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Abstract

We propose a framework for analyzing the sensitivity of counterfactuals to para-
metric assumptions about the distribution of latent variables in structural models.
In particular, we derive bounds on counterfactuals as the distribution of latent vari-
ables spans nonparametric neighborhoods of a given parametric specification while
other “structural” features of the model are maintained. Our approach recasts
the infinite-dimensional problem of optimizing the counterfactual with respect
to the distribution of latent variables (subject to model constraints) as a finite-
dimensional convex program. We also develop an MPEC version of our method to
further simplify computation in models with endogenous parameters (e.g., value
functions) defined by equilibrium constraints. We propose plug-in estimators of the
bounds and two methods for inference. We also show that our bounds converge
to the sharp nonparametric bounds on counterfactuals as the neighborhood size
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1 Introduction

Researchers frequently make parametric assumptions about the distribution of latent
variables in structural models. These assumptions are typically made for computational
convenience! or because simulation-based methods are used for estimation. In many
models, such as those we consider in this paper, the distribution of latent variables is
not nonparametrically identified. This raises the possibility that model parameters and
the outcomes of policy experiments, or counterfactuals, may be only partially identi-
fied when parametric assumptions are relaxed. That is, different distributions may fit
the data equally well in-sample, but may yield different values of the counterfactual.
It is therefore natural to question whether counterfactuals are sensitive or robust to
researchers’ parametric assumptions, especially when evaluating the credibility of struc-
tural modeling exercises.

This paper proposes a framework for analyzing the sensitivity of counterfactuals to
parametric assumptions about the distribution of latent variables in a class of structural
models. In particular, we derive bounds on counterfactuals as the distribution of latent
variables spans nonparametric neighborhoods of a given parametric specification while
other “structural” features of the model are maintained. This approach is in the spirit of
global sensitivity analysis advocated by Leamer (1985) (see also Tamer (2015)). Global
sensitivity analyses are important in this context: many structural models are nonlinear
so policy interventions can have different effects at different points in the parameter
space. But a major difficulty with implementing global sensitivity analyses is tractabil-
ity. A more tractable alternative are local sensitivity analyses, which are based on small
perturbations around a chosen specification. Because local approaches rely on lineariza-
tion, they may fail to correctly characterize the range of counterfactuals predicted by a
nonlinear model when the distribution differs nontrivially from the researcher’s chosen
parametric specification.

Our main insight is to borrow from the robustness literature in economics pioneered
by Hansen and Sargent (2001, 2008) to simplify computation using convex program-

ming.? Following this literature, we define neighborhoods around the researcher’s para-

Examples include the conventional Gumbel (or type-I extreme value) assumption in discrete choice
models following McFadden (1974), dynamic discrete choice models following Rust (1987), and matching
models with transferable utility following Dagsvik (2000) and Choo and Siow (2006). Models of static or
dynamic discrete games often impose parametric assumptions about the distribution of payoff shocks—
see, e.g., Berry (1992), Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), and Ciliberto
and Tamer (2009).

2Qur approach is also related to the field of distributionally robust optimization in operations re-



metric specification using statistical divergence (e.g., Kullback—Leibler divergence), with
the option to add certain shape restrictions as appropriate. For tractability, we restrict
our attention to models that may be written as a finite number of moment (in)equalities,
where the expectation is with respect to the distribution of latent variables. While re-
strictive, this class accommodates many important models of static and dynamic discrete
choice, discrete games, and matching.

To describe our procedure, consider the problem of minimizing or maximizing the
counterfactual at a fixed value of structural parameters by varying the distribution of
latent variables over a neighborhood, subject to the model’s (in)equality restrictions.
We use duality to recast this infinite-dimensional optimization problem as a finite-
dimensional convex program. The value of this inner program is treated as a criterion
function, which is optimized in an outer optimization with respect to structural parame-
ters. Importantly, the dimension of the inner problem is independent of the neighborhood
size, making our procedure tractable over both small and large neighborhoods. To further
simplify computation, we develop an MPEC version of our procedure for models featur-
ing endogenous parameters (e.g., value functions) defined by equilibrium constraints. We
show that this implementation can produce significant computational gains for dynamic
discrete choice models in particular.

Our approach is conceptually different from nonparametric partial identification anal-
yses which derive bounds on counterfactuals under minimal distributional assumptions.
But as we show, bounds computed using our procedure converge to the (sharp) nonpara-
metric bounds in the limit as the neighborhood size becomes large. Aside from sensitivity
analyses, our methods may therefore be used to approximate nonparametric bounds by
taking the neighborhood size to be large but finite.

For estimation and inference, we propose simple plug-in estimators of the bounds
and establish their consistency. We also propose and theoretically justify two methods
for inference: a computationally simple but conservative projection procedure and a
relatively more efficient bootstrap procedure.

We illustrate our procedures with two empirical applications. The first revisits the
“marital college premium” estimates reported in Chiappori, Salanié, and Weiss (2017),
which relied on an i.i.d. Gumbel (type-I extreme value) assumption for the distribution
of individuals’ idiosyncratic marital preferences (see also Choo and Siow (2006)). The
second empirical application performs a counterfactual welfare analysis in the canonical

dynamic discrete choice model of Rust (1987).

search. See, e.g., Shapiro (2017), Duchi and Namkoong (2021), and references therein.



Related literature. Our approach has connections with global prior sensitivity in
Bayesian analysis (Chamberlain and Leamer, 1976; Leamer, 1982; Berger, 1984), most
notably Giacomini, Kitagawa, and Uhlig (2016) and Ho (2018) who consider sets of
priors constrained by Kullback—Leibler divergence relative to a default prior.

Motivated by questions of sensitivity, Chen, Tamer, and Torgovitsky (2011) study
inference in semiparametric likelihood models using sieve approximations for the infinite-
dimensional nuisance parameter (the distribution of latent variables in our setting). For
the class of moment-based models we consider, our approach instead eliminates the
infinite-dimensional nuisance parameter via a convex program of fixed dimension.

Several other works have used convex duality to characterize identified sets in models
with latent variables. Most closely related are Ekeland, Galichon, and Henry (2010)
and Schennach (2014).2 The problem we study is different, both because of its focus
on counterfactuals, rather than structural parameters, and because the optimization is
performed over a neighborhood, rather than over all distributions. As a consequence,
our estimation and inference methods are also quite different.

Torgovitsky (2019b) uses linear programming to characterize sharp identified sets in
latent variable models defined by quantile restrictions. Within this class, his approach
is more computationally convenient than ours for characterizing identified sets. Several
important moments or counterfactuals cannot be expressed as quantile restrictions, such
as social surplus in discrete choice models and Bellman equations in dynamic discrete
choice models. Our approach is compatible with these moments and counterfactuals,
thereby allowing the user to characterize identified sets in broader classes of model as
well as to perform sensitivity analyses.

There is also a literature deriving nonparametric bounds in specific latent variable
models. Examples include Manski (2007, 2014), Allen and Rehbeck (2019), Tebaldi,
Torgovitsky, and Yang (2019), Lafférs (2019), Torgovitsky (2019a), and Gualdani and
Sinha (2020). Most closely related is Norets and Tang (2014), who construct identified
sets of counterfactual conditional choice probabilities (CCPs) in dynamic binary choice
models. Their approach is specific to counterfactual CCPs and to dynamic binary choice
models. Our approach allows for a wider range of counterfactual (e.g., welfare), shape

restrictions, and multinomial choice, in addition to performing sensitivity analyses.*

3Works using other notions of “duality” to construct identified sets include Beresteanu, Molchanov,
and Molinari (2011), Galichon and Henry (2011), Chesher and Rosen (2017), and Li (2018).

4Kalouptsidi, Scott, and Souza-Rodrigues (2021) and Kalouptsidi, Kitamura, Lima, and Souza-
Rodrigues (2020) consider the converse problem, in which flow payoffs are nonparametric (as they can
be in our setting) but the distribution of latent payoff shocks is known.



Finally, our work is complementary to the recent literature on local sensitivity—see,
e.g., Kitamura, Otsu, and Evdokimov (2013), Andrews, Gentzkow, and Shapiro (2017,
2020), Armstrong and Kolesar (2021), Bonhomme and Weidner (2021), and Mukhin
(2018). Much of this literature is concerned with local misspecification of moment con-

ditions, which is different from the setting we consider.

Outline. Section 2 introduces our procedure, estimators of the bounds, and shows
our approach recovers nonparametric bounds as the neighborhood size becomes large.
Section 3 discusses practical aspects and implementation details. Section 4 gives guidance
for interpreting the neighborhood size. Empirical applications are presented in Section 5.
Section 6 discusses estimation and inference. The online appendix presents extensions
of our methodology, connections with local sensitivity analyses, additional empirical
results, and proofs of our main results. A secondary appendix of our working paper
version Christensen and Connault (2022) presents background material on Orlicz classes

and supplemental proofs.

2 Procedure

We begin in Section 2.1 by describing the class of models to which our procedure may
be applied. Section 2.2 describes our approach, Section 2.3 shows how duality is used to
simplify the bounds, and Section 2.4 introduces our estimators of the bounds. Section 2.5
shows our bounds converge to the sharp nonparametric bounds as the neighborhood size

becomes large.

2.1 Setup

We consider a class of models that link a structural parameter # € © C R%, a vector of
targeted moments Py € P C R4 and possibly an auxiliary parameter v € I' (a metric

space) via the moment restrictions

E"[g1(U, 0,%)] < Pio, (la)
E"g2(U, 6,%)] = Pao, (1b)
E"[gs(U, 0,70)] <0, (1c)
EF[94(U79770)] =0, (1d)



where g1, ..., g4 are vectors of moment functions, Py = (Pyg, Py) is partitioned con-
formably, and EF denotes expectation with respect to a vector of latent variables U ~ F.

We assume that the researcher has consistent estimators (P, %) of (Py,70). We also as-

sume that the researcher is interested in a (scalar) counterfactual of the form

This setup accommodates counterfactuals that do not depend explicitly on U, in which
case (2) reduces to kK = k(6,v). Note that x will still depend on the distribution of U
through 60, whose values are disciplined by the moment conditions (1).

Several models and counterfactuals of interest fall into this framework. We review

three examples before proceeding.

Example 2.1 (Discrete choice and consumer welfare) Suppose an individual de-
rives utility h; (X, 0)+ U, from choice j € Jp :={0,1,...,J}, where X € X are observed
covariates and U = (Uj);ecy, is latent (to the econometrician). We assume, as typical,
that U is drawn independently across individuals from a continuous distribution F'. The

probability that an individual with characteristics x chooses j is
pilz) = Pr (hy(x,0) + U; = maxjeg, (hy(z,0) + Uy)) (3)

where Pr denotes probabilities when U ~ F'. In empirical work, 6 is typically estimated
using a criterion that fits the model-implied choice probabilities (3) to probabilities
observed in the data. Welfare analyses are often based on the social surplus (McFadden,
1978)

W(z) = EF [maxjcy, (h;(x,0) + Uj)],

which is the average utility consumers with characteristics x derive from the choice
problem. A related welfare measure is the change in surplus AW (z,, xy) = W(z,) —
W () associated with a shift from z;, to z,. In practice, it is common to assume the U;
are i.i.d. Gumbel (type-I extreme value), as this yields closed-form expressions for choice
probabilities and the welfare measures W(x) and AW (z,, zp).

Our approach may be used to perform a sensitivity analysis of W (z) and AW (z,, x)
to parametric assumptions about F' when & is finite. A leading example is matching
models with finitely many agent types—see Section 5.1 and references therein. Under-

standing the sensitivity of W (z) and AW (x,, z,) to F is important in this case because



W (z) and AW (z,, ;) are not nonparametrically identified.”
In our notation, g collects indicator functions representing the choice probabilities

(3) across covariates € X and choices j € J :={1,...,J} (j = 0 is redundant):
g2<U7 0) = (]1 {h] (ZL’, ‘9) + Uj = mmaXjerg, (hj'<x7 Q) + Uj/)})(j,z)ejx)(

and Py = (Pr(j|x))(jzesxa is the vector of true choice probabilities. There are no
g1, 93, ga, or 7y in this model. Finally, k(U,6) = maxjcy, (hj(x,0) + U;) for W(x) and
k(U,0) = maxjecz, (hj(zq,0) + U;) — maxje g, (h;(zp,0) + U;) for AW (x4, ). O

Example 2.2 (Discrete games) Following Bresnahan and Reiss (1990, 1991), Berry
(1992), and Tamer (2003), consider the complete-information game in Table 1.

Firm 2
0 1

1 (Biz+U1,0)  (Biz — A1+ U, Bz — Dy + Us)

Firm 1

Table 1: Payoff matrix for (Firm 1, Firm 2) when X = z.

Here U = (Uy, Us) is the latent (to the econometrician) component of firms’ profits,
which is independent of covariates X. Suppose that the solution concept is restricted to
equilibria in pure strategies. The econometrician may estimate the probabilities of the
potential market structures (0,0), (0,1), (1,0), (1,1) (conditional on X) from data on a
large number of markets. As the model is incomplete—there are values of U for which
there are multiple equilibria—moment inequality methods are typically used in empirical
work to avoid restricting the equilibrium selection mechanism. However, strong paramet-
ric assumptions are often made about the distribution of U (typically bivariate Normal)
to derive the model-implied probabilities for different market structures; see, e.g., Berry
(1992), Ciliberto and Tamer (2009), Beresteanu et al. (2011), and Kline and Tamer
(2016). It therefore seems natural to also question the sensitivity of counterfactuals to
parametric assumptions for U.

This model falls into our setup when the regressors X have finite support X.° In

5See, e.g., Berry and Haile (2010, 2014) and Allen and Rehbeck (2019) for nonparametric identifi-
cation of utilities and welfare measures in discrete choice models when characteristics have continuous
support.

6Continuous regressors are often discretized in empirical applications; see, e.g., Ciliberto and Tamer
(2009), Grieco (2014), Kline and Tamer (2016), and Chen, Christensen, and Tamer (2018).



our notation, g; collects the moment inequalities that bound the probabilities of (0, 1)
and (1,0) across © € X, with Pjg denoting the corresponding true probabilities. The
inequalities are typically expressed as upper bounds on the probabilities of (0,1) and

(1,0); we flip the sign to be compatible with (1a):

(—I{U1 > =B17;Uz < Ay — B57}) cr

U,0) =
q1(U,0) [ (—1{U; <Ay — Bix; Uy > —pBha})

TeEX

where 0 = (A, Ao, By, f2). Similarly, go and Py collect the moment conditions and
probabilities for outcomes (0,0) and (1,1), which are always realized as the result of

unique equilibria:

_ | (Pr((0,0)[X = z))

g>(U,0) = P = [ (PH((L, DX = 2)),cx ] |

(U, < —Ba; Uy < —F52}) v
(U, > Ay — Ba; Uy > Ay — Bha})per |

There is no gs, g4, or 7y in this model. Ciliberto and Tamer (2009) compute upper bounds
on the probability of entrants under a counterfactual payoff shift, say 7(6). The function
k(U,0) = W{U, > 7(0) — pyz} corresponds to the upper bound on the probability of firm

1 entering when X = x under this counterfactual. O

Example 2.3 (Dynamic discrete choice) Consider a canonical dynamic discrete choice
(DDC) model following Rust (1987). The decision maker solves

V(s) =EF max (as(0z) + Ug+ BE[V(s)|d, s]) |, (4)
0
where s € S is a Markov state variable, Dy = {0,1,..., D} is the set of actions, 7y is

the flow payoff for action d in state s which is parameterized by 0, Uy is a latent payoft
shock, # € (0,1) is a discount parameter, and E|[- |d, s| denotes expectation with respect
to the future state s’. The distribution F' of U = (Uy)aep, is typically assumed to be

continuous and independent of s. The CCP of action d in state s is

p(d|s) =Pp (ﬂ'd,s(eﬂ> +Ua+ BEV(S)|d, s] = max (Tar,s(0x) + Ua + BE[V (s')|d, 3])) ;
0
(5)
where Pr denotes probabilities when U ~ F'.
It is standard to assume the Uy are i.i.d. Gumbel, as this yields closed-form expres-

sions for the expectation in (4) and multinomial-logit expressions for the CCPs (5).



Parameters 0, or (0., ) are typically estimated using a criterion function that fits the
model-implied CCPs (5) to probabilities observed in the data. Counterfactuals are then
computed by solving (4) under alternative laws of motion, flow payoffs, or other inter-
ventions.

