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Abstract 

Human mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to 

differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes. These 

cells have been extensively employed in the field of cell-based therapies and regenerative 

medicine due to their inherent attributes of self-renewal and multipotency.  Traditional 

approaches for assessing hMSCs differentiation capacity have relied heavily on labor-intensive 

techniques, such as RT-PCR, immunostaining, and western blot, to identify specific biomarkers. 

However, these methods are not only time-consuming and economically demanding, but also 

require the fixation of cells, resulting in the loss of temporal data.  Consequently, there is an 

emerging need for a more efficient and precise approach to predict hMSCs differentiation in live 

cells, particularly for osteogenic and adipogenic differentiation.  In response to this need, we 

developed innovative approaches that combine live-cell imaging with cutting-edge deep learning 

techniques, specifically employing a convolutional neural network (CNN) to meticulously classify 

osteogenic and adipogenic differentiation.  Specifically, four notable pre-trained CNN models, 

VGG 19, Inception V3, ResNet 18, and ResNet 50, were developed and tested for identifying 

adipogenic and osteogenic differentiated cells based on cell morphology changes.  We 

rigorously evaluated the performance of these four models concerning binary and multi-class 

classification of differentiated cells at various time intervals, focusing on pivotal metrics such as 

accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity, 

precision, and F1-score.  Among  these four different models, ResNet 50 has proven to be the 

most effective choice with the highest accuracy (0.9572 for binary, 0.9474 for multi-class) and 

AUC (0.9958 for binary, 0.9836 for multi-class) in both multi-class and binary classification 

tasks.  Although VGG 19 matched the accuracy of ResNet 50 in both tasks, ResNet 50 

consistently outperformed it in terms of AUC, underscoring its superior effectiveness in 

identifying differentiated cells. Overall, our study demonstrated the capability to employ a CNN 



approach to predict stem cell fate based on morphology changes, which will potentially provide 

insights for the application of cell-based therapy and advance our understanding of regenerative 

medicine. 
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Introduction  

Mesenchymal stem cells (MSCs) have great potential for tissue engineering, regenerative 

medicine, and cell-based therapy due to their capacity for self-renewal and multipotency.  Under 

certain chemical or biophysical stimulation, MSCs can be differentiated into various lineages, 

including osteoblasts, adipocytes, neurons, and chondrocytes (Augello and De Bari, 2010; Zhao 

et al., 2022a; Zhao et al., 2022b; Fasciano et al., 2023).  MSCs can be isolated from various 

sources, including bone marrow, adipose tissue, placenta, umbilical cord or umbilical cord 

blood, respectively (Han et al., 2019).  MSCs also possess various physiological effects, such 

as maintenance of tissue homeostasis, regeneration, and immunomodulatory properties, 

making them valuable for cell-based therapeutic applications (Zhou et al., 2021).  MSCs offer 

considerable potential for regenerative medicine and therapeutic research; however, clinical 

trials utilizing MSCs face challenges such as variations in donor-derived cells, stability of 

stemness, differentiation capacity, and production inconsistency (Zhou et al., 2021).  To meet 

the demand for a large number of functional stem cells for successful clinical translation, such 

as tissue regeneration, effective quality control of MSCs functions is required for high-quality, 

consistent, large-scale biomanufacturing of MSCs (Dwarshuis et al., 2017; Aijaz et al., 2018).   

Although MSCs have been studied for decades, it is highly challenging to exclusively 

differentiate MSCs into a single desired cell type.  Consequently, the identity and purity of the 

resulting cell population are critical for cell-based therapies. At present, the evaluation of the 

identity and purity of cell populations derived from MSCs typically involves measuring specific 

marker genes, or a combination of such markers. However, this method of classification raises 

concerns regarding the selection and specificity of these marker genes.  Furthermore, current 

approaches for characterizing MSCs functions are lacking in clinical relevance, throughput, and 

robustness, highlighting the necessity for an automatic and robust method for quality control in 

MSCs functions.      



Recently, it has been reported that MSCs functions, particularly differentiation potential, relate to 

cell morphology by exploiting advances in high-resolution microscopic imaging (Nombela-Arrieta 

et al., 2011; Singh et al., 2014; Kim et al., 2022a).  For example, MSCs morphology has been 

correlated with differentiation capacity (Matsuoka et al., 2013; 2014; Lan et al., 2022a) and 

passage number (Lo Surdo and Bauer, 2012).  Recent advancements in machine learning 

provide opportunities for predicting stem cell fate by utilizing large datasets of stem cell 

characteristics (Fan et al., 2017; Ashraf et al., 2021; Zhu et al., 2021).  Among these machine 

learning methods, deep learning techniques have emerged as powerful tools to predict and 

identify stem cell patterns and lineage relationships (Kusumoto and Yuasa, 2019; Ren et al., 

2021).  These models can identify key features such as molecular signatures, cell morphology, 

and gene expression that influence stem cell fate, allowing for precise differentiation predictions. 

