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Abstract — We use coarse-grained molecular dynamics simulations to study the motility of a
2D vesicle containing self-propelled rods, as a function of the vesicle bending rigidity and the
number density, length, and activity of the enclosed rods. Above a threshold value of the rod
length, distinct dynamical regimes emerge, including a dramatic enhancement of vesicle motility
characterized by a highly persistent random walk. These regimes are determined by the clustering
of the rods within the vesicle; the maximum motility state arises when there is one long-lived polar
cluster. We develop a scaling theory that predicts the dynamical regimes as a function of control
parameters and shows that feedback between activity and passive membrane forces govern the
rod organization. These findings yield design principles for building self-propelled superstructures
using independent active agents under deformable confinement.

Introduction. — Interacting systems of minimal
motile agents occur on diverse length scales in biology,
from the molecular motors and filaments in the cytoskele-
ton of the cell [1,2] to insect colonies [3-5] and ani-
mal herds [6-8]. The emergent behaviors exhibited by
these systems have been extensively studied within the
paradigm of active matter [9-14]. In parallel, the same
phenomena have inspired the field of collective robotics
and swarm intelligence [15-18], where it has been recog-
nized that collective efforts of simple agents yield robust
and adaptable emergent behaviors that can be harnessed
for specific tasks. Recent realizations of collective robotics
have been used for programmable self—assembly [19-22],
mimicking the foraging behavior of insects [23,24], and
sentry duties over unmapped and variable terrains [25].

Physical interactions between motile agents will in-
evitably affect their collective behaviors. To success-
fully use minimally programmed agents to perform spe-
cific tasks, and to build small-scale soft robotic systems,
we should leverage physical interactions as a design and
control asset rather than a bottleneck that needs to be
eliminated by programming or material design. Knowl-
edge and models from statistical and soft matter physics
can play important roles in this context. To that end,
we consider a minimal example of collective behavior of
motile agents — self-propelled (active) agents confined in
an elastic vesicle. The specific function we consider is the

transport of the vesicle, and we identify the role played by
physical interactions in aiding or hindering this task.

Collections of confined active agents form transient clus-
ters that push against their boundaries [26-33]. When
confined to deformable boundaries, spontaneous fluctua-
tions can result in the boundary developing large curva-
tures and spontaneous motion of the entire system [34-40].
The benefit of such transient assemblies was demonstrated
for a system of small simple robots confined by a flexible
mobile enclosure [41]. It was shown that aggregation of the
robots led to transient directed motion in random direc-
tions and that the small robots can transport the enclos-
ing frame around obstacles and through narrow openings,
much like a collection of ants can manipulate large food
items [42,43]. However, to leverage this basic physics to
build a robust collective robotic system, we must under-
stand how spontaneous fluctuations can be preferentially
biased and rectified so as to predominantly aid in the de-
sired transport.

In this paper, we employ Langevin dynamics simula-
tions to study the transport of a 2D elastic vesicle, by
self-organization of self-propelled rods enclosed within it.
The entire system is on a frictional substrate that pro-
vides a momentum sink to both the particles and the vesi-
cle. This basic phenomenology has been demonstrated in
the literature [40]. We build on this work by considering
a minimal model for the enclosed rods, which enables us
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to identify physical relationships between vesicle and rod
properties that control the emergent phenomenology. We
find that the rods spontaneously form clusters or caps on
the vesicle boundary, and under certain conditions, the
rods form a single polar cap which leads to highly efficient
directed motion of the vesicle and its contents. However,
under other conditions the rods form multiple caps whose
self-propulsion forces partially cancel, hindering motility.
Analysis shows that the cap organization is determined
by cooperative feedback between effective rod-rod attrac-
tions arising from their self-propulsion, the active forces of
rods pushing on the vesicle boundary, and the passive re-
action force from the deformed vesicle. We present simple
scaling arguments that capture many of the observations
from the simulations, and thereby identify optimal design
principles for maximizing the vesicle motility.

Model. — We perform Langevin dynamics simulations
in 2D of Nyoqs self-propelled, rigid rods enclosed by a pas-
sive elastic vesicle, which is represented as a semiflexi-
ble bead-spring ring polymer. Details of the microscopic
model are as follows.

Self-propelled rods: Each rod consists of n+ 1 beads of
diameter o, with the centers of neighboring beads sep-
arated by a distance b = 0.50 so that the rod length
is £ = nb+ 0. Overlapping beads in this manner re-
duces surface roughness, thereby preventing interlocking
of rods at high density [30, 44, 45]. The central bead
is subjected to a constant self-propulsion force of mag-
nitude f, along the rod axis, characterized by an ori-
entation vector 7 = (cos#,sinf), where 6 is the angle
of the rod axis with the x direction in the lab frame.
Each rod bead interacts with all beads on other rods
and the vesicle through a force-shifted WCA potential,

12 . . .
4e [(%) — (%)6} + AV, for interparticle dis-
tances r < 7Ty and zero otherwise [46,47]. The po-
tential is cutoff at the Lennard-Jones minimum distance
Feut = 2180, and the repulsion strength is set to € = kgT.

The mass of the central bead, which is set to m = 1, sets
the total rod mass. The equations of motion are integrated
for the central bead of each rod only (the rods move as
rigid bodies), with the forces F*#4 and torques T8 from
the constituent particles transferred to the central bead.
The equations of motion for the i*” rod are:
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where ¢T and ¢R are the translational and rotational drag
coefficients for the rods; 7, n} are uniform random forces
modelled as Gaussian white noise with moments (77 (¢)) =
0, (n*(t)) = 0 and (7] (¢)-7 (t')) = 4kpTE ;50 (t—t'); and
()t (t) = 2kBT§R(5U(5(t —t'). In Eq. (3), 7im is the
position of bead m on rod i, and 74 is the position of vesicle
bead k. The torque Tirlgld is computed from the forces on
each bead in rod i. Because the rod motions are dominated
by active rather than thermal effects, and to distinguish
effects of propulsion and sterics, we set the rod active force
fa and friction constants to be independent of rod length.
The latter are set to £€¥ = 10& and & = 100002&,, with
&o the friction coefficient for a bead with diameter o.

FElastic wvesicle:  We model the vesicle as a pas-
sive semiflexible bead-spring ring polymer. The to-
tal interaction potential for the vesicle is given by
Uves = Zf\f:v;:’ stretch(rn+1) + Z Nes =1 Ubend(qbifl,i,z#l) +
Z<ij> Uwca(ri;), where r;; = |F; — 7;|; stretching penal-
ties are enforced by harmonic bonds between neighbor-
ing beads, Ustroten(r) = ks(r — b)? with kg the stretch-
ing modulus; the bending energy is given by Upenda(¢) =
ki (m — ¢)?, with ¢ the angle made by three consecutive
beads (or two consecutive bonds). The continuum bend-
ing modulus is kg = 2bky and thus kg = ko for our
parameters. The non-bonded interaction is given by the
WCA potential and is summed over all vesicle-rod pairs
of beads. The equation of motion for the i** vesicle bead
is: )

% =—&v drl (4)
where & = & is the translational drag coefficient and
7y*" is Gaussian white noise representing thermal motion.
The moments of the thermal noise are (77°%(¢)) = 0 and
(myes(t) - my(t')) = 4kpT&v0;;0(t —t'). The mass of each
vesicle bead is set to m = 1. For all results reported
in this work the vesicle comprises Nyos = 1005 beads so
that the equilibrium vesicle radius is Ryes = 800. Fur-
ther, we set kg = 5 x 10°kgT and vary kg over the range
[1kgT0..105kpTo]. While we simulate rod motions with
overdamped Brownian dynamics due to their large size,
we employ Langevin dynamics for the vesicle beads to al-
low for possible effects of inertia. We present all results in
units of 74 = 02y /kpT, the diffusive timescale for a bead
with the diameter of a rod.