When S is finite, model parameters, counterfactual CCPs, and counterfactual welfare
measures are typically not identified without parametric restrictions on F. Our procedure
may be used perform a sensitivity analysis of counterfactuals to parametric assumptions
on F as follows. Let 0 = (0,,v,0) or 0 = (0,,0,v,0), where v = (V(s))ses and 0 =
(V(s))ses collect the baseline and counterfactual value functions across s € S. Also let
v = (Mg)aep, collect the transition matrices for s, go collect indicator functions for the
CCPs (5) across states s € S and choices d € D :={1,..., D} (d = 0 is redundant):

0o(U,0,7) = (11 {wd,swﬂ) s+ BMao = max (nas(0s) + Us + 5Md,,sv>})

d’€Do (d,s)EDXS
with Mg, denoting the sth row of Mgy, and Py = (Pr(d|s)),sepxs collect the cor-
responding true CCPs. Finally, g4 collects moment functions representing (4) in the

baseline model and under the counterfactual:

(maxgep, {ma,s(0x) + Ug + BMy v} — v5)ses
g4(U7 (97 rY) = R -~ R R 9 (6)
(maXdE’Do{ﬂ-d,s(eﬂ) + Ud + 6Md,sv} - Us)sES

where v, = V(s), o, = V(s), and 7, B, M, denote counterfactual flow payoffs, dis-
count factor, and law of motion.” We recommend including the location normalizations
EF[Uy] = 0 for d € Dy in g4 for interpretability. We also recommend including scale
normalizations in g4 so that Ef [maxgep, Uy] is finite. For instance, in Section 5.2 we

normalize EX[U3] for all d € Dy.

Counterfactual CCPs can be computed using

k(U7 977) =1 {ﬁ-d,s(eﬂ) + Ud + BMd,s{} = Imax <'ﬁ-d’,s(07r) + Ud’ + BMd’,sf}>} .

d’' €Dy

Change in average welfare corresponds to k(6,v) = w'(0 — v) for a weight vector w. O

If Ef[maxgep, Ug) is finite, then v — (Ef maxgep,{mas(0r) + Us + BMasv}])ses is a £°-
contraction of modulus 3 on RIS, Hence, there is a unique (v,) solving EF[g4(U,0,7)] = 0 at any
fixed (A, B, B, F). The solution (v, %) must collect the solutions to (4) in the baseline model and coun-
terfactual across states: v = (V(s))ses and & = (V(5))ses. It follows that F' satisfies B [g4(U, 0,~)] = 0
at @ = (0, 8,v, ) if and only if (v,?) corresponds to the value functions V and V under F.



Remark 2.1 We allow for conditional moments models with Elg, (U, X, 0,7)|X = z] <
Pyy(z) (and similarly for (1b)-(1d)) if U is independent of X and X takes values in a
finite set X. Moment functions are then stacked across x € X to form g1, go, g3, and g4
(see Examples 2.1-2.3). Appendiz A discusses extensions to conditional moment models
where the distribution of U may vary with the value of (discrete) covariates, and to non-
separable models with discrete covariates. Models with continuous covariates fall outside

the scope of our procedure.

Remark 2.2 Our setup relies on the counterfactual being expressible as (2). If k is
vector-valued, our procedure can be applied to compute the support function® of the iden-
tified set of counterfactuals: set k™(U,0,~) = 7'k(U, 0,~) for a conformable unit vector T
and replace (2) with k™ = EF[k™(U,0,v)]. Our setup excludes counterfactuals that are

infinite-dimensional, such as the distribution of the number of firms in a market.

Remark 2.3 The distribution F' is not nonparametrically identified in any of the above
examples or, more generally, in the class of models (1) when the support of U con-
tains many more points than there are moment conditions (e.g., when U is continuously
distributed).

In common practice, a seemingly reasonable or computationally convenient distribu-
tion, say Fj, is assumed by the researcher and maintained throughout the analysis (e.g.,
bivariate Normal in Example 2.2 and i.i.d. Gumbel in Examples 2.1 and 2.3). Given F,
and estimates P = (151, 152) of Py and ¥ of 7y, the researcher computes an estimate 0 of

f using a criterion function based on the moment conditions
(7)

Finally, the researcher estimates the counterfactual using & = EF[k(U, 6, 4)]. If k does
not depend on U, then the estimated counterfactual is simply & = k(é, 4). In this case
/ will still depend implicitly on F} through 0.9

The researcher’s chosen specification F), is used both for estimation of 6 and again
when computing the counterfactual. A natural question is: to what extent does the
counterfactual depend on the choice of distribution? The main contribution of this paper

is to provide a tractable econometric framework for answering this question.

8A closed convex set is determined by its support function—see Rockafellar (1970, Section 13).
9While this discussion has assumed point identification of # and & for sake of exposition, our methods
allow structural parameters and counterfactuals to be partially identified.



2.2 Our Approach

As a sensitivity analysis, we shall relax the researcher’s parametric assumption and
allow F' to vary over nonparametric neighborhoods Ns of F,, where ¢ is a measure of
neighborhood “size”. When we do so, there may be multiple pairs (6, F) € © x N that
satisfy (1) but which yield different values of the counterfactual. Our objects of interest

are the smallest and largest values of the counterfactual over all such (6, F') pairs:

. . F .

fiy =, dnf E7[K(U,6,7%)]  subject to (1), (8)

Rs= sup EF[k(U,0,7)] subject to (1). (9)
0cO,FEN;

By focusing on k5 and g, our approach naturally accommodates models with partially-
identified structural parameters and counterfactuals. Our approach also sidesteps having
to compute the identified set of structural parameters.

The optimization problems (8) and (9) are made tractable by a convenient choice of
N;. Following Hansen and Sargent (2001) and Maccheroni, Marinacci, and Rustichini
(2006), we consider neighborhoods constrained by ¢-divergence (Csiszar, 1975):

N; = {F € F: D4(F||F.) < 6},

dF
i ; 10
Dy(F||F.) = /¢ (dl«l) dfy A F<F, 10)

400 otherwise,

where F denotes all probability measures on the support'® U of U and F' < F, denotes
absolute continuity of F' with respect to F.. The convex function ¢ : [0,00) — R U{+0c0}

penalizes deviations of F' from F,. For example, ¢(z) = xlogx — x + 1 corresponds to

Kullback-Leibler (KL) divergence, ¢(z) = 3(z — 1)? corresponds to Pearson x? diver-

gence, and
a2 —1—plx—1)

pp—1)
corresponds to LP divergence. If F, has positive (Lebesgue) density, then the absolute

¢(r) = (p>1),

continuity condition merely rules out F' with mass points.

Remark 2.4 Normalizations and other shape restrictions may be added by augment-

ing the moment functions g, ..., gs. Examples include: (i) location normalizations, e.g.

10That is, U is the set of all values that U could conceivably take according to the model, which is
possibly larger that the support of the measure F.

10



EF[U] = 0 or EF[I{U; < 0} — 0.5] = 0 for each element U; of U; (i) scale normal-
izations, e.g. EF'[U2] = 1; (ii) covariance normalizations, e.g. EF[UU'] = I; and (iv)
smoothness restrictions, e.g. EX[I{U; < apy1} — H{U; < ap}] < C foray < ... < ag

and a positive constant C'.

Remark 2.5 Appendix A.1 shows that shape restrictions including symmetry, exchange-
ability, and, more generally, invariance under a finite group of transforms, are also easy

to impose.

2.3 Dual Formulation

We use convex duality to simplify computation of x5 and x5. We start by noting x5 and

ks may be written as the solution to two profiled optimization problems:

Ks :eilel(gﬁa(e;’yoapo% s Iilelgfé(eé’Yo,Po),
where the criterion functions K(6;7, Py) and K(0;7, Py) are, respectively, the infi-
mum and supremum of EX[k(U, 6, ~,)] with respect to F' € N subject to the moment
conditions (1). In what follows, it is helpful to define the criterion functions at a generic
(v, P). To do so, we say that the moment conditions (1) hold “at (0,~, P)” if they hold
when ~y is replaced by v and F, is replaced by P. Then

K;(0;7,P) = Flélj\f/(5 EX[k(U,0,v)] subject to (1) holding at (6,7, P), (11)

Ks(0;7,P) = sup EX[k(U,0,7)] subject to (1) holding at (8,7, P), (12)
ENs
with the understanding that K;(6;v, P) = +oo and K4(6;v, P) = —oo if there does not
exist a distribution in Ny for which the moment conditions (1) hold at (6, P).

We first impose some mild regularity conditions on F}, ¢, and the moment functions
to justify the dual formulation. Similar conditions are used in generalized empirical
likelihood estimation (see, e.g., Komunjer and Ragusa (2016)). Let @, denote the set of
all ¢ : [0,00) = R U {400} such that ¢ is continuously differentiable on (0,+o00) and
strictly convex, with ¢(1) = ¢'(1) = 0, ¢(0) < +o0, lim, 0 ¢'(x) <0, lim, 4o ¢(z) /2 =
+00, lim, 100 ¢'(2) > 0, and lim, o 2¢'(2)/P(x) < +00. The functions inducing KL,
2, and L? divergence all belong to ®.

Let ¢* () = Sup;s0.4(1) <100 (tT — ¢(t)) denote the convex conjugate of ¢ € ®q and let
P(x) = ¢*(x) —x. Define € = {f : U — R for which EF*[¢)(c|f(U)|)] < oo for all ¢ > 0}.

11



The class £ is an Orlicz class of functions (see Appendix F of Christensen and Connault
(2022) for details). For example,

E={f U—-R:EF[eVU] <o forall c >0} for KL divergence,
E={f:U—-R:EF[f(U)} <} for x? divergence, and
E={f:U—-R:E™[|f(U)]] < oo} for L? divergence (p~ + ¢~ =1).

Let g = (g1, 92, g3, g4) denote the vector formed by stacking each of the moment functions

from (la)—(1d). Our key regularity condition is the following:

Assumption ® (i) ¢ € D.
(ii) k(-,60,7) and each entry of g(-,0,7) belong to £ for each 8 € © and v € T.

For KL divergence, the class € contains bounded functions (e.g., indicator functions)
and functions that are additively separable in U provided Fi has tails that decay faster
than exponentially (e.g., Gaussian but not Gumbel). Assumption ® therefore fails for
KL divergence in Examples 2.1 and 2.3, but holds for x? or L? divergence as these only
require finite second or gth moments, respectively.

Let d = Zj‘zl d; where d; is the dimension of g;, let A = R x R% x R® x Ré,
and let \j5 denote the first d; + dy elements of X\. A derivation of the following criterion

functions is presented in Appendix G.2 of Christensen and Connault (2022).

Proposition 2.1 Suppose that Assumption ® holds. Then the criterion functions (11)
and (12) may be restated as

K,(0:7, P) = o _pEF- [¢* (k(U,eﬁ)—i-C_—;)\'g(Uﬁﬁ))] s —C— NP, (13)
77 , )
K;(0;,P) = . nf yEF [qﬁ* <k(Uﬂn)—<ﬁ—A g(Uﬁﬂ))] Fpi 4 CENLP. (14)

Moreover, the value of (13) is 400 (equivalently, the value of (14) is —oo) if and only
if there is no distribution in N under which (1) holds at (0,~, P).

Remark 2.6 Problems (13) and (14) are convex in (n,(,\). The parameter n is the
Lagrange multiplier for the constraint Dy(F||Fy) < §. Similarly, \ collects the Lagrange
multipliers for the moment (in)equalities (1a)—(1d). These multipliers are non-negative
if they correspond to inequality restrictions and unconstrained otherwise. Finally, C is
the Lagrange multiplier for the constraint [ dF = 1, which ensures that the optimization

18 over probability measures.
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Problems (13) and (14) simplify in some special cases. For KL neighborhoods, ¢*(x) =

e’ — 1 and the multiplier ¢ has a closed-form solution, leading to

K5(6;7,P) = sup —nlogE™ [6‘(’“(U’e’”)“/g(U"”))/ "} — 18 = NP,
n>0,A€A

K;(0;7,P) = wi()nf@nlog EF [e(k(U’B’V)*)‘/g(U’e’V))/"} +nd+ N, P .

Another special case is when k(u,,~) does not depend on w. To analyze this case,

consider
A(0;~, P) := i%f Dy(F||F.) subject to (1) holding at (6,~, P). (15)

The value A(6;~, P) is the minimum ¢-divergence between F, and a distribution F
for which the moment conditions hold at (6, , P). Proposition G.2 of Christensen and
Connault (2022) shows that A(6;~, P) has an equivalent dual formulation:

A(0:7,P) = sup —E™|¢"(=¢ = Xg(U,0,7))] = ¢ = NP (16)

CERNEA

For KL divergence, ( may be solved for in closed-form and problem (16) simplifies to

A(57, P) = sup —log "™ | YoU0] — y,p.
AEA

When k does not depend on u, by a change of variables!! we may then restate problems
(13) and (14) as

(0, —
Ks(0;7,P) = €.) , Ks(0;v,P) =
—+00

k(0,7) if A(6;v,P) <0, an
—oo  if A(#;v,P) > 4.

An important feature of our approach is that the optimization problems (13), (14),
and (16) are convex and their dimension does not increase with . This feature is not
shared by other seemingly natural approaches to flexibly model F', such as mixtures or
other finite-dimensional sieves. As we show in Section 2.5, our procedure may be used
to approximate sharp nonparametric bounds on counterfactuals by taking ¢ to be large
but finite.

HSubstitute n¢ — k(,v) in place of ¢ in (13) and n¢ + k(6,7) in place of ¢ in (14), then substitute
N in place of A in both (13) and (14).
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2.4 Estimation

We now propose simple estimators of the bounds ks and ks based on “plugging in”
consistent estimators (P, 4) of (Py, 7). Estimators &; and %s are computed by optimizing

criterion functions with respect to 6:

iy = inf 15(0). Ry = EESKS(Q) :

where

K&(e) = 3 d —

K;(0:5,P) = ) — K5(0;4, P) it A(6;4, P) <,
+00 —00 if A(6;7, P) >0,

and K4(0;7, ]5), K;(0;7, ]5), and A(@;’},FA’) are the criterion functions (13), (14), and
(16) evaluated at (%, P). If k(u, 6, v) = k(6,~), then we simply have

K6,9) = k(0,9) if A(6;4,P) <,

. Ks(0) = ' .
+00 -0 if A(0;4,P) > 4.

K&(G) =

In Section 6.1 we establish consistency of Az and s and derive their asymptotic distri-

bution.

2.5 Nonparametric Bounds on Counterfactuals

We define the (nonparametric) identified set of counterfactuals as
K = {E"[k(U,0,7)] : (1) holds for some § € © and F € Fp},

where Fy = {F € F : E'[g(U,0,70)] is finite and F < u} denotes all distributions on U
that are absolutely continuous with respect to a o-finite dominating measure y and for
which the moments in (1) are finite at #. We impose existence of a density with respect
to u as it is often a structural assumption used, e.g., to avoid ties in CCPs or to establish
existence of equilibria. The main result of this section shows that x5 and ks approach
the sharp nonparametric bounds inf K and sup K as § becomes large.

We first introduce some additional regularity conditions. Say k is “u-essentially

bounded” if |k(-,0,v)| has finite p-essential supremum!? for each § € ©. This holds

12The p-essential supremum of a function f is denoted p-esssup f and is the smallest value ¢ for

14



trivially if k£ is bounded (e.g., counterfactual CCPs in Examples 2.2 and 2.3 and change
in average welfare in Example 2.3). Models with unbounded k may be reparameterized
(as a proof device) by setting 6 = (0, k), appending k(U, 0,vy) — k as an element of gy,
and setting k(U, 0,7,) = k.

We also require a constraint qualification condition. This is a sufficient condition for
establishing equivalence of “nonparametric” primal and dual problems in Appendix B,
which is an intermediate step in the proof of the following result. Let 04, denote a d; x 1
vector of zeros, C = R x {04} x R® x {04,}, G(0,7) = {EF[g(U,0,7)] : F € N}
where Ny = {F : Dy(F||F,) < oo}, and P = (P,04,44,). For A, B C R?, we let ri(A)
denote the relative interior of A and A+ B ={a+b:a € A b€ B}.

Definition 2.1 Condition S holds at (6,7, P) if P € ri(G(6,~) + C).

Using relative interior instead of interior allows for moment functions that are collinear
at some 6 (i.e., some moments are redundant). To give some intuition, consider moment
equality models. Condition S requires that (1) holds at (6, v, P) under some F € N that
is “interior” to N, in the sense that one can perturb the (non-redundant) moments in
any direction by perturbing F. For moment inequality models, Condition S also requires
that there is F' € N, under which all moment inequalities hold strictly at (6,~, P).

Let Oy = {# € © : (1) holds for some F' € Fy} denote the (nonparametric) identified

set for 6. Define the “nonparametric” objective function

K, (0,7, P) = F}Il]f__ EX[k(U,0,v)] subject to (1) holding at (6,7, P), (18)
€59
with the understanding that K, (0;7, P) = +o0 if the infimum runs over an empty set.
Let an(ﬁ; 7, P) denote the analogous supremum. Evidently,

inf £ = inf K, (0;7%, ) and supK =sup Kp (0570, Po) -
fco 0cO
Definition 2.2 O; is S-regular if for all € > 0 there exist 0,0 € O; such that Condition

S holds at (0,70, Py) and (0,7, Py), K., (07, Fo) < inf K + ¢, and K (0570, Po) >

sup K — e.