Deep learning algorithms can analyze this data to develop predictive models that accurately 

forecast the fate of stem cells, such as their differentiation into specific cell types, including 

osteocytes, adipocytes, or neurons.  Machine learning algorithms have also been employed to 

predict MSC osteogenic potential (Matsuoka et al., 2013; Lan et al., 2022a), microenvironmental 

cues (Vega et al., 2012; Chen et al., 2016), and neural stem cell differentiation and blastocyst 

formation (Liao et al., 2021; Zhu et al., 2021).  However, the majority of machine learning-based 

approaches rely on datasets collected from fixed cells rather than live cells.  This method, 

exemplified by techniques like immunofluorescent staining, is time-consuming and 

uneconomical.  Thus, there is an urgent need for an effective deep learning-based approach 

that can accurately predict and identify the fate of stem cells without the need for cell fixation 

and staining.    

Recently, there has been growing interest in identifying differentiated stem cells based on 

accurate cellular morphology recognition using a simple microscope setup, thanks to the use of 

convolutional neural networks (CNNs) (Matsuoka et al., 2013; Dursun et al., 2021; Kim et al., 



2022a; Chen et al., 2023). Matsuoka et al. has applied Ridge Regression as the machine 

learning modeling method to quantitatively predict cellular osteogenic potential (Matsuoka et al., 

2013).  Waisman et al. trained a CNN with transmitted light microscopy images to distinguish 

pluripotent stem cells from early differentiated cells (Waisman et al., 2019).  Zhu et al. 

developed a deep learning-based platform to predict neuron stem cells (NSCs) differentiation 

using brightfield images without labelling (Zhu et al., 2021).  Kusumoto et al. developed an 

automated deep learning-based system to identify endothelial cells derived from induced 

pluripotent stem cells (Kusumoto et al., 2018).  Recently, Lan et al. developed a deep learning 

model called osteogenic convolutional neural network (OCNN) based on single-cell laser 

scanning confocal microscope (LSCM) images to predict osteogenic differentiation of rat bone 

marrow mesenchymal stem cells (rBMSCs) (Lan et al., 2022b).  The OCNN model 

demonstrated its potential in predicting osteogenic drug effects, biomaterial development for 

bone tissue engineering, and cell-matrix interaction research.  A transfer learning-based 

approach was utilized as the feature extractor predicting, with four well-performing models 

(VGG 19, InceptionV335, Xception, and DenseNet121) pre-trained on ImageNet.  With over 

85% accuracy, the results demonstrated the potential of a computer vision based method for 

identifying stem cell differentiation (Kim et al., 2022b).  More recently, Zhou et al. introduced a 

predictive model for classifying hMSC differentiation lineages using the k-nearest neighbors 

(kNN) algorithm (Zhou et al., 2023).  It provided accurate prediction of lineage fate on different 

types of biomaterials as early as the first week of hMSCs culture with an overall accuracy of 

90.63% on the test data set.  Although various CNN approaches have been employed to predict 

cell differentiation based on cellular morphology, achieving high prediction accuracy and 

precision remains a challenge.  In response, our study leveraged innovative methodologies, 

integrating live-cell imaging with advanced deep learning techniques, specifically using a 

Convolutional Neural Network (CNN), to achieve exceptional prediction efficiency in identifying 

adipogenic and osteogenic differentiated hMSCs.  Although several deep-learning based 



methods have been utilized to efficiently predict stem cell fate based on microscopic images, 

there is a still emerging need to identify and predict stem cell lineages based on live-cell 

imaging without fixation and staining.  This motivated our work.  Moreover, in order to choose 

appropriate deep-learning approaches, we have reviewed previous studies and most current 

deep-learning models.  We systematically developed and evaluated four distinct CNN models: 

VGG 19, Inception V3, ResNet 18, and ResNet 50, to discern the cellular morphology changes 

associated with adipogenic and osteogenic differentiation.  These four models were chosen 

based on their performance regarding accuracy, parameters, and performance in other deep-

learning applications (Saber et al., 2021; Sahinbas and Catak, 2021; Palanivel and Nallasamy, 

2023).  Recently, ResNet 18 and ResNet 50 are most popular networks in classification of stem 

cell differentiation (Waisman et al., 2019; Chen et al., 2023; Kim et al., 2023).  However, a 

comprehensive comparison of these two models with other models (VGG 19, Inception V3) has 

not been investigated, to the best of our knowledge.  Our comprehensive analysis spanned 

multiple time points, ranging from 1 day to 15 days.  We placed a primary focus on essential 

performance metrics such as accuracy, area under the Receiver Operating Characteristic curve 

(AUC), sensitivity, precision, and F1-score, applying these to both binary and multi-class 

classification of differentiated cells.  

Materials and Methods 

Cell culture  

Human Bone Marrow Derived Mesenchymal Stem Cells (hMSCs) were acquired from Lonza 

and PromoCell.  According to the manufacturer, hMSCs were isolated from normal adult human 

bone marrow withdrawn from bilateral punctures of the posterior iliac crests of normal 

volunteers.  Four vials of cells are purchased from different volunteers with different ages, which 

indicate the heterogeneity of hMSCs. hMSCs were cultured in mesenchymal stem cell basal 

medium MSCBM (PT-3238, Lonza) with GA-1000, L-glutamine, and mesenchymal cell growth 



factors (PT-4105, Lonza).  Cells were cultured in 10 cm tissue culture dishes at 37 ℃ and 5% 

CO2 in a humidified incubator.  Cells were maintained regularly with medium change every 

three days and passaged using 0.25% EDTA-Trypsin (Invitrogen).   