vn Uves + ﬁves( )

Results. —

Phenomenology of vesicle motion.  Our goal is to char-
acterize the motility of the vesicle. We begin by focusing
on its center of mass, 7(¢t). We find that the dynamics of
7(t) is well described by a persistent random walk with
(J7(t) = 7(t + At)|?) = D[At — A+ Xe~ 24|, where ) is the
persistence time and D is the diffusion coefficient describ-
ing the vesicle motions at times ¢ > A (Fig. 1a). Further,
we measure Fye, the net active force on the vesicle, ex-
erted by the enclosed rods that are in contact with it and
Ucom, the center of mass velocity. We find that both quan-
tities are distributed normally (Fig. 1b) and exponentially
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Fig. 1: Statistical properties of the center-of-mass motion of

a vesicle with bending modulus kg = 3000kgT containing
Niodas = 30 rods of aspect ratio {/o = 3 with active force
fa = 3ksT/o. (a) The mean square displacement(MSD) of

the center of mass, fit to the functional form of persistent ran-
dom walk to obtain the translational diffusion coefficient D.
Inset: Same data shown in log-log scale. The dashed lines
indicate scaling consistent with ballistic/diffusive dynamics at
short/long times. The MSDs were measured from simulation
times ¢/7 >= 5000 from 100 independent trials at each pa-
rameter set. (b) The probability distributions of = and y
components of the net force FLet and center-of-mass veloc-
ity Ucom. The distributions are Gaussian with zero mean.
(c) Autocorrelation functions for the net force and velocity,
<Fnet (t) - Foes (£ + At)> and (Beom (¢) - feom (¢ + At)). The cor-
relation times A\, and A are extracted by fitting these mea-
surements to exponentials. (d) Plot of the mean active force
(| Fet|) against the mean velocity (|Ucom|), showing they are
highly correlated. Timescales are reported in units of 75, the
time for one bead to diffuse a distance of its diameter.

correlated in time (Fig. 1c), while being proportional to
each other instantaneously (Fig. 1d). While it is sug-
gestive to map the emergent persistent random walk of
our vesicle to the well-studied Active Brownian Particle
model [12,48], we find that the dynamics is more complex
due to timescales arising from reorganization of the en-
closed rods. Therefore, as we vary the physical properties
of the vesicle building blocks, we characterize its motility
by the diffusion coefficient D, and the correlation times of
the velocity and the force, A, and A¢ respectively (further
information in SI section IIF).

Dependence of motility on wvesicle stiffness and active
rod length.  To highlight the key findings of this study, let
us consider the physics we know from prior studies on self-
propelled particles at curved walls [32,35-37,37,38,49,50].
Self-propelled particles cluster at walls [26,27,29, 30, 51],
and tend to accumulate in regions of high curvature
[32, 49, 52-54]. This can lead to spontaneous motion of
rigid containers [55-57]. Since our vesicle is deformable

in the present work, we expect curvature to increase in
regions of accumulation and thereby lead to recruitment
of more particles into the cap [34-38,40,41,54]. This feed-
back mechanism should be greater for vesicles with lower
bending rigidity, since the curvature amplification will be
larger for a given active force magnitude and local parti-
cle density. Thus, we might naively expect softer vesicles
to have higher motility compared to stiff ones, since they
provide a pathway to the formation of a few larger caps
rather than a more uniform distribution of particles along
the boundary.

n

L <
12 Tl T
Ql ““ + -4-- (=300 Q 30
<081 -4-- (=350 =
2 ‘ L 4 (=450 g N
3-6().6“ g < 50 + %_()
8 0.4] k. S
P |
% (.2 f"+ G
e 20
e 10 10t 102 10° 10" 10° 10° S 00 100 102 10° 10° 10° 10°
© Bending modulus, xp (k7o) @ Bending modulus, xp [kzT'o]
C,
500 —
E2l=30] 3w +
o450 | \ L
N 230001 4N
[ [
E 400 b £ 2500 s
- +- E——
5 3,30+ oA 5201 T f=Go | i
B 300 4 * & 1500 ¢ 1
[3) (3 s F |
£ bt ¢ 4] Eo00(d ot ot {,
o5
8 250 4 8 500 . s
10° 100 10* 10° 10' 10° 10° 100 100 10> 10° 10* 10° 10°

Bending modulus, g [kpTo] Bending modulus, rp [kzTo]
Fig. 2: (a,b) Dependence of the vesicle diffusion constant on
the vesicle bending modulus xp for indicated values of the rod
aspect ratio £/o, for aspect ratios that are (a) below the thresh-
old for long-lived caps (/o < 5) and (b) above the threshold
(¢/o > 5). (c,d) The correlation times of the net force and
the center-of-mass velocity for (c) below threshold aspect ra-
tio (¢/o = 3), showing that both are independent of vesicle
stiffness, and (d) above threshold (/o = 6) showing enhanced
correlation at the optimal stiffness.

Our first observation is that this simple argument is not
the full story. Fig. 2 characterizes the vesicle motility for
fixed Nyoqs = 30 rods and activity f, = 3kpT/o as a
function of the rod aspect ratio ¢/c and vesicle stiffness
kp. We identify three distinct behaviors: (i) for ¢/ < 3,
the motility is independent of vesicle bending stiffness,
(ii) for 3 < ¢/o < 5, the motility increases as the vesicle
softens, and (iii) for longer rods a strong non-monotonic
dependence on stiffness emerges.

We can understand these changes in phenomenology as
a function of aspect ratio by considering the limiting case
of £/o = 1, i.e., spheres, in an infinitely stiff, i.e., rigid,
circular vesicle. Supposing that the system was initialized
with isotropically distributed self-propulsion forces, as all
the simulations in this study are, we expect a uniform dis-
tribution of particle orientations on the vesicle boundary.
Therefore, the net force on the center of mass is small and
its fluctuations are correlated on the same time scale as
the bare correlations of isolated active particles. Hence,
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the enclosed active particles will not enhance the vesicle
motility to any significant degree. When we move away
from the rigid limit, deformations of the vesicle do induce
larger caps and appreciable density variation along the
boundary. But, as /o — 1, neither the boundary nor the
inter-particle interactions can exert significant torques to
realign the active forces. Thus, the net force on the vesi-
cle remains small and enhancement of motility negligible.
Given this picture, we can understand the low aspect ratio
results in Fig. 2a as the generalization of this asymptotic
case of spherical particles.

Now let us switch focus to the stiffness dependence of
motility for longer rods. Again, it is useful to first build a
heuristic based on known phenomenology [58]. Let us con-
sider long rods accumulated at a rigid circular boundary.
Suppose the rods do not interact with each other, i.e., in
the dilute limit, they would slide along the boundary until
they become tangential to it [11,26,30,32,49]. But, when
the rods collide at the boundary, the inter-particle interac-
tions will lead the rods to align such that they form polar
caps that are normal to the boundary [11,26,33]. These
polar caps push on the boundary, thus inducing and am-
plifying local curvature fluctuations when the boundary is
no longer rigid. In turn, the rods’ forward motion couples
to the vesicle curvature to result in an effective attraction
between neighboring rods. For softer vesicles, the induced
curvature and corresponding effective rod-rod attraction
increases, thus resulting in larger and longer-lived polar
caps. For moderate aspect-ratio rods, this effect leads to
an increase in vesicle motility with decreasing vesicle rigid-
ity (most easily seen in Fig. 2a for /o = 4.5). However,
for longer rods, this phenomenology is overwhelmed by the
emergence of an optimal stiffness, around which there is a
huge enhancement of motility above the basic trend (see
Fig. 2 (b,d)).

