̃ ) < � holds

at all (✓̃, �̃, P̃ ) in a neighborhood N
00 of (✓, �, P ) by Lemma G.8 of Christensen and

Connault (2022). Set N = N
0
\N

00.

In the remainder of this subsection we drop dependence of all quantities on �.

Proof of Theorem 6.2. We prove the result only for b
�
; the result for b� follows

similarly.
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Step 1: We first show ⇥
�
(P0) is nonempty and compact. For nonemptiness, choose

{✓n} such that K
�
(✓n;P0) # 

�
. Let Fn solve the primal problem for ✓n. By Lemma E.2,

there is a subsequence (Fnl
, ✓nl

) ! (F , ✓) with F 2 N� and ✓ 2 ⇥ such that (1) holds

under F at (✓, P0) and for which


�
= lim

l!1
EFnl [k(U, ✓nl

)] = EF [k(U, ✓)] .

Therefore, ⇥�(P0) is nonempty. We may deduce by similar arguments that ⇥
�
(P0) is

closed. Compactness now follows by Assumption M(v).

Step 2: We now prove directional di↵erentiability. Let Pn = P0 + tnhn with tn # 0

and hn ! h. Choose ✓ 2 ⇥
�
(P0). By Lemma E.5 and Assumption M(iii)(vi), Condition

S’ holds at (✓, Pn) and �(✓;Pn) < � for n su�ciently large, so by Proposition G.1(iv)

of Christensen and Connault (2022) the set ⇤
�
(✓;Pn) is nonempty and compact for n

su�ciently large. It now follows by definition of the objective (13) that

b
�
(Pn)� b

�
(P0)  K

�
(✓;Pn)�K

�
(✓;P0)  tn ⇥��

0
12hn ,

for all �12 2 ⇤
�
(✓;Pn). Finally, by Lemma G.9(ii) of Christensen and Connault (2022)

we obtain

lim sup
n!1

b
�
(Pn)� b

�
(P0)

tn
 max

�122⇤�(✓;P0)
��

0
12h .

Taking the infimum of both sides over ✓ 2 ⇥
�
yields

lim sup
n!1

b
�
(Pn)� b

�
(P0)

tn
 inf

✓2⇥�

max
�122⇤�(✓;P0)

��
0
12h . (53)

For the lower bound, choose ✓n 2 ⇥�(Pn) with K
�
(✓n;Pn)  b

�
(Pn) + t

2
n
for all

n su�ciently large. Take a subsequence {✓nl
}. By Assumption M(v) (taking a further

subsequence if necessary), we have ✓nl
! ✓ 2 ⇥. By similar arguments to step 1, we

may in fact deduce that ✓ 2 ⇥
�
. Reasoning as above, for l su�ciently large we have

b
�
(Pnl

)� b
�
(P0) � K

�
(✓nl

;Pnl
)�K

�
(✓nl

;P0)� t
2
nl
� tnl

⇥��
0
12hnl

� t
2
nl
,

where the final inequality holds for any �12 2 ⇤
�
(✓nl

;P0). By Assumption M(vii), we

may choose �12,nl
2 ⇤

�
(✓nl

;P0) for which ��
0
12,nl

h ! max�122⇤�(✓;P0) ��
0
12h as l ! 1.

22



Therefore,

lim inf
l!1

b
�
(Pnl

)� b
�
(P0)

tnl

� max
�122⇤�(✓;P0)

��
0
12h � inf

✓2⇥�

max
�122⇤�(✓;P0)

��
0
12h .

As the lower bound does not depend on the subsequence {✓nl
}, we have

lim inf
n!1

b
�
(Pn)� b

�
(P0)

tn
� inf

✓2⇥�

max
�122⇤�(✓;P0)

��
0
12h , (54)

proving directional di↵erentiability. Finally, Assumption M(vii) and Lemma G.9(ii) of

Christensen and Connault (2022) imply ✓ 7! ⇤
�
(✓;P0) is continuous at each ✓ 2 ⇥

�
. The

set ⇤
�
(✓;P0) is also compact for each ✓ 2 ⇥

�
by Proposition G.1(iv) of Christensen and

Connault (2022). It follows by the maximum theorem that the infima in (53) and (54)

can be replaced by minima.

Step 3: In view of step 2, the asymptotic distribution follows by Theorem 2.1 of

Shapiro (1991) and the fact that
p
n(P̂ � P ) !d N(0,⌃).

Proof of Theorem 6.3. We verify the conditions of Theorem 3.2 of Fang and Santos

(2019). Their Assumptions 1 and 2 hold by Theorem 6.2 and because
p
n(P̂ � P0) !d

N(0,⌃) with ⌃ finite, respectively. Their Assumption 3 is assumed directly. Finally,

Lemma G.11 of Christensen and Connault (2022) shows that bdb
�,P0

and b
db�,P0 satisfy

the su�cient conditions for Assumption 4 of Fang and Santos (2019), which is presented

in their Remark 3.4. This proves consistency. Coverage of CS
1�↵

�,L
and CS

1�↵

�,U
follows by

continuity of the distribution functions. Coverage of CS
1�↵

�
follows by the Bonferroni

inequality.

Proof of Theorem 6.4. We prove the result only for CS
1�↵

�
; the result for the other

CSs follow similarly. Say that P0 2 CS
1�↵

P0
if P10  P̂

1�↵

1,U and P20 2 [P̂ 1�↵

2,L , P̂
1�↵

2,U ]

both hold. By Lemma E.3, for each " > 0 we may choose ✓
"
, ✓" 2 ⇥�(P0) such that

K
�
(✓

"
;P0) < 

�
+ " and K�(✓";P0) > � � ". Let F

✓"
and F

✓"
solve problem (15) at

(✓
"
;P0) and (✓";P0), respectively. Whenever P0 2 CS

1�↵

P0
holds, F

✓"
and F

✓"
must also

satisfy the “relaxed” moment conditions used for computing ̂
�,1�↵

and ̂�,1�↵, so it

follows that �cs(✓"; P̂1�↵) < � and �cs(✓"; P̂1�↵) < �. Moreover, as the primal solutions

for K
�
(✓

"
;P0) and K�(✓";P0) are feasible for the relaxed problem whenever P0 2 CS

1�↵

P0
,

we have

̂
�,1�↵

 K
�,cs

(✓
"
; P̂1�↵)  K

�
(✓

"
;P0) < 

�
+ " ,

and similarly ̂�,1�↵ > �� ". As " is arbitrary, we have that 
�
� ̂

�,1�↵
and �  ̂�,1�↵
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holds whenever P0 2 CS
1�↵

P0
. The desired coverage now follows by (30).
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