hMSCs osteogenic differentiation  

Osteogenic induction medium were prepared by adding Osteogenic Differentiation 

SingleQuotsTM Supplements (PT-4120), which include dexamethasone, L-glutamine, 

ascorbate, penicillin/streptomycin, MCGS, β-glycerophosphate into 170 mL of hMSC osteogenic 

differentiation basal medium (PT-3924, Lonza).  To induce osteogenesis, hMSCs were plated at 

the concentration of 3 x 103 per cm2 of tissue culture surface area in a 12- well plate.  Cells were 

incubated at 37 ℃ in a humidified atmosphere of 5% CO2 to allow cells to adhere. Following 

incubation, MSC basal medium was replaced with osteogenesis induction medium.  A control 

group of hMSCs were cultured in basal MSC medium without osteogenic induction.  

hMSCs adipogenic differentiation 

Adipogenic induction medium were prepared by adding Adipogenic Differentiation SingleQuots 

Supplements (PT-4135), which include h-insulin, L-glutamine, MCGS, dexamethasone, 

indomethacin, IBMX, and GA-1000, into 170 mL of adipogenic differentiation medium.  To 

initiate adipogenesis, hMSCs were seeded onto tissue culture surfaces at a density of 3 x 103 

cells per square centimeter in a 12-well plate. After incubating for 24 hours at 37°C in a 

humidified atmosphere containing 5% CO2 to promote cell adhesion, the MSC basal medium 

was substituted with an adipogenic induction medium.  A control group of hMSCs was grown in 

MSC basal medium without the addition of induction factors.  

Alkaline Phosphatase Activity (ALP) Staining 

To quantify hMSCs osteogenic differentiation, cells were stained for alkaline phosphatase (ALP) 

using the alkaline phosphatase kit using a modified protocol.  For live staining, hMSCs were 



stained using AP live stain at the concentration of 10x stock solution for 30 minutes according to 

the manufacturers’ instructions.  For nucleus staining, Hoechst 33342 staining solution was 

prepared in 1x PBS at 1:2000 dilution and added to cells for 15 minutes. The cells were then 

washed three times with 1x PBS, 15 minutes each time, before taking images.  

Data acquisition and preprocessing  

Images were captured using the ZOE Fluorescent Cell Imager with an integrated digital camera 

(BIO-RAD). All bright field images were taken after 1, 2, 3, 5, 7, 10, and 13 days of 

differentiation. Our data set contains 2336 images taken at varying times after the initial 

culturing of the cells and divided into four groups: control, adipogenic, osteogenic, and 

adipogenic + osteogenic.  The source images are gray scale with a resolution of 2592 x 1944 

pixels.  

The image preprocessing steps are as follows: 1) Resizing each image with bilinear 

interpolation and then converted to RGB format using Floyd-Steinberg dithering.  2) Normalizing 

RGB values by mean and standard deviation, with specific parameters detailed in Table S1 

RGB Normalization Values.  3) Cropping the images to match the input size required by the 

models. For the training data, this cropping is performed randomly, while for the testing data, a 

center crop is applied to ensure consistent results during testing.  4) Horizontal reflection was 

applied to increase the diversity and reduce the risk of overfitting. 

The models utilized in our study were pretrained on the ImageNet1k dataset, a vast repository 

comprising over one million images categorized into one thousand distinct classes.  Intriguingly, 

this dataset predominantly encompasses images of non-cellular subjects, with the majority of 

classes representing animals or household objects.  Furthermore, the dataset exhibits fine-

grained classification, exemplified by the presence of multiple distinct classes for closely related 

species, such as four different crab species and three distinct lobster species.  Consequently, 



these pretrained models can be conceptualized as having undergone training not only in image 

classification but also in image differentiation.  To adapt these models for our specific tasks, we 

introduced an additional densely connected layer featuring softmax activation, enabling them to 

produce probability distributions for each class.  Additionally, all models were equipped with a 

stochastic gradient descent with momentum (SGDM) optimizer, characterized by a learning rate 

(α) set to 0.001 and momentum (β) set to 0.99, while employing categorical cross-entropy loss. 

Importantly, prior to training, we initialized each model's weights based on their respective 

pretraining, with none of the convolutional layers being frozen.  This decision was guided by the 

substantial dissimilarity between our dataset and the ImageNet1k dataset.  Allowing all 

convolutional weights to be trainable permitted the models to leverage their pretraining 

"knowledge" as a foundational starting point, expediting the transfer of this knowledge into a 

completely novel domain. 

Transfer learning 

Transfer learning is defined as applying a model trained on a general task to a new related task 

(You et al., 2019).  Building a model using only cell images as training data is often not the most 

practical strategy since it requires large computational resources, and high quality labeled data 

is scarce.  In addition, the deeper a network becomes (i.e., the more layers it has), the more 

training data it requires to converge on a best estimate for all parameters.  Pre-trained 

convolutional neural networks (CNNs) have been trained on large-scale data sets and have 

learned general feature representations that capture meaningful patterns and structures in 

images of all types.  In order to properly adapt these models to our task, we provide additional 

training data that is used to fine tune the parameters of the final layers in the network (Paszke et 

al., 2019).  This fine-tuning process helps customize the model for our particular application 

while benefiting from the general knowledge the pretrained model has already learned. 