To elucidate the mechanism underlying the dramatic
motility enhancement for optimal vesicle stiffness, we now
examine the organization of active rods within the vesicle
(Fig. 3). We find that the enhanced motility states are
characterized by the presence of a single (Fig. 3a) long-
lived (SI Fig. 5) polar cluster of rods. Hence, essentially
all encapsulated rods point in the same direction, leading
to a large net active force on the vesicle Fet ~ falViods
and correspondingly a large persistence length for the vesi-
cle’s motion. For vesicles that are softer than the optimal
stiffness, the rods organize into two or more polar caps.
Through the combination of the caps’s polar motion and
the consequent local curvature of the membrane, there
is an effective repulsion between caps driving them into
a steady-state configuration in which their active forces
tend to cancel (see Fig. 3c, Fig. 5a, and SI section I).
Consequently, the vesicle exhibits a much smaller persis-
tence length than for the 1-cap state. For stiffer-than-
optimal vesicles, the rods can only weakly deform the
vesicle boundary. Since local curvature of the vesicle is
essential to stabilize the polar cap (see below), only tran-
sient caps form. Therefore, the direction of Fe fluctuates

rapidly and the vesicle motion is characterized by a small
persistence length. These observations suggest that both
the aligning interactions among the rods due to their self-
propulsion and the vesicle deformability are crucial to the
emergence of the enhanced motility states. As evidence of
the importance of direct rod-rod alignment interactions,
we observe large net active forces on the vesicle only for
large aspect-ratio rods (Fig. 3b).
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Fig. 3: (a) Mean number of caps as a function of rod aspect ra-
tio and vesicle bending modulus for active force fa = 3ksT/o.
A single long-lived cap emerges at the optimal value of stiff-
ness, kp ~ 3000kgT. The optimal stiffness for each aspect
ratio is indicated by an enlarged marker. (b) Probability dis-
tributions of Fhet and Teom for (top) ¢/c = 3 and (bottom)
¢/o = 6, showing that the net force shifts to large values at the
optimal stiffness for long rods. (c) Snapshots illustrating the
rod organization for £/o = 6 for (left) low, (middle) optimal,
and (right) high bending modulus.

Assembly principles for the single cap state. Now, we
seek to quantify the emergence of a single cap in terms
of the physical parameters of the building blocks of our
motile vesicle. As we have shown in previous work [33],
long-lived caps can be fruitfully described as self-limited
structures whose size can be accurately captured using
the concepts of self-assembly. We lay out below a physical
description of the model that predicts the number and
sizes of caps as a function of parameters, and we use these
estimates to predict the optimal stiffness at which the huge
enhancement in motility occurs. The mathematical details
are given in SI Section I.

We know from previous work that self-propulsion to-
gether with the presence of the wall drives rods to align
with each other, perpendicular to the wall, and to maxi-
mize the overlap along their length with their neighbors.
That is, the rods tend to form smectic layers at the wall
[68]. We can capture this phenomenology through an
effective ‘energy’ of the form Ujctive + Uinterfacial, Where
Uactive = —Cofan,, an attractive interaction that scales
with the activity and number of rods in the cap n,, and
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Fig. 4: (a) Comparison of the theoretical scaling of the optimal
bending modulus with the number of enclosed rods and active
force, kp/ fa ~ N2 46, with measurements from the simulations.
(b) Schematic showing a visual representation of the angular
size 0 of a cap, with 6§ measured from the center of the cap.

Uinterfaciai = —27 is a surface tension that accounts for
the absence of neighbors at either edge of a cap. The sur-
face tension encodes the tendency for caps to grow. While
this captures the phenomenology at a flat wall, the cur-
vature of the vesicle ‘opposes’ the growth of the cap by
forcing rods within a cap to shear relative to their neigh-
bors, thus preventing the perfect overlap that flat walls
would allow. We can capture this effect through an en-
ergy Ushear = —2kshear 10g(cos ), where 6 is the angular
extent of the cap (see Fig. 4b) and the constant kspear
also scales with activity f., consistent with the attractive
interactions that lead to the clustering.

For a given cap size, the angular extent of a cap depends
on the local radius of curvature of the vesicle, which is
determined by a balance of active force of the rods and
the elastic response of the vesicle. We describe this phe-
nomenology through an energy Uyes = Upend + Us, where
Ubena is the standard Helfrich free energy [59-61] and
Us = — fan,l is the work done by the active force (see SI
Section I). Putting all this together, the number and size
of caps, and correspondingly the steady-state geometry of
the vesicle, can be described by finding the minimum of
a free energy of the form U(kp, fa;, Nrods) = Urods + Uyes,
where Urods = active+Uinterfacial+Ushear7 described above.

In particular, the analysis shows that, starting from the
floppy vesicle limit kg — 0, the number of stable caps
decreases with increasing bending modulus. By calculat-
ing when the system transitions from a two-cap state to a
single cap state, corresponding to the highly motile states
observed in the simulations, we can estimate that the op-
timal stiffness scales as r5/fa ~ N2 4. (see Eq. 20 in
section ID of the SI). The predicted scaling with both ac-
tivity and number of enclosed rods shows good agreement
with our simulation results (Fig. 4a), although the accessi-
ble range of N,oqs within the vesicle size that we focus on
(Ryes = 800) is insufficient to rigorously test the scaling
exponent.

The analysis predicts that this trend continues until a
threshold value of the bending modulus k5 ~ R2_ fa,
above which the active force is insufficient to deform the

membrane. Because membrane deformation is essential
to stabilize long-lived polar caps, we expect only tran-
sient caps for stiffer vesicles. Furthermore, equating this
limit with the transition value for the single cap state,

ie. K = K™, identifies a maximum number of en-
max 2/5 3
closed rods N23X ~ (Ryest)™” above which the system

will transition directly from multiple-cap states to tran-
sient caps with increasing bending modulus. Thus, for
Niods > Nog¥ the system will not exhibit the single-cap
high-motility state for any parameter values. For our vesi-
cle size Ryes = 800 and the range of aspect-ratios that lead
to polar caps (¢/oc > 6) this estimates N23¥ is order 10
to within a scaling constant, which is consistent with the
simulation results that we do not observe the single-cap

state for Nyogs 2 60

Since the number of caps is closely linked to the steady-
state geometry of the vesicle configuration (see Fig. 5),
further analysis of this theoretical model can be leveraged
to design shapes of 2D active vesicles (similar to [33,54]).
We defer this to future work, in order to keep the focus of
this article on motility of the vesicle.

Dependence of rod organization and vesicle motility on
number of enclosed rods.  The scaling relationship above
provides a quantitative design principle for building highly
motile vesicles. But one important limitation it identifies
is that motility enhancement through the formation of the
single cap state only applies in the dilute limit. This cor-
responds to Nyods < INjogx = 60 for the vesicle size that we
focus on Ryes = 800. Above this limit, there are too many
rods to form a state in which there is a single polar-aligned
cap. Consequently, the simple picture of three distinct dy-
namical regimes for large aspect-ratio rods (£ > 50) breaks
down (Fig. 5).