Intuitively, S-regularity requires that the values the counterfactual takes at “boundary”

points of O (i.e., at which Condition S fails) are not materially more extreme than values

which p({u : f(u) > ¢}) = 0. The p-essential infimum, denoted p-essinf, is defined analogously.

15



it can take at points “inside” ©; (i.e., at which Condition S holds). This condition can
be verified under more primitive continuity conditions on k and g. A sufficient (but
not necessary) condition for S-regularity is that Condition S holds at (6, o, Py) for all
0 €Oy

Theorem 2.1 Suppose that Assumption @ holds, k is p-essentially bounded, Oy is S-

reqular, and p and F, are mutually absolutely continuous. Then

lim ks = inf IC, lim ks = sup K .
d—00 d—00

Theorem 2.1 shows that our procedure can be used to approximate the sharp non-
parametric bounds inf IC and sup K by setting 0 to be large but finite. If 4 is Lebesgue
measure—which it often is in applications—then the mutual absolute continuity condi-

tion in Theorem 2.1 is satisfied whenever F| has strictly positive density over U.

Remark 2.7 Appendiz B presents the dual forms of K,,, and K,p. Unlike K; and Ks,
the duals of K,,, and K, are min-maz and maz-min problems which involve an inner
optimization over u. These problems may be computationally challenging, especially when
u s multivariate. Comparing Proposition 2.1 with the duals in Appendix B, we see that
setting 6 < oo replaces a “hard-maz” (an optimization over u) with a “soft-max” (a
convex expectation). In this respect, adding the constraint F € N5 may be viewed as a
reqularization of the nonparametric objective functions, similar to the use of entropic
penalization to reqularize objective functions in optimal transport problems—see, e.q.,

Cuturi (2013). Smaller values of § impose a stronger reqularization.

Theorem 2.1 is silent on the issue of how large ¢ needs to be so that ks and K;
are close to the nonparametric bounds. While this is model- and counterfactual-specific,
the following toy example suggests that relatively small values of § may suffice in some

problems where the counterfactual is a choice probability.

Example 2.4 Consider the problem

Fs= sup E[I{U <6}] subject to E[U -6 =0,
OeR, FeN;

where N is defined by KL divergence and F, is the N(0,1) distribution. When F' = F,
the only solution to EF[U — 0] = 0 is § = 0. Therefore, the value of the counterfactual
under F, is Ef*[1{U < 0}] = % whereas sup K = 1. The large-d approximation ks =
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1 —2me= 2711 + 0(1)) is derived in Appendix H of Christensen and Connault (2022).
By symmetry, k5 = 2me~2"1(1+0(1)) and inf K = 0. Therefore, in this example, x; and

ks converge rapidly to inf IO and sup K as ¢ increases. O

More generally, suppose the dual problems (13) and (14) have unique solutions 1 and
7 for 7, where the optimization is performed over n > 0.'* Under appropriate regularity

conditions (see, e.g., Milgrom and Segal (2002)), it follows that

OK;(6;7,P) OK;(6;7, P)
s L as "

One can therefore infer from 1 and 7 the extent to which, if at all, the bounds at any

fixed 8 would widen further if § was increased.

3 Practical Considerations

We now discuss practical details for implementing our procedure. Section 3.1 discusses
computational methods, Section 3.2 presents our MPEC approach, and Section 3.3 dis-

cusses methods for dealing with over-identified models.

3.1 Computation

There are three aspects to computation: (i) computing the expectations with respect to
F, in the objective functions, (ii) solving the inner optimization problems over Lagrange
multipliers, and (iii) solving the outer optimization problems over 6.

The expectations in the objective functions (13), (14), and (16) are available in closed
form for certain settings,' in which case the dimension of u does not play a role in the
computational complexity of our procedure. Otherwise, the expectations will need to be
computed numerically. If so, the dimension of v will play a role in terms of determining
how many quadrature points or Monte Carlo draws are needed to control numerical
approximation error. In the empirical applications we used a randomized quasi-Monte

Carlo approach based on scrambled Halton sequences as in Owen (2017).

13Optimizing over n > 0 rather than n > 0 does not affect the optimal value—see Proposition G.1
of Christensen and Connault (2022).

14 An earlier draft derived closed-form expressions for a discrete game of complete information with
Gaussian payoff shocks and KL neighborhoods—see https://arxiv.org/abs/1904.00989v2.
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The inner optimization with respect to Lagrange multipliers can be solved rapidly: it
is convex and gradients and Hessians are available in closed-form. The envelope theorem
can be used to derive gradients for the outer optimization when k and g are differen-
tiable in 6.1 Our procedures were all implemented in Julia with the inner and outer
optimizations solved using Knitro. A general-purpose implementation of our methods in
Julia is provided in the supplemental material.

As with parameter estimation in nonlinear structural models, the outer optimization
with respect to 6 is typically non-convex. In applications, we used an iterative multi-start
procedure in an attempt to converge to global optima. Computation times are reported

in the applications below.

3.2 MPEC Approach

We now describe and formally justify an MPEC version of our procedure in the spirit of
Su and Judd (2012). This approach simplifies computation in models with endogenous
parameters defined by equilibrium conditions (e.g., value functions defined by Bellman
equations), resulting in significant computational gains for DDC models in particular.
Suppose 0 = (0s,0.) and g5 = (gus, g1e) Where 05 are “deep” structural parameters
and 0, are “endogenous” parameters that are defined implicitly by g4.. That is, for any

(05,7, F), the parameter 0, = 0,.(0s,, F) solves

EF[94€(U’ (05,6e),7)] = 0.

For instance, in Example 2.3 we have 0, = 0, or (0, 3), while 6, = (v,?) collects the
value functions in the baseline model and counterfactual, and g4, collects the functions
representing the corresponding Bellman equations, as in display (6). Although our pro-
cedure can be implemented as described in Section 2, that implementation does not
make use of the fact that 6, is defined implicitly by gae.

To leverage this structure, consider the subset of moments conditions excluding gq.:

EF[g1(U,0,7)] < Pro, E[g2(U,0,7%)] = Peo,

(19)
]EF[93(U’ 0, 70)] <0, EF[945(U7 0, 70)] =0,

15Tn practice, we smoothed any non-smooth moments and used automatic differentiation to compute
derivatives with respect to 6 if these were not easily available analytically.
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and define criterion functions using these only:

K5(0;7,P) = Fléljf/é EX[k(U,0,v)] subject to (19) holding at (6, ~, P), (20)
Ky(0;v,P) = ;uﬁ EX[k(U,0,v)] subject to (19) holding at (8,7, P). (21)
ENs

Under the conditions of Proposition 2.1, these criterion functions may be restated as

K3(6:7, P) — L e [¢* (k(U,Q,’Y)Jern)\/gs(U,G,’Y))] i —C—N,P, (22)
77 ’ ) S
Ky(0;7,P) = wo{ggwy nE [¢* (k(Uﬁﬁ)—CZ/\’gs(Uﬁﬂ))] +nd+C+ NP, (23)

with gs = (91, 92, g3, gas) and Ay = ]Ril x R% x ]Rflf x R%s with dys = dim(gy,). Problems
(22) and (23) simplify analogously to (17) when &k does not depend on wu, with the
minimum divergence problem A defined using g, in place of g.

In our MPEC approach, the criterion functions (22) and (23) are optimized with re-
spect to 0, with the remaining moment conditions involving g4, appended as constraints.
Importantly, these constraints are evaluated under the “least favorable” distributions
F;4 and Fsg that solve problems (20) and (21), respectively. The following proposition
formally justifies this approach.

Proposition 3.1 Suppose that Assumption @ holds. Then the problems

inf K(0;7, P)

and

gn(gﬁf;(ﬁ; v, P) subject to EXso[g,.(U,0,7)] =0
€

have the same value. An analogous result holds for the upper bound.

To implement our MPEC approach, note that the expectations in the constraints may
be expressed in terms of changes of measure. Let mgs, = dFs,/dF, and Tise = dFse/dF,
so that

Efso[-] = B [mye(U) -], BF50[-] = E™[msy(U) -]

If k depends on u, then we construct mgs, and ;e from solutions to (22) and (23),
say (1,¢,A) and (7, ¢, ) (these solutions exist under the regularity conditions below).
If » > 0, then the distribution solving (20) is unique and is induced by the change of
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measure

[ k(u,0, Ngs(u, 6,
msg(u) = ¢" ( ( MLt Ag 7)) ; (24)

-

where ¢*(x) = %‘y). The function m;6(u) is constructed similarly, replacing (1, ¢, A) in

(24) by (=7, —C, —\). For KL divergence the change of measure simplifies to

e(k(uvev'}/) +A195 (uvev'Y))/_ﬁ

ms o(u) = ’
_5,0( ) EF | ok@0m)+X 9s(u0,7)/—n

and similarly for mg(u).
If n = 0, then there may be multiple minimizing distributions. As shown in the proof

of Proposition 3.2, each such distribution must be supported on
Aé,@ = {U : k(“a 07 7) + A/gs(uv 07 7) = F*_eSS 1nf(k(a 9, 7) + A/gs<'7 07 7))} .

Note F.(459) > 0 is required for n = 0 to be a solution. Otherwise, any distribution
supported on Aj, is not absolutely continuous with respect to Fi. and is therefore not
in Ns. If n = 0 and F.(4s,) > 0, then we construct mg, by restricting F, to A;, and
rescaling:

msg(u) = Wu € Asp}/Fi(Asp).

The function 7s4(u) is constructed analogously, replacing A with —X and the set Asg
with A5 = {u: k(u,0,7) — X/gs(u, 0,v) = Fi-esssup(k(-,0,~) — X/gs(-, 6,7))}.

If k does not depend on u, then mg, and msy are constructed from solutions to a
version of problem (16) with g in place of g. Under the regularity conditions below, this

program has a solution, say (¢, A). In this case, we define

myp(u) = Mse(u) = ¢* (=€ — Ngy(u,0,7)) . (25)

For KL divergence the change of measure simplifies to

e_A/gS (u7977)

md,a(“) = m&@(u) - EF- [efA’gs(uﬁﬁ)} '

Proposition 3.2 Suppose that Assumption @ holds, Condition S holds at (6,~, P), and
there exists a distribution F' with D(F||F,) < 6§ under which (19) holds at (0,~, P). Then

the distributions F4 and Fsg induced by msy and msg solve (20) and (21), respectively.
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Table 2: Computation times (in seconds) for the inner problems

Implementation Objective

?0‘01 ?0.10 Fl.OO A
MPEC (92 moments) 0.207 0.232  0.256 0.108
Full (272 moments)  4.317 12.978 43.699 3.365

Note: Expectations are computed using 50,000 scrambled Halton draws. Computations are
performed in Julia v1.6.4 and Knitro v12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

Example. We consider a numerical example for the DDC model of Rust (1987) based
on the parameterization in Section 5.4 of Norets and Tang (2014). The counterfactual
they consider is a hypothetical change in the law of motion of the state. We follow these
papers and use state-space of dimension 90. As |S| = 90 and Dy = {0, 1}, there are
90 functions in gy representing the observed CCPs. There are another 180 functions in
g4e representing the Bellman equations in the baseline model and counterfactual across
states. We also impose the normalization EX'[U,] = 0 for d = 0, 1. Hence, g45(U, 0, 7) =
(U, Ur). Our MPEC approach has 92 moments in the inner optimization (90 for CCPs
and two mean-zero normalizations on the shocks) with the remaining 180 moments
representing the Bellman equations appended as constraints. The full approach uses all
272 moments in the inner optimization.

Table 2 reports computation times for the inner optimization problems (14) and (23)
(denoted K ) for maximizing the counterfactual CCP in the highest mileage state.!® We
also report times for solving the minimum divergence problem (16) (denoted A) using
the full set of moment functions g and its MPEC analogue using g;. Neighborhoods are
constrained by a hybrid of KL and y? divergence as in the empirical applications—see
Section 5. As can be seen, the inner optimization problems are solved at least 20 times

faster for the MPEC implementation, with the relative efficiency increasing in 4.

3.3 Over-identification

In over-identified models (i.e., where the number of moment conditions d exceeds the
dimension dy of #), there might not exist § € © for which the sample moment conditions

(7) hold under F.. We propose two methods for handling over-identified models.

16The times in Table 2 are based on initializing the solver at n = 1, { = 0, and A = 0. When embedded
in the outer optimization over 6, computation times for the inner problem are reduced significantly by
using a warm start that initializes at the solution to the inner problem at the previous value of 6.
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First, one may compute the smallest value of § for which there exists F' € Ns con-

sistent with the sample moment conditions (7) by solving the optimization problem
0= elg(gA(Q;v, P).

The interval [, %s] will be nonempty for § > 4. If the model is correctly specified under

F,,'T then & will converge in probability to zero under the conditions of Theorem 6.1.

In this case, the interval [&;, %s] will be nonempty with probability approaching one for

each fixed o > 0.

It is also possible that § = +oo in correctly specified but over-identified models
when P is incompatible with certain model restrictions. For instance, CCPs are often
estimated nonparametrically using empirical choice frequencies. If some choices aren’t
observed in the data, then the estimated CCPs will be zero even though model-implied
CCPs are strictly positive.

This issue can be circumvented in models defined by equality restrictions only (hence
Py = Pyy) using the following two-step approach. First, compute a preliminary estima-
tor 6 of 6 based on (7). Then, set P = EF[go(U, 6,4)]. This second-step estimator P is
compatible with the model by construction, thereby ensuring that the interval [z, %] is
nonempty for each 6 > 0. The estimator P will be consistent and asymptotically normal
under mild regularity conditions provided the model is correctly specified under F, so

the consistency and inference results developed in Section 6 will also apply.

4 Interpreting the Neighborhood Size

This section presents some theoretical results and practical methods to help interpret the
neighborhood size §. Sections 4.1 and 4.4 discuss properties of ¢-divergences and their
implications for interpreting d. Section 4.2 shows how to construct the “least favorable”
distributions that minimize or maximize the counterfactual. Section 4.3 gives a practical,

model-based metric for interpreting 9.

I7Neither our theoretical results developed in Section 2 nor the estimation and inference results in
Section 6 require correct specification of the model under F,.
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4.1 Invariance

A defining property of ¢-divergences are their invariance to invertible transformations.
That is, if T is an invertible transformation and G and G, denote the distributions
of T(U) when U ~ F and U ~ F,, respectively, then Dy(F||F.) = Dy(G|G.)."®* An
important consequence of invariance is that § has the same interpretation under a change
in units. For instance, if one researcher writes a model in terms of dollars with U ~ F,
and another researcher uses thousands of dollars with U ~ G, for G.(u) = F,(1073u),
then F' is in Nj if and only if its rescaled counterpart G is in a d-neighborhood of G,. A
second consequence is that neighborhood size is invariant under invertible location and

scale transformations of F, (e.g., N(u, %) versus N (0, I)).

4.2 Least Favorable Distributions

A useful feature of our approach is that the “least favorable” distributions (LFDs) that
attain the smallest or largest values of the counterfactual may easily be recovered. To
help interpret d, one may plot the LFDs and compute other quantities of interest (e.g.,
correlations or welfare measures) under them.

Section 3.2 describes how to construct LFDs when our MPEC approach is used.
LFDs for our full (i.e., non-MPEC) approach are a special case with g4 = g4s. To briefly
summarize, consider the LEFD F;, solving the minimization problem (11). First suppose
that k depends on u. Let (1, (, ) solve problem (13). If > 0, then F, is unique and

its change-of-measure mgs, = df';4/dF, is given by

(26)

. k(u, 0, Ng(u, 0,
m(s,e(u):ﬁb*( ( WH_Q—F g( 7))

The LFD Fj4 solving the maximization problem (12) is constructed similarly, replacing
(n,¢,A) in (26) with (=7, —C, —X), where (7, ¢, A) solves (14). If n = 0 or 7j = 0, then
there may exist multiple distributions solving (11) and (12) at 6. LFDs in this case are
constructed analogously to the method described in Section 3.2. Note that n = 0 or
7 = 0 is unlikely if k£ and/or elements of g are unbounded in u—see the discussion in

Section 3.2. If k does not depend on u, then we set

msg(u) = Msp(u) = ¢* (=€ — Ng(u,6,7)) (27)

18See, e.g., Liese and Vajda (1987). A more direct statement is in Qiao and Minematsu (2010).
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where (¢, A) solves (16). While there may exist multiple distributions solving (11) and
(12) in this case, the distribution induced by (27) has smallest ¢-divergence relative to

F, among all such distributions.

4.3 Viewing Neighborhood Size through the Lens of the Model

Another method for interpreting ¢§ is based on measuring the variation in the moments
at the distributions solving (8) and (9) relative to their values under F.