Evaluation metrics 



To assess the performance of both binary and multi-class classification models, it necessitated 

the utilization of two distinct sets of evaluation metrics to evaluate their respective 

performances.  For binary classification, we classified cells without differentiation as negative 

class, while cells exhibiting adipogenic differentiation were classified as positive class.  In the 

context of multi-class classification, one-vs-rest (OvR) strategy was applied, where one class is 

treated as positive and the rest of the classes are combined into the negative class. 

To evaluate and compare the different model performance, the true positive (tp), true negative 

(tn), false positive (fp), and false negative (fn) values were calculated.  Then, five major 

measurements, including accuracy, precision, recall, F1 Score, and AUC, were calculated as 

follows, eq. 1-4.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑓𝑛+𝑡𝑛
      (eq. 1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
     (eq. 2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
    (eq. 3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙 ∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
    (eq. 4) 

Precision, also known as repeatability, quantifies the extent to which repeated measurements 

conducted under consistent conditions yield comparable outcomes (eq. 2).  In probabilistic 

terms, precision denotes the likelihood of a correct classification when the model predicts a 

positive label.  On the other hand, recall, or sensitivity, is defined as the ratio of true positives to 

the sum of true positives and false negatives (eq. 3).  One can conceptualize recall as the 

proportion of correctly classified values, given that the true class for those values is positive.  An 

important facet of precision and recall lies in their equilibrium relationship.  Assuming that true 

positives and true negatives remain constant, elevating precision necessitates a corresponding 

reduction in recall.  This adjustment occurs because the mitigation of false positives entails an 



increase in false negatives.  Therefore, to quantify this trade-off, we calculate the harmonic 

mean of precision and recall, commonly known as the F1 score, eq. 4.  It’s worth noting that 

precision, recall, and F1 score were compared exclusively for the binary classification because 

they are calculated assuming only two output classes.   

The other two metrics, accuracy and area under ROC curve (AUC), were calculated and 

compared for both binary and multi-class classification.  Accuracy is a fundamental metric used 

to assess classification models, representing the ratio of correct predictions to total number of 

predictions.  AUC measures the probability that a random positive is positioned to a random 

negative example.  AUC ranges in value from 0 to 1, with 0 indicating a model with completely 

incorrect predications and 1 indicting a model with entirely accurate predictions.  AUC is 

desirable for the following two reasons: (a) AUC is scale-invariant.  It measures how well 

predictions are ranked, rather than their absolute values. (b) AUC is classification-threshold-

invariant.  It measures the quality of the model's predictions irrespective of what classification 

threshold is chosen.  However, AUC is originally designed for binary classification.  To apply 

AUC value for our multi-class classification, we utilized the “one vs rest” method, i.e., we 

calculated binary AUC sores for each class independently and then averaged the four binary 

classification AUC scores as overall AUC score for multiclass.  This is crucial, particularly 

considering our smallest class, “adipogenic + osteogenic," which we anticipated would be 



challenging for the models to distinguish due to its multi-class nature.

 

Figure 1. Schematic Illustration of the deep learning (DL) framework and deep neural network 

(DNN) training process used to identify mesenchymal stem cell differentiation.  (A) Illustration of 

overall deep learning framework.  Mesenchymal stem cells were acquired from four different 

donors. Bright field images of hMSCs with different treatments were obtained for classification.  

(B) Illustration of the process of deep neural network (DNN) training. The raw image data were 

initially obtained and divided into different datasets: training, validation, and testing sets on a 

ratio of 60:20:20.  To increase the datasets, the images were cropped to increase the total 

number of datasets. Finally, the datasets were trained, tested, and validated using transfer 

learning.  



Results 

Datasets and procedures 

Upon stimulation, hMSCs undergo a morphology change, transitioning from a spindle shape to 

a round shape.  Consequently, we captured images on days 1, 3, 5, 7, 10, 13 and 15 of hMSCs 

undergoing adipogenic and osteogenic differentiation.  For comparison, a positive control 

without induction was conducted.  It's worth noting that a group of cells exposed to both 

adipogenic and osteogenic induction media was included to evaluate the CNN training model.  

In total, our dataset comprises 2336 images, spanning control, adipogenic, osteogenic, and 

combined adipogenic + osteogenic groups.  A schematic illustration of the deep learning 

framework and the deep neural network training process is depicted in Figure 1.  After 

collecting the raw image data, general features like cell morphological changes are detected to 

form the convolution and pooling layers.  Subsequently, specific features such as calcium 

deposition during osteogenic differentiation and lipid vacuole formation during adipogenic 

differentiation are identified.  Finally, the dataset is classified into different groups based on 

these distinctive features, as illustrated in Figure 1A.  To leverage the benefits of large neural 

networks while working with a limited dataset and preserving the predictive efficacy of our 

model, we pre-trained four different model architectures: VGG 19, Inception V3, ResNet 18, and 

ResNet 50 on the ImageNet1k dataset.  This dataset is a vast repository containing over one 

million images categorized into one thousand distinct classes.  For both binary and multi-class 

classification, all images were partitioned into three distinct sets, ensuring a balanced 

distribution. This resulted in a train-validation-test ratio of 3:1:1.  It's important to note that this 

balanced partitioning ensured a roughly even distribution of each of the four classes across the 

training, validation, and test datasets.  As a result, the training dataset for multi-class 

classification included 1407 images, the validation set contained 473 images, and the test set 



had 456 images.  For binary classification, the training set had 935 images, the validation set 

313 images, and the testing set 304 images, as shown in Figure 1B. 