Fig. ba is a visual representation of the structures
formed by the enclosed rods as the number of rods in-
creases. In the intermediate regime, (60 < Nyogs S 100
for Ryes = 800), the dominant steady-state configurations
gradually shift from 2-cap to 3-cap states with increasing
Nyogs in floppy vesicles, 1-cap to 2-cap states for interme-
diate stiffness, and one or more transient caps at high vesi-
cle stiffness. However, even though self-limited caps con-
tinue to form in softer vesicles, the caps lack perfect polar
alignment and tend to become multilayered. We speculate
that this phenomenology reflects the onset of motility in-
duced phase separation (MIPS) related behaviors at these
densities [58,62-64], which unevenly and transiently en-
hance clustering. At higher densities (Nyoqs > 100 for
Ryes = 800 and f, = 3kgT/o), the MIPS dominates the
organization of the self-propelled rods at the boundary. In
this regime, the rods tend to form aggregates comprising
multiple sub-clusters with different orientations. For ex-
ample, in floppy vesicles, the dominant rod organization
corresponds to three aggregates sitting at three vertices of
a triangular configuration. As noted above, the combina-
tion of rod-propulsion and membrane-curvature-mediated
interactions tends to drive caps away from each other, sta-
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configurations as a function of number of enclosed rods Nyods
and vesicle bending modulus. (b) The vesicle diffusion coef-
ficient as a function of bending modulus for indicated Nyods.
(¢) The mode of the number of caps within a vesicle as a func-
tion of bending modulus and No4s, showing that the single-cap
state is not observed for Nyoqs 2 60 enclosed rods. Results are
shown for f, = 3kgT /o and £/o = 10.

bilizing the triangular arrangement. However, because the
rods within a given aggregate are not all aligned, aggre-
gates are transient, tending to break apart and merge with
other aggregates. With increasing kg the mean number
of caps decreases, but the caps remain transient and thus
do not lead to the highly motile vesicle dynamics charac-
terized by a long persistence length. Furthermore, even
in the 1-cap states at these higher rod densities, there are
additional rods forming transient caps elsewhere on the
boundary, which have orientations for which the propul-
sion forces partly cancel those of the rods in the cap.

Fig. 5b characterizes the motility of the vesicle for dif-
ferent numbers of enclosed rods. For the intermediate den-
sities, the diffusion coefficient as a function of vesicle stiff-
ness shows similar trends as seen in Fig. 2b, with motil-
ity increasing with xp for floppy vesicles and the value
of optimal stiffness x§; shifting toward larger values with
increasing number of rods. This is consistent with the
fact that the number of caps decreases with stiffness, thus
increasing the average magnitude of the net active force.
However, the motility enhancement is significantly smaller
than for Nyoqs < Npi%, due to the imperfect alignment of
the caps. At higher densities (Nyoqs > 100), the motil-
ity becomes largely independent of stiffness. This reflects
the fact that, when the MIPS phenomenology dominates,
the caps lack polar order and are transient. Thus, the
net active force lacks the large magnitude and long-lived
orientation that drive directed vesicle motion.

Summary and Outlook. — This work identifies de-
sign principles for constructing elastic vesicles with pro-
grammable classes of motilities, which range from Brown-

ian to highly persistent, by encapsulating self-propelled
rods. In particular, for a given rod aspect ratio and
activity level, our simple theoretical framework predicts
the vesicle bending modulus and number of encapsulated
agents that maximize the vesicle motility.

There is now a robust understanding of active matter
phenomenology for many model systems. However, lever-
aging this fundamental knowledge to design architectures
with specific functional goals has been relatively limited.
We hope that this investigation, on the simple functional
goal of emergent motility, can serve as a template for inves-
tigations into other, potentially more sophisticated func-
tions. A direct extension of this work would be to leverage
physical interactions or spatiotemporal activity to render
an elastic vesicle steerable. For example, one could con-
sider vesicles of nonuniform stiffness where cap formation
occurs preferentially at certain sites, or cycling activity as
a function of time. Such investigations may lead to a bet-
ter understanding of how to extract function from systems
of interacting motile agents.
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I. DETAILS OF THEORETICAL MODEL
A. Calculation of cap energy

Consider n; rods forming smectic clusters or caps along
the boundary of a circular vesicle of radius R (as shown
in Fig. 3). We align a given cap along the y-axis with
9 passing through the center of the cap. We can then
write the height function h(¢) = Rcos(¢) in terms of
the angle ¢ (angle with respect to the y-axis). The lo-
cal change in the vertical height Ah(¢) is then given by
Ah(p) = odh(¢)/dx(¢p) = —otan(¢), where o is the
width of one rod. Since we are in the strong confine-
ment limit, essentially all rods are on the vesicle surface.
Assuming that all caps have approximately the optimal
number of rods (which we will solve for shortly), the total
number of caps is given by

Tcluster = Nrods/nr- (1)

We now write an effective ‘free energy’ of the caps,
Ucluster, that accounts for activity as well as thermal in-
teractions among the rods and vesicle beads, given by

Ucluster = Uactive + Ushear + Uinterfacial~ (2)

The first term in Eq. (2), Uactive, is the effective rod-rod
attraction arising from the rod self-propulsion and the
curvature of the vesicle boundary. We assume that the
strength of this attraction is proportional to the active
force, Cy fa with C, a proportionality constant, and thus
the free energy for an undeformed (flat) cap takes the
form:

Uactive = 7Cao'fanr = —2C, faRcH (3)

with R¢ the radius of curvature in the vicinity of the cap
and 6 = on,/2R¢ the angular extent of the cap.

The second term, Ugpear, accounts for the fact that cur-
vature of the cap forces the rods to shear with respect to
each other, thus reducing the extent of overlap between
neighboring rods and decreasing the effective rod-rod at-
tractions. This results in a force (linear in displacement
of the rods) that resists this shear, with a shear mod-
ulus kghear- The total shear energy Ugpear thus can be

* hagan@brandeis.edu
T aparna@brandeis.edu

calculated by integrating the local change in the vertical
height of the layer along the vesicle boundary:

6
Ushear :kshear/ Ah(¢)RCd¢
—0
= — 2kghear Rc log[cos(0)) (4)

where 6 = on, /2R is the angular extent of the cap. Note
that, from the form of Us,ctive, Kshear X fa-

The third term Ujpterfacial 1S the effective interfacial en-
ergy, which accounts for the fact that rods at each edge
of a cap have no neighbor in one direction and is given
by

Uinterfacial = *27 (5)

where v o« f,f is the effective interfacial tension.
Finally, the number of caps is given by

Niodso
2Rc0

ncluster(e) = (6)
so the total effective free energy of the rods can be written
as

Nrodsa

Urod(o) = Rce

(7 + CafaRct — Rckshear [log(cos 6)])
(7)

B. Rigid vesicle

For the case of a rigid vesicle, we set Rc = Ryes €V-
erywhere, and determine the optimal number and size of
caps by minimizing the free energy with respect to 6:

aUvrod -0 :2Nr0dsa _ Y

90 0,2 Ryes

(®)

Defining y(6) = log cos 8 + 0 tan 0, the optimal cap size is
given by

g
0,)=——"-—". 9
y( ) ksheaeres ( )

Plugging in the expressions for v and kgpear above yields

Lo

y(0s) = (10)

+ Kshear (log cos 0. + 0, tan.,) | .
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Small angle approximation

In the limit 6, — 0, we can expand — log cos 6 ~ 62 /2,
giving

NYO SJ kS ear
Usoa(6) ~— de (27+ ; RCGQ)
ves

2
=NrodsO <RVZS€ + kshear9> . (11)

Then minimization gives

) o % 1/2
T Rves kshear

lo 1/2
~(22) (12)

so the number of caps goes as

P 1/2
Ncluster %Nrods (m) . (13)
ves

C. Flexible vesicle

To this point we have assumed an undeformed vesicle
of radius of R. However, the propulsion force from rods
within a cap locally deform the vesicle, resulting in a dif-
ferent local radius Rc. In this section we estimate the
steady-state value of R¢ using a simple argument based
on balancing the active force of the polar cap against the
passive force from the deformed membrane. We buttress
this argument with a more detailed analysis of the mem-
brane energetics in section I E.