Consider the sets of minimizing and maximizing values of § at which k5 and Rs are at-
tained, say ©5 and ©5. These are nonempty under the regularity conditions in Section 6.
While the moment conditions (1) hold at any # € ;U84 under the corresponding LFD,
they will typically not hold at # under F,. We therefore define

87226(6) = ; Zup@ ma‘X{H (EF* [gl(UJ 6770)] - P10)+ ||oo7 ||]EF* [gl(U7 97’70)] - P20Hoo’
€0;UBs

| B (o506, 30)), oo [E a0 0300l

where (v), = (max{v;,0})%, for a vector v € R The quantity size(d) is the maximum
degree to which the moments at 6 € ©4 U G5 violate (1) under F,.

This measure is informative about the extent to which the distortions to F} required
to attain the smallest and largest values of the counterfactual over N are reflected in (1).
Small values of size(d) indicate that the LFDs supporting r; and %4 distort F in a way
that moves the counterfactual but barely moves the moments. Conversely, large values of
size(0) indicate that distortions required to increase or decrease the counterfactual also
have a material impact on the moments. In practice, this measure can be computed by
replacing (Pp, 7o) by estimators (P,4) and ©; and ©; by the minimizers and maximizers

of the sample criterions or by the estimators of ©; and O introduced in Section 6.2.

4.4 Relating Different Divergences

It is well known that ¢-divergences are equivalent over local neighborhoods (see, e.g.,
Theorem 4.1 of Csiszar and Shields (2004)). However, k5 and s may depend on the
choice of ¢ when 9§ is not arbitrarily small. Bounds induced by different ¢ functions may

be related as follows. Let Ny and Njo denote d-neighborhoods induced by ¢1 and ¢,
respectively. The quantity

a = sup 9251(:1;)
>0,0#£1 9252(@
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is a measure of relative neighborhood size: if a < oo then Nso C N5, for each § > 0,
as shown formally in the proof of Proposition 4.1 below. For instance, when comparing
KL divergence (¢1(z) = zlogz — z + 1) and x* divergence (¢o(z) = 1(z — 1)%) we
obtain @ = 2. Therefore, d-neighborhoods under y? divergence are contained in 24-
neighborhoods under KL divergence. Interchanging ¢, and ¢, produces a = 400, which
reflects the fact that KL divergence is weaker than y? divergence.

Let 5, and kg, denote the smallest counterfactual from display (8) over N, and

N2, respectively. Define Ks; and &5 analogously.

Proposition 4.1 Suppose that Assumption © holds for both ¢1 and ¢o and a is finite.

Then [Ksq,Fs2] C [Kas1, Rasa] for each § > 0.

It follows from Proposition 4.1 that bounds that are wide under ¢o must necessarily
be wide under ¢;. Similarly, narrow bounds under ¢; must also be narrow under ¢,.

Note also that the inclusion in Proposition 4.1 holds for any counterfactual.

5 Empirical Applications

5.1 Marital College Premium

Chiappori et al. (2017), henceforth CSW, study the evolution of marital returns to ed-
ucation using a frictionless matching model with transferable utility (Choo and Siow,
2006). Within this framework, the “marital college premium” is the additional expected
utility that an individual would derive from the marriage market if they had a (counter-
factually) higher level of education. CSW find that marital college premiums for women
in the United States increased significantly across cohorts from the mid to late 20th
century, particularly for the more highly educated.

As is conventional following Dagsvik (2000) and Choo and Siow (2006), CSW as-
sume latent variables representing individuals’ idiosyncratic marital preferences are i.i.d.
Gumbel. The marital college premium is only partially identified when the distribution
of these latent variables is not specified. We therefore perform a sensitivity analysis of
CSW's estimates to departures from this conventional parametric assumption.

Our analysis makes several findings. First, it seems impossible to draw conclusions
about whether marital college premiums have increased or decreased over time under
small nonparametric relaxations of the i.i.d. Gumbel assumption. Interestingly, premi-

ums have narrow nonparametric bounds at fixed parameter values, but a slight relaxation
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of the i.i.d. Gumbel assumption allows for significant variation in parameters which, in
turn, produces uninformatively wide bounds. As parameters are just-identified under
any fixed distribution of shocks (Galichon and Salanié, 2021), further restrictions on
parameters or shape restrictions on the distribution are required to tighten the bounds.

We show that imposing exchangeability can tighten the bounds significantly.

Model and Benchmark Estimates. Agents are male or female and one of J types
(education levels). A type-a male receives utility €49 if he chooses to be unmatched and
Zab + Eap if he matches with a type-b female. Similarly, a type-b female receives utility
ey if she chooses to be unmatched and t,, + e, if she matches with a type-a male.
The parameters (zq, tab)ibzl represent the common deterministic component of marital
preferences. The latent shocks (g40, .. .,€47) and (eqp, - - ., €) represent individuals’ id-
iosyncratic marital preferences. Shocks are i.i.d. across individuals and have mean zero.
The type b to b’ marital education premium for females is the difference in expected

marital utility between types b and b':

[ARES}

Kk =EF [ max (tab/ + eab,)] —EF [ max <tab + eab)] , (28)

where I’ denotes the distribution of (egp, . .., e ) and to, = toy = 0.

CSW use data from the American Community Survey. They form 28 cohorts indexed
by female birth year from 1941 (cohort 1) to 1968 (cohort 28), each of which is treated
as an independent marriage market. We focus on CSW's estimates for whites. There are
J =5 types: “high-school dropouts”, “high-school graduates”, “some college”, “college
graduate”, and “college-plus”. We center our analysis on the “some college” to “college
graduate” premium, though we obtained qualitatively similar results (not reported) for
the “college graduate” to “college-plus” premium. Figure 1 presents estimates and 95%
confidence sets (CSs) for the premium under the i.i.d. Gumbel assumption (cf. Figure

21 in CSW) based on CSW'’s replication files.

Implementation. The model reduces to a standard individual-level discrete choice
problem for each type (see CSW’s Propositions 1 and 2). We assume that the distribution
of females’ preference shocks does not depend on their type, so we drop the b subscript
and consider a single random vector U = (e, ..., e;). We allow the distribution F' of U

to vary across cohorts and implement our procedures cohort-by-cohort.'?

9Tn view of the just-identification results of Galichon and Salanié (2021), we would obtain the same
bounds if F' was homogeneous across cohorts. Allowing for heterogeneity in own-type would result in
wider bounds.
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Under any fixed F, a cohort’s parameters (t,,)/_, are just-identified from the mar-
riage probabilities for that cohort’s type-b women (Galichon and Salanié, 2021). We
therefore impose only the moment conditions involving the parameters 6 = (¢4, tay )7,
appearing in (28), as the remaining parameters can be chosen to fit the remaining mar-
riage probabilities under the resulting least-favorable distribution. We form g, to explain

the type b and b’ marriage probabilities for women in a given cohort:

(W{tap + €q = maxy—o,.. s (tas + €ar)})i—y

92(U,0) =
(U.6) (U{tay + €a = maxg—oj(tary + €a)})i,

and form P, using CSW’s estimates of the corresponding type-b and ¥ marriage prob-
abilities. We set g4(U,0) = (e;,e5 — 7%/6)]_, so that shocks have mean zero and the
same variance as the Gumbel distribution. The scale normalization also ensures that the
nonparametric bounds on the premium are finite at any fixed 0. As J = 5, there are 22
moments (10 for marriage probabilities and 12 location/scale normalizations), and 6 has
dimension 10.

We consider a second implementation which imposes invariance of F' under rotations
and reflections of potential spouse types, so that the model-implied marriage proba-
bilities depend on @ but not the labeling of potential spouse types (though they may
depend on their ordering).?® Formally, this shape restriction corresponds to dihedral
exchangeability (see Appendix A.1); we refer to it simply as “exchangeability”. Under
this shape restriction, F' must satisfy the 22 moment conditions under all 12 rotations
and reflections of the elements of U. This implementation therefore imposes a total of
264 moment conditions. Rather than including all 264 moments separately, it suffices to
form g, and g4 by taking the averages of the 22 moments across the 12 permutations
(see Appendix A.1). Both implementations therefore have inner optimization problems
of the same dimension.

Computations are performed as described in Section 3.1. The first implementation
uses 50,000 scrambled Halton draws to compute the expectations. The second uses 10,000
draws which are concatenated over the 12 permutations (see Remark A.2), for a total
of 120,000 draws. Computation times are reported in Appendix D.1. CSs for ks and
ks are computed using the bootstrap procedure in Section 6.2. Appendix D.1 discusses

bootstrap details and presents projection CSs using the method from Section 6.3.

20 Allowing dependence on the ordering of types seems desirable here as types correspond to education
levels, which are naturally ordered.
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Table 3: Metrics for interpreting o

Without exchangeability With exchangeability
5 Pmax; K5 Pmax; E(S size Pmax; K  Pmax; Eé size
0.01 -0.015 -0.014  0.010 -0.022 0.013  0.006
0.10 -0.071 -0.073  0.038 -0.061 0.054  0.023
1 -0.247 -0.197  0.112 -0.139 0.115  0.099
10 -0.502 -0.496  0.242 -0.204 0.236  0.176
100 -0.620 -0.576  0.266 -0.266 0.284 0.178

Note: Averages across cohorts of the largest element of the correlation matrix for U under
the LFDs at which the estimated lower bounds (pmax, k5) and upper bounds (pmax, Rs) are
attained, and our size measure from Section 4.3. Each is computed at the parameter values at
which the estimated upper and lower bounds are attained.

We define neighborhoods using a hybrid of KL and x? divergence:

rlogr —x+1 if x <e,
olz) = | | ) .
wl@—e)f+(r—e)+1 ifx>e.
We use this divergence because Assumption ®(ii) fails for KL divergence, whereas hy-
brid divergence only requires finite second moments for Assumption ®(ii). The LFDs
under hybrid divergence are also everywhere positive, which is not guaranteed under
x? divergence. We repeated our analysis with neighborhoods constrained by x? and
L* divergences as robustness checks. Overall, our findings are not sensitive to ¢ (see

Appendix D.1 for a discussion).

Findings. Figure 1 presents a sensitivity analysis of the “some college” to “college
graduate” premium. Cohort-wise estimates and CSs for k5 and ks are presented, begin-
ning at 4 = 0.01 and increasing J by factors of 10 up to 6 = 100. Even with 6 = 0.01,
estimates of ky and Rs lie uniformly below and above zero across cohorts without ex-
changeability (see Figure la). Imposing exchangeability can tighten the bounds, with
the bounds for § = 0.01 significantly negative in early cohorts and significantly positive
in later cohorts (see Figure 1b). But the § = 0.1 bounds with exchangeability again
contain zero across all cohorts. Bounds for larger ¢ presented in Figures 1c and 1d are
uninformatively wide.

To understand better what is meant by “small” and “large” neighborhoods, Figure 2
plots marginal CDFs for the LFDs under which the upper bounds for cohort 1 are
attained. Similar LFDs (not reported) were obtained for other cohorts and the lower
bounds. Without exchangeability, the LFDs with 6 = 0.1 are almost identical to Gumbel
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Smaller neighborhoods

107,

(a) Without exchangeability (b) With exchangeability

0.5

o
o

Premium

—0.5 F =~/

-1.0r

2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Larger neighborhoods

(c) Without exchangeability (d) With exchangeability

Premium

2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Cohort Cohort

Figure 1: Sensitivity analysis of the “some college” to “college graduate” premium across
cohorts. Note: Solid lines are estimates, dotted lines are (cohort-wise) 95% CSs. CSW’s
estimates and CSs correspond to = 0.

(plots with ¢ = 0.01 are indistinguishable from Gumbel). LFDs appear close to Gumbel
across most potential spouse types with 6 = 1, while for § = 10 and 6 = 100 the LFDs
have kinks and indicate shifts in mass from the center of the distribution to the tails.
Under exchangeability (Figure 2b), the marginal distribution of shocks is indepen-
dent of potential spouse type. In this case the LFDs for 6 = 1 or smaller are virtually
indistinguishable from Gumbel. LFDs with § = 10 and 6 = 100 are also less kinked than
Figure 2a because distortions are spread more evenly across potential spouse types.
We also computed the largest correlation of shocks under the LFDs at which the
bounds are attained and our size measure from Section 4.3. As these quantities are

stable across cohorts, we present their averages across cohorts in Table 3. Shocks are
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(a) Without exchangeability

Type 0 (Unmatched) Type 1 (High-school dropout)
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(b) With exchangeability (all types)
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Figure 2: Marginal CDF's for the LFDs maximizing the “some college” to “college grad-
uate” premium in cohort 1 across potential spouse types.
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independent when 9 = 0 and only very weakly correlated for small §, while for large
0 some shocks are strongly negatively correlated. The maximal correlations under ex-
changeability are smaller, especially for large §. Turning to the size measure, the LFDs
for 6 = 0.01 without exchangeability shift the model-implied marriage probabilities by
0.01 (on average, across cohorts) from their values under the i.i.d. Gumbel assumption.
LFDs for § = 10 and § = 100 shift marriage probabilities around 0.25 (on average,
across cohorts). Imposing exchangeability reduces the size measure by around 25% be-
cause model parameters do not vary as much under this shape restriction.

In view of the small-0 bounds in Figure 1, the LFDs in Figure 2, and the metrics in
Table 3, it seems impossible to draw conclusions about how the sign of the premium has
changed over time under slight nonparametric relaxations of the i.i.d. Gumbel assump-
tion. To help understand why, Figure 5 plots bounds where F' is allowed to vary but 6
is held fixed at CSW’s estimates. These “fixed-6” bounds for § = 10 and § = 100 are
almost identical, and are roughly the same width as the § = 0.01 bounds in Figure 1. The
width of the bounds in Figure 1 therefore seems largely attributable to the additional
variation in 6 that is permitted when parametric assumptions for F' are relaxed.

Overall, our findings are complementary to Gualdani and Sinha (2020) who perform
a nonparametric reanalysis of CSW using the PIES methodology of Torgovitsky (2019b).
Although they do not derive nonparametric bounds on the marital education premium
itself, only terms that contribute to it, they also find no evidence of an increase in

premiums across cohorts.

5.2 Welfare Analysis in a Rust Model

Our second empirical illustration is a sensitivity analysis for welfare counterfactuals in
the DDC model of Rust (1987).

Model and Benchmark Estimates. We focus on the specification in Table IX of
Rust (1987) where maintenance costs are linear in the state (i.e., mileage). In the notation
of Example 2.3, |S| = 90, 8 = 0.9999, and 0, = (RC, M C') where RC is the replacement
cost and MC' is a maintenance cost parameter. Our counterfactual of interest is the
change in average welfare arising from a 10% reduction in maintenance costs. Hence,
T s(0r) = T15(0r) = —RC and my4(0;) = —0.00lMC x s (baseline) and 7 s(0,) =
0.970.5(0=) (counterfactual). The counterfactual function is k(6,~) = w'(v — v) where w
is the stationary distribution of the state in the baseline model.

Under the i.i.d. Gumbel assumption, the estimated counterfactual at the maximum
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likelihood estimate (MLE) of 6, is 73.07 and its 95% CS is [48.25,101.31].?! Note the
counterfactual is point-identified under the i.i.d. Gumbel assumption because 6, is point-
identified.

Implementation. We estimate CCPs using Rust’s Group 4 data. Nonparametric es-
timates of the 90 CCPs are zero in many states, so we proceed as in Section 3.3 and
take the model-implied CCPs at the MLE of 6, (under the i.i.d. Gumbel assumption)
as our estimate P,. We drop moment conditions for CCPs in states where the replace-
ment probability is less than 0.001 to avoid numerical instabilities induced by including
near-degenerate moments. This reduces the dimension of g, to 71. We normalize F' so
that shocks have mean zero and the same variance as the Gumbel distribution by ap-
pending EF[Uy] = 0 and EF[U2 — 72/6] = 0, for d = 0,1, to g4. In total, there are 255
moments (71 for CCPs, 180 for Bellman equations, and 4 location/scale normalizations)
and 0 = (0., v,v) has dimension 182.

We implement our methods as described in Section 3.2. The inner optimization uses
75 moments (71 for CCPs and 4 for normalizations), with the remaining 180 moments
appended as constraints in the outer optimization. We define neighborhoods using hybrid
divergence from Section 5.1 so that Assumption ®(ii) holds. Similar results are obtained
with x? and L* neighborhoods (see Appendix D.2). Expectations are computed using
50,000 scrambled Halton draws—see Appendix D.2 for computation times. We compute
95% CSs for ks and Fs using the bootstrap procedure from Section 6.2 and projection

procedure from Section 6.3. See Appendix D.2 for details.

Findings. Estimates and CSs for k; and Ks are plotted in Figure 3 for values of ¢
from 0.01 to 100.?2 As can be seen, the bounds expand rapidly under slight relaxations
of the i.i.d. Gumbel assumption then stabilize around 6 = 1, where the lower bound is
6.45 and the upper bound of 160.5 represents approximately 220% of the value under
the i.i.d. Gumbel assumption.