Following each training epoch, the model was systematically evaluated with a single pass over 

the validation dataset, and the training data was shuffled.  Subsequently, we selected the model 

with the highest validation accuracy as our final choice.  Four pre-trained model architectures, 

VGG 19, Inception V3, ResNet 18, and ResNet 50 were subsequently compared to assess their 

network performance in terms of accuracy and area under the receiver operator characteristic 

curve (AUC).  All models were trained and evaluated using the same data set splits for a total of 

30 epochs before the final results were compared.  Additionally, all convolutional layers were 

initialized based on the weights obtained during each model's pretraining on the ImageNet1k 

dataset.  Figure 2 (A-D) showed the comparison of training and validation accuracy per training 

epoch of VGG 19, Inception V3, ResNet 18 and ResNet 50.  All these four model architectures 

exhibited high validation accuracy (higher than 90%) after 15 training epochs.  We observed 

that extending the training epoch count might not enhance the outcomes.  Out of these four 

networks, Inception V3 stood out with closely aligned training and validation accuracy and 

required fewer than 10 epochs to achieve approximately 90% validation accuracy.  Both ResNet 

18 and ResNet 50 demonstrated comparable training and validation accuracy trends.  

Increasing the depth of network from 18 to 50 marginally enhanced the validation accuracy, 

Figure 2C-2D.  It is worth noting that VGG’s training and validation curves show a significant 

difference in accuracy, with the model achieving notably higher accuracy on the training dataset 

compared to the validation dataset.  Furthermore, as the number of training epochs increases, 

the curves do not converge to the same value, a clear indicator of overfitting.  To address this, 

implementing early stop becomes essential to achieve improved convergence and strike the 

balance between model complexity and generalization. 



 

Figure 2. Comparison of training and validation accuracy per training epoch of different models, 

VGG 19 (A), Inception V3 (B), ResNet 18 (C), and ResNet 50 (D).  All CNN networks achieved 

results close to 100% of accuracy after 15 training epochs.  

Binary classification  

To evaluate the performance of the four CNN networks, namely VGG 19, Inception V3, ResNet 

18, and ResNet 50, a binary classification was first conducted to identify adipogenic 

differentiated cells, as illustrated in Figure 3A.  In our study, images characterized by a distinct 

adipogenic differentiation profile were designated as the positive class (Figure 3A, Adi group), 

while images without characteristics were categorized as members of the negative class 



(Figure 3A, control group).  Figure 3B showed the ROC curves of these four different models, 

VGG 19, Inception V3, ResNet 18, and ResNet 50.  For a comprehensive evaluation and 

comparison of these models for binary classification tasks, various performance metrics, 

including accuracy, AUC, precision, sensitivity, and F1 – score, were assessed and analyzed at 

multiple time points (day 1, day 2, day 3, day 5, day 7, day 10, day 13, and day 15), as 

summarized in Table 1.  The confusion matrixes of binary classification for each model was also 

plotted, Figure S1.  

VGG 19 consistently exhibited high accuracy and AUC values across all evaluation days, with 

an overall accuracy and F1-score of 0.9572 and 0.9587, respectively.  It demonstrated excellent 

sensitivity and precision, especially on day 10, where it achieved perfect scores.  Inception V3 

displayed a strong overall performance, with an overall accuracy of 0.9507 and F1-score of 

0.9527.  Although Inception V3 demonstrated a lower accuracy on day 1, it rapidly improved to 

achieve accuracy levels and matched VGG 19 from day 2 onwards, eventually reaching perfect 

accuracy (1.0000) on days 6, 7, and 10.  ResNet 18, on the other hand, showed remarkable 

accuracy initially, but experienced some fluctuations, reaching a maximum of 1.0000 accuracy 

on day 7.  Overall, ResNet 18 displayed fluctuating performance, resulting in an overall F1-

score of 0.9365. While it achieved outstanding outcomes on day 1 and day 15, it experienced a 

decline in scores on day 3.  Nonetheless, it consistently maintained high levels of precision and 

sensitivity.  Finally, ResNet 50 consistently performed exceptional accuracy, maintaining a 

perfect score (1.0000) on multiple days, indicating robust and consistent performance.  Its 

overall F1-score is 0.9571.  It achieved perfect accuracy and AUC values on multiple days and 

demonstrated high sensitivity and precision, indicating robust and consistent binary 

classification capabilities. 

In summary, all four models displayed strengths and weaknesses in various aspects of their 

performance.  ResNet 50 and VGG 19 emerged as the top-performing models in terms of 



accuracy, with ResNet 50 achieving perfect accuracy on all days.  Inception V3 also performed 

well, while ResNet 18 exhibited variable performance but still maintained robust precision and 

sensitivity.  Therefore, the choice of the most suitable model may depend on specific task 

requirements and priorities among these performance metrics. 