The membrane bending energy is given by

K 1
Ubend = _ZB/R%dS (14)

For simplicity, we assume that R¢ is constant throughout
the cap. Considering a configuration with one or two
caps (e.g. the left or middle panels of Fig. 3(c) main
text), the arc length in the vicinity of a cap over which
the bending deformation extends corresponds to half of
a circle, [ dS = wRc, resulting in a total bending energy
for the cap of

TKRB

Ubend = ——— 15
ent = ~ 312 (15)
This results in a restoring force:
OUbena(T) TKB
————— i —Re = —5 16
or  =fe = ope 16)

This restoring force is balanced by the deforming force
of the rods forming a cap along the boundary. The to-
tal active force is n;f,. Neglecting the variation of this
force along the extent of the cap due to misalignment of

rod alignment and the vesicle normal, we can solve the
force balance for the local radius in terms of the bending
modulus, active force, and number of rods in the cap as

R & \/EB/ fanix. (17)

Combining Egs. (12), (13), and (17), we arrive at ap-
proximate expressions for the optimal cap size and num-
ber of caps for a flexible vesicle:

[1/2N1/4 1/4

rods’/ @
O ~ ———todsit (18)
kg
and
N3/ g4
* ~ rods 1
Neluster 61/2I<E]13/4 ( 9)

Finally, noting that the maximal vesicle motility occurs
for the case in which there is a single cap, we estimate the
scaling of the optimal value of the bending modulus «j;
in terms of the other control parameters by solving for
the point at which the number of caps transitions from
one to two, nf .. (kf) = 2:

’{l*S/fa ~ NrSOds/EZ' (20)

This expression is compared to simulation results in Fig.
5(a) of the main text.

D. Maximum number of rods for the high vesicle
motility state

From section III of the main text, we know that mem-
brane deformation is essential to stabilize polar-aligned
caps. Thus, there is an upper bound on the bending
modulus kg < kKF** for which we can observe stable 1-
cap states and the corresponding peak in vesicle motility.
In this section we estimate this bending modulus value,
and show that it leads to a maximum number of enclosed
rods above which there will be no stable one-cap state for
any parameter value, and thus no highly motile vesicle
state.

To estimate x5, we set the curvature radius to the
unperturbed vesicle radius, Rc = Ryes, in the force bal-
ance (Eq. (16)), resulting in

,R.K/E?LX
2Rves

= Ny fa- (21)

The largest active force in this state will correspond to
the largest possible polar cap. To that end, note that
there is a maximum cap size, since once o tanf > ¢ the
cap must break: fp. = tan"'/ = 5= 1/¢. Thus,
for large aspect-ratio rods, the largest polar cap that
can form will fill a semicircle on the vesicle surface with
Omax =~ /2. Further, for kg > £J5** the curvature radius
within this cap will be equal to the unperturbed vesicle



radius, from which we obtain that the number of rods in
the maximal cap will be n®* = 7R /0. Substituting
this into Eq. (21), and setting the cap size to the total
number of enclosed rods, n, = N,oqs results in

rods faRues /07 (22)

Hanax g

Since Eqgs. (20) and (22) respectively set lower and up-

per bounds on the bending modulus for the stable 1-cap

state, we expect to no longer observe this state when

these two bounds merge. Solving for this point in terms
of the number of enclosed rods results in

X & ({Ryes /o). (23)

For Niodas 2 NJBAX we expect the system to transition
directly from states containing two or more caps to tran-
sient cap states. For the vesicle size that we focus on in
this work, Ryes = 800, Eq. (23) gives a maximum rod
number of order 10 (to within a scaling constant), which
is consistent with the observation that we do not observe

stable 1-cap states for Nyoqs = 60.

E. Detailed analysis of membrane energy

We now consider a more complete analysis of the effec-
tive free energy of the membrane and rod configurations.
We will arrive at the same expressions as obtained in
section 1 C.

For simplicity, we assume a geometry in which the cur-
vature is the same at each cap, and the vesicle is flat be-
tween caps; i.e., it forms a regular polygon with rounded
vertices, with the number of vertices equal to the number
of caps. We denote the length of each flat region as [, and
note that the total angle swept out by the curved regions
must be ncysterfx = 27, and so the total arc length of
cap regions is 2 R¢. Assuming a fixed vesicle perimeter
27 Ryes, we can then obtain the length of the flat regions
as

l:

27 (Ryes — Re). (24)

TNcluster

Notice that our geometry requires Rc < Ryes-
In this geometry, we can write the vesicle energy as a
function of two terms

Uves = Ubend + Uf (25)

with the bending energy given by the usual Helfrich form

K 1\?
Ubend :7827TRC <I{C>

TKRB

- (26)

with kg the bending modulus.
The energy due to the rod force is easiest to consider in
the case of 2 caps, for which half of the rods are on either

side of the vesicle, stretching it along the Z axis with a
total force f = faNiods/2. The energy contribution is
then

Uf(ncluster = 2) = - fl
= - 7Tfau]\/vrods(—Rves - RC) (27)

For ncuster > 2, in our geometry, the force on
each domain will approximately be given by f =
Nrods fa/Neluster, and will be directed along an axis from
the center to vertex, with length lye = m
(from the formula for the inscribed circle of a polygon),
giving

-1 27T(Rves — Rc)

Ncluster
Up=— .faNrods .
2Nncluster Sln(ﬂ'/ncluster)

TNcluster

. (28)

However, in the limit of large nciuster, SIN(7T/Ncluster) =
T /Necluster, and the expression reduces to

Neluster — 1
U =— faNrods

Ncluster

27 (Ryes — Rc).- (29)

To simplify the analysis, let us eliminate the dependence
On Neluster from this expression, and take the result for
Neluster = 2 for all nejysger > 2

Uf ~ = faNrodsﬂ-(Rves - RC) for Ncluster Z 2. (30)
Note that the case of ncuster = 1 is special, since here
the force from the rods does not cancel and the vesicle
undergoes net motion.

At steady state, the total drag on the vesicle and rods
must balance the propulsive force from the rods. Assum-
ing drag coeflicients £ and &y for rods and vesicle beads
respectively, and the number of vesicle beads as Nyes, the
steady-state velocity will then be given by

NI‘O sJa

v= ds (31)
Nrodsg +Nves€V

The net force stretching the vesicle is then given by

roughly

f %’UNvesg\/

chs
:Nrodsfa—gv
Nvesgv + Nrodsf

~ f%v for Nueby < Neoaef (33)

(32)

~ rodsfa for Nvesé\/ > Nrods£~ (34)

The situation is particularly nice in the last limit, vesi-
cle drag dominated Nyesév > Nipoqs€, because in that
case we can use Eq. (30) for all numbers of caps:

Uf ~ = faNrods’/T(Rves - T) vncluster (35)

Importantly, we find that this limit approximately ap-
plies in our simulations for most parameters that we con-
sider.