To interpret 9, in Figure 4 we plot the CDFs of U; — Uy under the LFDs at which

the estimated bounds &; and s are attained. LFDs were computed as described in

2'We construct this CS by simulation. We draw é;‘; ~ N (é,r, f]) where 0, is the MLE and 3 is an es-
timate of the inverse information matrix. For each éj‘r draw, we compute the baseline and counterfactual
value functions v* and ¢*, and hence the counterfactual &#* = w'(0* — v*).

22The width of the bootstrap CSs relative to the bounds reduces as § gets large. We re-estimated
our bounds using several different draws of bootstrapped CCPs in place of P, and obtained bounds
that spanned a range similar to the bootstrap CSs for small §, but which for many draws converged to
values close to our estimates of the bounds for large §. This corroborates the behavior of our bootstrap
CSs. We conjecture that other features of the model are potentially more important than the numerical
values of the CCPs in determining nonparametric bounds on the welfare counterfactual.
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Figure 3: Sensitivity analysis for change in average welfare under a 10% maintenance
cost subsidy. Note: Solid lines are estimates, dotted lines are bootstrap CSs, dashed lines
are projection CSs.

Section 4.2 using the construction (27). The distributions appear very close to logistic
(their distribution when 6 = 0) for 6 = 0.01. Therefore, we see that large differences
in welfare counterfactuals can arise under very slight departures from the i.i.d. Gumbel
assumption. LFDs for the upper bound shift increasing amounts of mass to the center
of the distribution of U; — Uy as d increases. LFDs corresponding to the lower bound
are relatively less distorted, but have increasing amounts of mass shifted into the right
tail. These are similar for 6 = 0.1 through 6 = 100 because the estimated lower bound
stabilizes for smaller values of § than the upper bound (cf. Figure 3).

Table 4 lists other metrics to help interpret the neighborhood size. The first is the
correlation of Uy and U; under the LFDs at which &5 and s are attained. These are
very small for § = 0.01 and remain small under the LFDs for &5 as 0 increases, while
U, and U, are strongly positively correlated under the LFDs for &5, especially for larger
0 values. Given the asymmetry in distortions between the lower and upper values, we
compute our size measure separately for both. We measure distortions to the moments
corresponding to the CCPs as these are most directly interpretable within the context of
the model. We see that the LFDs for 6 = 0.01 are distorting F, in a manner that shifts
the model-implied CCPs by at most 0.016. By contrast, the LFDs for 6 = 10 and § = 100
shift the model-implied CCPs from their values under the i.i.d. Gumbel assumption by
at most 0.04 for &5 and 0.47 for Fs.

The parameters at which &; and %s are attained are also revealing about neigh-
borhood size. Table 4 presents MLEs of MC' and RC, which are similar to the values
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Figure 4: CDFs of U; — Uy under the LFDs at which the estimated lower and upper
bounds on the welfare counterfactual are attained.

Table 4: Metrics for interpreting

Lower bound Upper bound
) corr size RC MC corr size RC MC
0 0.000 0.000 10.208 2.294 0.000 0.000 10.208 2.294

0.01 0.036 0.010 7.357 1.411 -0.027 0.016 13.390 3.307
0.1 -0.058 0.039  5.186 0.553 0.149 0.109 16.134 4.374
1 -0.045 0.039 4.023 0.203 0.616 0.346 17.166 5.038
10 -0.040 0.039  4.022 0.202 0.765 0.461 17.595 5.331
100 -0.063 0.039 3.931 0.176 0.764 0.469 17.626 5.365

Note: Correlation of Uy and Uy under the LFD at which the estimated lower and upper bounds
are attained (corr), our size measure from Section 4.3, and replacement and maintenance cost
parameters at which the estimated lower and upper bounds are attained.

reported in Table IX of Rust (1987). We see from Table 4 that &; and s are attained at
very different parameter values, with much smaller cost parameters for the lower bound
and larger parameters for the upper bound, even for 6 = 0.01. Intuitively, a smaller
MC' means that the saving from the subsidy—which is proportional-—must be small.
Correspondingly, a low RC' is needed to help the model to fit the observed CCPs at the
smaller M C. While it is known that payoff parameters are not identified without para-
metric assumptions on F', it is perhaps surprising that these parameters vary by so much
under slight relaxations of the i.i.d. Gumbel assumption. For instance, with § = 0.01 the
lower bound is attained with cost parameters RC' = 7.357 and M C = 1.411 while the

upper bound is attained with cost parameters that are roughly double these values.
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6 Estimation and Inference

We begin in Section 6.1 by establishing consistency and the asymptotic distribution of
the estimators Az and Fs from Section 2.4. We then present a bootstrap-based inference

method in Section 6.2 and a projection-based inference method in Section 6.3.

6.1 Large-sample Properties of Plug-in Estimators

We first introduce some regularity conditions. Recall the space £ from Assumption ®.
We equip € with the Orlicz norm (see Appendix F of Christensen and Connault (2022))

71l = inf + (14 ER (el FO)D)]).

This norm is equivalent to the L?(F,) norm for x? and hybrid divergence and equivalent
to the LY(F,) norm for L? divergence (p~! + ¢! = 1), while for KL divergence it is
stronger than any LP(F,) norm with p < oo but weaker than the sup-norm. Say that
a class of functions {f, : a € A} C & indexed by a metric space A is E-continuous in
aif a’ — a in A implies || f, — fu|ly — 0. We also require a slightly stronger notion of

constraint qualification than Condition S from Section 2.5.
Definition 6.1 Condition S’ holds at (6,~, P) if P € int(G(6,~) + C).

Condition S’ replaces “relative interior” in Condition S with “interior”. Finally, recall
A(0;, P) from (16) and let O5(y, P) = {6 € © : A(0;v, P) < d}.

Assumption M (i) k(-;60,v) and each entry of g(-;0,v) are E-continuous in (0,7);
(ii) (0,7) — EX[¢* (a1 +axk(U, 0,v)+asq(U,0,7))] is continuous for each (ay, as, az) €
R x R x R¢;
(111) Os(v0, Po) is nonempty and Condition S’ holds at (0, o, Py) for each 6 € O5(vo, Fy);
(iv) cl(©5(70, Fo)) 2 {0 € © : A(b;70, ) < 6}
(v) © is a compact subset of R,

Parts (i) and (ii) of Assumption M are continuity conditions. If & and ¢ consist of
indicator functions, then these conditions hold provided the probabilities of the events
under F, are continuous in (6,). In models without v, these conditions simply require
continuity in 6.

There are two parts to Assumption M(iii). The nonemptyness condition holds when

the model is correctly specified under F, or, more generally, when there is at least one
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F € Nj that satisfies (1) for some 6. The second part is a constraint qualification. This
condition requires that for each 6 € Os(vo, ), there is a distribution F' under which
(1) holds at (6,70, Fy) that is “interior” to N, in the sense that one can perturb the
moments at (6,70, Py) in all directions by perturbing F'. Condition S’ also requires that
there is F' € N, under which any inequality restrictions at (6, vy, Pp) hold strictly. Note,
however, that we do not require that this F' belongs to N, only to Ny. We therefore
do not view this condition as overly restrictive. We also conjecture it could be relaxed
using a notion similar to S-regularity from Section 2.5.

Assumption M(iv) is made for convenience and can be relaxed; this condition simply
ensures that there do not exist values of 6 at which A(0;~y, Py) = J that are separated
from ©s(vo, Fy). Assumption M(v) is standard and can be relaxed.

Theorem 6.1 Suppose that Assumptions & and M hold and (3, P) —, (o, Py) or, if

there is no auziliary parameter, P —, Fy. Then ks —) ks and K5 —p Ks.

To derive the asymptotic distribution of the estimators, we assume 7, is known
and suppress dependence of all quantities on v for the remainder of this section. This
entails no loss of generality for models without v, such as Examples 2.1 and 2.2 and
the application in Section 5.1. In DDC models this presumes the law of motion of the
state is known. The asymptotic distribution therefore reflects only sampling uncertainty
from the estimated CCPs, which is the case for confidence sets reported when laws of
motion are first estimated “offline”. Extending our approach to accommodate sampling
variation in 4 in a tractable manner appears to require exploiting application-specific
model structure, which we defer to future work.

Define

— inf : bs(P) = K5(6: P).
bs(P) eegz(P)Kg(G,P), bs(P) ee%fme‘;w’P) (29)

In this notation, k5 = bs(FPy) and Rs = bs(P,) (see Lemma E.3) and &5 = bs(P) and
Rs = 55(]5). We derive the asymptotic distribution of &5 and s by showing bs and bs are
directionally differentiable and applying a suitable delta method. Say f : R4z — R

is (Hadamard) directionally differentiable at Py if there is a continuous map dfp,[-] :
R%+%2 5 R such that

lim t;l (f(PO + tnhn> - f(PO)) = dfpo [h]

n—oo

for all sequences t,, | 0 and h,, — h (Shapiro, 1990, p. 480). If dfp,[h] is linear in h then

f is (fully) differentiable at Py. We introduce some additional notation used to define
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the directional derivatives of by and bs. Let
Ea(& P) = aIgsup,>p ceR e — E™ (77¢)*<_k(U> 9) — (- )\IQ(U7 9))] —no—(— )‘/12P7

where (1¢)* denotes the convex conjugate of z + 1 - ¢(x), and let Z;5(6; P) denote the
analogous arginf for the minimization problem corresponding to the upper bound. Recall
that A5 = (A}, Ay) collects the first dy + dy elements of \. Let

Aé((g;P) = {()‘17>\2) : (777@ >\1,)\2,>\37)\4) € Z5(0; P)}

denote the projection of Z4(0; P) for Aj,. We let A;(6; P) denoting the analogous pro-
jection of Z5(6; P). Finally, let

O4(FRy) = arg Ieréiélﬁ(;(ﬁ; P), @5(.[30) = arg Igleae}ifg(e; P).

The sets ©5(Py) and ©5(P,) are nonempty and compact under Assumptions ® and M.
The following regularity conditions are presented for the general case where k depends
on u. It may be possible to weaken some of these regularity conditions in the special

case in which k£ does not depend on wu.

Assumption M (continued) (vi) O45(FPy) C O;5(Py) and O5(Py) C O5(Fy);
(vii) 0 — Ag(0; Py) and 0 — As(0; Py) are lower hemicontinuous at each 6 € O4(Fy)
and § € O5(P,), respectively.

Theorem 6.2 Suppose that Assumptions ® and M hold. Then bs and bs are directionally
differentiable at Py, with

dbs p[h] = min  max —N,h, dbsp[h] = max  min  Ajoh.
J’POH 0€0;5(Po) Ayo€A5(0;F0) =12 MDOH 0€0;(Py) X2€hs(0;Pp) 12

Moreover, if \/n(P — Py) =4 Z ~ N(0,%) with ¥ finite, then

R Rs dbs p,|Z]
a(()-(2) (i)

The asymptotic distribution presented in Theorem 6.2 is non-Gaussian. In the special
case in which Upee,(py)As(0; Po) = {A1»}, the asymptotic distribution of &; simplifies to
N(0,);,¥)5). An analogous simplification holds for &; when UQE@(S(PO)K(;(G;PO) is a

singleton.
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6.2 Inference Procedure 1: Bootstrap

Our first inference procedure specializes the general approach of Fang and Santos (2019)

for inference on directionally differentiable functions to the present setting. Define

dbsph) = inf  sup ~Noh, dbsplh]= sup _ inf Xph,
€05 1 A€M, (6;P) 0B, , M2ENs(05P)

where

O, = {0 € O5(P) : K4(0; P) < ks + vy/logn/n}, and

Osn = {0 € ©5(P) : K5(6; P) > s — 0+/logn/n},
with o a (possibly random) positive scalar tuning parameter for which 7 —, v > 0. Any
such 7 results in a confidence set with asymptotically correct coverage. We give some
practical guidance for choosing 7 below.

Let P* denote a bootstrapped version of P.In practice any bootstrap can be used

provided it satisfies mild consistency conditions. In the empirical application in Sec-

tion 5.1 we simply draw P* ~ N(P7 f]/n) where 3 is a consistent estimator of ¥. Let

~ ~ - ~ A

¢, = a-quantile of @57130 [Vn(P* — P)], € = a-quantile of dbsp,[v/n(P* — P)],

=a

where the quantiles are computed by resampling P (conditional on the data). Lower,

upper, and two-sided 100(1 — «)% CSs for k5 and &5 are

¢
CSy ™ = {/%5 — 2 1o
i — \/_
2 EO{ — A é — el éa
(_m__}, oSy = [ Lot g S

Vi Vi Vi

We require a slight strengthening of Assumption M(vii) to establish validity of the
procedure. As before, regularity conditions are presented for the general case where k
depends on u. It may be possible to weaken these conditions when k does not depend

on u.

Assumption M (continued) (vii’) (0, P) — Ay;(0; P) and (0, P) — As(0; P) are
lower hemicontinuous at (6, Py) for each 0 € O4(Py) and § € O5(Fy), respectively.

Theorem 6.3 Suppose that Assumptions & and M(i)-(vi), (vii’) hold, \/n(P — Py) —4
Z ~ N(0,%) with ¥ finite, and P* satisfies Assumption 3 of Fang and Santos (2019).
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Then the distribution of @57P0[ﬁ(p* — P)] and dbs p,[/n(P* — P)] (conditional on the
data) is consistent for the asymptotic distribution derived in Theorem 6.2. Moreover, if
the CDFs of dbs p, [Z] and dbs p,[Z] are continuous and increasing at their a /2, a, 1—a,

and 1 — a/2 quantiles, then

lim Pr(ks € CS§7EQ) =1—-a,

n—00
lim Pr(%; € CS; ;) =1—a, liminf Pr([ks, Ks] € CS; %) > 1—a.
n—00 ’ n—o0

Any 0 that satisfies o —, v > 0 results in asymptotically valid CSs. In view of the
functional forms of cﬁ_)(;’ p, -] and c/l?_j(;’ p,| -], smaller o produce (weakly) wider CSs. In the
CSW application, we set 7 equal to the minimum diagonal element of the covariance
matrix of the moments evaluated at (é, v, ]5) under F,, where 6 is computed under Fj.
We chose this quantity as it is related to the convexity of the inner problem for small §.
In practice, this resulted in  between 0.001 and 0.01. We recommend setting 2 to be of
a similarly small magnitude, then performing a sensitivity analysis to check that critical
values aren’t too dependent on ». Setting 7 = 0 and replacing @M and @5,71 by {éé}
and {35} where 5 and a; minimize and maximize the sample criterions is also valid, but

may be conservative.

6.3 Inference Procedure 2: Projection

This second approach is computationally simple but possibly conservative.?? Suppose
we have random vectors ]511750‘, ]521’50‘, and f’g{za that form a 100(1 — «)% rectangular CS
for Py:

lim inf Pr <P10 < Bl P < Py < 152{50‘> >1-a, (30)

n—o0
where the inequalities should be understood to hold element-wise (we discuss how to
construct a rectangular CS for Py below).
The idea behind this approach is to replace any moment conditions involving P by

inequalities constructed from the rectangular CS. Define the criterion functions

K&,cs(& I:)lfa) ?5 (9) . [ K&cs(e; plfcz> if Acs<9; Plfa) < 57
) J1—a -

Ks, .(0) = :
2251 ( ) —00 if Acs<97 Plfa) Z 67

+00

2We are grateful to a referee for suggesting this approach.

39



where K., Kscs, and A, are versions of (13), (14), and (16) formed using
EF[QI(U> 0)] < A1175a7 ]EF[QQ(Ua 0)] < AQI,Z_Jav EF[_QQ(Ua 9)] < _p;,zaa (31)

as well as (1c) and (1d). In these criterions, A is replaced by A, = RET224ds  Rds g
is replaced by ges = (91,92, —92, g3, g1), P is replaced by P, = (]5117?‘, FA’;’E‘“, —1521756“),
and Ay denotes the first d; + 2dy elements of .
Critical values are computed by optimizing the criterions K 51-o and ?5,1_04 with
respect to 6: )
Rsi—a = eilel(g K&,lfoxg) , Rsia = 328 Ks1-0(0).
Lower, upper, and two-sided 100(1 — «)% CSs for k5 and R are then given by

CS{;EO‘ — [&571—@7"’_00) , CS;I]‘X — (—oo,ﬁ(;’l,a} R CS(%*O‘ — [E(S,l—a’%‘m*o‘} .

