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ABSTRACT 

 

Past earthquakes have revealed the vulnerability of water infrastructure to earthquakes as 

water networks are vulnerable to pipe damage (breaks and leaks). These damages cause disruption 

in the supply of water distribution. Seismic vulnerability assessment is essential for seismic 

rehabilitation decision-making. Although water pipe network uncertainties play a critical role in 

seismic vulnerability assessment methods, the impacts of these uncertainties have not been 

explored in optimal proactive seismic rehabilitation decision-making. Extant pertinent literature 

ignores the uncertainty related to water network properties. This research aims to explore the 

impacts of water network uncertainties on determining the most critical pipes vulnerable to seismic 

events within the limited budget constraint. Pipe roughness coefficient, demand, and reservoir head 

were selected as uncertain network parameters for this study. Sensitivity analysis was performed 

to quantify selected network uncertainties. A stochastic combinatorial optimization problem was 

formulated considering network uncertainties and seismic ground motion intensities to identify the 

most critical pipes of a network for limited rehabilitation budget. A simulated-annealing algorithm 

was used to solve the stochastic combinatorial optimization problem.  Modena network was used 

to demonstrate the method. The optimization results showed that the selected network uncertainties 

significantly affect the identified critical pipes of the water pipelines. Also, the maximum 

achievable serviceability index for selected rehabilitation budget reduces significantly if network 

uncertainties are considered. This index reduces by 3-4% due to the consideration of all three 

network uncertainties. It can be concluded that network uncertainties must be included with the 

current methodology of proactive rehabilitation decision-making due to seismic events. 

 
INTRODUCTION 

 

Water pipe networks get severely disrupted due to earthquake events. Previous earthquakes 

(e.g., 1994 Northridge, 1995 Kobe) and more recent earthquakes (e.g., 2011 Christchurch, 2011 

East Japan, 2015 Gorkha, and 2017 Central Mexico) clearly indicate that water network pipes are 

vulnerable to seismic events (Cubrinovski et al. 2011; Maruyama et al. 2011; O'Rourke et al. 2014; 

Knight 2017). Water network disruption causes major direct and indirect losses (Yerri et al. 2017). 

Utilities had conducted approximately 1400 repairs in water pipes after the 1994 Northridge 

earthquake. Hence, the water pipes network must be gone through rehabilitation work to increase 

the serviceability of the network and reduce the losses. (Davis 2016). As a result, utilities are 
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required to determine the most critical pipes of the network to maximize serviceability due to 

seismic events. 

In the current practice of identification of critical pipes vulnerable to earthquakes, it is 

assumed that current hydraulic analysis methodologies can determine the serviceability measures 

accurately (Pudasaini and Shahandashti 2018; Shahandashti and Pudasaini 2019; Pudasaini and 

Shahandashti 2020; Pudasaini and Shahandashti 2021; Shavreen et al. 2022). A 15% variation in 

the value of pipe roughness coefficient and demand could result in an 11% variation in nodal 

pressure prediction and a 50% variation in flow velocity prediction (Roy et al. 2021). Roy et al. 

(2021) showed that a 20% deviation pipe roughness coefficient significantly affects the post-

earthquake serviceability index. Roy et al. (2022) identified the minimum value of CV (coefficient 

of variation) for which there was a significant effect on the post-earthquake serviceability index. 

This study showed that a little 1% deviation in reservoir head could significantly impact the result. 

These studies indicate that seismic vulnerability assessment of water networks are highly sensitive 

to water network uncertainties. However, the impact of these uncertainties on rehabilitation 

decision making is not studied. It is important to explore the effects of water network uncertainties 

on optimal proactive seismic rehabilitation decision-making for water pipelines. 

 

METHODOLOGY 

 

The methodology for exploring the impacts of water network uncertainties on optimal 

seismic rehabilitation decision-making is described in Figure 1. 

 

 
 

Figure 1: Methodology of exploring the impacts of water network uncertainties on optimal 

seismic rehabilitation decision-making  

 

Selection of Network 

 

The Modena network was used in this study (Center of Water Systems 2018).  