Determine optimal curvature and cap size

We now consider the full energy in the large vesicle
drag limit, setting o = 1 (all lengths in units of ¢):
U TR 275

-1
= — (Ryes — ) + —— — 2k~ log cos §
Nrodsfaa NrodsRC ﬂ-(R o T) + RCH 0 0§ €08
(36)

with & = kp/fa02, ¥ = v/ fa0, and k = kspear/ fa-
Differentiating with respect to 6 gives

gl
1 0, +0tanf, = = 37
og cos b, + ftan RR (37)
Differentiating with respect to R¢ gives
TR 29\ 1
O(NrOdere)TZer (38)
SO
i 25\ /?
Rt =— . 39
© (Nrods * 779*> ( )

We must solve Egs. 37 and 39 numerically.

F. Small angle approximation to determine the
optimal curvature and cap size

We now consider the full energy in the small angle
approximation and large vesicle drag limit

U TR 27 _
= - Rves - R = k9
Nrodsfao— NrodsRC ﬂ-( C) + ch +
(40)
Differentiating with respect to 6 gives
25 .
0=— k 41
o T (a)
SO
95 \ 1/2
= ( 7_) (42)
REE

If we plug in the expected dependence of v x f,¢ and
kshear X fa, We obtain

7\ /2
0, 2| — 43
(Rc> “3)
as above.
Differentiating with respect to R¢ gives
TR 29\ 1
0=— — | = 44
<Nr0ds+ 0) R%+ﬂ- ( )

SO

i 25\ /?
R = — . 45
© (Nrods + 779*> ( )

Plugging in Eq. (42) gives

_ 1/271/2
* aZ 2 — 7. D%
RC = — [Nrods + (7T27kRC> ‘| . (46)

If we plug in the expected dependence of v and kghear,

we obtain
_ P\ 1727172
R R
R = | —— C . 47
© Nrods + < l > ‘| ( )
This gives us two limits. Noting that Rc < Ryes
_ 1/2 1/2
* R _ Ryes
7= (5m) o> N (5
(48)
R 1/2
RE ~~1/3 for £ < Nyods (z%
(49)

The latter limit is not physical, as we should not have
Rc < 1 (measured in units of ¢). This is because our
small angle approximation breaks down once R¢ ~ £,
and we must return to the full expression with —log cos 6.

In the limit of large &, note that the requirement R¢ <
R.es gives a ‘critical’ kK above which there is essentially
no bending of the vesicle:

V2 (Rves>1/2]

ves £

Ke :Nrods

(50)

= 2
Re =~ rodsRves~

Finally, in the limit of large %, we obtain

£1/2N1/4 Rveq 1/2
b~ ST e N () (51)
and
NO/4

* rods
Neluster ™

R 1/2
for & > Nyods <2> (52)

(1/251/4

Finally, noting that the maximal vesicle motility occurs
for the case in which there is a single cap, we estimate the
scaling of the optimal value of the bending modulus &
in terms of the other control parameters by solving for
the point at which the number of caps transitions from
one to two, n’ (k) = 2. Using & = kp/fac? and

cluster

Eq. (52), we obtain
Hg/fa ~ Nrsods/gz'

Notice that Eqgs. (52) and (53) match the results of
section I C.

(53)



II. DETAILS OF ANALYSIS OF SIMULATION
DATA

A. Simulation details

The equations of motion are integrated forward in time
using HOOMD (version 2.9.6)[1, 2]. We use the Brown-
ian integrator for the rods and the Langevin integrator for
the vesicle. In HOOMD, all units are derived from base
units of energy, length, and mass. In our simulations, we
set these as kg7, the rod diameter o, and the bead mass
m. This gives rise to a time unit of tg, = /mo?/kgT.
For presentation clarity in the main text, we present re-
sults in terms of the more natural time unit of 75, the
time for a bead with the diameter of a rod to diffuse its

2
diameter. These are related as 7, = %tsim and
in the simulations, we set the bead mass m = 1 and
50 =1 m/tsim~

We set the time step for both integrators to 0t =
0.0001¢gjpy, -

To characterize the rod self-propulsion, we note that
the active velocity of an isolated rod is given by v, =
fa/€T, which for our parameters is v, = 0.1f,/& =
O‘lfadz/kBTTs. For an isolated rod, we can also de-
fine a Peclet number as Pe = v,/0D, = v,&8 /0T =
100f,0/kpT, where v, = f,/§ is the active velocity
of a rod and D, = kgT/¢R is the rotational diffusion
constant. However, due to the complex interplay be-
tween rod self-propulsion forces and passive elastic vesi-
cle forces, there is not a well-defined Peclet number that
characterizes the balance between active and diffusive be-
haviors in the vesicle system.

We initialize the system by placing the vesicle beads
equally spaced along a circle at their equilibrium radius
Ryes = 800, and then placing the rods randomly inside
the vesicle, excluding overlaps. We then thermalize the
system in the absence of the active force, by setting f, =
0 and linearly ramping the temperature from 0 at ¢t =
0 to kgT at t = 100tg,, and setting e = 0 such that
Uwca = 0. During the thermalization we set the the
non-bonded interactions between all pairs of vesicle-rod
and rod-rod beads to a Yukawa potential:

e kv

UY = €Y (54)
where r is the inter-bead separation, ey = 5kgT, and
ky = 2.750 1. The values are chosen such that the beads
are not subject to large forces on being placed inside
the vesicle. After these initialization and thermalization
steps, we turn on the active force, set kT = 1, ¢ = kgT
and ey = 0. Except for one parameter set, each simula-
tion is performed for 20000t;,, after initialisation, with
particle positions and velocities recorded every 10%gy,.
For the parameter set Nyoqs = 30, fo = 3, {/o = 6, we
performed simulations until 40000tg;,, to confirm that ob-
servables were not changed by simulating to longer times.
Based on the total deformation energy of the vesicle, we

find that the system reaches steady state by ¢ = 5000t
at all parameter values (see Fig. 1), and thus we evaluate
statistics based on results from ¢ > 5000ty .

B. Determining steady states

To determine if the system reached steady state, we ex-
amined the total deformation energy of the vesicle Eioa
as a function of simulation time. The deformation energy
is given by:

Nyes—1 Nyes—1
Etotal = Z Ustretch(’ri,i—i-l) + Z Ubend(¢i—1,i,i+l)
i=1 1=2

(55)
Fig. 1 shows the total deformation energy (relative to
the steady-state value) for vesicles with bending modu-
lus values ranging from floppy to stiff, and two values
of Nyogs- We see that the vesicle deformation energy in-
creases rapidly after the initialization and thermalization
phases of the simulation (for time > 100ty ), as the rods
moved to the vesicle boundary and deform the vesicle.
For the lowest active force that we consider in this work,
fa = 3kBT, it takes about ¢ ~ 5000ty for the caps to or-
ganize into a steady state, as evidenced by the saturation
of the total deformation energy to fluctuations about a
mean value. Steady states are reached more quickly for
larger values of the active force. Notice that, for low val-
ues of kg, the deformation energy remains roughly con-
stant with small fluctuations about the mean once the
rods form stable caps. Counterintuitively though, large
values of kg give rise to large fluctuations in the defor-
mation energy because the rods form transient caps (see
results section in main text).
Based on these observations, we performed measure-
ments for all statistical quantities in this work from times
t > 5000tgim.