Theorem 6.4 Suppose that Assumptions @ and M(i), (iii)-(v) hold and P,_, satisfies

(50). Then
liminf Pr(k; € CS;;%) > 1 —a,
n—00 ’
liminf Pr(%s € CS;%) > 1—«, liminf Pr([x;, %s] € CS57*) > 1—a.
n—00 ’ n—oo

To construct a rectangular CS for P, satisfying (30), suppose v/n(P—PFy) —4 N(0,%)
and we have a consistent estimator 3 of . Let & denote the vector formed by taking
the square root of each diagonal entry of 3. Partition ¢ conformably as & = (6(1), 0(2))

and set
PDl—a _ F ~1/24 A Pl—a _ F ~1/24 A Pl—a _ F ~1/24 .
PLL =P +nY C1—a,10(1) P27L =P —nY C1-a,20(2) P27U =P+n Y C1-a,20(2)

where the (scalar) critical values ¢;_,1 and ¢;_, 2 solve

~

Pr < max Z;/6; < é1_41, max |Z;/6; < él—a,2) =1l—-a, Z~N(0,%).

1<i<dy d1+1<i<d>

If dy = 0, then ¢, is the (1 — a)-quantile of max<;<q4, Z;/d;; similarly, if d; = 0, then

C2.1-q 1s the (1 — a)-quantile of max<;<q, |Z:/54|.
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7 Conclusion

This paper introduced a framework for analyzing the sensitivity of counterfactuals to
parametric assumptions about the distribution of latent variables in structural models. In
particular, we derived bounds on the set of counterfactuals obtained as the distribution of
latent variables spans nonparametric neighborhoods of a given parametric specification
while other “structural” model features are maintained. We illustrated our procedure

with empirical applications to matching models and dynamic discrete choice.
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Online Appendix to “Counterfactual Sensitivity and
Robustness”

Timothy Christensen Benjamin Connault

This supplement presents extensions of our methodology in Appendix A, additional
results on nonparametric bounds on counterfactuals in Appendix B, connections with
local approaches to sensitivity analysis in Appendix C, additional details on the empirical

applications in Appendix D, and proofs of results from the main text in Appendix E.

A Extensions

This appendix presents three extensions of our methodology. Proofs of all results in this
appendix are presented in Appendix G.7 of our working paper version Christensen and
Connault (2022).

A.1 Group Invariance

In certain settings it can be attractive to impose shape restrictions on F' such as symme-
try, exchangeability, or, more generally, invariance to a finite group of transforms. For
instance, imposing exchangeability of F' in discrete choice modeling ensures that alter-
natives’ choice probabilities depend on their deterministic components of utility but not
their labeling. These shape restrictions can be easily imposed whenever F} is invariant.

Formally, let J denote the number of elements of U and let 11 be a finite commutative
group of transforms on R’7—see, e.g., Section 1.4 of Lehmann and Casella (1998). We
say that a distribution F' of U is Il-invariant if wU ~ F for all w € II.

Example A.1 (Symmetry) Central symmetry corresponds to IT = {I, —1} for I the
identity matrix. Sign symmetry corresponds to taking II to be the collection of all 27

diagonal matrices with £1 in each diagonal entry. 0

Example A.2 (Exchangeability) Let II; denote the group of all J! permutation
matrices of dimension J. Full exchangeability (permutation invariance) corresponds to
IT = II,. Cyclic exchangeability (rotation invariance) corresponds to II = IIS where

9 is the collection of all J cyclic permutation matrices of dimension J (II5 = II;

when J = 2 and is a strict subset otherwise). When J > 3, dihedral exchangeability



(rotation and reflection invariance) corresponds to taking II to be the set of all 2.J
permutation matrices representing rotations and reflections of {1,...,J}. These types
of exchangeability ensure the elements of U are identically distributed, but they have
different implications for the joint distribution of the elements of U. For instance, the
distribution of (U;, U;) for i # j depends on ¢ — j and |i — j| under cyclic and dihedral
exchangeability, but is independent of (7, j) under full exchangeability. O

Let N' = {F € N : F is [l-invariant}. We are interested in

gy = inf  EF[k(U,0,7)] subject to (1), (32)

a 0€0,FeN]T

and %5 defined as the analogous supremum. One may write j and %§ as the value of
two optimization problems in which criterion functions K5 (6;7o, Py) and Ky s (057, Po)

are optimized with respect to 6. For a generic (6,~, P), define

K{(0;v,P) = Fierjl\ffﬂ EX[k(U,0,v)] subject to (1) holding at (6,7, P), (33)
§

and define f?(@; 7, P) as the analogous supremum. These criterions have dual represen-

tations as finite-dimensional convex programs when F, is II-invariant. Define

KU, 0,7) = ‘H’kaUG,v) g (U.0,7) = ,H‘Zgjwwv),j—mm

well well

where |IT| denotes the cardinality of II, and let g = (g, g3, g1, gi1).

Proposition A.1 Suppose that Assumption @ holds and F is Il-invariant. Then

KJ(07 P)=  swp g [gr (MESRENRGI] s (= X,P L (31)
77 ’ )
FH 0. P I 3 f EF* * kH(U70’7)_C_)‘/gH(U7977) 5 )\/ P
o0y, P) = nf BT O ; +n0+CH AP (35)

Moreover, the value of problem (34) is 400 (equivalently, the value of problem (35) is
—00) if and only if there is no distribution in N3' under which (1) holds at (0,~, P).

Remark A.1 If F' is ll-invariant and satisfies (1), then it must also satisfy (1) under

all |TI| transformations of the elements of U. Therefore, in effect there are a total of



ITT| x d moment conditions imposed in the inner optimization, namely

E"[g1(@wU, 0,70)] < P, EF[g2(wU, 6,70)] = Pao,

. . for allw € 11. (36)
E [93<WU1 ‘97'70)] < 0’ E [94(WU7 9’70)] - 07

In principle one could form a criterion by including all |1I| x d moments. By ll-invariance
of F, and convexity of the objective, the multipliers on the moments g(wU, 0,~) will be
tdentical across all w € 11. It therefore suffices to form the criterion using only the d
averaged moments g rather than the full set of |TI| x d moments, thereby reducing the

dimension of the inner optimization by a factor of |I1].

Remark A.2 When Monte Carlo integration is used to compute expectations, taking a
sample from F, and then concatenating the sample across each of its |II| transformations

ensures the empirical distribution of the random draws is I1-invariant.

A.2 Conditional Moment Models

Consider the conditional moment model

EF[91<U7 Xvea’YO)IX - I] S PlU,a:a EF[QQ(U’ X76770)|X = I] = PQO,QC?

h h forallz € X
E [g3<U7 X7 9, 70)|X = ZL‘] S 07 E [94(Ua X7 07,}/0)|X = I] = 07
(37)
where X is a finite set, and a counterfactual®*
k=Y E[k(U,X,0,7)|X = a]. (38)
reX
Suppose the researcher assumes U|X = x ~ F, for each x. We wish to relax this

assumption and allow each conditional distribution of U given X = x, say F,, to vary
in a neighborhood N5, of F.. In doing so, we are allowing the conditional distributions
F, to vary with z, and therefore relaxing independence of U and X.?

We assume each N is defined by the same ¢ to simplify the exposition, but we allow

24Note  can be the expected value at a particular xq if k(U, z,0,7y) = 0 for  # xo. More generally,
k can be a weighted average by incorporating the weighting into the definition of k(u,x, 8, o).

25The case with U independent of X is subsumed in (1) by stacking the moment functions and
reduced-form parameters by values of the conditioning variable, as in Examples 2.1-2.3.



the neighborhood size to vary with z. Let d = (,).cx. We are interested in

Ky = inf > E™[k(U,x,0,7%)]  subject to (37), (39)

0€O,(FzENs, )rex ex
and K defined as the analogous supremum. One may write k5 and Ks as the value of two
optimization problems where K s(0; 0, Py) and K(0; 0, Py) are optimized with respect

to 0. Let P = (P,)zex where P, = (P, P»,) is partitioned conformably with g, and
g2. For a generic (6,7, P), define

Ks(0;7,P) = inf Z]EFZ [k(U,x,0,v)] subject to (37) holding at (6,~, P),

(FeeNb,)oex 2,

and define K5(0;7, P) as the analogous supremum. These criterion functions have dual
forms analogous to Proposition 2.1. Let g(-,z,0,v) = (g:1(-,2,0,7),...,94(-,2,0,7)).
Recall d = Z?Zl d; where d; is the dimension of ¢g;, and A = Ril x R% x Rﬂlf’ x R%. Let
A2, denote the first dy + dy elements of A, € A.

Assumption ®-conditional (i) ¢ € .
(ii) k(-,x,0,v) and each entry of g( -, x,0,7) belong to & for each (0,v,x) € OXI'xX.

Proposition A.2 Suppose that Assumption P-conditional holds. Then

K50, P) N
_ sup Z (_anF* |:¢* (k’(U,x,e,’Y)-i-Cz+A;9(va7977))] — 77x . CCL“ )\/12 )
(12:>0,(z€ER A EN)aex ;e y - x
K5(0;7, P) “
B f ( . [ R (k(U,x,em—cx—A;gw,x,en))] S+ Gyt N )
(77:c>0 CxelﬁkxEA)zeX Z n qb " + TI + C + o

TEX

Moreover, the value of (40) is +o0o (equivalently, the value of (41) is —o0) if and only
if for some x € X there is no distribution in Ns, under which (37) holds at (0,~, P).

As before, estimators &5 and s of k5 and s are computed by optimizing sample

criterions with respect to 6. Let P= (pw)xe x- The sample criterions are

R Ks5(0:4,P) -~ Ks(0:4,P) if Ay(6;4, P,) < 6, for each z € X,
Ks@0)=1] " . Ks(0) = . o
+00 —00 it A,(0;9, P,) > 6, for some z € X,



where Ks(6;4, lf’) and Ks(0;7, P) denote the programs in Proposition A.2 evaluated at

~

(%, P), and

~

Ax(ea ’3/’ px) = sup _]E’F* ¢*(_CZ‘ - A;g(Ua z, 97 ’3/)) - Cx - >\/12,JJP$'

Co€ER N EA

A.3 Non-separable Models

Counsider the model

]EH[gl(Uv X7 9, ’5/0)] S PlOv EH[QQ(U7 X7 97’?0)] = P207

(42)
EH[g?)(Ua X797;5/0)] < 07 EH[§4(U7 X797;5/0)] - 07

and counterfactual
K= EHU%<U7 Xaea’?O)] ) (43)

where the expectation is with respect to the distribution H of (U, X) and X takes values
in a finite set X'. Suppose the researcher assumes U|X = = ~ F, for each . We wish to
relax this assumption and allow the conditional distribution of U given X = x, say F,
to vary in a neighborhood N, of F.,.

Write H(u,z) = qou - Fi(u) where qo, = Pr(X = z). The vector ¢y = (qoz)zex
can be consistently estimated from data on X. Let 7o = (%0, qo). Define g1 (U, z,0,vy) =
Qo2 - 91(U, x,0, %) and similarly for g», g3, g4, and k. The model (42) and counterfactual

(43) can then be written as

> ER[gi(U,2,0,7%)] < P, Y E™[g:(U, 2,60,70)] = Pao,

(44)
ZEF1[93(U71’70’70)] S 07 ZEF1[94(U7'I70’70)] = 07

and k = Y Ef[k(U,x,0,7)]. We again assume each N is defined by the same ¢
function, but allow the neighborhood size to vary with x. Let § = (d,)zcx. We are

interested in

Ky 1= 666,(&1161{/%)%” ;E [k(U,x,0,7v)] subject to (44),

and ks defined as the analogous supremum. One may write k5 and ks as the value of

two optimization problems where criterion functions K s(0; o, Py) and Ks(0; 7o, Py) are



optimized with respect to 6. For a generic (0, , P), define

K507, P)= inf > E*[k(U,,0,%)] st (44) holding at (6,7, P),

(FIENég;)ZGX =

and define K5(0;, P) as the analogous supremum. These criterion functions have dual
forms analogous to Proposition 2.1. Let g(+, x,0,7v) = (91(-, z,0,7), ..., g4(-, 2,0,7)). The

remaining notation the same as Proposition 2.1.

Proposition A.3 Suppose that Assumption ®-conditional holds. Then

Ks(0;7,P) (45)
— sup Z <_77;1;EF* |:¢* (k(U,fﬂﬂﬂ)-i-%c?;)\'g(U@,@ﬂ)>} - nx T Cac >\,12 ) )

(N2>0,(2€R)zex , AEA

— i ( EF [ " (k(U,x,e,’Y)—Cz—,\’g(U,ac,ny)>:| S Gt N P) |
(771>0,C1g11§)zex AEA ; g (b Nz + n + C + 12

Moreover, the value of (45) is +oo (equivalently, the value of (46) is —o0) if and only
if there is no H(u,x) = qo - Fi.(u) with F, € Ns, under which (42) holds at (0,7, P).

As before, estimators kg and s of Ks and K are computed by optimizing sample

criterion functions with respect to 6. The sample criterion functions are

Ka(e) =

Ks(0:4.P) = 0 — K5(0;4,P) if Aponsep(034,P) <0
; [ - ~
—+00 —00 if Anonsep(e; ﬁAY? P) > Oa

where Ks(0;7, f’) and Ks(0;7, P) denote the programs in Proposition A.3 evaluated at
%, P) with 4 = (%, q) for estimators 4 of 4 and § of ¢, and

Anonsep(‘g; Y5 P)

= swp (—ZEF* [(1:6)" (=G = Xog(U,2,6,9)| = n cx) AP
(M2>0,(z€ER) e x, AEA zEX
ZCIJEX ’I7m§1

By similar arguments to Appendix G.3 of Christensen and Connault (2022), A,onsep(0; 7, P)
may be shown to be the dual of

inf ¢ st Dy(Fy||Fy) <6, +t for each x € X and (44) holding at (6,~, P).
teRv(FI)zeX



Therefore, if there exists F, with Dy(F,||F.) < 0, for each x such that (44) holds at
(0,7, P), then A, pnsep(6;7y, P) < 0.

B Additional Results on Nonparametric Bounds

This appendix presents further details to supplement Section 2.5. Proofs of all results in
this appendix are presented in Appendix G.8 of Christensen and Connault (2022). Our
first result concerns the behavior of k5 and Ks as the neighborhood size 6 becomes large.
Recall N, = {F : Dy(F||F,) < oo}. Let

Koo = {EF[k(U,0,7)] : (1) holds at (0,79, Py) for some § € ©, F € N} .
Lemma B.1 Suppose that Assumption @ holds. Then

lim ks = inf Lo, lim R5 = sup K .
d—00 d—00

Next, we characterize bounds on K, using profiled optimization problems and derive

their dual forms. Define
K (0;70, Py) = Fler/lé EF[k(U,H,”yO)] subject to (1) holding at (6, F'), (47)

and let K (0;70, Py) denote the analogous supremum. By definition, we have

inf Koo = ;Dcf)Koo(e;’Yo,Po) , sup Koo = sup Koo (6; 70, Fo) -
S

Let F,-essinf and Fi-esssup denote the Fj-essential infimum and supremum, respec-

tively.

Lemma B.2 Suppose that Assumption ® holds and Condition S holds at (0,7, P). Then

Koo(ev Y, P) = sup (F*—GSS lnf(k(7 07 ’7) + /\/g('7 9’ ’7)) - )‘IIQP) )
AEA:Fy-essinf(k(-,0,7)+XNg(-,0,7))>—00
Koo(ev’% P) inf (F*-QSSSUP(/C(',Q,’)/) - )‘,9(7977)) +)‘,12P) :

= 1
AEA:Fy-esssup(k(-,0,7)—XNg(-,0,7))<+o0

We now derive analogous dual representations for the criterion functions K, , and K,

from Section 2.5 (see display (18)). We require a slightly different constraint qualification:



Definition B.1 Condition S, holds at (8,7, P) if P € ri({EF[g(U,6,7)] : F € Fy}+C).

If F., and p are mutually absolutely continuous, then Condition S,, is equivalent to

Condition S from Section 2.5 (see Lemma E.1).

Lemma B.3 Suppose that Condition S,, holds at (0,~, P) and k is ji-essentially bounded.

Then

Knp(eﬂ s P) = sSup (,u-ess lnf(k(v 97 7) + A,g('a 97 7)) - /12P> )
AeA:p-essinf(k(-,0,7)+Ng(-,0,7))>—00

Kop(07,P) = inf (n-esssup(k(-,0,7) — Ng(-,60,7)) + A1, P).

AEA:p-esssup(k(-,0,7)—Ng(-,0,7))<+oo

C Local Sensitivity

In this appendix, we first introduce a measure of local sensitivity of the counterfactual

with respect to F'. We then contrast our approach with recent work on local sensitivity.

C.1 Measure of Local Sensitivity

Our measure of local sensitivity of the counterfactual x with respect to F' at F| is

_ (Ry — kg)?
=1 7 =07
Y

If s is finite, then under the regularity conditions below
ks = Ky — Vs 4+ 0(V8), Fs=r,+Vos+o(V5), asé |0,

where x, = Ef*[k(U, 0., v)] and 6, solves (1) under F.,.