 

 

Figure 3. Binary classification and respective ROC curves of four different testing models, VGG 

19, Inception V3, ResNet 18, and ResNet 50.  (A) Brightfield images of hMSCs under varying 

conditions. Control: cells were cultured in basal medium without induction; Adi: cells were 

induced for adipogenesis; Ost: cells were induced for osteogenesis; Ost + Adi: cells were 



cultured in ostegenic and adipogenic induction medium with 1:1 ratio.  Scale bar: 100 µm.  ROC 

curves of VGG 19 (B), Inception V3 (C), Resnet 18 (D), and ResNet 50 (E).  

Table 1. The performance of each model for binary classification 

Model Dataset Accuracy  AUC Sensitivity Precision F1 - score 

VGG 19 Day 1 0.9211 0.9972 1.0000 0.8636 0.9268 

Day 2 0.9487 0.9974 1.0000 0.9091 0.9524 

Day 3 0.9750 0.9950 0.9500 1.0000 0.9744 

Day 5 0.9250 0.9850 0.9500 0.9048 0.9268 

Day 7 0.9750 0.9950 0.9500 1.0000 0.9744 

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 13 0.9333 1.0000 0.9000 1.0000 0.9744 

Day 15 0.9744 1.0000 0.9500 1.0000 0.9744 

Overall 0.9572 0.9895 0.9618 0.9557 0.9587 

Inception V3 Day 1 0.8158 0.9806 0.9474 0.7500 0.8372 

Day 2 0.9487 1.0000 0.9000 1.0000 0.9474 

Day 3 0.9500 1.000 0.9000 1.0000 0.9474 

Day 5 0.9250 1.0000 0.9000 0.8696 0.9302 

Day 7 0.9750 0.9850 0.9500 1.0000 0.9744 

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 13 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 15 1.0000 1.0000 1.0000 1.0000 1.0000 

Overall 0.9507 0.9926 0.9618 0.9438 0.9527 

ResNet18 Day 1 0.9737 1.000 0.9474 1.0000 0.9730 

Day 2 0.9487 0.9921 0.9000 1.0000 0.9474 



Day 3 0.8000 0.9825 0.6000 1.0000 0.7499 

Day 5 0.9500 0.9750 1.000 0.9091 0.9524 

Day 7 0.9750 0.9750 0.9500 1.0000 0.9744 

Day 10 0.9474 1.0000 0.8889 1.0000 0.9412 

Day 13 0.9000 1.0000 0.8500 1.0000 0.9189 

Day 15 1.0000 1.0000 1.000 1.0000 1.0000 

Overall 0.9375 0.9890 0.8917 0.9859 0.9365 

ResNet 50 Day 1 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 2 0.9231 1.0000 0.8500 1.0000 0.9189 

Day 3 0.8000 1.0000 0.6500 1.0000 0.7500 

Day 5 0.9750 1.0000 1.0000 0.9524 0.9756 

Day 7 0.9750 0.9975 0.9500 1.0000 0.9744 

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 13 1.0000 1.0000 1.0000 1.0000 1.0000 

Day 15 1.0000 1.0000 1.0000 1.0000 1.0000 

Overall 0.9572 0.9958 0.9236 0.9932 0.9571 

 

Multi-class classification  

We proceeded to conduct multi-class classification using all datasets: control, osteogenic 

differentiation, and adipogenic differentiation.  As shown in Figure 4A, hMSCs under osteogenic 

and adipogenic differentiation exhibited distinct morphological changes compared to the control 

group.  In the control group, where hMSCs were cultured in basal medium without differentiation 

induction, they maintained spindle shapes.  In contrast, osteogenic-induced hMSCs transitioned 

from a spindle to a cuboidal shape as they differentiated and mineralized.  Similarly, adipogenic-

induced hMSCs transitioned from a spindle to a cuboidal shape and then formed lipid vacuoles, 



as depicted in Figure 4B.  Observable morphological changes led us to hypothesize that the 

four pre-trained convolutional neural network models, namely VGG 19, Inception V3, ResNet 

18, and ResNet 50, could classify these three classes effectively.  We then compared the 

performance of these models, focusing on accuracy and AUC, as shown in Table 2.  Regarding 

accuracy, both VGG 19 and ResNet 50 displayed outstanding results with an overall score of 

0.9474. Inception V3, though slightly behind with an accuracy of 0.9342, still demonstrated a 

strong performance.  ResNet 18 closely matched the results of VGG 19, achieving an overall 

accuracy of 0.9408.  When it came to AUC, ResNet 50 stood out with the highest overall value 

of 0.9936. VGG 19 and ResNet 18 also performed commendably with overall AUC scores of 

0.9928 and 0.9925, respectively.  Inception V3, with an overall AUC of 0.9899, showcased a 

competitive classification capability.  In summary, all four models exhibited excellent 

performance, characterized by accuracy and AUC.  ResNet 50 stood out with high accuracy and 

AUC, while VGG 19 also maintained high accuracy.  Although Inception V3 and ResNet 18 had 

slightly lower accuracy and AUC values, their performance remained commendable.  The 

confusion matrixes of multi-class classification for each model was also plotted, Figure S2. 