C. Vesicle motions are uncoupled to active forces
for spherical particles

As noted in the main text, in the limit of spheri-
cal particles, the particle orientation and corresponding
active force are uncoupled to the vesicle configuration
because there are no particle-particle or particle-vesicle
torques. Consequently, the mean net active force trans-
ferred from the particles to the vesicle should vanish,
and the enclosed active particles will not affect the vesi-
cle motion, even in the case of floppy vesicles for which
the particles cluster and significantly deform the vesicle
boundary. In particular, the path traced by the center
of mass depends on the net active force on the vesicle:
vazid fal;. Since the persistence length of the particle
motions f,&R /€T = 3000 is much larger than the vesi-
cle radius, we are in the strong confinement limit and
the particles spend all their time at the vesicle boundary.
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FIG. 1. The mean total deformation energy relative to its
steady-state value, Eiotal — { Etotal) as a function of time (start-
ing after the initialization and thermalization steps have been
completed) for indicated values of the vesicle bending mod-
ulus kg and (a) Nyoas = 30, fa = 3ksT, ¢/oc = 6 and (b)
Nyoas = 150, fa = 3ksT, £/oc = 6. (c), (d) Typical steady-
state configurations for vesicles with indicated values of the
bending modulus and (c) Nyodas = 30 and (d) Nyoas = 150.
Note that the caps are transient in the vesicles with a large
stiffness values kg = 5 x 10 kgT'o in (c) and kB = 10% kg To

in (d)).

Therefore, since f, is a constant, the net force on the
vesicle depends only on the orientation 7 of the beads.
In the absence of interparticle or particle-vesicle torques,
U is independent of the local particle density or vesicle
curvature, and thus independent of the cluster configu-
ration.

To provide numerical evidence for the uncoupling of
vesicle motions and cluster configurations for spherical
particles, Fig. 2 shows the path traced by the cen-
ter of mass of vesicles with different values of kg €
{1..105}kpTo and encapsulated spherical active beads of
radius 1lo. To show that the vesicle trajectory is inde-
pendent of the cluster configuration, we performed each
of these simulations with the same initial conditions and
the same random forces on the vesicle beads and the ac-
tive beads, i.e 7Y (t), n;(t), 0} (t) (i € Nrods, i € Nues),
throughout the trajectories. The images below the plot
show typical vesicle configurations for floppy and stiff
vesicles, demonstrating that the cluster configurations
depend sensitively on vesicle stiffness. Yet, we see that
the path traced by the center of mass is very similar for
each vesicle, independent of its stiffness.

D. Measurement of optimal stiffness

We estimated the optimal stiffness, which gives rise to
the maximal vesicle motility, by fitting a polynomial of
degree 4 to the measured vesicle diffusion coefficient as a
function the vesicle bending modulus. We restricted the

(@
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= — kg = 10%pTo
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0 —— KRB = 101/‘&]3TU
10 — kg = 10T
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FIG. 2. The path traced by the center of mass for vesicles
with indicated values of the bending modulus (x5 € {1..10°})
enclosing N;oqs = 30 active spherical beads with unit radius
(¢/o = 1) and an active force of f. = 3kgT/o. All the sim-
ulations have the same random seed and thus identical sets
of random forces on the active and vesicle beads. Bottom:
Snapshots of typical configurations of floppy (left) and stiff
(right) vesicles. Active beads are enlarged for better visuali-
sation.

fit to data points near the maximum, and computed the
optimal stiffness as the stiffness that maximizes the fit
polynomial. Fig. 3 shows plots of the measured diffusion
coefficients as a function of vesicle bending modulus and
the corresponding polynomial fits for different values of
Nrods and fa-

E. Cap recognition method

To identify caps, we take a coarse-grained view of the
vesicle by placing it in a grid of size sgp X Sgp, With
Sgp = 90 the grid size. Each tile in this grid, denoted
by 7ep = {Zgp, Ysp} represents an area of s1es0 X Syes0,
with s.s = 4 the resolution. The vesicle center of
mass is at the origin of the grid (or in the central tile),
Tep = {Sgp/2, Sgp/2}. Rod beads are assigned to tiles in
this grid based on their position with respect to the vesi-
cle center of mass, {dx; ;, 0y; j }, where dz; ; = T; j—Zcom,
8Yij = Yij — Yeom for the j* bead in the 7" rod.
{x;,j,v:;} is the position of the bead and {Zcom,Ycom}
is the position of the vesicle center of mass. The corre-
sponding position in the grid zgp.; = (024 ; +2Sgp)/ Sres,
Yep,i,j = (0¥i; +28gp)/5res- Each rod bead is assigned to
a tile at position {Zgp; j, Yep,i,;} in the grid.

A pseudo-cluster is then defined as a collection of tiles
that each have at least one bead assigned to them and
share at least one common edge, thus forming a con-
nected region in the grid. The number of rods in the
pseudo-cluster N,. are counted and the angle ®;; =
cos~Y(¥; - D) is measured for each pair of rods in the
pseudo-cluster, where 7;, U, are the orientation of the
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FIG. 3. The vesicle diffusion coefficient as a function of
vesicle bending modulus (blue dots) for (a) Neoas = 30,
fa = 3/€BT/U, (b) Nrods = 20, fa = GkJBT/O', and (C)
Nroas = 30, fa = 9kT/o. The black dashed line shows a
polynomial fit in the vicinity of the maximum, which is used
to infer the optimal bending modulus. (d) Cartoon of active
rods forming a cap along an undeformed vesicle of radius R,
the center of which is placed at the origin. The symbol ¢
gives the angular position at arbitrary points within the cap,
which extends from —6 < ¢ < 6.
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FIG. 4. (a) Snapshot of a typical configuration for a vesicle
with kg = kBT'0, Nyoas = 150, and f. = 3kgT/o. The rods
form four distinct caps. (b) Rod density profile averaged over
the steady state for the parameters shown in (a). The heat
map shows the number of rod pseudoatoms within each grid
point. The cap-identification algorithm described in the text
detects four caps, which are marked by white circles. The caps
each have more than three rods that are aligned (parallel to
each other).

i*" and the #'*" rod in the pseudo cluster. A pseudo-
cluster is identified as a cap if N, > 3 and ®;; < 0.15
for three or more pairs of rods (i.e., three or more pairs of
rods are aligned). Fig. 4(a) shows a snapshot of a vesicle
enclosing N;,4s = 150 rods organised into four caps. Fig.
4(b) shows a heat map of the grid with the color indi-
cating the number of beads assigned to each tile. Four
distinct caps can be seen that satisfy the criteria for the
number of rods and the rod alignment. We measure the
number of caps for each recorded simulation frame, and

we compute the mean number of caps by averaging over
100 independent trials for each parameter set.
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FIG. 5. Mean cap lifetimes (7) for 1-cap (a) and 2-cap (b)
configurations as a function of vesicle bending modulus for
rods with varying lengths, Nyoas = 30, and f. = 3ksT/o.
The lifetime of the 1-cap configuration increases as a function
of rod length ¢, and for long rods the the lifetime is maximum
at the optimal stiffness. The lifetime of the 2-cap configura-
tion increases as a function of rod length ¢ at low stiffness
values, while for long rods the lifetime decreases with increas-
ing vesicle stiffness. This coincides with the increase in mean
lifetime of the 1-cap state.

We measure cap lifetimes by counting the number of si-
multaneous frames during which the system has the given
number of caps, and averaging over 100 independent tri-
als for cach parameter set. Fig. 5 (a) shows the life-
times of the 1-cap and 2-cap configurations as a function
of vesicle bending stiffness. The cap lifetimes increases
with rod aspect ratio ¢. The lifetime of 1-cap configura-
tions is maximized at the optimal bending stiffness for a
given parameter set {Nyoas, fa}- In Fig. 5(a) the maxi-
mum lifetime for the 1-cap state is at the optimal stiffness
value k55 ~ 3000kgT'c. For floppier vesicles kg < K, the
2-cap configuration is dominant, as evidenced by the fact
that lifetime of the 2-cap configuration is larger than that
of the 1-cap configuration (Fig. 5 (b)). The lifetimes of
2-cap configurations gradually decrease with vesicle stiff-
ness, as 1-cap configurations become more favorable. For
stiffer-than-optimal vesicles kg > K, the rods form tran-
sient caps, resulting in a reduction in the 1-cap lifetimes.