To draw connections with the local sensitivity literature, we restrict attention to
moment equality models and impose (standard) regularity conditions. These conditions
allow us to characterize s very tractably via an influence function representation, which
leads to a simple estimator § of s. Assume that under F, the moment conditions (1b)
and (1d) point identify a structural parameter 6, € int(©), where we again assume © is

compact. With some abuse of notation, let

go(u,0,7) — Py

g(U,7 0777 PQ) =
9a(u,0,7)




g«(u) = g(u, 0., 70, Pa), and k. (u) = k(u, 0., 70). Let EF*[g(U, 0, vo, Pao)] and EX*[k(U, 0, )]
be continuously differentiable with respect to 6 at 0,, G = %EF . [g(U,@,yO,PQO)H 0.
have full rank, V = Ef*[g,(U)g.(U)] be finite and positive definite, E* [k(U, 0., v0)?] be
finite, and k(-,0,70) and g(-, 0,9, Pao) be L?(F,)-continuous in @ at 6,.

Define the influence function of the counterfactual x with respect to F' at F, as
(u) = Mk, (u) — J'(GV 'O GV g, (u),

where Mk, (u) = k.(u) — ke — EF[k(U)g.(U)](V™! = VAAG(G'VIG) GV g.(u)
and J = ZE[k(U,0,7)]

attention to neighborhoods characterized by y? divergence. Other ¢-divergences are

g—g.- The following theorem relates s and ¢. We restrict

locally equivalent to x? divergence, so this restriction entails no great loss of generality.?°

Theorem C.1 Suppose that the above GMM-type regularity conditions hold and neigh-
borhoods are defined using x* divergence. Then s = 2E[,(U)?].

The proof of Theorem C.1 is presented in Appendix G.9 of our working paper version
Christensen and Connault (2022). In addition to reporting an estimated counterfactual

k= EM[k(U, 0, 4)], researchers could also report an estimate of its local sensitivity to
F:

»>
I
[\]
&=

3
=
d
S~—
|
x>
s
_l_
[\)
O

<>
O
|
W
&
3
=Y
S
=
S
|
x>
S

with G = ZE™[g(U,0,4, P,)]|,_s and J = SE™[k(U,0,4)]|,_s. Lemma G.12 in Ap-
pendix G.9 of Christensen and Connault (2022) shows $ is consistent. Bounds on coun-

terfactuals as F' varies over small neighborhoods of F, can then be estimated using
PERVEES
C.2 Comparison with Other Approaches

We now compare our approach with Andrews et al. (2017, 2020), henceforth AGS, and
Bonhomme and Weidner (2021), henceforth BW. To simplify the comparison, we con-

26See Theorem 4.1 of Csiszar and Shields (2004). The quantity 2E[1(U)?] should be rescaled by a
factor of ¢ (1) for other ¢ divergences.



sider models characterized by moments of the form (1b) with dy > dy and in which there
is no 7.

AGS consider a setting in which the moments (1b) are locally misspecified:
E"[g2(U, 0.)] = Py +n~?c. (48)

Suppose a researcher has a first-stage estimator 152, computes an estimator 0 by mini-
mizing

(E™[92(U, 0)] — o) W(E™ [95(U, 0)] — P),

then estimates the counterfactual using & = Ef*[k(U, é)] AGS’s measure of sensitivity
of & to Py is J'(G'WG) 'G'W, where W is the probability limit of 1¥. The first-order
asymptotic bias of & due to local misspecification is therefore J'(G'WG)'G'We. AGS’s
measure of informativeness of P, for & is 1, meaning that all sampling variation in & is
explained by sampling variation in P,. Our measure s instead characterizes “specification
variation” in k as the researcher varies F' subject to the moment condition (1b).

BW consider estimation of a target parameter (x in our context) using a reference
model Mp = {(6,F) € © x {F.}} when the true (g, Fy) possibly belongs to a larger
model My = {(0,F) € © x N5} with § | 0 as the sample size n increases so that
ndo — 7 > 0. BW seek estimators of x under Mg that minimize worst-case asymptotic

bias or MSE over M. Consider the one-step estimator
k= ]EF* [k(U7 é)] + a/(EF* [92(U7 é)] - pQ) )

where 0 is a v/n-consistent estimator of 6, and a € R% gsatisfies J' = —da’G so that
# does not depend asymptotically on 6. The true counterfactual is kg = EF[k(U, 6,)]
where (0, Fy) € M, satisfies Ef*[go(U,6p)] = Pao. If Mp is correctly specified so that
EF[go(U, 0,)] = Py, then for any a the worst-case asymptotic bias of the one-step

estimator is

lim sup V(. — ko))l = V/7s,

0 0y, Fo) M 1, EF0 [g2 (U, 00 )] =Pao

where s is our measure of local sensitivity.
If we allow for local misspecification of Mg, so that Ef*[g(U, 0,)] # Py, then the

worst-case asymptotic bias of the one-step estimator is

hm sup ‘\/ﬁ (K* — Ko + CL/ (EF* [92(U7 0*)] - P20))| = \/T_Sav

N0 (g, Fo)EM 1, :EF0[go (U,00)]=Pao
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Figure 5: Fixed-0 bounds on the “some college” to “college graduate” premium when

structural parameters are held fixed at CSW’s estimates.

where s, is our local sensitivity measure with k replaced by k + a’gs.

D Additional Details for the Empirical Applications

D.1 Marital College Premium

Bootstrap Details. CSs reported Section 5.1 with § > 0 are computed using the
bootstrap procedure from Section 6.2. To implement the bootstrap, we take 1,000 inde-
pendent draws of Pj ~ N(Py, ) where 3 is CSW’s estimate of the covariance matrix
of 152. We compute ]52 and ¥ based on CSW'’s replication files.

Fixed-f Bounds. Figure 5a plots lower and upper bounds on the “some college” to
“college graduate” premium across cohorts when @ is fixed at CSW’s estimates (com-
puted under F,) but F' is allowed to vary. These bounds for large ¢ contain zero across
each cohort, and are approximately the same width as the bounds with 6 = 0.01 re-
ported in Figure la where both 6 and F' are allowed to vary. Imposing exchangeability
(Figure 5b) is seen to tighten the bounds substantially, producing bounds that span

negative values only for early cohorts and positive values only in the latest few cohorts.

Projection CSs. Figure 6 reports projection CSs computed using the procedure in
Section 6.3. We formed 95% rectangular CSs for each cohort’s Py as described in Sec-
tion 6.3 using CSW’s estimates for P, and their asymptotic variance estimates for 3.
These CSs are significantly wider than the bootstrap CSs reported in Figure 1. Some

conservativeness is to be expected, as these CSs project a 95% CS for P,y down to one
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Figure 6: Projection 95% CSs for bounds on the “some college” to “college graduate”
premium across cohorts.

Table 5: Computation times for the inner problem in the matching application

Implementation )

0.01 0.1 1 10 100
Without exchangeability 0.074 0.056 0.076 0.579 0.188
With exchangeability ~ 0.146 0.184 0.350 0.311 0.488

Note: Times (in seconds) for solving the inner optimization problem for maximizing the pre-
mium in cohort 1 at CSW'’s parameter estimate . We use 50,000 Monte Carlo draws without
exchangeability and 120,000 draws with exchangeability. All computations are performed in
Julia version 1.6.4 and Knitro 12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

dimension. The relative inefficiency is especially pronounced for the earlier cohorts. Note
also from Figure 6b that the projection CSs with 6 = 0.01 span zero across each cohort,
whereas the bootstrap CSs with § = 0.01 in Figure 1b contain negative values only in

some early cohorts and positive values only in later cohorts.

Computation Times. Table 5 reports times for solving the inner problem for maxi-
mizing the premium in cohort 1. This optimization problem defines the criterion function
K5(0; ]5) As times vary with 6, we report times at CSW’s estimates. Times increase
somewhat with 0, but are all under 0.6 seconds. The outer optimization times varied
with cohort, §, and implementation but were typically solved in at most a few minutes

(often under 90 seconds).

Sensitivity to ¢. Using x? and L* divergences produced near identical bounds for
d = 0.01 and 0.1. The x? bounds with 6 = 1 and 10 were at most 10% narrower
than the hybrid bounds. The L* bounds were 60%-70% of the width of the hybrid

12



bounds for § = 1, 10, and 100 across cohorts (L* divergence is stronger than x? and
hybrid divergence). The shapes of the sets were also similar to those reported for hybrid
divergence. Overall, these results show that the conclusions we draw from our analysis

are not sensitive to the choice of ¢.

D.2 Welfare Analysis in a Rust Model

Bootstrap Details. Bootstrap CSs reported Section 5.2 with § > 0 are computed
using the procedure from Section 6.2. We take 1,000 independent draws of é; ~ N (9}, i])
where 0, is the MLE of (RC, MC) under the i.i.d. Gumbel assumption and 3 is an
estimate of the inverse information matrix. We then set ]-:’Q* to be the model-implied
CCPs at 6% under the i.i.d. Gumbel assumption.

As k depends only implicitly on v through 8, we compute &5 and Ts using the criterion
functions in display (17), which is more computationally efficient than using criterions
(13) and (14). The A multipliers on the minimum divergence problem A(#; P) in (17)
differ from A in criterions (13) and (14) by the factor 7 (see the discussion in Section 2.3).
As our bootstrap methods are derived based on criterions (13) and (14), when imple-
menting the bootstrap we rescale the multiplier A\ solving (16) by the multiplier n on
the constraint A(6); ﬁ) < ¢ in the outer optimization.?” As n and X\ are computed sep-
arately in the outer and inner optimizations, respectively, it is computationally most
convenient to implement our bootstrap CSs with 7 = 0. As discussed in Section 6.2, this
choice is valid but possibly conservative. Despite this potentially conservative choice, the
bootstrap CSs are not materially wider than the bootstrap CSs under the i.i.d. Gumbel
assumption.

To construct the projection CSs, we form a 95% rectangular CS for Py as described
in Section 6.3. For each draw of é; we compute the model-implied CCPs j%* under the
i.i.d. Gumbel assumption. We construct t-statistics for each CCP by centering P; at P,

and studentizing by its standard deviation across draws. For each draw we compute the

2TThis rescaling is also justified as follows. Let bs(P) = SUPgeo:a(o;p)<s k(0) and note ks = bs(Py)

and k5 = 55(]5). By similar arguments to Corollary 5 of Milgrom and Segal (2002), one may deduce that
the directional derivative of bs(P) at Py involves multiplying the directional derivative of P — A(6; P)
at Py by the multiplier for A(#; P) < §. The directional derivative of P — A(0; P) at Py may be shown
to be

lim ¢, (A(0; Py +tohn) — A(0; Py)) = sup  —Ajph,

oo A12€A(8;Po)
where A(0; Py) is constructed analogously to As(; P) in Section 6.2 using the set of multipliers that
solve the minimum divergence problem (16).
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Table 6: Computation times for the inner problem in the DDC application

J

0.01 0.1 1 10 100
Lower bound 0.124 0.144 0.164 0.285 0.265
Upper bound 0.101 0.119 0.142 0.266 1.039

Note: Times (in seconds) for solving the inner optimization problem at the parameter values
at which A5 and ks are attained. All computations are performed in Julia version 1.6.4 and
Knitro 12.4.0 on a 2.7GHz MacBook Pro with 16GB memory.

maximum of the absolute value of the t-statistics. We then take the critical value ¢91_q

to be the 1 — a quantile of the maximum statistic across draws.

Computation times. Table 6 reports computation times for the inner optimization
for evaluating the criterion functions & s(0;7, ]5) and ?5(9; 4, 15) at the parameter values
at which &; and &z are attained. The computation times correspond to solving the min-
imum divergence problem A(6;4, P) because k does not depend on u (cf. display (17)).
The outer optimizations were typically solved in a few minutes in a 8-core environment

with 64GB memory.

Sensitivity to ¢. Bounds with y2-divergence were between 4% narrower and 1% wider
than the bounds for hybrid divergence for all values of §. Repeating the analysis with
L*-divergence, which is stronger than y? and hybrid divergence, produced bounds that
were 10-30% narrower than the hybrid divergence bounds up to § = 1 and at most 5%
narrower than the hybrid divergence bounds for larger values of §. As with the matching
application, these results again show that the conclusions we draw from our analysis are

not sensitive to the choice of ¢ function.

E Proofs of Main Results

Throughout the proofs, we abbreviate upper-semicontinuous and upper-semicontinuity

to u.s.c. and lower-semicontinuous and lower-semicontinuity to l.s.c.

E.1 Proofs for Section 2

Proof of Proposition 2.1. Immediate from Proposition G.1 in Appendix G.2 of
Christensen and Connault (2022). =

Recall Condition S from Definition 2.1 and Condition S,,, from Definition B.1.
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Lemma E.1 Suppose that Assumption @ holds and p and F, are mutually absolutely
continuous. Then Condition S holds at (0,7, P) if and only if Condition S,, holds at

(0,7, P).

Proof of Lemma E.1. In view of Hélder’s inequality for Orlicz classes (see (A.1)),
Assumption ® implies N, = {F : Dy(F||F,) < oo} C Fy. Therefore,

Goo = {EF[g(U,0,7)] : F € Noio} C{EF[g(U,0,7)] : F € Fy} =: Gy.

By Corollary 6.6.2 of Rockafellar (1970), it suffices to show 11(G,) = 1i(Gy). As ri(Go) C
Goo C Gy, it suffices to show Gy C cl(Go,) (Hiriart-Urruty and Lemaréchal, 2001, Remark
2.1.9). For any x € Gy, we have z = EI'[g(U, 0,)] for some F € Fy. As F < p and F,
and p are mutually absolutely continuous, F' has a density, say m, with respect to Fi.

For each n > 1, let m(u) A n = min{m(u),n} and define

m(u) An

Jm(u) An) dF.(u)

mn(u) =

Each F, defined by dF,, = m,dF, belongs to N. It follows that E*[g(U,0,7)] € G-
By monotone convergence, we have Ef[g(U, 0, ~)] — x. Therefore, z € cl(Gs,). ®
Proof of Theorem 2.1. We prove only the result for inf K; the result for sup K follows

similarly. Note

where the first equality is by definition and the second equality holds because, if 8 ¢ Oy,
then there does not exist a distribution F' € Fy under which the moment conditions
hold at (60,70, Fy) and consequently K, (0;70, Fy) = +oo. If 0 ¢ ©;, then there does
not exist F' € N, under which the moment conditions hold at (0, ~y, Fy) either because
N, C Fy for all § under Assumption ®. Therefore, K__(6;70, Py) = 400 in that case
too. We therefore have

inf oo = ei€n®f1 K (0;7, F) .

In view of Lemma B.1, it suffices to show inf L = inf IC,. Note that inf I < infKC.,
holds by virtue of the inclusion N, C Fj for all #. For the reverse inequality, choose any
e > 0. By S-regularity of ©y, there exists § € ©; for which Condition S holds at (6, vo, Fo)
and for which K, (8;70, Py) < inf C + €. As Condition S holds at (€,7o, Fo) and pu <
F, < p, Lemma E.1 implies that Condition S,,, must also hold at (¢, 7o, Fy). Moreover,

the p-essential infimum and Fi-essential infimum of any function are equal because p <
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F, < p. Therefore by Lemmas B.2 and B.3, we have K (0; 70, Po) = K,,,(0; 70, o). It
follows by definition of inf Ko, that inf Koo < K (0;70, o) = K,,,(0; 70, Fo) < inf C+e.
Therefore, inf Lo, < inf/C. m

E.2 Proofs for Section 3

Proof of Proposition 3.1. We prove the result for Kj; the proof for K4 follows

similarly. Consider

A : F . .
vt = eeel,rzl?feN(SE [k(U,0,7v)] subject to (1) holding at (6,~, P), (Program A)
v? = inf EXso[k(U,9,7)] subject to EX[gs(U6,7)] = 0, (Program B)

€

where F'5, solves

;foé EX[k(U,0,v)] subject to (19) holding at (8,, P),

and v? = 400 if there is no solution to this problem. Program A is the approach
described in Section 2 whereas Program B is equivalent to our MPEC implementation.

The inequality v4 < v? is trivial if v = +o00. If v? is finite, for any € > 0 there exists
65 € O for which EF02 [k(U, 08, ~)] < v® + £ and EF0Z [, (U, 62, v)] = 0 where Fson
is well defined by Lemma G.2(ii) of Christensen and Connault (2022). As (96B7E5,9€B)
are feasible for Program A, we have v* < v® + . As ¢ is arbitrary, we have v* < 0P
whenever v? > —oo.

A similar argument applies when v? = —oo: for any n € N there exists 02 € © for
which EX50% [k(U, 02, 7)] < —n and EX59% [g4.(U, 63, ~)] = 0, where the distribution Fsop

is well defined by Lemma G.2(ii) of Christensen and Connault (2022). As (67, F45) are

feasible for Program A, we have v* < —n. Hence, v = v? = —oc0.