 

Furthermore, we plotted and compared the accuracy of each model across different time points 

in Figure 5.  All four models consistently achieved excellent performance with accuracy above 

90% for the cells at day 1, 2, 7, 10, 13, and 15.  Intriguingly, on days 3 and 5 of differentiation, 

the accuracy slightly dipped to around 88%.  This decline might be due to the heterogeneity of 

the cells.  Even with this minor reduction in accuracy on days 3 and 5, all models exhibited 

impressive overall performance, with VGG 19 and ResNet 50 being particularly noteworthy.   

Additionally, it's vital to recognize that each model has its unique set of parameters, as outlined 

in Table S2.  Although models with more parameters have the potential to manage more 

intricate scenarios, it's crucial to understand that continuously increasing the parameter count 



might not yield proportional benefits, especially when there's limited training data.  Moreover, 

larger models require more computational resources both for training and for producing results.  

Towards the conclusion, we generated confusion matrices represented in Figure 6 and Figure 

7, providing a more comprehensive evaluation.  Notably, in the multiclass task, Inception V3 did 

not perform as well as other models in distinguishing from the control group. In the binary 

classification task, however, the model demonstrated excellent precision but exhibited a trade-

off with recall, particularly when compared to ResNet 50. 

 

Figure 4. Multi-class classification of control, adipogenic differentiation, and osteogenic 

differentiation.  (A) Representative images of hMSCs under different conditions. Control: cells 

were cultured in basal medium without induction; OST: cells were induced for osteogenesis. 



Scale bar: 100 µm. Green: ALP staining; Blue: cell nucleus stained with HoeChst 33342. (B).  

Brightfield images of hMSCs under adipogenic differentiation conditions at different time points.  

Green fluorescence indicates lipid marker (Bodipy).  Scale bar: 50 µm. (C) ROC curves of VGG 

19, Inception V3, Resnet 18, and ResNet 50. 

Table 2. Comparison of accuracy and AUC of each model for multiclass classification 

Model Dataset Accuracy  AUC 

VGG 19 Day 1 0.9825 1.0000 

Day 2 1.0000 1.0000 

Day 3 0.8814 0.9957 

Day 5 0.8833 0.9957 

Day 7 0.9661 0.9849 

Day 10 0.9649 1.0000 

Day 13 0.9184 1.0000 

Day 15 0.9821 1.0000 

Overall 0.9474 0.9928 

Inception V3 Day 1 0.9474 0.9935 

Day 2 0.9831 0.9978 

Day 3 0.8305 0.9769 

Day 5 0.8333 0.9667 

Day 7 0.9322 0.9654 

Day 10 0.9649 1.0000 

Day 13 1.0000 1.0000 

Day 15 1.0000 1.0000 

Overall 0.9342 0.9899 



ResNet18 Day 1 0.9649 0.9995 

Day 2 0.9661 0.9983 

Day 3 0.8305 0.9871 

Day 5 0.9500 0.9987 

Day 7 0.9492 0.9771 

Day 10 0.9649 1.0000 

Day 13 1.0000 1.0000 

Day 15 0.9107 0.9776 

Overall 0.9408 0.9925 

ResNet 50 Day 1 0.9474 0.9991 

Day 2 0.9661 0.9987 

Day 3 0.8644 0.9833 

Day 5 0.9167 0.9867 

Day 7 0.9661 0.9893 

Day 10 0.9474 1.0000 

Day 13 1.0000 1.0000 

Day 15 0.9821 0.9990 

Overall 0.9474 0.9936 

 



 

Figure 5. Comparison of test accuracy of different days using four different models, including 

VGG 19, Inception V3, ResNet 18, and ResNet 50.  



 

Figure 6. Confusion matrixes of multi-class classification of different models. (A) VGG 19 

model, (B) Inception V3 model, (C) ResNet 18 model, and (D) ResNet 50 model.  

 

 

 

 

 



 

Figure 7. Confusion matrixes of binary classification of different models. (A) VGG 19 model, (B) 

Inception V3 model, (C) ResNet 18 model, and (D) ResNet 50 model.  

 

Discussion 

In this study, we developed and compared four convolutionary neural network models, including 

VGG 19, Inception V3, ResNet 18, and ResNet 50, to identify adipogenic and osteogenic 

differentiated cells based on morphology changes.  To obtain better performance, all these four 

CNN models were pre-trained on the ImageNet1k dataset, a vast repository comprising over 

one million images categorized into one thousand distinct classes.  Next, we evaluated the 

performance metrics of these four models in both binary and multi-class classification of 



differentiated cells across multiple time points (day 1, day 2, day 3, day 5, day 7, day 10, day 

13, and day 15). The key performance metrics include accuracy, AUC, sensitivity, precision, and 

F1-score.  Among all these four different models, ResNet 50 proves to be the most effective 

choice with its highest accuracy and AUC in both multi-class and binary classification tasks.  