 

Uncertainty Quantification 

 

Three water network parameters were selected for this study: pipe roughness coefficient, 

nodal demand, and reservoir head. The probabilistic distribution for these parameters was 

assumed- ‘Normal distribution’. CV was used as the parameter to quantify the uncertainties in this 

study (Roy et al. 2021The minimum value of CV was used in this study. The minimum value of 

CV was determined using sensitivity analysis. Using the minimum value of CV ensures the 

integration of network uncertainty with the optimization algorithm. This study could have been 
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conducted using a fixed value of CV (Roy et al. 2021). Selecting the fixed value of CV is not 

feasible for the optimization problem as there are chances of no effects for the predefined value of 

CV. The selected values of CV for all three uncertain parameters are listed in Table 1. 

 

Table 1: Sensitivity analysis result 

Network Uncertainty Parameter Minimum Value of CV 

Pipe Roughness Coefficient 0.15 

Demand 0.50 

Reservoir Head 0.10 

 

Design of Experiments 

 

To explore the effects of network uncertainty on optimal proactive seismic rehabilitation 

decision-making, this study was constructed as a full factorial design. All three selected network 

parameters were studied at two levels: uncertainty included (coded as 1) and uncertainty excluded 

(coded as -1) (Roy et al 2021). Table 2 shows the design of experiment for this study.  

 

Table 2: Name of the experiments along with design matrix 

Experiment 

Name/Notation 

Pipe Roughness 

Coefficient 
Demand Reservoir Head 

Exp A -1 -1 -1 

Exp B -1 1 -1 

Exp C 1 -1 -1 

Exp D -1 -1 1 

Exp E 1 1 -1 

Exp F 1 -1 1 

Exp G -1 1 1 

Exp H 1 1 1 

 

Seismic Repair Rate Calculation 

 

Figure 2 demonstrates the method of determining the pipe repair rate for each peak ground 

velocity field (Shahandashti and Pudasaini 2019). 
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Figure 2: Process of determining pipe repair rate for each peak ground velocity field 

 

Calculating PSSI for Each Random PGV Field 

 

Post-earthquake system serviceability index (PSSI) is used as a serviceability measure for 

this study (Wang 2010; Shi 2006). After calculating the repair rate of each pipe, PSSI was 

calculated for each random PGV (Shahandashti and Pudasaini 2019).  

 

Determining a Sufficient Number of Monte Carlo Runs 

 

A sufficient number of Monte Carlo runs was identified based on a convergence study 

(Figure 3). From the convergence study, 3000 Monte Carlo runs were selected for this analysis. 

  

 
Figure 3: Result of Convergence Study  

 

Optimization Problem Formulation 
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The problem targets maximizing the expected PSSI. The mathematical model can be 

represented by Eq. (1).  

𝐦𝐚𝐱𝒙∈𝐗 𝑬[𝑷𝑺𝑺𝑰(𝒙)]         (1) 

 

Subject to 

   

𝐶𝑜𝑠𝑡(𝒙) ≤  𝐶𝑜𝑠𝑡𝑚𝑎𝑥                              (2) 

 

where all rehabilitation policies are denoted by set X, 𝐶𝑜𝑠𝑡(𝒙) is the cost of rehabilitation to 

implement policy x, 𝐶𝑜𝑠𝑡𝑚𝑎𝑥 is the cost constraints.  

The combinatorial stochastic optimization problem was solved using a simulated-

annealing-based optimization algorithm (Shahandashti and Pudasaini 2019). This study was 

conducted for five cost limits: $2.5 million, $5 million, $7.5 million, and $10 million.  

 

RESULTS AND DISCUSSION 

 

In the following part of the manuscript, the result from the simulated-annealing based 

optimization will be demonstrated. Tables 3 to 6 shows the maximum expected SSI and actual cost 

of rehabilitation for different experiments of this study. Figure 4 to Figure 7 display the most 

critical pipes for each experiment considering the budget limitation. The critical pipes are 

highlighted using bold red marks.  