Note v? < v holds trivially if v4 = 4-00. If v is finite, rewrite Program B as

3 f 1 EE(S,G,R =
N, subject to [94¢(U,0,7)] =0,

where F;, . solves the feasibility program
Finjf/ 0 subject to (19) and EX[k(U, 0,v)] =  holding at (0, ~, P). (49)
€N
For any € > 0 there exists 62 € © and F2* € N such that the constraints in Program A
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are satisfied, i.e. EF¥ (1 (U, 024, < P, .., EF [94(U, 02,7)] = 0, and

E [k(U,024,7)] < v 4 €.

3

Then F4 solves the feasibility program (49) with 6 = 02 and k = k2 := EF¥' [k(U, 62, 7).

£

Note that EF' [g,.(U,04,~)] = 0 also holds by construction. Therefore, (k2,64) are
feasible for the augmented form of Program B. It follows that v? < Iﬁ? < v + ¢ holds

for each € > 0. As € > 0 is arbitrary, we have v? < v4 whenever v > —oc0.

A similar argument applies if v = —oo: for any n € N, we may choose 62 € © and
F4 € Nj such that the constraints in Program A are satisfied and EX [k(U, 62, v)] < —n.
It follows that v® < —n. Hence, v% = v4 = —00. m

Proof of Proposition 3.2. We prove the result for F;,, the result for F&g follows
similarly. We drop dependence of k£ and g on (6,~) to simplify notation in what follows.

First, suppose k depends on u. The dual formulation is justified by Proposition 2.1. A
dual solution (1, ¢, A) exists by Proposition G.1(iii) of Christensen and Connault (2022).

Suppose 1 > 0. We wish to show that the change of measure m; 4(u) = q'ﬁ*(—ﬂ_l (k(u)+
¢+ XNgs(u))) induces a distribution that solves the primal problem (20) at §. Differen-
tiability of the objective function in (7, (, A) is guaranteed by Assumption ®. Also note
that Assumption ®(i) ensures ¢* > 0. The first-order condition (FOC) for ¢ is

0=E"™ |¢"(=n ' (k(U) + ¢+ XNg,(U)))| 1

which implies E*[m;,] = 1 and hence that F;, is a probability measure. The FOC for
Als

0>E" :d)*(—_*l(k(U) +(+ A’gs(U)))gl(U): — B,
0= E" [§*(—n” (W) + C+ Xa(0)aa1)] — .
0>E"™ :gz}*(—g—l(k(U) +C+ A’gs(U)))gza(U): :
0 =E" [ (=0 (k(U) + ¢ + Xgy(U))gus(U)]

hence (1a)-(1c) and E"[g4,(U, 0,7)] = 0 hold at (6, ~, P) under Fs,. The FOC for n > 0
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0= E™ [§" (=0 (M(U) + €+ Xgo(U)) (=17 (k(U) + € + Ng(U))]
—E™ [¢" (= (k(U) + ¢ + Ng,(U))] = 0.

By Assumption ®(i), we may write the convex conjugate ¢** of ¢* using its Legendre

transform:

o () = x*(¢") (") — ¢ ((9%) " (2¥))
for any x* in the range of ¢* (Rockafellar, 1970, Theorem 26.4). Setting 2* = ¢*(z) and
noting that ¢** = ¢ holds by the Fenchel-Moreau theorem, we obtain

It follows that we may rewrite the FOC for 1 as § = E*" [¢(ms4(U))] and so Fj4 € Nj.

Now suppose 7 = 0. Here we wish to show that mse(u) = W{u € Asp}/Fi(Asp)
induces a distribution that solves the primal problem (20) at 6. As the neighborhood
constraint F' € Ny is not binding, the value of the objective must be the same as the
optimal value when § = co. In view of Lemma B.2, the value is Fi-essinf(k(-)+ )X gs(-)) —

Ao P. We can write problem (22) as a nested optimization:

sup < sup —nE™ [gb* (—k(U)Jer’\/gS(U))} —nd—( — )\’12]3) :
AeAs \m>0.C€R K

At A = ), the inner problem is the dual of infpep; EF [k(U) + Ngo(U) — Ao P]. As
n = 0, the constraint F' € N is not binding and so the minimizing distribution must be
supported on A; . Finally, by convexity of ¢, the distribution induced by ms y minimizes
Dy( - ||F.) among all distributions with support Ag,.

Now suppose k does not depend on u. By Proposition G.2 of Christensen and Con-
nault (2022), the primal and dual values of (15) are equal and a dual solution exists.
By similar arguments to above, EF*[ms,(U)] = 1, and (1a)-(1c) and E* [g4(U,0,7)] = 0
hold at (0,7, P) under Fs,. Finally, as there exists F* € N; under which the mo-
ment conditions (la)—(1c) and Ef[g4(U,0,v)] = 0 hold at (6,7, P), we must have
D(F;4|Fy) < D(F||Fy) <6, as required. m
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E.3 Proofs for Section 4

Proof of Proposition 4.1. As ¢1(z) < age(z) for all x > 0, we have Dy, (F||F,) <
aDg,(F || Fy). Hence, Nso C Njs for each 6 > 0. The result follows from this inclusion,

noting that r;5; and ks, are both finite because Assumption @ holds for ¢;. =

E.4 Proofs for Section 6

We first present some preliminary lemmas.

Lemma E.2 Suppose that Assumptions @ and M(i),(v) hold. Let {(F,,0n,Yn, Pn)} C

Ns x © x T x P with (3, P,) = (3,P) € T x P and with (1) holding under F, at
(O Yn, Pn). Then: there exists a convergent subsequence (Fy,, On,, Yn,, Pn,) — (F, 0,7, P) e
Ns x © xT' x P along which limy_,o, B [k(U, 0,,, 7, )] = Eﬁ[k(U, 0, )] and similarly for
each entry of g1, ..., g1, and (1) holds under F at (6,7, P).

dFy
dFy”

subsequence {6,,}. As {m,,} is || - ||;-norm bounded (Lemma F.1(ii) of Christensen and

Proof of Lemma E.2. Let m, =

By Assumption M(v), {6,} has a convergent

Connault (2022)), taking a further subsequence if necessary we may assume {m,,} is
E-weakly convergent to m € L (see Appendix F of Christensen and Connault (2022)).
By the triangle inequality, the Holder inequality (A.1), &-weak convergence, and As-

sumption M(i), we have

B (1, (U)K (U, By, )] — EF [0 (U (U, B, 7))

[
< | (1m0, (U) = (U)K, 0, 9))] + v oll5 -, s ) = K-, 8,9) s — 0.

It follows by similar arguments that

R

)]

0]

N
(VAN

Y

E[mU)] =1,  E™[m(U)g(

a1(U, P, EFm(U)gs
EF*[ (U)93<U, 07

™
IN

Finally, by Lemma F.1(i) of Christensen and Connault (2022), we have the inequality
§ > liminf, o Ef*[¢(m,,, (U))] > EF*[¢(m(U))]. =

Lemma E.3 Suppose that Assumptions ¢ and M(i),(iii)—(v) hold. Then ks and Rs are
finite, and

ks= inf  Ks(0;7,F), Re= sup K07, ).
QGGJ(VO’PO) 96@5(’)/07130)
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Proof of Lemma E.3. We prove the result only for xy; the result for %5 follows
similarly.

Finiteness of k4 follows by Assumptions ® and M(i)(v) and the Hélder inequality
(A.1). To simplify notation, we suppress dependence of Os(v, Py) on (v, Fp) in what
follows. Suppose there is 0 ¢ O5 with K;(0; 70, Fo) < infoco, K5(0;7, Po). Then there
must exist Fy € Nj satisfying (1) at (8,70, Py). As A(8; 0, Py) = ¢, it follows by convexity
of ¢ that Fy must be unique. Therefore

EFQ[I{;(U7 Qa /70)] = K(S(QJ 70, PO) < Hien@f K&(@u Y0, PO) S Gieng ]E'FG [k(Ua 007 70)] ) (50>
[ 5

where, for each 6 € Oy, the distribution Fy solves infp Dy (F||F) subject to (1). Existence
of Fy follows by similar arguments to the proof of Lemma G.2(ii) of Christensen and
Connault (2022); its uniqueness follows by strict convexity of ¢.

Choose {6,} C ©; with 6, — 6 (we may choose such a sequence by Assump-
tion M(iv)). By Lemma E.2, there is a subsequence {(0y,, Fp, ; Y0, Fo)} with (0,,, Fp, ) —
(8, F) for some F € N for which (1) holds under F at (6, o, Py). It follows by uniqueness
of Fy that F' = Fy. By Lemma E.2, we therefore have

inf ]EFG [k(U’ 07 ’70)] < lim Eanl [k(U, ‘971“ ’70)] = EFQ[k(Uu Qa 70)] ’
0€B;s l—00

which contradicts (50). =

Define

bs(v,P)= inf K, (0;~, P), bs(v,P)= inf Kgs(0;v,P).
—6(’% ) 0661?(%}3)_6( Y )7 5(’% ) 96@1?(%}3) (5( 7Y )

Lemma E.4 Suppose that Assumptions ¢ and M(i)-(v) hold. Then bs(y, P) and bs(v, P)

are continuous at (o, Py).

Proof of Lemma E.4. We prove the result only for bs; the result for bs follows similarly.

Fix ¢ > 0. By Lemma E.3, we may choose 0. € ©4(v9, Py) such that K4(0.; v, Po) <
bs(70, Po) +¢. By Lemma G.8 of Christensen and Connault (2022) and Assumption M(ii)
we have A(f.;~, P) < 6 on a neighborhood N of (v, Fy). Moreover, by Lemma G.9(i)
of Christensen and Connault (2022) and Assumption M(i)—(iii) we have

K507, P) < K5(0:57, Po) + ¢
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on a neighborhood N’ of (v, ). On N N N’ we therefore have
bs(7, P) < Ki(0c;7, P) < K5(0=3 7, Fo) + & < bs(0, Fo) + 22,

establishing u.s.c. of bs(v, P) at (Yo, Po)-
To establish l.s.c., suppose there is ¢ > 0 and (v,, P,) — (7, Py) along which

bs(Yns Pr) < bs(0, Po) — 2¢. (51)

Note Os(vn, P,) is nonempty for n sufficiently large by Lemma G.8 of Christensen and
Connault (2022) and Assumption M(ii)(iii). For each n sufficiently large, choose 6,, €
Os(Yn, Pn) and F,, € N for which

EX [k(U, 05, 7)) < bs(Yns Pa) + €. (52)

By Lemma E.2 there is a subsequence (F},,, 05, Y, Pny) — (E, 0,70, Po) for some F € Nj
and @ € O, such that (1) holds under F at (6,70, Py), and for which

lim EFnl [k(U? enpﬁ)/nl)} = EE[k(U7 Qv 70)] > K&(Q; Yo, PO) .

=00

In view of (51) and (52) and Lemma E.3, this implies K(0; 70, Po) < bs(70, Po) — € =
kg — €, contradicting the definition of k5. m

Proof of Theorem 6.1. Note that k5 = bs(y0, Py) and &5 = bs(70, Py) by Lemma E.3
and 5 = bs(9, P) and %5 = bs(¥, P) by definition. The result now follows by Lemma E.4
and Slutsky’s theorem. m

Lemma E.5 Suppose that Assumptions © and M(i),(ii) hold, Condition S’ holds at
(0,7, P), and A(0;~,P) < §. Then there is a neighborhood N of (0,7, P) such that
Condition S’ holds at (9,7, P) and A(8;%, P) < & for all (6,7, P) € N.

Proof of Lemma E.5. By Lemma G.7 of Christensen and Connault (2022), Condition

S’ holds at all (5, #, P) in a neighborhood N of (6, ~, P). Moreover, A(#;4, P) < § holds

at all (0,7, P) in a neighborhood N” of (6,+,P) by Lemma G.8 of Christensen and
Connault (2022). Set N=N'NN". =

In the remainder of this subsection we drop dependence of all quantities on .

Proof of Theorem 6.2. We prove the result only for bs; the result for b; follows

similarly.
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Step 1: We first show ©4(F) is nonempty and compact. For nonemptiness, choose
{6,,} such that K;(0,; Py) | ks. Let F}, solve the primal problem for #,,. By Lemma E.2,
there is a subsequence (F,,,0,,) — (F,0) with I € Ns and 6 € © such that (1) holds
under F at (0, Py) and for which

5y = Jim E™[k(U,6,,)] = EZK(U.0)].
Therefore, ©5(F) is nonempty. We may deduce by similar arguments that ©;(F) is
closed. Compactness now follows by Assumption M(v).

Step 2: We now prove directional differentiability. Let P, = Py + t,h, with ¢, | 0
and h,, — h. Choose 0 € O5(F). By Lemma E.5 and Assumption M(iii)(vi), Condition
S’ holds at (6, P,) and A(¢; P,) < ¢ for n sufficiently large, so by Proposition G.1(iv)
of Christensen and Connault (2022) the set A;(0; P,) is nonempty and compact for n
sufficiently large. It now follows by definition of the objective (13) that

Z_)(S(Pn) _1_75<P0) S KJ(Q; Pn) _Ké(Q; PO) S tn X _Allzhna

for all \j5 € As(0; P,). Finally, by Lemma G.9(ii) of Christensen and Connault (2022)

we obtain b(P b(P
lim sup bs(Fn) = bs(Fh) < max —Aph.
n—o00 ln A12€A5(0;P)

Taking the infimum of both sides over 6 € ©; yields

bs(P,) — bs(F, )
lim sup bs(Fn) = bs(Fh) < inf  max —A\ph. (53)
n—00 tn 0€9s A12€A5(6;F0)

For the lower bound, choose 6, € ©s(P,) with K(0,;P,) < bs(P,) + t2 for all
n sufficiently large. Take a subsequence {6,,}. By Assumption M(v) (taking a further
subsequence if necessary), we have §,, — 6 € O. By similar arguments to step 1, we

may in fact deduce that § € ©;. Reasoning as above, for [ sufficiently large we have
Q&(Pm) - l—)é(PO) > K&(an; Pnl) - K&(enz; PO) - til > tnz X _AIIth - t?zl )

where the final inequality holds for any A, € Ag(0y,; o). By Assumption M(vii), we

may choose Ay, € As(0n,; Po) for which =X}, h — maxy ,ea,@:p) —Aoh as | — oo.
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Therefore,

l—o00 tn

\%

> max —ALh > inf  max  —)\,h.
A12€A4(0;P0) 0€0 5 A5€A5(0;P0)

1

As the lower bound does not depend on the subsequence {0, }, we have

bs(P,) — bs(P,
lim inf bs(Fn) = b (Po) > inf  max —\h, (54)
n—oo ln 0€0; A1€A;5(0;P0)

proving directional differentiability. Finally, Assumption M(vii) and Lemma G.9(ii) of
Christensen and Connault (2022) imply 6 — A;(6; Fy) is continuous at each 6 € ©4. The
set As(0; Py) is also compact for each 6 € ©; by Proposition G.1(iv) of Christensen and
Connault (2022). It follows by the maximum theorem that the infima in (53) and (54)
can be replaced by minima.

Step 3: In view of step 2, the asymptotic distribution follows by Theorem 2.1 of
Shapiro (1991) and the fact that /n(P — P) =4 N(0,%). m
Proof of Theorem 6.3. We verify the conditions of Theorem 3.2 of Fang and Santos
(2019). Their Assumptions 1 and 2 hold by Theorem 6.2 and because /n(P — Py) —4
N(0,%) with ¥ finite, respectively. Their Assumption 3 is assumed direc/’Ely. Finally,
Lemma G.11 of Christensen and Connault (2022) shows that c/lz_)(;, p, and dbs p, satisfy
the sufficient conditions for Assumption 4 of Fang and Santos (2019), which is presented

in their Remark 3.4. This proves consistency. Coverage of C’S;;JO‘ and 05517{]“ follows by
continuity of the distribution functions. Coverage of CS;‘O‘ follows by the Bonferroni
inequality. m

Proof of Theorem 6.4. We prove the result only for C’S;’a; the result for the other
CSs follow similarly. Say that Py € CSp® if Py < Pl and Py € [Py7*, Pyp®
both hold. By Lemma E.3, for each ¢ > 0 we may choose 6_,0. € O5(F,) such that
K;(0;P) < ks +¢ and K;(0.; Py) > Fs — €. Let F,y and F5_ solve problem (15) at
(6.; Py) and (6-; Fy), respectively. Whenever Py € C'Sp® holds, F| o and Fj_ must also
satisfy the “relaxed” moment conditions used for computing £, , and Ks1_a, S0 it
follows that A.(6.; ]51_&) < 6 and A (0.; Pl_a) < 6. Moreover, as the primal solutions
for K5(0.; Py) and K(0.; Py) are feasible for the relaxed problem whenever Py € CSp°,
we have

Bisto < Ksoo(05 Pioa) < K50 Ry) < ks + €,

and similarly K5 1_o > Ks —€. As € is arbitrary, we have that k5 > £5,_, and B; < Ks1-q
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holds whenever F, € C’S}DO_O‘. The desired coverage now follows by (30). =
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