Although VGG 19 matched ResNet 50’s accuracy in both tasks, ResNet 50 consistently 

outperformed with better AUC scores, emphasizing its effectiveness in identifying differentiated 

cells.  As mentioned earlier, when comparing their performance, it's crucial to consider the 

parameters and resources of each network.  Although ResNet 50 has more parameters, the 

substantial gain in accuracy in both binary and multi-class classification compensates for this 

limitation.  In comparison, VGG 19 had slightly more parameters than ResNet 50.  Thus, 

ResNet 50 excelled in accuracy and AUC while maintaining a moderate parameter count, 

making it the preferred choice for identifying adipogenic and osteogenic differentiated cells 

based on morphological changes.  Furthermore, the marginally longer processing time of 

ResNet 50 wasn't a significant concern, especially when juxtaposed with traditional methods 

that take hours.  It is also worth mention that the field of deep learning is dynamic, with 

continuous research leading to the development of new models and improvements.  The 

models utilized in this study represent only a subset, and numerous other models and variations 

have emerged over the years.  Four pre-trained models were selected for this study, all 

demonstrating satisfactory performance.  This pioneering work aims to establish these models 

as benchmark models within the field.  Moving forward, our focus will center on DenseNet and 

Vision Transformers (ViT).  Recognizing the potential for ensemble methods to outperform 

individual models, we anticipate leveraging the strengths of all these architectures to enhance 

overall model performance. 

These morphology-based CNN approaches offer significant advantages in predicting osteogenic 

and adipogenic differentiation, especially in the fields of biomanufacturing, cell-based therapy,  



and regenerative medicine.  Moreover, these four models have the potential to predict other 

stem cell differentiation, such as, cell fate of human induced pluripotent stem cells (iPSCs), 

provided there are observable morphological changes associated with lineage adoption.  These 

approaches offer automated tools for the precise discrimination between cell types, eliminating 

the need for manual feature classification, which is both time-consuming and expensive.  

Traditional approaches that involve staining biomarkers also rely heavily on specific staining 

reagents, markers, and cell types, which are factors that can affect prediction accuracy.  In 

contrast, morphology-based CNN approaches are robust to variations in cell shape and 

adaptable to a wide range of experimental conditions.  Their proficiency in handling vast 

datasets facilitates comprehensive analyses of cell differentiation processes, potentially 

hastening advancements in biomanufacturing, tissue engineering, and regenerative medicine.  

One of the key challenges in biomanufacturing lies in achieving a high purity of a specific 

lineage of stem cells, thus, one potential application in biomanufacturing is the integration of a 

deep-learning approach into automated, real-time analysis and feedback-controlled osteogenic 

differentiation.  Specifically, we envision an automated platform capable of detecting changes in 

stem cell morphology, predicting stem cell fate, and controlling and directing osteogenic or 

adipogenic differentiation in real time. If an unexpected lineage is identified and reaches a 

certain percentage, this automated platform could adjust the microenvironment, for instance, by 

adding a chemical inducer to the bioreactor, to steer MSCs towards differentiating into a specific 

lineage.  

Future efforts to improve the classification model should include incorporating more training 

data from a diverse range of donors and time points.  Additionally, traditional staining assays will 

be performed to validate the model's efficiency by staining for osteogenic biomarkers, such as 

ALP and Runx, as well as adipogenic markers like PPAR-γ.  Subsequent models could also 

enhance their capabilities by incorporating more types of differentiated cells, including 



chondrogenic differentiation, and employing multi-label classifications without relying on 

independent classes.  Such improvements would further enhance the versatility of these 

models, providing a deeper understanding of their precision in analyzing intricate aspects of cell 

morphology.  An alternative strategy to identify a broader spectrum of cells involves the 

adoption of a Recursive Convolutional Neural Network (RCNN) architecture.  Instead of 

classifying the entire image, an RCNN can systematically evaluate regions within each image, 

allowing for precise localization and identification of differentiated cells.  This approach not only 

facilitates the independent identification of multiple cell types but also provides information 

about the spatial distribution and size of each cell cluster, enabling the computation of 

differentiation degrees.  It offers a more streamlined and efficient alternative compared to using 

two separate models.  Nonetheless, it is important to note that this technique requires more 

complex training data, necessitating the delineation and labeling of each cell, which poses a 

significant data annotation challenge.  Despite these challenges, the RCNN approach holds 

substantial promise and has the potential to simplify the overall cell identification process. 

 

Conclusion 

In this study, we developed and compared four convolutional neural network (CNN) models: 

VGG 19, Inception V3, ResNet 18, and ResNet 50, for the purpose of identifying adipogenic and 

osteogenic differentiated cells based on cellular morphological changes.  We conducted a 

comprehensive evaluation of these models in both binary and multi-class classification of 

differentiated cells at various time points (day 1, day 2, day 3, day 5, day 7, day 10, day 13, and 

day 15), focusing on the key performance metrics that include accuracy, AUC, sensitivity, 

precision, and F1-score. Among these four models, both VGG 19 and ResNet 50 showed 

excellent performance with high accuracy for both binary (0.9572) and multi-class classification 

(0.9474). ResNet 50 showed consistent performance with high AUC (0.9936) for multi-class 



classification.  Importantly, all these four models exhibited exceptional performance with the 

overall accuracy of more than 0.93, and overall AUC score of more than 0.94.  By analyzing the 

daily images of differentiated cells, all these models can accurately detect subtle morphological 

changes within one day of differentiation.  In summary, our study underscores the immense 

potential of using a CNN approach to predict stem cell fate based on cellular morphological 

changes of differentiated cells.  This approach holds promise for enhancing the application of 

cell-based therapy and expanding our knowledge of regenerative medicine.  Additionally, this 

non-invasive method, relying solely on basic bright-field microscope images, has the potential to 

facilitate biomanufacturing and the translation of these advancements into practical cell-based 

therapies.  
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