F. Characterizing the dynamics of the center of
mass of the vesicle

As we saw in the main text, the mean square displace-
ment of the vesicle center of mass is well described by a
persistent random walk. Hence, it is suggestive to map
the motion of the vesicle to the well studied active Brown-
ian particle model. When we attempt to do this, we find
that the self propulsion velocity vy is enhanced at the
optimal stiffness value, while the rotational diffusion co-
efficient D, does not exhibit any systematic dependence
on the underlying model parameters (see Fig. 6).

The persistent random walk of the vesicle emerges from
the complex dynamics of the self organized rod clus-
ters and the deformations of the vesicle itself. Hence,
it is useful to characterize the center-of-mass dynamics



in terms of more fundamental quantities driving the mo-
tion, Fhet = Y, “’d* fali, the net force exerted by the

active rods on the vesmle and Veom = Nyor _V‘f v, the
center-of-mass velocity. The rotational dlffusmn coeffi-
cient, or equivalently the persistence time of the random
walk, emerges from the dynamics of Fle; and @eom. The
simplest postulate for this would be to consider the vesi-
cle motion as described by a Langevin equation of the
form
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FIG. 6. Self-propulsion velocity vg (a) and rotational diffu-
sion coefficient D; (b) of the vesicle center of mass when its
dynamics is modelled as an active Brownian particle (ABP).
Results are shown for vesicle radius Rves = 800 and activity
fa = 3ksT, for various rod lengths and vesicle stiffness val-
ues. The velocity is measured by fitting a quadratic functino
to the MSD equation in the ballistic limit (fitting is performed
on points where the slope of MSD is greater than 1.8). The
velocity of the vesicle center of mass is independent of vesi-
cle stiffness for short rods, but the velocity is enhanced at
the optimal stiffness for long rods. The rotational diffusion
coefficient is extracted from the full fit for the mean square
displacement of an ABP.

AUcom (t _ —
MVC(;T() = _Nvesg\/vcom(t) + Fnet(t)

(56)
where My = Nyes-1 is the total mass of the vesicle,and &y
is the translational drag coefficient on the vesicle beads.

Solving for ¥¢om, we have
_t/)\ves t /)\ _
S/Aves [t i (s)ds.
My /0 e t(s)ds

(57)
where we use the notation Ayes = My /Nyes&y for com-
pactness. Thus, the the velocity auto-correlation func-
tion (Teom (1) * Ucom(t2)) is of the form

’Dcom(t) = Vinit€ ¢/ Aves + —

<1_)00m(t1) 'ﬁcom(t2)> =

ot/ et v T e
Vinite ves 4 Wy e*/ves [ee(s)ds
0

_tZ/Aves to
[ N, e Pt )d“’D

When averaged over all possible initial velocities, the
cross terms vanish and we get

—(t1+t2)/Aves

<Ucom(t1) Ucom |U1n1t| >

(t2))
e~ (t2+t1)/Aves /tl /t2

As shown in the main text, the force correlations are
exponential, i.e., of the form (Fle(s) - Fhet(w)) =
A2e~ls=wl/Af with A a constant. Thus, the velocity au-
tocorrelation function in the long time limit, limy, o,
limy, 500, is of the form

(w+s)/Aves (Foot(8) - Fhet(w)) ds duw.
(58)

<"700m(t1) . @com(t2)> =
A2/\3€S )\2 —(t1—t2)/A¢ _ AAvese ™ (t1—t2)/Aves
M2 [ N2

ves

(59)

To test the validity of this simple model for the center-
of-mass dynamics of the vesicle, we compare the mea-
sured velocity auto-correlation function with this expres-
sion in Fig. 7. We find that this expression does not fit the
data consistently across all parameters. These discrep-
ancies reflect the fact that the dynamics of the vesicle is
more complex than this simple Langevin Model, due to
timescales associated with reorganization of the enclosed
rods. In particular, note that when Af > Aves, Av = At
This behavior is consistent with the simulation data for
long rods, where the clusters persist for long times, but
short rods have distinct time scales associated with the
fluctuations of velocity and force (Fig. 8).
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FIG. 7. Comparison of the predictions of the simple Langevin
model for the vesicle center of mass for Ucom to the simulation
results, for an illustrative set of parameter values. We use
A and A¢ obtained from the data and Ayes as determined by
the parameters that describe the vesicle beads. While the
Langevin model works well for long rods in soft vesicles where
the clusters are long lived, the velocity correlation is better

fit by a single exponential of the form exp(—t/\,), for most
parameter values.
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FIG. 8. Comparison of the velocity-force correlation
timescale, Ayr with A, and A¢, as a function vesicle stiffness.
Avt is measured by fitting an exponential to (Ocom () * fnet (t +
At)) = exp{—At/Avt}. The vesicle velocity is measured by
calculating the displacement of the center of mass between
successive pairs of time steps. The net force is measured by
summing the force imposed by the active rods on the vesicle.
To enable a one-to-one comparison between force and veloc-
ity, we average the force over pairs of timesteps. Results are
shown for Rves = 800, fa = 3ksT. (a) Short rods, ¢/o = 3.
The three timescales are independent of vesicle stiffness. (b)
Long rods, £/o = 6. The three time scales coincide and are
enhanced at the optimal stiffness.
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FIG. 9. Fluctuations in vesicle bond lengths and perime-
ter lengths are insignificant. Distributions of vesicle bead
bond-lengths (a), (b) and perimeter lengths (c), (d). b; are
the measured bond lengths and b = 0.50 is the equilibrium
bond length. p is the measured perimeter and p, = 502.50
is the equilibrium perimeter of the vesicle. Measurements are
taken for single trial over all time steps with for Ryes = 800,
fa =3ksT/o, and (a), (¢) Nves = 30 and (b), (d) Nyes = 100.
Coloured lines represent vesicles with different bending stiff-
ness values.



10

[1] J. A. Anderson, J. Glaser, S. C. Glotzer, HOOMD-blue: A [2] T. D. Nguyen, C. L. Phillips, J. A. Anderson, and S. C.
python package for high-performance molecular dynamics Glotzer, Rigid body constraints realized in massively-
and hard particle monte carlo simulations, Computational parallel molecular dynamics on graphics processing units,
Materials Science 173, 109363 (2020). Comput. Phys. Commun. 182, 2307 (2011).


https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363

	Introduction. –
	Model. –
	Results. –
	Phenomenology of vesicle motion. 
	Dependence of motility on vesicle stiffness and active rod length. 
	Assembly principles for the single cap state. 
	Dependence of rod organization and vesicle motility on number of enclosed rods. 

	Summary and Outlook. –
	
	SarveshAppendix.2023.09.18-black.submit.pdf
	Supporting Information for: Design principles for transporting vesicles with enclosed active particles
	Details of Theoretical Model
	Calculation of cap energy
	Rigid vesicle
	Small angle approximation

	Flexible vesicle
	Maximum number of rods for the high vesicle motility state
	Detailed analysis of membrane energy
	Determine optimal curvature and cap size

	Small angle approximation to determine the optimal curvature and cap size

	Details of Analysis of Simulation Data
	Simulation details
	Determining steady states
	Vesicle motions are uncoupled to active forces for spherical particles
	Measurement of optimal stiffness
	Cap recognition method
	Characterizing the dynamics of the center of mass of the vesicle

	References