 

Table 3: Maximum Expected SSI and Actual Cost of Rehabilitation (Cost Limit 2.5 

million) 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A             2,446,678.20  0.89126 301.49 

Exp B             2,424,668.47  0.87759 310.67 

Exp C             2,463,207.89  0.87521 301.81 

Exp D             2,456,355.10  0.87945 291.35 

Exp E             2,425,674.12  0.86561 307.67 

Exp F             2,486,782.03  0.86754 311.73 

Exp G             2,410,405.86  0.87201 302.35 

Exp H             2,494,608.35  0.85469 306.53 

 

 Table 3 indicates that the value of maximum expected PSSI decreases by 2% for 

consideration of single uncertain parameter, while this value reduces by 3% for consideration of 

two uncertain parameters combinedly. The maximum expected PSSI decreases by 4%, if we 

consider three uncertain parameters (Exp H)  
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Figure 4: Critical pipes identified for different experiments (Cost Limit 2.5 million) 

 

Table 4: Maximum Expected SSI and Actual Cost of Rehabilitation (Cost Limit 5 million) 

 

 

Table 4 indicates that the value of maximum expected PSSI decreases by 1% for 

consideration of single uncertain parameter, while this value reduces by 2% for consideration of 

two uncertain parameters combinedly. The maximum expected PSSI decreases by 3%, if we 

consider three uncertain parameters (Exp H). 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A                 4,934,950.25  0.90347 292.37 

Exp B                 4,950,759.17  0.89703 319.79 

Exp C                 4,944,895.50  0.89168 321.95 

Exp D                 4,964,728.78  0.89965 314.36 

Exp E                 4,984,015.11  0.88349 302.82 

Exp F                 4,969,679.08  0.88628 294.23 

Exp G                 4,981,896.25  0.88881 294.23 

Exp H                 4,993,185.62  0.87733 312.4 
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Figure 5: Critical pipes identified for different experiments (Cost Limit 5 million) 

 

Table 5: Maximum Expected SSI and Actual Cost of Rehabilitation (Cost Limit 7.5 

million) 

 

 

Table 5 indicates that the value of maximum expected PSSI decreases by 1% for 

consideration of single uncertain parameter, while this value reduces by 2% for consideration of 

two uncertain parameters combinedly. The maximum expected PSSI decreases by 3%, if we 

consider three uncertain parameters (Exp H)  

 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A            7,459,746.89  0.92102 282.84 

Exp B            7,427,872.94  0.91548 292.75 

Exp C            7,499,606.00  0.91601 288.61 

Exp D            7,409,872.44  0.91407 282.12 

Exp E            7,484,498.65  0.90451 293.49 

Exp F            7,461,259.29  0.90709 294.46 

Exp G            7,453,702.13  0.90571 298.53 

Exp H            7,472,016.03  0.89395 294.4 
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Figure 6: Critical pipes identified for different experiments (Cost Limit 7.5 million) 

 

Table 6: Maximum Expected SSI and Actual Cost of Rehabilitation (Cost Limit 10 million) 

 

 

Table 6 indicates that the value of maximum expected PSSI remains same for consideration 

of single uncertain parameter, while this value reduces by 1% for consideration of two uncertain 

parameters combinedly. The maximum expected PSSI decreases by 3%, if we consider three 

uncertain parameters (Exp H) 

 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A              9,907,577.89  0.93961 278.85 

Exp B              9,954,538.61  0.93360 284.57 

Exp C              9,966,648.94  0.93236 281.78 

Exp D              9,983,349.85  0.93470 281.47 

Exp E              9,930,515.41  0.92378 295.93 

Exp F              9,944,432.66  0.92712 280.64 

Exp G              9,988,638.55  0.92609 286.89 

Exp H              9,851,908.10  0.91806 299.59 
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Figure 7: Critical pipes identified for different experiments (Cost Limit 10 million) 

 

 

CONCLUSION 

 

The analysis results conclude that there is a significant impact of selected network 

uncertainties on proactive seismic rehabilitation decision-making for the selected values of 

coefficient of variation. The value of PSSI reduces by 3-4% due to the consideration of all three 

network uncertainties. The value of PSSI reduces by 1-2% if only one network uncertainty is 

considered. So, it is recommended to include selected water network uncertainties with the current 

seismic rehabilitation decision-making model. Further studies are required to explore the impacts 

of other uncertainties that may impact seismic rehabilitation of water networks. 
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